1
|
Misiti F, Carelli-Alinovi C, Rodio A. ATP release from erythrocytes: A role of adenosine1. Clin Hemorheol Microcirc 2022; 80:61-71. [DOI: 10.3233/ch-221379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The oxygen required to meet metabolic needs of all tissues is delivered by the red blood cell, a small, flexible cell which, in mammals, is devoid of a nucleus and mitochondria. Despite its simple appearance, this cell has an important role in its own distribution, enabling the delivery of oxygen to precisely meet localized metabolic need. When red blood cells enter in hypoxic area, a signalling pathway is activated within the cell, resulting in the release of ATP in amounts adequate to activate purinergic receptors on vascular endothelium, which trigger secretion of nitric oxide and other factors resulting in vasodilatation. OBJECTIVE: The present study investigates the effect of adenosine exposure on this molecular mechanism. METHODS AND RESULTS: We report that RBC in the presence of adenosine in low oxygen conditions, ATP release increase after 24 h exposure. Adenosine induced-ATP release in deoxygenated red blood cell show data similar to that of RBC in high oxygen conditions: (1) RBC after band 3 modification by 4,4′- diisothio-cyanatostilbene- 2,2′-disulphonic acid; (2) CO-treated RBC. In the presence of Sphingosine kinase (SphK1) inhibitor, adenosine mediated effects on ATP release were abolished. Activity of adenylate cyclase increase following to adenosine exposure, on the contrary red cell phosphofructokinase is not modified within the RBC in the presence of adenosine. CONCLUSION: Our data support involvement of band 3/deoxyHb binding and adenylate cyclase in the pathway responsible for ATP release from RBC following exposure to adenosine.
Collapse
Affiliation(s)
- Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| | - Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L. go F. Rome, Italy
| | - Angelo Rodio
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| |
Collapse
|
2
|
Das A, Murphy K, Drew PJ. Rude mechanicals in brain haemodynamics: non-neural actors that influence blood flow. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190635. [PMID: 33190603 PMCID: PMC7741032 DOI: 10.1098/rstb.2019.0635] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
Fluctuations in blood oxygenation and flow are widely used to infer brain activity during resting-state functional magnetic resonance imaging (fMRI). However, there are strong systemic and vascular contributions to resting-state signals that are unrelated to ongoing neural activity. Importantly, these non-neural contributions to haemodynamic signals (or 'rude mechanicals') can be as large as or larger than the neurally evoked components. Here, we review the two broad classes of drivers of these signals. One is systemic and is tied to fluctuations in external drivers such as heart rate and breathing, and the robust autoregulatory mechanisms that try to maintain a constant milieu in the brain. The other class comprises local, active fluctuations that appear to be intrinsic to vascular tissue and are likely similar to active local fluctuations seen in vasculature all over the body. In this review, we describe these non-neural fluctuations and some of the tools developed to correct for them when interpreting fMRI recordings. However, we also emphasize the links between these vascular fluctuations and brain physiology and point to ways in which fMRI measurements can be used to exploit such links to gain valuable information about neurovascular health and about internal brain states. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff CF24 4HQ, UK
| | - Patrick J. Drew
- Departments of Engineering Science and Mechanics, Neurosurgery, and Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Wilson DF, Matschinsky FM. Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 2020; 11:584891. [PMID: 33178048 PMCID: PMC7596697 DOI: 10.3389/fphys.2020.584891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Nutrient delivery to the brain presents a unique challenge because the tissue functions as a computer system with in the order of 200,000 neurons/mm3. Penetrating arterioles bud from surface arteries of the brain and penetrate downward through the cortex. Capillary networks spread from penetrating arterioles through the surrounding tissue. Each penetrating arteriole forms a vascular unit, with little sharing of flow among vascular units (collateral flow). Unlike cells in other tissues, neurons have to be operationally isolated, interacting with other neurons through specific electrical connections. Neuronal activation typically involves only a few of the cells within a vascular unit, but the local increase in nutrient consumption is substantial. The metabolic response to activation is transmitted to the feeding arteriole through the endothelium of neighboring capillaries and alters calcium permeability of smooth muscle in the wall resulting in modulation of flow through the entire vascular unit. Many age and trauma related brain pathologies can be traced to vascular malfunction. This includes: 1. Physical damage such as in traumatic injury with imposed shear stress as soft tissue moves relative to the skull. Lack of collateral flow among vascular units results in death of the cells in that vascular unit and loss of brain tissue. 2. Age dependent changes lead to progressive increase in vascular resistance and decrease in tissue levels of oxygen and glucose. Chronic hypoxia/hypoglycemia compromises tissue energy metabolism and related regulatory processes. This alters stem cell proliferation and differentiation, undermines vascular integrity, and suppresses critical repair mechanisms such as oligodendrocyte generation and maturation. Reduced structural integrity results in local regions of acute hypoxia and microbleeds, while failure of oligodendrocytes to fully mature leads to poor axonal myelination and defective neuronal function. Understanding and treating age related pathologies, particularly in brain, requires better knowledge of why and how vasculature changes with age. That knowledge will, hopefully, make possible drugs/methods for protecting vascular function, substantially alleviating the negative health and cognitive deficits associated with growing old.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain. Front Aging Neurosci 2019; 11:1. [PMID: 30740048 PMCID: PMC6357927 DOI: 10.3389/fnagi.2019.00001] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA.
Collapse
Affiliation(s)
- Roxana Aldea
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Giles Richardson
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb Blood Flow Metab 2018; 38:2057-2072. [PMID: 30334644 PMCID: PMC6282226 DOI: 10.1177/0271678x18803372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| | - Alberto Vazquez
- Departments of Radiology and Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
6
|
Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 2018; 28:423-435. [PMID: 29574504 DOI: 10.1007/s10286-018-0522-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
Ascent to high-altitude elicits compensatory physiological adaptations in order to improve oxygenation throughout the body. The brain is particularly vulnerable to the hypoxemia of terrestrial altitude exposure. Herein we review the ventilatory and cerebrovascular changes at altitude and how they are both implicated in the maintenance of oxygen delivery to the brain. Further, the interdependence of ventilation and cerebral blood flow at altitude is discussed. Following the acute hypoxic ventilatory response, acclimatization leads to progressive increases in ventilation, and a partial mitigation of hypoxemia. Simultaneously, cerebral blood flow increases during initial exposure to altitude when hypoxemia is the greatest. Following ventilatory acclimatization to altitude, and an increase in hemoglobin concentration-which both underscore improvements in arterial oxygen content over time at altitude-cerebral blood flow progressively decreases back to sea-level values. The complimentary nature of these responses (ventilatory, hematological and cerebral) lead to a tightly maintained cerebral oxygen delivery while at altitude. Despite this general maintenance of global cerebral oxygen delivery, the manner in which this occurs reflects integration of these physiological responses. Indeed, ventilation directly influences cerebral blood flow by determining the prevailing blood gas and acid/base stimuli at altitude, but cerebral blood flow may also influence ventilation by altering central chemoreceptor stimulation via central CO2 washout. The causes and consequences of the integration of ventilatory and cerebral blood flow regulation at high altitude are outlined.
Collapse
|
7
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Sweeney PW, Walker-Samuel S, Shipley RJ. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Sci Rep 2018; 8:1373. [PMID: 29358701 PMCID: PMC5778006 DOI: 10.1038/s41598-017-19086-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 01/20/2023] Open
Abstract
The neurovascular mechanisms underpinning the local regulation of cerebral blood flow (CBF) and oxygen transport remain elusive. In this study we have combined novel in vivo imaging of cortical microvascular and mural cell architecture with mathematical modelling of blood flow and oxygen transport, to provide new insights into CBF regulation that would be inaccessible in a conventional experimental context. Our study indicates that vasoconstriction of smooth muscle actin-covered vessels, rather than pericyte-covered capillaries, induces stable reductions in downstream intravascular capillary and tissue oxygenation. We also propose that seemingly paradoxical observations in the literature around reduced blood velocity in response to arteriolar constrictions might be caused by a propagation of constrictions to upstream penetrating arterioles. We provide support for pericytes acting as signalling conduits for upstream smooth muscle activation, and erythrocyte deformation as a complementary regulatory mechanism. Finally, we caution against the use of blood velocity as a proxy measurement for flow. Our combined imaging-modelling platform complements conventional experimentation allowing cerebrovascular physiology to be probed in unprecedented detail.
Collapse
Affiliation(s)
- Paul W Sweeney
- Mechanical Engineering, University College London, London, UK
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Engineering, University College London, London, UK
| | | |
Collapse
|
9
|
Uhlirova H, Kılıç K, Tian P, Sakadžić S, Gagnon L, Thunemann M, Desjardins M, Saisan PA, Nizar K, Yaseen MA, Hagler DJ, Vandenberghe M, Djurovic S, Andreassen OA, Silva GA, Masliah E, Kleinfeld D, Vinogradov S, Buxton RB, Einevoll GT, Boas DA, Dale AM, Devor A. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0356. [PMID: 27574309 DOI: 10.1098/rstb.2015.0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Hana Uhlirova
- Department of Radiology, UCSD, La Jolla, CA 92093, USA CEITEC-Central European Institute of Technology and Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Kıvılcım Kılıç
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Peifang Tian
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Department of Physics, John Carroll University, University Heights, OH 44118, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Louis Gagnon
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | - Payam A Saisan
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Krystal Nizar
- Neurosciences Graduate Program, UCSD, La Jolla, CA 92093, USA
| | - Mohammad A Yaseen
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Matthieu Vandenberghe
- Department of Radiology, UCSD, La Jolla, CA 92093, USA NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0407 Oslo, Norway NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Gabriel A Silva
- Department of Bioengineering, UCSD, La Jolla, CA 92093, USA Department of Opthalmology, UCSD, La Jolla, CA 92093, USA
| | | | - David Kleinfeld
- Department of Physics, UCSD, La Jolla, CA 92093, USA Department of Electrical and Computer Engineering, UCSD, La Jolla, CA 92093, USA Section of Neurobiology, UCSD, La Jolla, CA 92093, USA
| | - Sergei Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway Department of Physics, University of Oslo, 0316 Oslo, Norway
| | - David A Boas
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anders M Dale
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017; 96:17-42. [PMID: 28957666 DOI: 10.1016/j.neuron.2017.07.030] [Citation(s) in RCA: 1352] [Impact Index Per Article: 193.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
The concept of the neurovascular unit (NVU), formalized at the 2001 Stroke Progress Review Group meeting of the National Institute of Neurological Disorders and Stroke, emphasizes the intimate relationship between the brain and its vessels. Since then, the NVU has attracted the interest of the neuroscience community, resulting in considerable advances in the field. Here the current state of knowledge of the NVU will be assessed, focusing on one of its most vital roles: the coupling between neural activity and blood flow. The evidence supports a conceptual shift in the mechanisms of neurovascular coupling, from a unidimensional process involving neuronal-astrocytic signaling to local blood vessels to a multidimensional one in which mediators released from multiple cells engage distinct signaling pathways and effector systems across the entire cerebrovascular network in a highly orchestrated manner. The recently appreciated NVU dysfunction in neurodegenerative diseases, although still poorly understood, supports emerging concepts that maintaining neurovascular health promotes brain health.
Collapse
|
11
|
Alterations in autonomic cerebrovascular control after spinal cord injury. Auton Neurosci 2017; 209:43-50. [PMID: 28416148 PMCID: PMC6432623 DOI: 10.1016/j.autneu.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
Among chronic cardiovascular and metabolic sequelae of spinal cord injury (SCI) is an up-to four-fold increase in the risk of ischemic and hemorrhagic stroke, suggesting that individuals with SCI cannot maintain stable cerebral perfusion. In able-bodied individuals, the cerebral vasculature is able to regulate cerebral perfusion in response to swings in arterial pressure (cerebral autoregulation), blood gases (cerebral vasoreactivity), and neural metabolic demand (neurovascular coupling). This ability depends, at least partly, on intact autonomic function, but high thoracic and cervical spinal cord injuries result in disruption of sympathetic and parasympathetic cerebrovascular control. In addition, alterations in autonomic and/or vascular function secondary to paralysis and physical inactivity can impact cerebrovascular function independent of the disruption of autonomic control due to injury. Thus, it is conceivable that SCI results in cerebrovascular dysfunction that may underlie an elevated risk of stroke in this population, and that rehabilitation strategies targeting this dysfunction may alleviate the long-term risk of adverse cerebrovascular events. However, despite this potential direct link between SCI and the risk of stroke, studies exploring this relationship are surprisingly scarce, and the few available studies provide equivocal results. The focus of this review is to provide an integrated overview of the available data on alterations in cerebral vascular function after SCI in humans, and to provide suggestions for future research.
Collapse
|
12
|
Dora KA. Conducted dilatation to ATP and K + in rat skeletal muscle arterioles. Acta Physiol (Oxf) 2017; 219:202-218. [PMID: 26804547 PMCID: PMC5215486 DOI: 10.1111/apha.12656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
AIM During exercise in humans, circulating levels of ATP and K+ increase at a time when blood flow increases to satisfy metabolic demand. Both molecules can activate arteriolar K+ channels to stimulate vasodilatation; here, it is established whether conducted dilatation is observed in a skeletal muscle bed. METHODS Isolated and cannulated rat cremaster arterioles were used to assess both local and conducted responses. Agents were either added to the bath, focally pulse-ejected to the downstream end of arterioles, or in triple-cannulated arterioles, luminally perfused into the downstream branches to assess both local and conducted responses. RESULTS The endothelium-dependent agonist ACh and the KATP channel opener levcromakalim each stimulated both local and conducted vasodilatation. Focal, bolus delivery of ATP (10 μm) or KCl (33 mm) to the outside of arterioles stimulated a biphasic vasomotor response: rapid vasoconstriction followed by dilatation as each washed away. At lower concentrations of KCl (19 mm), constriction was avoided, and instead, Ba2+ -sensitive local dilatation and conducted dilatation were both observed. Luminal perfusion of ATP avoided constriction and activated P2Y1 receptors stimulating vasodilatation secondary to opening of KCa channels. In triple-cannulated arterioles, either ATP (10 μm) or K+ (15 mm) luminally perfused into daughter branches of a bifurcation stimulated local dilatation which conducted into the parent arteriole. CONCLUSION The recognized physiological autocrine and paracrine mediators ATP and K+ each act to evoke both local and conducted vasodilatation in rat cremaster arterioles. Therefore, in situations when circulating levels are raised, such as during exercise, these agents can act as important regulators of blood flow.
Collapse
Affiliation(s)
- K. A. Dora
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
13
|
Sové RJ, Fraser GM, Goldman D, Ellis CG. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies. PLoS One 2016; 11:e0166289. [PMID: 27829071 PMCID: PMC5102494 DOI: 10.1371/journal.pone.0166289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 01/09/2023] Open
Abstract
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
Collapse
Affiliation(s)
- Richard J. Sové
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Graham M. Fraser
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | |
Collapse
|
14
|
Shih AY, Rühlmann C, Blinder P, Devor A, Drew PJ, Friedman B, Knutsen PM, Lyden PD, Mateo C, Mellander L, Nishimura N, Schaffer CB, Tsai PS, Kleinfeld D. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation 2015; 22:204-218. [PMID: 25705966 DOI: 10.1111/micc.12195] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/17/2015] [Indexed: 01/25/2023]
Abstract
We review the organizational principles of the cortical vasculature and the underlying patterns of blood flow under normal conditions and in response to occlusion of single vessels. The cortex is sourced by a two-dimensional network of pial arterioles that feeds a three-dimensional network of subsurface microvessels in close proximity to neurons and glia. Blood flow within the surface and subsurface networks is largely insensitive to occlusion of a single vessel within either network. However, the penetrating arterioles that connect the pial network to the subsurface network are bottlenecks to flow; occlusion of even a single penetrating arteriole results in the death of a 500 μm diameter cylinder of cortical tissue despite the potential for collateral flow through microvessels. This pattern of flow is consistent with that calculated from a full reconstruction of the angioarchitecture. Conceptually, collateral flow is insufficient to compensate for the occlusion of a penetrating arteriole because penetrating venules act as shunts of blood that flows through collaterals. Future directions that stem from the analysis of the angioarchitecture concern cellular-level issues, in particular the regulation of blood flow within the subsurface microvascular network, and system-level issues, in particular the role of penetrating arteriole occlusions in human cognitive impairment.
Collapse
Affiliation(s)
- Andy Y Shih
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Charlotta Rühlmann
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Pablo Blinder
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Devor
- Department of Neurosciences, University of California School of Medicine, La Jolla, CA
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA
| | - Beth Friedman
- Department of Pharmacology, University of California School of Medicine, La Jolla, CA
| | - Per M Knutsen
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Hospital, Los Angeles, CA
| | - Celine Mateo
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Lisa Mellander
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Chris B Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philbert S Tsai
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA.,Section of Neurobiology, University of California, La Jolla, CA
| |
Collapse
|
15
|
Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 2015; 310:R398-413. [PMID: 26676248 DOI: 10.1152/ajpregu.00270.2015] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Damian M Bailey
- Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| |
Collapse
|
16
|
Murrant CL, Sarelius IH. Local control of blood flow during active hyperaemia: what kinds of integration are important? J Physiol 2015; 593:4699-711. [PMID: 26314391 DOI: 10.1113/jp270205] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
The focus of this review is on local mechanisms modifying arteriolar resistance to match blood flow to metabolism. In skeletal muscle many local mediators are known, including K(+) , nitric oxide (NO), purines and prostaglandins. Each accounts for about 30% of the response; it is widely held that these act redundantly: this concept awaits systematic testing. Understanding signal integration also requires consideration of microvascular network morphology in relation to local communication pathways between endothelial and smooth muscle cells (which are critical for many local responses, including dilatation to skeletal muscle contraction) and in relation to the spread of vasodilator signals up- and downstream throughout the network. Mechanisms mediating the spread of dilatation from local to remote sites have been well studied using acetylcholine (ACh), but remote dilatations to contraction of skeletal muscle fibres also occur. Importantly, these mechanisms clearly differ from those initiated by ACh, but much remains undefined. Furthermore, capillaries contribute to metabolic dilatation as they dilate arterioles directly upstream in response to vasoactive agents or contraction of adjacent muscle fibres. Given the dispersed arrangement of motor units, precise matching of flow to metabolism is not attainable unless signals are initiated only by 'active' capillaries. As motor units are recruited, signals that direct blood flow towards these active fibres will eventually be supported by local and spreading responses in the arterioles associated with those fibres. Thus, mechanisms of integration of vasodilator signalling across elements of the microvasculature remain an important area of focus for new studies.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
17
|
Gao YR, Greene SE, Drew PJ. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response. Neuroimage 2015; 115:162-76. [PMID: 25953632 PMCID: PMC4470397 DOI: 10.1016/j.neuroimage.2015.04.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/28/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Understanding the spatial dynamics of dilation in the cerebral vasculature is essential for deciphering the vascular basis of hemodynamic signals in the brain. We used two-photon microscopy to image neural activity and vascular dynamics in the somatosensory cortex of awake behaving mice during voluntary locomotion. Arterial dilations within the histologically-defined forelimb/hindlimb (FL/HL) representation were larger than arterial dilations in the somatosensory cortex immediately outside the FL/HL representation, demonstrating that the vascular response during natural behaviors was spatially localized. Surprisingly, we found that locomotion drove dilations in surface vessels that were nearly three times the amplitude of intracortical vessel dilations. The smaller dilations of the intracortical arterioles were not due to saturation of dilation. Anatomical imaging revealed that, unlike surface vessels, intracortical vessels were tightly enclosed by brain tissue. A mathematical model showed that mechanical restriction by the brain tissue surrounding intracortical vessels could account for the reduced amplitude of intracortical vessel dilation relative to surface vessels. Thus, under normal conditions, the mechanical properties of the brain may play an important role in sculpting the laminar differences of hemodynamic responses.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Masamoto K, Unekawa M, Watanabe T, Toriumi H, Takuwa H, Kawaguchi H, Kanno I, Matsui K, Tanaka KF, Tomita Y, Suzuki N. Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci Rep 2015; 5:11455. [PMID: 26076820 PMCID: PMC4468581 DOI: 10.1038/srep11455] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Cortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex. A brief photostimulation induced a fast transient increase in CBF. The average response onset time was 0.7 ± 0.7 sec at the activation foci, and this CBF increase spread widely from the irradiation spot with an apparent propagation speed of 0.8–1.1 mm/sec. The broad increase in the CBF could be due to a propagation of diffusible vasoactive signals derived from the stimulated astrocytes. Pharmacological manipulation showed that topical administration of a K+ channel inhibitor (BaCl2; 0.1–0.5 mM) significantly reduced the photostimulation-induced CBF responses, which indicates that the ChR2-evoked astrocytic activity involves K+ signalling to the vascular smooth muscle cells. These findings demonstrate a unique model for exploring the role of the astrocytes in gliovascular coupling using non-invasive, time-controlled, cell-type specific perturbations.
Collapse
Affiliation(s)
- Kazuto Masamoto
- 1] Faculty of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan [2] Brain Science Inspired Life Support Research Centre, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan [3] Molecular Imaging Centre, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tatsushi Watanabe
- Faculty of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Haruki Toriumi
- Department of Neurology, Keio University School of Medicine, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hiroyuki Takuwa
- Molecular Imaging Centre, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Hiroshi Kawaguchi
- Molecular Imaging Centre, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Iwao Kanno
- Molecular Imaging Centre, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Ko Matsui
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Division of Interdisciplinary Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba, Sendai, Miyagi 980-8587, Japan
| | - Yutaka Tomita
- 1] Department of Neurology, Keio University School of Medicine, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan [2] Tomita Hospital, 32 Minaminakamachi, Motojuku-cho, Okazaki, Aichi 444-3505, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Dominguez Rieg JA, Burt JM, Ruth P, Rieg T. P2Y₂ receptor activation decreases blood pressure via intermediate conductance potassium channels and connexin 37. Acta Physiol (Oxf) 2015; 213:628-41. [PMID: 25545736 PMCID: PMC4442688 DOI: 10.1111/apha.12446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/14/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023]
Abstract
AIMS Nucleotides are important paracrine regulators of vascular tone. We previously demonstrated that activation of P2Y₂ receptors causes an acute, NO-independent decrease in blood pressure, indicating this signalling pathway requires an endothelial-derived hyperpolarization (EDH) response. To define the mechanisms by which activation of P2Y₂ receptors initiates EDH and vasodilation, we studied intermediate-conductance (KCa3.1, expressed in endothelial cells) and big-conductance potassium channels (KCa1.1, expressed in smooth muscle cells) as well as components of the myoendothelial gap junction, connexins 37 and 40 (Cx37, Cx40), all hypothesized to be part of the EDH response. METHODS We compared the effects of a P2Y₂/₄ receptor agonist in wild-type (WT) mice and in mice lacking KCa3.1, KCa1.1, Cx37 or Cx40 under anaesthesia, while monitoring intra-arterial blood pressure and heart rate. RESULTS Acute activation of P2Y₂/₄ receptors (0.01-3 mg kg(-1) body weight i.v.) caused a biphasic blood pressure response characterized by a dose-dependent and rapid decrease in blood pressure in WT (maximal response % of baseline at 3 mg kg(-1) : -38 ± 1%) followed by a consecutive increase in blood pressure (+44 ± 11%). The maximal responses in KCa3.1(-/-) and Cx37(-/-) were impaired (-13 ± 5, +17 ± 7 and -27 ± 1, +13 ± 3% respectively), whereas the maximal blood pressure decrease in response to acetylcholine at 3 μg kg(-1) was not significantly different (WT: -53 ± 3%; KCa3.1(-/-) : -52 ± 3; Cx37(-/-) : -53 ± 3%). KCa1.1(-/-) and Cx40(-/-) showed an identical biphasic response to P2Y2/4 receptor activation compared to WT. CONCLUSIONS The data suggest that the P2Y2/4 receptor activation elicits blood pressure responses via distinct mechanisms involving KCa3.1 and Cx37.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Connexins/deficiency
- Connexins/genetics
- Connexins/metabolism
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Heart Rate/drug effects
- Inosine/analogs & derivatives
- Inosine/pharmacology
- Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency
- Intermediate-Conductance Calcium-Activated Potassium Channels/genetics
- Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Purinergic P2Y Receptor Agonists
- Receptors, Purinergic P2Y2/drug effects
- Receptors, Purinergic P2Y2/metabolism
- Signal Transduction/drug effects
- Uridine Triphosphate/analogs & derivatives
- Uridine Triphosphate/pharmacology
- Vasodilation/drug effects
- Gap Junction alpha-4 Protein
Collapse
Affiliation(s)
- J. A. Dominguez Rieg
- Department of Basic Sciences, Bastyr University California, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - J. M. Burt
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - P. Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - T. Rieg
- VA San Diego Healthcare System, San Diego, CA, USA
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Lee HJ, Dietrich HH, Han BH, Zipfel GJ. Development of an ex vivo model for the study of cerebrovascular function utilizing isolated mouse olfactory artery. J Korean Neurosurg Soc 2015; 57:1-5. [PMID: 25674336 PMCID: PMC4323498 DOI: 10.3340/jkns.2015.57.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/22/2014] [Accepted: 05/23/2014] [Indexed: 11/27/2022] Open
Abstract
Objective Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. Methods The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately -500 µm in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). Results We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin PGH2. Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. Conclusion Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models.
Collapse
Affiliation(s)
- Hyung-Jin Lee
- Department of Neurological Surgery, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Hans H Dietrich
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA. ; Alzheimers Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Byung Hee Han
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Zipfel
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol 2014; 5:6. [PMID: 24478719 PMCID: PMC3896879 DOI: 10.3389/fphys.2014.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/05/2014] [Indexed: 11/17/2022] Open
Abstract
Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.
Collapse
Affiliation(s)
- Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
22
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol 2013; 305:H620-33. [PMID: 23792680 DOI: 10.1152/ajpheart.00624.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.
Collapse
Affiliation(s)
- Virginie Bolduc
- Departments of Surgery and Pharmacology, Université de Montréal, and Centre de recherche, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
24
|
Nyberg M, Al-Khazraji BK, Mortensen SP, Jackson DN, Ellis CG, Hellsten Y. Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. Am J Physiol Regul Integr Comp Physiol 2013; 305:R281-90. [PMID: 23761642 DOI: 10.1152/ajpregu.00189.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During skeletal muscle contractions, the concentration of ATP increases in muscle interstitial fluid as measured by microdialysis probes. This increase is associated with the magnitude of blood flow, suggesting that interstitial ATP may be important for contraction-induced vasodilation. However, interstitial ATP has solely been described to induce vasoconstriction in skeletal muscle. To examine whether interstitial ATP induces vasodilation in skeletal muscle and to what extent this vasoactive effect is mediated by formation of nitric oxide (NO) and prostanoids, three different experimental models were studied. The rat gluteus maximus skeletal muscle model was used to study changes in local skeletal muscle hemodynamics. Superfused ATP at concentrations found during muscle contractions (1-10 μM) increased blood flow by up to 400%. In this model, the underlying mechanism was also examined by inhibition of NO and prostanoid formation. Inhibition of these systems abolished the vasodilator effect of ATP. Cell-culture experiments verified ATP-induced formation of NO and prostacyclin in rat skeletal muscle microvascular endothelial cells, and ATP-induced formation of NO in rat skeletal muscle cells. To confirm these findings in humans, ATP was infused into skeletal muscle interstitium of healthy subjects via microdialysis probes and found to increase muscle interstitial concentrations of NO and prostacyclin by ~60% and ~40%, respectively. Collectively, these data suggest that a physiologically relevant elevation in interstitial ATP concentrations increases muscle blood flow, indicating that the contraction-induced increase in skeletal muscle interstitial [ATP] is important for exercise hyperemia. The vasodilator effect of ATP application is mediated by NO and prostanoid formation.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Despite recent advances in our understanding of the molecular and cellular mechanisms behind vascular conducted responses (VCRs) in systemic arterioles, we still know very little about their potential physiological and pathophysiological role in brain penetrating arterioles controlling blood flow to the deeper areas of the brain. The scope of the present review is to present an overview of the conceptual, mechanistic, and physiological role of VCRs in resistance vessels, and to discuss in detail the recent advances in our knowledge of VCRs in brain arterioles controlling cerebral blood flow. We provide a schematic view of the ion channels and intercellular communication pathways necessary for conduction of an electrical and mechanical response in the arteriolar wall, and discuss the local signaling mechanisms and cellular pathway involved in the responses to different local stimuli and in different vascular beds. Physiological modulation of VCRs, which is a rather new finding in this field, is discussed in the light of changes in plasma membrane ion channel conductance as a function of health status or disease. Finally, we discuss the possible role of VCRs in cerebrovascular function and disease as well as suggest future directions for studying VCRs in the cerebral circulation.
Collapse
|
26
|
Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 2012; 6:51. [PMID: 22907993 PMCID: PMC3414732 DOI: 10.3389/fncir.2012.00051] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022] Open
Abstract
Following the discovery of the vasorelaxant properties of nitric oxide (NO) by Furchgott and Ignarro, the finding by Bredt and coll. of a constitutively expressed NO synthase in neurons (nNOS) led to the presumption that neuronal NO may control cerebrovascular functions. Consequently, numerous studies have sought to determine whether neuraly-derived NO is involved in the regulation of cerebral blood flow (CBF). Anatomically, axons, dendrites, or somata of NO neurons have been found to contact the basement membrane of blood vessels or perivascular astrocytes in all segments of the cortical microcirculation. Functionally, various experimental approaches support a role of neuronal NO in the maintenance of resting CBF as well as in the vascular response to neuronal activity. Since decades, it has been assumed that neuronal NO simply diffuses to the local blood vessels and produce vasodilation through a cGMP-PKG dependent mechanism. However, NO is not the sole mediator of vasodilation in the cerebral microcirculation and is known to interact with a myriad of signaling pathways also involved in vascular control. In addition, cerebrovascular regulation is the result of a complex orchestration between all components of the neurovascular unit (i.e., neuronal, glial, and vascular cells) also known to produce NO. In this review article, the role of NO interneuron in the regulation of cortical microcirculation will be discussed in the context of the neurovascular unit.
Collapse
Affiliation(s)
- Sonia Duchemin
- Department of Pharmacology, Université de Montréal Montreal, QC, Canada
| | | | | | | |
Collapse
|
27
|
Crawford C, Kennedy-Lydon T, Sprott C, Desai T, Sawbridge L, Munday J, Unwin RJ, Wildman SSP, Peppiatt-Wildman CM. An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Clin Pract 2012; 120:p17-31. [PMID: 22833057 PMCID: PMC5166522 DOI: 10.1159/000339110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/24/2012] [Indexed: 02/04/2023] Open
Abstract
Background Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow.
Collapse
Affiliation(s)
- C Crawford
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
While it has been widely confirmed that cerebral blood flow is closely coupled with brain metabolism, it remains a matter of controversy whether capillary flow is directly controlled to meet the energy demands of the parenchyma. Since the capillary is known to lack smooth muscle cells, it has generally been considered that capillary flow is not regulated in situ. However, we now have increasing data supporting the physiological control of capillary flow. The observation of heterogeneity in the microcirculation in vivo has suggested that intravascular factors may be involved in the flow control, including non-Newtonian rheology, red blood cell flow, leukocyte adhesion, release of vasoactive mediators, and expression of glycoproteins on the endothelial cells. Astrocytes, a key mediator of the neurovascular unit, and intrinsic innervation may also regulate capillary flow. In addition, recent findings on pericyte contractility have attracted the attention of many researchers. Finally, based on these findings, we present a new model of flow control, the proximal integration model, in which localized neural activity is detected at nearby capillaries and the vasodilation signal is transmitted proximally along the vessel. Signals are then integrated at the precapillary arterioles and other arterioles further upstream and regulate the capillary flow.
Collapse
|
29
|
Abstract
The control of cerebral blood flow is complex, and only beginning to be elucidated. Studies have identified three key regulatory paradigms. The first is cerebral pressure autoregulation, which maintains a constant flow in the face of changing cerebral perfusion pressure. Flow-metabolism coupling refers to the brains ability to vary blood flow to match metabolic activity. An extensive arborization of perivascular nerves also serves to modulate cerebral blood flow, so-called neurogenic regulation. Central to these three paradigms are two cell types: endothelium and astrocytes. The endothelium produces several vasoactive factors that are germane to the regulation of cerebral blood flow: nitric oxide, endothelium-dependent hyperpolarization factor, the eicosanoids, and the endothelins. Astrocytic foot processes directly abut the blood vessels, and play a key role in regulation of cerebral blood flow. Lastly, new research has been investigating cell-cell communication at the microvascular level. Several lines of evidence point to the ability of the larger proximal vessels to coordinate vasomotor responses downstream.
Collapse
|
30
|
Sprague RS, Bowles EA, Achilleus D, Ellsworth ML. Erythrocytes as controllers of perfusion distribution in the microvasculature of skeletal muscle. Acta Physiol (Oxf) 2011; 202:285-92. [PMID: 20731624 DOI: 10.1111/j.1748-1716.2010.02182.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In 1929, August Krogh identified the matching of oxygen (O(2)) supply with demand in skeletal muscle as a fundamental physiological process. In the intervening decades, much research has been focused on elucidating the mechanisms by which this important process occurs. For any control system to be effective, there must be a means by which the need is determined and a mechanism by which that information is coupled to an appropriate response. The focus of this review was to highlight current research in support of the hypothesis that the mobile erythrocyte, when exposed to reduced O(2) tension, releases ATP in a controlled manner. This ATP interacts with purinergic receptors on the endothelium producing both local and conducted vasodilation enabling the erythrocyte to distribute perfusion to precisely match O(2) delivery with need in skeletal muscle. If this is an important mechanism for normal physiological control of microvascular perfusion, defects in this process would be anticipated to have pathophysiological consequences. Individuals with either type 2 diabetes (DM2) or pre-diabetes have microvascular dysfunction that contributes to morbidity and mortality. DM2 erythrocytes and erythrocytes incubated with insulin at levels similar to those seen in pre-diabetes fail to release ATP in response to reduced O(2) tension. Knowledge of the components of the signal transduction pathway for low O(2) -induced ATP release suggest novel therapeutic approaches to ameliorating this defect. Although the erythrocyte may be but one component of the complex O(2) delivery process, it appears to play an important role in distributing oxygen within the microvasculature.
Collapse
Affiliation(s)
- R S Sprague
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
31
|
Rieg T, Gerasimova M, Boyer JL, Insel PA, Vallon V. P2Y₂ receptor activation decreases blood pressure and increases renal Na⁺ excretion. Am J Physiol Regul Integr Comp Physiol 2011; 301:R510-8. [PMID: 21613580 DOI: 10.1152/ajpregu.00148.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP and UTP are endogenous agonists of P2Y(2/4) receptors. To define the in vivo effects of P2Y(2) receptor activation on blood pressure and urinary excretion, we compared the response to INS45973, a P2Y(2/4) receptor agonist and UTP analog, in wild-type (WT) and P2Y(2) receptor knockout (P2Y(2)-/-) mice. INS45973 was administered intravenously as a bolus injection or continuous infusion to determine effects on blood pressure and renal function, respectively. Within seconds, bolus application of INS45973 (0.1 to 3 mg/kg body wt) dose-dependently decreased blood pressure in WT (maximum response -35 ± 2 mmHg) and to a similar extent in endothelial nitric oxide synthase knockout mice. By contrast, blood pressure increased in P2Y(2)-/- (maximum response +18 ± 1 mmHg) but returned to basal levels within 60 s. Continuous infusion of INS45973 (25 to 750 μg·min(-1)·kg(-1) body wt) dose-dependently increased urinary excretion of Na(+) in WT (maximum response +46 ± 15%) but reduced Na(+) excretion in P2Y(2)-/- (maximum responses of -45 ± 15%) mice. In renal clearance experiments, INS45973 did not affect glomerular filtration rate but lowered blood pressure and increased fractional excretion of fluid, Na(+), and K(+) in WT relative to P2Y(2)-/- mice. The blood pressure responses to INS45973 are consistent with P2Y(2) receptor-mediated NO-independent vasodilation and implicate responses to endothelium-derived hyperpolarizing factor, and P2Y(2) receptor-independent vasoconstriction, probably via activation of P2Y(4) receptors on smooth muscle. Systemic activation of P2Y(2) receptors thus lowers blood pressure and inhibits renal Na(+) reabsorption, effects suggesting the potential utility of P2Y(2) agonism in the treatment of hypertension.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego, La Jolla, California 92161, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs), which are generated from the metabolism of arachidonic acid by cytochrome P450 (CYP) enzymes, possess a wide array of biological actions, including the regulation of blood flow to organs. 20-HETE and EETs are generated in various cell types in the brain and cerebral blood vessels, and contribute significantly to cerebral blood flow autoregulation and the coupling of regional brain blood flow to neuronal activity (neurovascular coupling). Investigations are beginning to unravel the molecular and cellular mechanisms by which these CYP eicosanoids regulate cerebral vascular function and the changes that occur in pathological states. Intriguingly, 20-HETE and the soluble epoxide hydrolase (sEH) enzyme that regulates EET levels have been explored as molecular therapeutic targets for cerebral vascular diseases. Inhibition of 20-HETE, or increasing EET levels by inhibiting the sEH enzyme, decreases cerebral damage following stroke. The improved outcome following cerebral ischaemia is a consequence of improving cerebral vascular structure or function and protecting neurons from cell death. Thus, the CYP eicosanoids are key regulators of cerebral vascular function and novel therapeutic targets for cardiovascular diseases and neurological disorders.
Collapse
|
33
|
Nishimura N, Rosidi NL, Iadecola C, Schaffer CB. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J Cereb Blood Flow Metab 2010; 30:1914-27. [PMID: 20842163 PMCID: PMC3002886 DOI: 10.1038/jcbfm.2010.157] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Occlusions of penetrating arterioles, which plunge into cortex and feed capillary beds, cause severe decreases in blood flow and are potential causes of ischemic microlesions. However, surrounding arterioles and capillary beds remain flowing and might provide collateral flow around the occlusion. We used femtosecond laser ablation to trigger clotting in single penetrating arterioles in rat cortex and two-photon microscopy to measure changes in microvessel diameter and red blood cell speed after the clot. We found that after occlusion of a single penetrating arteriole, nearby penetrating and surface arterioles did not dilate, suggesting that alternate blood flow routes are not actively recruited. In contrast, capillaries showed two types of reactions. Capillaries directly downstream from the occluded arteriole dilated after the clot, but other capillaries in the same vicinity did not dilate. This heterogeneity in capillary response suggests that signals for vasodilation are vascular rather than parenchymal in origin. Although both neighboring arterioles and capillaries dilated in response to topically applied acetylcholine after the occlusion, the flow in the territory of the occluded arteriole did not improve. Collateral flow from neighboring penetrating arterioles is neither actively recruited nor effective in improving blood flow after the occlusion of a single penetrating arteriole.
Collapse
Affiliation(s)
- Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
34
|
Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc Natl Acad Sci U S A 2010; 107:15246-51. [PMID: 20696904 DOI: 10.1073/pnas.1006735107] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with "upstream" propagation of vasodilation toward the cortical surface along the diving arterioles and "downstream" propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the "initial dip" was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.
Collapse
|
35
|
Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise. BMC PHYSIOLOGY 2009; 9:24. [PMID: 20003530 PMCID: PMC2801472 DOI: 10.1186/1472-6793-9-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 12/15/2009] [Indexed: 11/30/2022]
Abstract
Background It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.
Collapse
|
36
|
Misiti F, Orsini F, Clementi ME, Masala D, Tellone E, Galtieri A, Giardina B. Amyloid peptide inhibits ATP release from human erythrocytes. Biochem Cell Biol 2009; 86:501-8. [PMID: 19088798 DOI: 10.1139/o08-139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oxygen required to meet metabolic needs of all tissues is delivered by the erythrocyte, a small, flexible cell, which, in mammals, is devoid of a nucleus and mitochondria. Despite its simple appearance, this cell has an important role in its own distribution, enabling the delivery of oxygen to precisely meet localized metabolic need. When an erythrocyte enters in a hypoxic area, a signalling pathway is activated within the cell resulting in the release of ATP in amounts adequate to activate purinergic receptors on vascular endothelium, which trigger secretion of nitric oxide and other factors resulting in vasodilatation. Among other mechanisms, binding of deoxyhemoglobin to the cytoplasmic domain of the anion-exchange protein band 3 is probably involved in this pathway. The present study investigates the effect of amyloid beta peptide exposure on this molecular mechanism. We report that deoxygenated human erythrocytes fail to release ATP following 24 h exposure to amyloid beta peptide. Concurrently, amyloid beta peptide induces caspase 3 activation. Preincubation of amyloid beta peptide treated erythrocytes with a specific inhibitor of caspase 3 prevents amyloid-induced caspase 3 activation and restores the erythrocyte's ability to release ATP under deoxygenated conditions. Since the activity of red cell phosphofructokinase, a key step in glycolytic flux, is not modified within the red cell following amyloid peptide exposure, it is likely that ATP release reduction is not dependent on glycolytic flux alterations. It has also been suggested that the heterotrimeric G protein, Gi, and adenylyl cyclase are downstream critical components of the pathway responsible for ATP release. We show that cAMP synthesis and ATP release are not failed in amyloid-peptide-treated erythrocytes in response to incubation with mastoparan 7 or forskolin plus 3-isobutyl-1-methyl xanthine, agents that stimulate cAMP synthesis. In conclusion, these results indicate that amyloid beta peptide inhibits ATP release from deoxygenated erythrocytes by activating red cell caspase 3, suggesting a pathophysiologic role for vascular amyloid peptide in Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Misiti
- Department of Health and Motor Sciences, University of Cassino, V.le Bonomi 03043, Cassino (FR), Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology (Bethesda) 2009; 24:107-16. [PMID: 19364913 DOI: 10.1152/physiol.00038.2008] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Through oxygen-dependent release of the vasodilator ATP, the mobile erythrocyte plays a fundamental role in matching microvascular oxygen supply with local tissue oxygen demand. Signal transduction within the erythrocyte and microvessels as well as feedback mechanisms controlling ATP release have been described. Our understanding of the impact of this novel control mechanism will rely on the integration of in vivo experiments and computational models.
Collapse
Affiliation(s)
- Mary L Ellsworth
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
39
|
Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG. Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res 2008; 46:253-64. [PMID: 18984964 DOI: 10.1159/000167273] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 05/29/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP), a potent vascular regulator in the cerebral circulation, initiates conducted vasomotor responses which may be impaired after pathological insults. We analyzed the mechanism of ATP-induced local vasomotor responses and their effect on conducted vasomotor responses in rat cerebral penetrating arterioles. METHODS Arterioles were cannulated and their internal diameter monitored. Vasomotor responses to ATP were observed in the presence or absence of inhibitors, or after endothelial impairment. Smooth muscle membrane potentials were measured in some vessels. RESULTS Microapplication of ATP produced a biphasic response (constriction followed by dilation), which resulted in conducted dilation preceded by a membrane hyperpolarization. alpha,beta-methylene-ATP or pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) blunted the ATP-mediated constriction and enhanced local and conducted dilation. N(omega)-monomethyl-L-arginine, endothelial impairment and N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduced the local dilation caused by ATP. The conducted dilation was attenuated by MS-PPOH and endothelial impairment, but not N(omega)-monomethyl-L-arginine or indomethacin. CONCLUSION ATP-induced conducted dilation is preceded by membrane hyperpolarization. Local ATP induces initial local constriction via smooth-muscle P(2X1) and subsequent dilation via endothelial P(2Y) receptors. Nitric oxide, cytochrome P450 metabolites, and intermediate and large conductance K(Ca) channels mediate dilation caused by ATP. ATP-induced conducted dilation is dependent upon both the endothelium and cytochrome P450 metabolites.
Collapse
Affiliation(s)
- Hans H Dietrich
- Department of Neurosurgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008; 55:281-8. [PMID: 18541276 DOI: 10.1016/j.neuropharm.2008.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 01/07/2023]
Abstract
We outline the mechanisms currently thought to be responsible for controlling cerebral blood flow (CBF) in the physiologic state and during ischemia, focusing on the arterial pial and penetrating microcirculation. Initially, we categorize the cerebral circulation and then review the vascular anatomy. We draw attention to a number of unique features of the cerebral vasculature, which are relevant to the microcirculatory response during ischemia: arterial histology, species differences, collateral flow, the venous drainage, the blood-brain barrier, astrocytes and vascular nerves. The physiology of the arterial microcirculation is then assessed. Lastly, we review the changes during ischemia which impact on the microcirculation. Further understanding of the normal cerebrovascular anatomy and physiology as well as the pathophysiology of ischemia will allow the rational development of a pharmacologic therapy for human stroke and brain injury.
Collapse
Affiliation(s)
- Tobias Kulik
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
41
|
Schuepbach D, Boeker H, Duschek S, Hell D. Rapid cerebral hemodynamic modulation during mental planning and movement execution: evidence of time-locked relationship with complex behavior. Clin Neurophysiol 2007; 118:2254-62. [PMID: 17766175 DOI: 10.1016/j.clinph.2007.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/11/2007] [Accepted: 07/28/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although there is evidence of specific associations between neuronal activity and early cerebral blood flow (CBF), little is known on a logical furtherance of this linkage, namely the association between early measures of cerebral hemodynamics and complex behavior. The present study examined the linkage between hemodynamic modulation in basal cerebral arteries and performance in a non-routine planning task by means of functional transcranial Doppler sonography (fTCD). METHODS The Stockings of Cambridge (SOC) was employed as planning paradigm. The middle and anterior cerebral arteries (MCA/ACA) were bilaterally insonated. Statistical methods comprised uni- and multivariate analyses of variance and multiple linear regression analyses. RESULTS Taking advantage of the excellent temporal resolution of fTCD, early cerebral hemodynamic modulation of the left MCA markedly predicted task accuracy. Pronounced early blood flow increase during planning and early decrease during movement execution were associated with better performance. No such blood flow modulations were observed in worse performers. CONCLUSIONS Early cerebral hemodynamic modulation in the left MCA proved to be a valuable neurophysiological marker that showed a great overlap with task accuracy during non-routine planning. SIGNIFICANCE These results support the notion that a high temporal resolution in functional monitoring is a favorable strategy to disentangle relevant neurophysiological correlates of higher cognitive functioning.
Collapse
Affiliation(s)
- Daniel Schuepbach
- Psychiatric University Hospital Zürich, Lenggstrasse 31, PO Box 1931, 8032 Zürich, Switzerland.
| | | | | | | |
Collapse
|
42
|
Winter P, Dora KA. Spreading dilatation to luminal perfusion of ATP and UTP in rat isolated small mesenteric arteries. J Physiol 2007; 582:335-47. [PMID: 17478526 PMCID: PMC2075309 DOI: 10.1113/jphysiol.2007.135202] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Levels of ATP achieved within the lumen of vessels suggest a key autacoid role. P2Y receptors on the endothelium may represent the target for ATP, leading to hyperpolarization and associated relaxation of vascular smooth muscle through the endothelium-dependent hyperpolarizing factor (EDHF) pathway. EDHF signals radially from the endothelium to cause dilatation, and appears mechanistically distinct from the axial spread of dilatation, which we showed occurs independently of a change in endothelial cell Ca2+ in rat mesenteric arteries. Here we have investigated the potential of P2Y receptor stimulation to evoke spreading dilatation in rat resistance small arteries under physiological pressure and flow. Triple cannulation of isolated arteries enables focal application of purine and pyrimidine nucleotides to the endothelium, avoiding potential complicating actions of these agents on the smooth muscle. Nucleotides were locally infused through one branch of a bifurcation, causing near maximal local dilatation attributable to EDHF. Dilatation then spread rapidly into the adjacent feed artery and upstream against the direction of luminal flow, sufficient to increase flow into the feed artery. The rate of decay of this spreading dilatation was identical between nucleotides, and matched that to ACh, which acts only on the endothelium. In contrast, focal abluminal application of either ATP or UTP at the downstream end of cannulated arteries evoked constriction, which only in the case of ATP was also associated with modest spread of dilatation. The non-hydrolysable ADP analogue, ADPbetaS, acting at P2Y1 receptors, caused robust local and spreading dilatation responses whether applied to the luminal or abluminal surface of pressurized arteries. Dilatation to nucleotides was sensitive to inhibition with apamin and TRAM-34, selective blockers of small- and intermediate-conductance Ca2+-activated K+ channels, respectively. These data demonstrate that direct luminal stimulation of P2Y receptor on the endothelium of rat mesenteric arteries leads to marked spreading dilatation and thus suggests that circulating purines and pyrimidines may act as important regulators of blood flow.
Collapse
Affiliation(s)
- Polly Winter
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|
43
|
Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 2007; 35:89-104. [PMID: 17222567 DOI: 10.1016/j.neuroimage.2006.11.032] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/26/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022] Open
Abstract
The cortical hemodynamic response to somatosensory stimulus is investigated at the level of individual vascular compartments using both depth-resolved optical imaging and in-vivo two-photon microscopy. We utilize a new imaging and spatiotemporal analysis approach that exploits the different characteristic dynamics of responding arteries, arterioles, capillaries and veins to isolate their three-dimensional spatial extent within the cortex. This spatial delineation is validated using vascular casts. Temporal delineation is supported by in-vivo two-photon microscopy of the temporal dynamics and vascular mechanisms of the arteriolar and venous responses. Using these techniques we have been able to characterize the roles of the different vascular compartments in generating and controlling the hemodynamic response to somatosensory stimulus. We find that changes in arteriolar total hemoglobin concentration agree well with arteriolar dilation dynamics, which in turn correspond closely with changes in venous blood flow. For 4-s stimuli, we see only small changes in venous hemoglobin concentration, and do not detect measurable dilation or ballooning in the veins. Instead, we see significant evidence of capillary hyperemia. We compare our findings to historical observations of the composite hemodynamic response from other modalities including functional magnetic resonance imaging. Implications of our results are discussed with respect to mathematical models of cortical hemodynamics, and to current theories on the mechanisms underlying neurovascular coupling. We also conclude that our spatiotemporal analysis approach is capable of isolating and localizing signals from the capillary bed local to neuronal activation, and holds promise for improving the specificity of other hemodynamic imaging modalities.
Collapse
|
44
|
Sprague RS, Stephenson AH, Bowles EA, Stumpf MS, Lonigro AJ. Reduced expression of G(i) in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes 2006; 55:3588-93. [PMID: 17130508 DOI: 10.2337/db06-0555] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human erythrocytes, by virtue of their ability to release ATP in response to physiological stimuli, have been proposed to participate in the regulation of local blood flow. A signal transduction pathway that relates these stimuli to ATP release has been described and includes the heterotrimeric G protein G(i) and adenylyl cyclase (AC). In this cell, G(i) activation results in increases in cAMP and, ultimately, ATP release. It has been reported that G(i) expression is decreased in animal models of diabetes and in platelets of humans with type 2 diabetes. Here, we report that G(i2) expression is selectively decreased in erythrocytes of humans with type 2 diabetes and that this defect is associated with reductions in cAMP accumulation and ATP release in response to incubation of erythrocytes with mastoparan 7 (10 micromol/l), an activator of G(i). Importantly, this defect in ATP release correlates inversely with the adequacy of glycemic control as determined by levels of HbA(1c) (A1C). These results demonstrate that in erythrocytes of humans with type 2 diabetes, both G(i) expression and ATP release in response to mastoparan 7 are impaired, which is consistent with the hypothesis that this defect in erythrocyte physiology could contribute to the vascular disease associated with this clinical condition.
Collapse
Affiliation(s)
- Randy S Sprague
- Saint Louis University, School of Medicine, Department of Pharmacological and Physiological Science, 1402 South Grand Blvd., St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Brain perfusion is tightly coupled to neuronal activity, is commonly used to monitor normal or pathological brain function, and is a direct reflection of the interactions that occur between neuronal signals and blood vessels. Cerebral blood vessels at the surface and within the brain are surrounded by nerve fibers that originate, respectively, from peripheral nerve ganglia and intrinsic brain neurons. Although of different origin and targeting distinct vascular beds, these "perivascular nerves" fulfill similar roles related to cerebrovascular functions, a major one being to regulate their tone and, therein, brain perfusion. This utmost function, which underlies the signals used in functional neuroimaging techniques and which can be jeopardized in pathologies such as Alzheimer's disease, stroke, and migraine headache, is thus regulated at several levels. Recently, new insights into our understanding of how neural input regulate cerebrovascular tone resulted in the rediscovery of the functional "neurovascular unit." These remarkable advances suggest that neuron-driven changes in vascular tone result from interactions that involve all components of the neurovascular unit, transducing neuronal signals into vasomotor responses not only through direct interaction between neurons and vessels but also indirectly via the perivascular astrocytes. Neurovascular coupling is thus determined by chemical signals released from activated perivascular nerves and astrocytes that alter vascular tone to locally adjust perfusion to the spatial and temporal changes in brain activity.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University St., Montréal, QC, Canada, H3A 2B4.
| |
Collapse
|
46
|
Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985) 2006; 100:328-35. [PMID: 16357086 DOI: 10.1152/japplphysiol.00966.2005] [Citation(s) in RCA: 846] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The brain is critically dependent on a continuous supply of blood to function. Therefore, the cerebral vasculature is endowed with neurovascular control mechanisms that assure that the blood supply of the brain is commensurate to the energy needs of its cellular constituents. The regulation of cerebral blood flow (CBF) during brain activity involves the coordinated interaction of neurons, glia, and vascular cells. Thus, whereas neurons and glia generate the signals initiating the vasodilation, endothelial cells, pericytes, and smooth muscle cells act in concert to transduce these signals into carefully orchestrated vascular changes that lead to CBF increases focused to the activated area and temporally linked to the period of activation. Neurovascular coupling is disrupted in pathological conditions, such as hypertension, Alzheimer disease, and ischemic stroke. Consequently, CBF is no longer matched to the metabolic requirements of the tissue. This cerebrovascular dysregulation is mediated in large part by the deleterious action of reactive oxygen species on cerebral blood vessels. A major source of cerebral vascular radicals in models of hypertension and Alzheimer disease is the enzyme NADPH oxidase. These findings, collectively, highlight the importance of neurovascular coupling to the health of the normal brain and suggest a therapeutic target for improving brain function in pathologies associated with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Helene Girouard
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | |
Collapse
|
47
|
Abstract
The cerebrovascular endothelium exerts a profound influence on cerebral vessels and cerebral blood flow. This review summarizes current knowledge of various dilator and constrictor mechanisms intrinsic to the cerebrovascular endothelium. The endothelium contributes to the resting tone of cerebral arteries and arterioles by tonically releasing nitric oxide (NO•). Dilations can occur by stimulated release of NO•, endothelium-derived hyperpolarization factor, or prostanoids. During pathological conditions, the dilator influence of the endothelium can turn to that of constriction by a variety of mechanisms, including decreased NO• bioavailability and release of endothelin-1. The endothelium may participate in neurovascular coupling by conducting local dilations to upstream arteries. Further study of the cerebrovascular endothelium is critical for understanding the pathogenesis of a number of pathological conditions, including stroke, traumatic brain injury, and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jon Andresen
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Suite 434D, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
48
|
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5:347-60. [PMID: 15100718 DOI: 10.1038/nrn1387] [Citation(s) in RCA: 1566] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Costantino Iadecola
- Division of Neurobiology, Weill Medical College of Cornell University, room KB410, 411 East 69th Street, New York, New York 10021, USA.
| |
Collapse
|
49
|
Duza T, Sarelius IH. Conducted dilations initiated by purines in arterioles are endothelium dependent and require endothelial Ca2+. Am J Physiol Heart Circ Physiol 2003; 285:H26-37. [PMID: 12637357 DOI: 10.1152/ajpheart.00788.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling pathways underlying the regulation of vascular resistance by purines in intact microvessels and particularly in communication of remote vasomotor responses are unclear. One process by which remote regions of arterioles communicate is via transmission of signals axially along the vessel wall. In this study, we identified a pathway for local and conducted dilations initiated by purines. Adenosine (Ado) or ATP (bind P1 and P2 purinergic receptors, respectively) was micropipette applied to arterioles (maximum diameter approximately 40 microm) in the cheek pouch of anesthetized hamsters. Observations were made at the site of stimulation (local) or approximately 1200 microm upstream along the same vessel. P2 antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium and suramin) inhibited local constriction to ATP, whereas local and upstream dilations were unaffected. In contrast, during inhibition of P1 receptors (with xanthine amine congener) the local constriction was unchanged, whereas both local and upstream dilations to ATP were inhibited. Hydrolysis of ATP to Ado is implicated in the dilator response as blocking 5'-ectonucleotidase (with alpha,beta-methyleneadenosine 5'-diphosphate) attenuated ATP-induced dilations. After endothelium denudation, constriction to ATP was unchanged, but dilations to both ATP and Ado were inhibited, identifying endothelial cells (ECs) as the primary target for P1-mediated dilation. Purines increased EC Ca2+ locally and upstream. Chelation of EC Ca2+ (with BAPTA) abolished the local and upstream dilations to P1 receptor stimulation. Collectively, these data demonstrate that stimulation of P1 receptors on ECs produces a vasodilation that spreads to remote regions. There is an associated increase in EC Ca2+, which is a required signaling intermediate in the manifestation of both the local and axially communicated arteriolar dilations.
Collapse
Affiliation(s)
- Tasmia Duza
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
50
|
Nucleotide Release and Purinergic Signaling in the Vasculature Driven by the Red Blood Cell. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|