1
|
Abdollahi F, Saghatchi M, Paryab A, Malek Khachatourian A, Stephens ED, Toprak MS, Badv M. Angiogenesis in bone tissue engineering via ceramic scaffolds: A review of concepts and recent advancements. BIOMATERIALS ADVANCES 2024; 159:213828. [PMID: 38479240 DOI: 10.1016/j.bioadv.2024.213828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.
Collapse
Affiliation(s)
- Farnoosh Abdollahi
- Department of Dentistry, Kashan University of Medical Science, Kashan, Iran
| | - Mahshid Saghatchi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Emma D Stephens
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Maryam Badv
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Beheshtizadeh N, Gharibshahian M, Bayati M, Maleki R, Strachan H, Doughty S, Tayebi L. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother 2023; 166:115301. [PMID: 37562236 DOI: 10.1016/j.biopha.2023.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Bayati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Hannah Strachan
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
3
|
Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep 2020; 10:11764. [PMID: 32678204 PMCID: PMC7366644 DOI: 10.1038/s41598-020-68221-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Wound instability and poor functional vascularization in bone tissue engineering lead to lack of tissue integration and ultimate failure of engineered grafts. In order to harness the regenerative potential of growth factors and stimulate bone healing, present study aims to design multifunctional cell therapy microcarriers with the capability of sequential delivery of essential growth factors, bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). An on-chip double emulsion method was implemented to generate monodisperse VEGF encapsulated microcarriers. Bio-inspired poly(3,4-dihydroxyphenethylamine) (PDA) was then functionalized to the microcarriers surface for BMP-2 conjugation. The microcarriers were seeded with mesenchymal stem cells (MSCs) using a dynamic culture technique for cells expansion. Finally, the microcarriers were incorporated into an injectable alginate-RGD hydrogel laden with endothelial cells (ECs) for further analysis. The DNA and calcium content, as well as ALP activity of the construct were analyzed. The confocal fluorescent microscopy was employed to monitor the MSCs and tunneling structure of ECs. Eventually, the capability of developed microcarriers for bone tissue formation was examined in vivo. Microfluidic platform generated monodisperse VEGF-loaded PLGA microcarriers with size-dependent release patterns. Microcarriers generated with the on-chip technique showed more sustained VEGF release profiles compared to the conventional bulk mixing method. The PDA functionalization of microcarriers surface not only provided immobilization of BMP-2 with prolonged bioavailability, but also enhanced the attachment and proliferation of MSCs. Dynamic culturing of microcarriers showcased their great potential to boost MSCs population required for stem cell therapy of bone defects. ALP activity and calcium content analysis of MSCs-laden microcarriers loaded into injectable hydrogels revealed their capability of tunneling formation, vascular cell growth and osteogenic differentiation. The in vivo histology and real-time polymerase chain reaction analysis revealed that transplantation of MSC-laden microcarriers supports ectopic bone formation in the rat model. The presented approach to design bioactive microcarriers offer sustained sequential delivery of bone ECM chemical cues and offer an ideal stabilized 3D microenvironment for patient-specific cell therapy applications. The proposed methodology is readily expandable to integrate other cells and cytokines in a tuned spatiotemporal manner for personalized regenerative medicine.
Collapse
Affiliation(s)
| | - Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Katakia YT, Duddu S, S N, Kumar P, Rahman F, Kumaramanickavel G, Chatterjee S. Ex vivo model for studying endothelial tip cells: Revisiting the classical aortic-ring assay. Microvasc Res 2019; 128:103939. [PMID: 31676309 DOI: 10.1016/j.mvr.2019.103939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
A drug undergoes several in silico, in vitro, ex vivo and in vivo assays before entering into the clinical trials. In 2014, it was reported that only 32% of drugs are likely to make it to Phase-3 trials, and overall, only one in 10 drugs makes it to the market. Therefore, enhancing the precision of pre-clinical trial models could reduce the number of failed clinical trials and eventually time and financial burden in health sciences. In order to attempt the above, in the present study, we have shown that aortic ex-plants isolated from different stages of chick embryo and different regions of the aorta (pulmonary and systemic) have differential sprouting potential and response to angiogenesis modulatory drugs. Aorta isolated from HH37 staged chick embryo showed 16% (p < 0.001) and 11% (p < 0.001) increase in the number of tip cells at 72 h of culture compared to that of HH35 and HH29 respectively. The ascending order of the number of tip cells was found as central (Gen II), proximal (Gen I) and distal (Gen III) in a virtual zonal segmentation of endothelial sprouting. The HH37 staged aortas displayed differential responses to pro- and anti-angiogenic drugs like Vascular endothelial growth factor (VEGF), nitric oxide donor (spNO), and bevacizumab (avastin), thalidomide respectively. The human placenta tissue-culture however evinced endothelial sprouting only on day 12, with a gradual decrease in the number of tip cells until 21 days. In summary, this study provides an avant-garde angiogenic model emphasized on tip cells that would enhance the precision to test next-generation angiogenic drugs.
Collapse
Affiliation(s)
- Yash T Katakia
- Department of Biotechnology, Anna University, Chennai 600 025, India; Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India
| | - Sushmitha Duddu
- Department of Biotechnology, Anna University, Chennai 600 025, India
| | - Nithya S
- Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India
| | - Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India
| | - Farhana Rahman
- Department of Pharmacology, Sree Balaji Medical College and Hospital, BIHER, Chennai 600 044, India
| | - Govindasamy Kumaramanickavel
- Research and Centre for Cellular Genomics, Sree Balaji Medical College and Hospital, BIHER, Chennai 600 044, India
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University, Chennai 600 025, India; Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai 600 044, India.
| |
Collapse
|
5
|
Arunkumar P, Dougherty JA, Weist J, Kumar N, Angelos MG, Powell HM, Khan M. Sustained Release of Basic Fibroblast Growth Factor (bFGF) Encapsulated Polycaprolactone (PCL) Microspheres Promote Angiogenesis In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1037. [PMID: 31330782 PMCID: PMC6669517 DOI: 10.3390/nano9071037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of death in the Unites States and globally. The administration of growth factors to preserve cardiac function after myocardial infarction (MI) is currently being explored. Basic fibroblast growth factor (bFGF), a potent angiogenic factor has poor clinical efficacy due to its short biological half-life and low plasma stability. The goal of this study was to develop bFGF-loaded polycaprolactone (PCL) microspheres for sustained release of bFGF and to evaluate its angiogenic potential. The bFGF-PCL microspheres (bFGF-PCL-MS) were fabricated using the emulsion solvent-evaporation method and found to have spherical morphology with a mean size of 4.21 ± 1.28 µm. In vitro bFGF release studies showed a controlled release for up to 30 days. Treatment of HUVECs with bFGF-PCL-MS in vitro enhanced their cell proliferation and migration properties when compared to the untreated control group. Treatment of HUVECs with release media from bFGF-PCL-MS also significantly increased expression of angiogenic genes (bFGF and VEGFA) as compared to untreated cells. The in vivo angiogenic potential of these bFGF-PCL-MS was further confirmed in rats using a Matrigel plug assay with subsequent immunohistochemical staining showing increased expression of angiogenic markers. Overall, bFGF-PCL-MS could serve as a potential angiogenic agent to promote cell survival and angiogenesis following an acute myocardial infarction.
Collapse
Affiliation(s)
- Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jessica Weist
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mark G Angelos
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Research Department, Shriners Hospitals for Children, Cincinnati, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Bullard JD, Lei J, Lim JJ, Massee M, Fallon AM, Koob TJ. Evaluation of dehydrated human umbilical cord biological properties for wound care and soft tissue healing. J Biomed Mater Res B Appl Biomater 2019; 107:1035-1046. [PMID: 30199609 PMCID: PMC6585686 DOI: 10.1002/jbm.b.34196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Chronic wounds are a significant health care problem with serious implications for quality of life because they do not properly heal and often require therapeutic intervention. Amniotic membrane allografts have been successfully used as a biologic therapy to promote soft tissue healing; however, the umbilical cord, another placental-derived tissue, has also recently garnered interest because of its unique composition but similar placental tissue origin. The aim of this study was to characterize PURION® PLUS Processed dehydrated human umbilical cord (dHUC) and evaluate the biological properties of this tissue that contribute to healing. This was performed through the characterization of the tissue composition, evaluation of in vitro cellular response to dHUC treatment, and in vivo bioresorption and tissue response in a rat model. It was observed that dHUC contains collagen I, hyaluronic acid, laminin, and fibronectin. Additionally, 461 proteins that consist of growth factors and cytokines, inflammatory modulators, chemokines, proteases and inhibitors, adhesion molecules, signaling receptors, membrane-bound proteins, and other soluble regulators were detected. Cell-based assays demonstrated an increase in adipose-derived stem cell and mesenchymal stem cell proliferation, fibroblast migration and endothelial progenitor cell vessel formation in a dose-dependent manner after dHUC treatment. Lastly, rat subcutaneous implantation demonstrated biocompatibility since dHUC allografts were resorbed without fibrous encapsulation. These findings establish that dHUC possesses biological properties that stimulate cellular responses important for soft tissue healing. © 2018 The Authors. Journal Of Biomedical Materials Research Part B: Applied Biomaterials Published By Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1035-1046, 2019.
Collapse
|
7
|
Saunders V, Dewing JM, Sanchez-Elsner T, Wilson DI. Expression and localisation of thymosin beta-4 in the developing human early fetal heart. PLoS One 2018; 13:e0207248. [PMID: 30412598 PMCID: PMC6226193 DOI: 10.1371/journal.pone.0207248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective of this study was to investigate the expression and localisation of thymosin β4 (Tβ4) in the developing human heart. Tβ4 is a cardioprotective protein which may have therapeutic potential. While Tβ4 is an endogenously produced protein with known importance during development, its role within the developing human heart is not fully understood. Elucidating the localisation of Tβ4 within the developing heart will help in understanding its role during cardiac development and is crucial for understanding its potential for cardioprotection and repair in the adult heart. METHODS Expression of Tβ4 mRNA in the early fetal human heart was assessed by PCR using both ventricular and atrial tissue. Fluorescence immunohistochemistry was used to assess the localisation of Tβ4 in sections of early fetal human heart. Co-staining with CD31, an endothelial cell marker, and with myosin heavy chain, a cardiomyocyte marker, was used to determine whether Tβ4 is localised to these cell types within the early fetal human heart. RESULTS Tβ4 mRNA was found to be expressed in both the atria and the ventricles of the early fetal human heart. Tβ4 protein was found to be primarily localised to CD31-expressing endothelial cells and the endocardium as well as being present in the epicardium. Tβ4-associated fluorescence was greater in the compact layer of the myocardial wall and the interventricular septum than in the trabecular layer of the myocardium. CONCLUSIONS The data presented illustrates expression of Tβ4 in the developing human heart and demonstrates for the first time that Tβ4 in the human heart is primarily localised to endothelial cells of the cardiac microvasculature and coronary vessels as-well as to the endothelial-like cells of the endocardium and to the epicardium.
Collapse
Affiliation(s)
- Vinay Saunders
- Institute for Developmental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jennifer M. Dewing
- Institute for Developmental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David I. Wilson
- Institute for Developmental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
9
|
Pogontke C, Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Development of the Myocardial Interstitium. Anat Rec (Hoboken) 2018; 302:58-68. [PMID: 30288955 DOI: 10.1002/ar.23915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
The space between cardiac myocytes is commonly referred-to as the cardiac interstitium (CI). The CI is a unique, complex and dynamic microenvironment in which multiple cell types, extracellular matrix molecules, and instructive signals interact to crucially support heart homeostasis and promote cardiac responses to normal and pathologic stimuli. Despite the biomedical and clinical relevance of the CI, its detailed cellular structure remains to be elucidated. In this review, we will dissect the organization of the cardiac interstitium by following its changing cellular and molecular composition from embryonic developmental stages to adulthood, providing a systematic analysis of the biological components of the CI. The main goal of this review is to contribute to our understanding of the CI roles in health and disease. Anat Rec, 302:58-68, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cristina Pogontke
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, 29080, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| | - Juan A Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, 29080, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| | - Adrián Ruiz-Villalba
- Stem Cell Therapy Area, Foundation for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, 29080, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| |
Collapse
|
10
|
Li D, Huifang L, Zhao J, Yang Z, Xie X, Wei Z, Li D, Kang P. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration. ACTA ACUST UNITED AC 2018; 13:055002. [PMID: 29775181 DOI: 10.1088/1748-605x/aac627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) is a commonly used biomaterial in bone-tissue engineering, but pure HA is deficient in osteoinduction. In this study, we fabricated scaffolds of lithium-doped HA (Li-HA) and assess the bone generation enhancement of Li-HA scaffolds seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells (BMMSCs). We found that 1.5%Li-HA obtained optimal cell proliferation activity in vitro. In an in vivo study, Li-HA/BMSCs enhanced new bone formation, reducing the GSK-3β and increasing the β-catenin, but the angiogenic effect was not modified significantly. However, when the seeded BMMSCs had been preconditioned in hypoxia condition, the new bone formation was increased, with lower GSK-3β and higher β-catenin amounts detected. The HIF-1α secretion was up-regulated, and the vascular endothelial growth factor and CD31 expression increased. In conclusion, the bone scaffold developed from Li-doped HA seeded with hypoxia-preconditioned BMMSCs exerted positive effect on activating the Wnt and HIF-1α signal pathway, and showed good osteogenesis and angiogenesis potential. The composited scaffold contributed to an encouraging result in bone regeneration.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Krejci E, Pesevski Z, Nanka O, Sedmera D. Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system. Physiol Res 2016; 65:425-35. [PMID: 27070743 DOI: 10.33549/physiolres.933216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretch-induced signaling to myocyte growth in vivo. Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart.
Collapse
Affiliation(s)
- E Krejci
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
12
|
Pandolfi L, Minardi S, Taraballi F, Liu X, Ferrari M, Tasciotti E. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. J Tissue Eng 2016; 7:2041731415624668. [PMID: 26977286 PMCID: PMC4765809 DOI: 10.1177/2041731415624668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan-gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Laura Pandolfi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, Beijing, China
| | - Silvia Minardi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Xeuwu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
13
|
Role of angiogenesis in bone repair. Arch Biochem Biophys 2014; 561:109-17. [PMID: 25034215 DOI: 10.1016/j.abb.2014.07.006] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 12/25/2022]
Abstract
Bone vasculature plays a vital role in bone development, remodeling and homeostasis. New blood vessel formation is crucial during both primary bone development as well as fracture repair in adults. Both bone repair and bone remodeling involve the activation and complex interaction between angiogenic and osteogenic pathways. Interestingly studies have demonstrated that angiogenesis precedes the onset of osteogenesis. Indeed reduced or inadequate blood flow has been linked to impaired fracture healing and old age related low bone mass disorders such as osteoporosis. Similarly the slow penetration of host blood vessels in large engineered bone tissue grafts has been cited as one of the major hurdle still impeding current bone construction engineering strategies. This article reviews the current knowledge elaborating the importance of vascularization during bone healing and remodeling, and the current therapeutic strategies being adapted to promote and improve angiogenesis.
Collapse
|
14
|
Ding H, Chen S, Song WQ, Gao YS, Guan JJ, Wang Y, Sun Y, Zhang CQ. Dimethyloxaloylglycine improves angiogenic activity of bone marrow stromal cells in the tissue-engineered bone. Int J Biol Sci 2014; 10:746-56. [PMID: 25013382 PMCID: PMC4081608 DOI: 10.7150/ijbs.8535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/08/2014] [Indexed: 11/05/2022] Open
Abstract
One of the big challenges in tissue engineering for treating large bone defects is to promote the angiogenesis of the tissue-engineered bone. Hypoxia inducible factor-1α (HIF-1α) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, and can activate a broad array of angiogenic factors. Dimethyloxaloylglycine (DMOG) can activate HIF-1α expression in cells at normal oxygen tension. In this study, we explored the effect of DMOG on the angiogenic activity of bone mesenchymal stem cells (BMSCs) in the tissue-engineered bone. The effect of different concentrations of DMOG on HIF-1a expression in BMSCs was detected with western blotting, and the mRNA expression and secretion of related angiogenic factors in DMOG-treated BMSCs were respectively analyzed using qRT-PCR and enzyme linked immunosorbent assay. The tissue-engineered bone constructed with β-tricalcium phosphate (β-TCP) and DMOG-treated BMSCs were implanted into the critical-sized calvarial defects to test the effectiveness of DMOG in improving the angiogenic activity of BMSCs in the tissue-engineered bone. The results showed DMOG significantly enhanced the mRNA expression and secretion of related angiogenic factors in BMSCs by activating the expression of HIF-1α. More newly formed blood vessels were observed in the group treated with β-TCP and DMOG-treated BMSCs than in other groups. And there were also more bone regeneration in the group treated with β-TCP and DMOG-treated BMSCs. Therefore, we believed DMOG could enhance the angiogenic activity of BMSCs by activating the expression of HIF-1α, thereby improve the angiogenesis of the tissue-engineered bone and its bone healing capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Wierzbicki M, Sawosz E, Grodzik M, Hotowy A, Prasek M, Jaworski S, Sawosz F, Chwalibog A. Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis. Int J Nanomedicine 2013; 8:3427-35. [PMID: 24039425 PMCID: PMC3771850 DOI: 10.2147/ijn.s49745] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Carbon nanoparticles, with their high biocompatibility and low toxicity, have recently been considered for biomedical applications, including antiangiogenic therapy. Critical to normal development and tumor formation, angiogenesis is the process of forming capillary blood vessels from preexisting vessels. In the present study, we evaluated the effects of diamond and graphite nanoparticles on the development of chicken embryos, as well as vascularization of the chorioallantoic membrane and heart at the morphological and molecular level. Nanoparticles did not affect either body/heart weight or serum indices of the embryos’ health. However, vascularization of the heart and the density of branched vessels were significantly reduced after treatment with diamond nanoparticles and, to a lesser extent, graphite nanoparticles. Application of nanoparticles significantly downregulated gene and protein expression of the proangiogenic basic fibroblast growth factor, indicating that both diamond and graphite nanoparticles inhibit angiogenesis.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A. Vascularized bone tissue engineering: approaches for potential improvement. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:363-82. [PMID: 22765012 DOI: 10.1089/ten.teb.2012.0012] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes.
Collapse
Affiliation(s)
- Lonnissa H Nguyen
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1. Basic Res Cardiol 2011; 106:829-47. [PMID: 21516490 PMCID: PMC3149675 DOI: 10.1007/s00395-011-0181-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 11/16/2022]
Abstract
Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair.
Collapse
|
18
|
Tomanek RJ, Christensen LP, Simons M, Murakami M, Zheng W, Schatteman GC. Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Dev Dyn 2011; 239:3182-91. [PMID: 20981833 DOI: 10.1002/dvdy.22460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In embryonic hearts explanted on collagen gels, epicardial cells delaminate and form vascular tubes, thus providing a model for coronary tubulogenesis. Using this model, we show that fibroblast growth factors (FGFs) 1, 2, 4, 8, 9, and 18 contribute to tubulogenesis and that the availability of multiple FGFs provides the optimal tubulogenic response. Moreover, the FGF effects are vascular endothelial growth factor (VEGF) -dependent, while VEGF-induced tubulogenesis requires FGF signaling. The number of endothelial cells (ECs) is increased by all of the FGFs, while EC migration is significantly enhanced only by FGF-2 and FGF-18. Finally, addition of embryonic mesenchymal stem cells (EMSC) to the explants markedly enhances EC numbers and a 23-fold increase in stromal derived factor-1α (SDF-1α), which is FGF dependent. Both explants and EMSCs produce SDF-1α. In conclusion, coronary tubulogenesis of embryonic epicardium: (1) is responsive to many FGF family members, (2) requires both FGF and VEGFA signaling, and (3) is responsive to EMSCs.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, The University of Iowa Carver College of Medicine and The Cardiovascular Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Patterson AJ, Zhang L. Hypoxia and fetal heart development. Curr Mol Med 2011; 10:653-66. [PMID: 20712587 DOI: 10.2174/156652410792630643] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/30/2010] [Indexed: 12/18/2022]
Abstract
Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.
Collapse
Affiliation(s)
- A J Patterson
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
20
|
Kim MS, Shin YM, Lee JH, Kim SI, Nam YS, Shin CS, Shin H. Release kinetics and in vitro bioactivity of basic fibroblast growth factor: effect of the thickness of fibrous matrices. Macromol Biosci 2010; 11:122-30. [PMID: 20886548 DOI: 10.1002/mabi.201000222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/21/2010] [Indexed: 02/06/2023]
Abstract
In this study, we fabricated non-woven matrices using blends of polycaprolactone and gelatin with various spinning volumes to control the immobilized heparin content, which was ultimately intended to increase the immobilization efficiency of bFGF. The amount of bFGF on the heparin conjugated fibrous matrices depended on the thicknesses of the swollen matrices ranging from 35.4 ± 6.5 to 162.3 ± 14.0 ng and ≈90% of the bFGF was gradually released over a period of up to 56 d. The released bFGF enhanced the proliferation of human umbilical vein endothelial cells and human mesenchymal stem cells. In conclusion, our heparin-conjugated fibrous matrices have the potential to be used as a growth factor delivery system in tissue engineering applications.
Collapse
Affiliation(s)
- Min Sup Kim
- Department of Biomedical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Nesbitt TL, Roberts A, Tan H, Junor L, Yost MJ, Potts JD, Dettman RW, Goodwin RL. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn 2009; 238:423-30. [PMID: 19161222 DOI: 10.1002/dvdy.21847] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Though development of the coronary vasculature is a critical event during embryogenesis, the molecular mechanisms that regulate its formation are not well characterized. Two unique approaches were used to investigate interactions between cardiac myocytes and proepicardial (PE) cells, which are the coronary anlagen. One of these experimental approaches used a 3-D collagen scaffold system on which specific cell-cell and cell-matrix interactions were studied. The other approach used a whole heart culture system that allowed for the analysis of epicardial to mesenchymal transformation (EMT). The VEGF signaling system has been implicated previously as an important regulator of coronary development. Our results demonstrated that a specific isoform of VEGF-A, VEGF(164), increased PE-derived endothelial cell proliferation and also increased EMT. However, VEGF-stimulated endothelial cells did not robustly coalesce into endothelial tubes as they did when cocultured with cardiac myocytes. Interestingly, blocking VEGF signaling via flk-1 inhibition reduced endothelial tube formation despite the presence of cardiac myocytes. These results indicate that VEGF signaling is complex during coronary development and that combinatorial signaling by other VEGF-A isoforms or other flk-1-binding VEGFs are likely to regulate endothelial tube formation.
Collapse
Affiliation(s)
- Tresa L Nesbitt
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol 2009; 328:148-59. [PMID: 19389363 PMCID: PMC2724599 DOI: 10.1016/j.ydbio.2009.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/09/2009] [Accepted: 01/16/2009] [Indexed: 12/11/2022]
Abstract
Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.
Collapse
Affiliation(s)
- David J Pennisi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
23
|
|
24
|
Montano MM, Doughman YQ, Deng H, Chaplin L, Yang J, Wang N, Zhou Q, Ward NL, Watanabe M. Mutation of the HEXIM1 gene results in defects during heart and vascular development partly through downregulation of vascular endothelial growth factor. Circ Res 2007; 102:415-22. [PMID: 18079413 DOI: 10.1161/circresaha.107.157859] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous studies and those of others indicated that the transcription factor Hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) is a tumor suppressor and cyclin-dependent kinase inhibitor, and that these HEXIM1 functions are mainly dependent on its C-terminal region. We provide evidence here that the HEXIM1 C-terminal region is critical for cardiovascular development. HEXIM1 protein was detected in the heart during critical time periods in cardiac growth and chamber maturation. We created mice carrying an insertional mutation in the HEXIM1 gene that disrupted its C-terminal region and found that this resulted in prenatal lethality. Heart defects in HEXIM1(1 to 312) mice included abnormal coronary patterning and thin ventricular walls. The thin myocardium can be partly attributed to increased apoptosis. Platelet endothelial cell adhesion molecular precursor-1 staining of HEXIM1(1 to 312) heart sections revealed decreased vascularization of the myocardium despite the presence of coronary vasculature in the epicardium. The expression of vascular endothelial growth factor (VEGF), known to affect angioblast invasion and myocardial proliferation and survival, was decreased in HEXIM1(1 to 312) mice compared with control littermates. We also observed decreased fibroblast growth factor 9 (FGF9) expression, suggesting that effects of HEXIM1 in the myocardium are partly mediated through epicardial FGF9 signaling. Together our results suggest that HEXIM1 plays critical roles in coronary vessel development and myocardial growth. The basis for this role of HEXIM1 is that VEGF is a direct transcriptional target of HEXIM1, and involves attenuation a repressive effects of C/EBPalpha on VEGF gene transcription.
Collapse
Affiliation(s)
- Monica M Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, H.G. Wood Bldg W307, 2109 Adelbert Rd, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mascio CE, Olison AK, Ralphe JC, Tomanek RJ, Scholz TD, Segar JL. Myocardial vascular and metabolic adaptations in chronically anemic fetal sheep. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1736-45. [PMID: 16123231 DOI: 10.1152/ajpregu.00278.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the vascular and metabolic adaptations that take place in the fetal heart to maintain cardiac function in response to increased load. Chronic fetal anemia has previously been shown to result in increased ventricular mass, increased myocardial vascularization, and increased myocardial expression of hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF). We therefore sought to determine whether chronic fetal anemia induces expression of HIF-1-regulated angiogenic factors and glycolytic enzymes in the fetal myocardium. Anemia was produced in chronically instrumented fetal sheep by daily isovolemic hemorrhage (80–100 ml) for either 3 ( n = 4) or 7 days ( n = 11) beginning at 134 days of gestation (term 145 days). Catheterized, nonbled twins served as controls. Isovolemic hemorrhage over 7 days resulted in decreased fetal hematocrit (37 ± 1 to 20 ± 1%) and arterial oxygen content (6.5 ± 0.4 to 2.8 ± 0.2 ml O2/dl). Myocardial blood flow and vascularization were significantly increased after 7 days of anemia. Myocardial HIF-1 protein expression and VEGF (left ventricular), VEGF receptor-1 (right ventricular), and VEGF receptor-2 (right ventricular, left ventricular) mRNA levels were elevated ( P < 0.05) in 7-day anemic compared with control animals. Myocardial expressions of the glycolytic enzymes aldolase, lactate dehydrogenase A, phosphofructokinase (liver), and phosphoglycerol kinase were also significantly elevated after 7 days of anemia. Despite the absence of a significant increase in myocardial HIF-1α protein in 3-day anemic fetuses, expressions of VEGF, VEGF receptor-1, and the glycolytic enzymes were greater in 3-day compared with 7-day anemic animals. These data suggest that HIF-1 likely participates in the fetal myocardial response to anemia by coordinating an increase in gene expressions that promote capillary growth and anaerobic metabolism. However, factors other than HIF-1 also appear important in the regulation of these genes. We speculate that the return of mRNA levels of angiogenic and glycolytic enzymes toward control levels in the 7-day anemic fetus is explained by a significantly increased resting myocardial blood flow, resulting from coronary vascular growth and increased coronary conductance, and a return to a state of adequate oxygen and nutrient delivery, obviating the need for enhanced transcription of genes encoding angiogenic and glycolytic enzymes.
Collapse
Affiliation(s)
- Christopher E Mascio
- Dept. of Surgery, Univ. of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
26
|
von Kodolitsch Y, Ito WD, Franzen O, Lund GK, Koschyk DH, Meinertz T. Coronary artery anomalies. Part I: Recent insights from molecular embryology. ACTA ACUST UNITED AC 2005; 93:929-37. [PMID: 15599567 DOI: 10.1007/s00392-004-0152-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 07/15/2004] [Indexed: 11/30/2022]
Abstract
Congenital anomalies of the coronary arteries occur in 0.2-1.2% of the general population and may cause substantial cardiovascular morbidity and mortality. We review some of the advances that have been made both, in the understanding of the embryonic development of the coronary arteries (part I) and in the clinical diagnosis and management of their anomalies (part II). In this first part of our review we elucidate basic mechanisms of coronary vasculogenesis, angiogenesis and embryonic arteriogenesis. Moreover, we review the role of cellular progenitors such as epicardium-derived cells, cardiac neural crest cells and cells of the peripheral conduction system. Then we discuss the role of growths factors (such as FGV, HIF 1, PDGF B, TGFbeta1, VEGF, and VEGFR-2) and genes (such as FOG-2, VCAM-1, Bves, and RALDH2) at different states of coronary development. and we discuss the role of the cardiac neural crest in the concurrence of coronary anomalies with aortic root malformations. This part of the article is designed to review major determinants of coronary vascular development to provide a better understanding of the multiplicity of options and mechanisms that may give rise to coronary anomaly. To this end, we highlight results from experiments that provide insight in mechanisms of coronary malformation.
Collapse
Affiliation(s)
- Y von Kodolitsch
- Clinic of Internal Medicine III, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003; 83:59-115. [PMID: 12506127 DOI: 10.1152/physrev.00017.2002] [Citation(s) in RCA: 498] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental work during the past 15 years has demonstrated that endothelial cells in the heart play an obligatory role in regulating and maintaining cardiac function, in particular, at the endocardium and in the myocardial capillaries where endothelial cells directly interact with adjacent cardiomyocytes. The emerging field of targeted gene manipulation has led to the contention that cardiac endothelial-cardiomyocytal interaction is a prerequisite for normal cardiac development and growth. Some of the molecular mechanisms and cellular signals governing this interaction, such as neuregulin, vascular endothelial growth factor, and angiopoietin, continue to maintain phenotype and survival of cardiomyocytes in the adult heart. Cardiac endothelial cells, like vascular endothelial cells, also express and release a variety of auto- and paracrine agents, such as nitric oxide, endothelin, prostaglandin I(2), and angiotensin II, which directly influence cardiac metabolism, growth, contractile performance, and rhythmicity of the adult heart. The synthesis, secretion, and, most importantly, the activities of these endothelium-derived substances in the heart are closely linked, interrelated, and interactive. It may therefore be simplistic to try and define their properties independently from one another. Moreover, in relation specifically to the endocardial endothelium, an active transendothelial physicochemical gradient for various ions, or blood-heart barrier, has been demonstrated. Linkage of this blood-heart barrier to the various other endothelium-mediated signaling pathways or to the putative vascular endothelium-derived hyperpolarizing factors remains to be determined. At the early stages of cardiac failure, all major cardiovascular risk factors may cause cardiac endothelial activation as an adaptive response often followed by cardiac endothelial dysfunction. Because of the interdependency of all endothelial signaling pathways, activation or disturbance of any will necessarily affect the others leading to a disturbance of their normal balance, leading to further progression of cardiac failure.
Collapse
|
28
|
Zhao X, Lu X, Feng Q. Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. Am J Physiol Heart Circ Physiol 2002; 283:H2371-8. [PMID: 12388304 DOI: 10.1152/ajpheart.00383.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that mice deficient in endothelial nitric oxide (NO) synthase (eNOS) have congenital septal defects and postnatal heart failure. However, the mechanisms by which eNOS affects heart development are not clear. We hypothesized that deficiency in eNOS impairs myocardial angiogenesis. Myocardial capillary densities were measured morphometrically in neonatal mouse hearts. In vitro tube formation on Matrigel was investigated in cardiac endothelial cells. In vivo myocardial angiogenesis was performed by implanting Matrigel in the left ventricular myocardium. Myocardial capillary densities and VEGF mRNA expression were decreased in neonatal eNOS(-/-) compared with neonatal wild-type mice (P < 0.01). Furthermore, in vitro tube formation from cardiac endothelial cells and in vivo myocardial angiogenesis were attenuated in eNOS(-/-) compared with wild-type mice (P < 0.01). In vitro tube formation was inhibited by N(G)-nitro-l-arginine methyl ester in wild-type mice and restored by a NO donor, diethylenetriamine-NO, in eNOS(-/-) mice (P < 0.05). In conclusion, deficiency in eNOS decreases VEGF expression and impairs myocardial angiogenesis and capillary development. Decreased myocardial angiogenesis may contribute to cardiac abnormalities during heart development in eNOS(-/-) mice.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Capillaries/enzymology
- Capillaries/pathology
- Cell Count
- Cell Transplantation/methods
- Cells, Cultured
- Collagen/administration & dosage
- Coronary Circulation/genetics
- Coronary Circulation/physiology
- Drug Combinations
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/transplantation
- Enzyme Inhibitors/pharmacology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Ventricles/cytology
- Heart Ventricles/surgery
- Laminin/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/pathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/deficiency
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
- Proteoglycans/administration & dosage
- Ventricular Function
Collapse
Affiliation(s)
- Xue Zhao
- Cardiology Research Laboratory, Lawson Health Research Institute, London Health Sciences Centre, Ontario, Canada N6A 4G5
| | | | | |
Collapse
|
29
|
Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA. Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol 2001; 280:H1039-50. [PMID: 11179045 DOI: 10.1152/ajpheart.2001.280.3.h1039] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We generated transgenic (TG) mice overexpressing fibroblast growth factor (FGF)-2 protein (22- to 34-fold) in the heart. Chronic FGF-2 overexpression revealed no significant effect on heart weight-to-body weight ratio or expression of cardiac differentiation markers. There was, however, a significant 20% increase in capillary density. Although there was no change in FGF receptor-1 expression, relative levels of phosphorylated c-Jun NH(2)-terminal kinase and p38 kinase as well as of membrane-associated protein kinase C (PKC)-alpha and total PKC-epsilon were increased in FGF-2-TG mouse hearts. An isolated mouse heart model of ischemia-reperfusion injury was used to assess the potential of increased endogenous FGF-2 for cardioprotection. A significant 34-45% increase in myocyte viability, reflected in a decrease in lactate dehydrogenase released into the perfusate, was observed in FGF-2 overexpressing mice and non-TG mice treated exogenously with FGF-2. In conclusion, FGF-2 overexpression causes augmentation of signal transduction pathways and increased resistance to ischemic injury. Thus, stimulation of endogenous FGF-2 expression offers a potential mechanism to enhance cardioprotection.
Collapse
Affiliation(s)
- F Sheikh
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | | | | | | | | |
Collapse
|
30
|
ULGER HARUN, KARABULUT AHMETK, PRATTEN MARGARETK. The growth promoting effects of bFGF, PD-ECGF and VEGF on cultured postimplantation rat embryos deprived of serum fractions. J Anat 2000; 197 ( Pt 2):207-19. [PMID: 11005713 PMCID: PMC1468120 DOI: 10.1046/j.1469-7580.2000.19720207.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum components in which embryos are cultured in vitro are very important for normal embryonic development. In this study, rat serum was fractionated using Macrosep filters to study the effect of a single growth factor. The fractionated serum, both that containing only material greater than 30 kDa molecular weight (> 30 kDa) and that from which material between 30 kDa and 50 kDa had been removed (< 30 kDa+ > 50 kDa), caused significant embryonic growth retardation. Addition of different concentrations of basic fibroblast growth factor (bFGF, 18 kDa), vascular endothelial growth factor (VEGF, 45 kDa) and platelet-derived endothelial growth factor (PD-ECGF, 45 kDa), to fractionated serum (bFGF to > 30 kDa serum and VEGF or PD-ECGF to < 30 kDa+ > 50 kDa serum) partially restored embryonic growth and development according to a morphological scoring system and protein assay. This restoration was clear by all criteria, as well as in yolk sac vascularisation and heart development. The growth promoting effects of all 3 factors were significant but did not reach the level seen in embryos grown in whole rat serum. The effect of these growth factors was also investigated on anembryonic yolk sac development using a concentration for which maximum whole embryonic growth was seen (128 ng/ml bFGF, 1.6 ng/ml VEGF and 4 ng/ml PD-ECGF), and significant anembryonic yolk sac development was found. These findings suggest that the angiogenic factors may have a growth promoting effect on total embryonic development and vascularisation.
Collapse
Affiliation(s)
- HARUN ULGER
- Department of Anatomy, University of Erciyes, Kayseri, Turkey
| | | | - MARGARET K.
PRATTEN
- Department of Human Anatomy and Cell Biology, Queen's Medical Centre, Nottingham, UK
- Correspondence to Dr Margaret Pratten, School of Biomedical Sciences (Anatomy), The Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK. Tel.: +44 115 9709 429; fax: +44 115 9709 259; e-mail:
| |
Collapse
|
31
|
Chen CH, Jiang W, Via DP, Luo S, Li TR, Lee YT, Henry PD. Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation 2000; 101:171-7. [PMID: 10637205 DOI: 10.1161/01.cir.101.2.171] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hyperlipidemia inhibits proliferation of endothelial cells (ECs) in culture and angiogenesis in vivo and in arterial explants. Elucidation of the mechanisms may suggest novel therapies against atherosclerosis. METHODS AND RESULTS Basic fibroblast growth factor (bFGF) expression and mitogenic effects were assessed in bovine aortic ECs incubated with oxidized LDL (ox-LDL). Compared with native LDL and lipoprotein-free controls, ox-LDL reduced bFGF mRNA levels in a time- and concentration-dependent manner, 100 microg/mL producing a maximum reduction of 40% to 50% within 24 to 48 hours. There were commensurate reductions in intracellular and extracellular bFGF concentrations, DNA and total RNA syntheses, and cell replication. FGF receptor 1 and beta-actin mRNA levels were unchanged. Ox-LDL accelerated bFGF mRNA degradation in actinomycin D-treated cells. However, inhibition of bFGF expression by ox-LDL was attenuated by cyclohexamide, indicating a requirement for continuous new protein synthesis for posttranscriptional destabilization. Reduced syntheses of DNA and total RNA were completely restored by bFGF but not by vascular endothelial growth factor. Inhibition of total RNA synthesis achieved by exposing cells to a bFGF-neutralizing antibody was similar in magnitude to that induced by ox-LDL. CONCLUSIONS Cytotoxic effects of ox-LDL on ECs are attributable in part to suppression of bFGF expression.
Collapse
Affiliation(s)
- C H Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|