1
|
Vahabpour R, Soleymani S, Roohvand F, Zabihollahi R, Bolhassani A. In Vitro Anti-Viral Effects of Small Heat Shock Proteins 20 and 27: A Novel Therapeutic Approach. Curr Pharm Biotechnol 2020; 20:1011-1017. [PMID: 31362669 DOI: 10.2174/1389201020666190729104648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The protective effects of heat shock proteins (Hsps) were studied in some infectious and non-infectious diseases, but their specificity was slightly known in various disorders. Among Hsps, small Hsps (e.g. Hsp27 and Hsp20) have important roles in protein folding and translocation, and also in immunity. METHODS In this study, overexpression of Hsp20 and Hsp27 was performed by transfection of the plasmids encoding Hsp20 and Hsp27 (pEGFP-Hsp20 and pEGFP-Hsp27) into Huh7.5, Hela and Vero cells using Lipofectamine along with heat shock. Then, their anti-herpes simplex virus-1 (HSV-1), anti- human immunodeficiency virus-1 (HIV-1) and anti-hepatitis C virus (HCV) effects, as well as cytotoxicity, were evaluated in vitro, for the first time. RESULTS Our data showed that simultaneous treatment with Lipofectamine and heat shock augmented the rate of transfection and subsequently the expression of Hsps in these cells. Moreover, overexpression of Hsp20 in HCV-infected Huh7.5 cells, HIV-infected Hela cells and HSV-infected Vero cells reduced the replication of HCV, HIV and HSV, respectively. In contrast, overexpression of Hsp27 significantly decreased HSV replication similar to Hsp20, but it did not affect the replication of HIV and HCV. CONCLUSION Generally, Hsp20 was identified as a novel anti-HCV, anti-HSV and anti-HIV agent, but Hsp27 was efficient in the suppression of HSV infection. These Hsps may act through suppression of virus entry and/ or through interaction with viral proteins. Thus, it is necessary to determine their exact mechanisms in the near future.
Collapse
Affiliation(s)
- Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning. Int J Mol Sci 2016; 17:ijms17071159. [PMID: 27447611 PMCID: PMC4964531 DOI: 10.3390/ijms17071159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence indicates that argon has organoprotective properties. So far, the underlying mechanisms remain poorly understood. Therefore, we investigated the effect of argon preconditioning in cardiomyocytes within the first and second window of preconditioning. Primary isolated cardiomyocytes from neonatal rats were subjected to 50% argon for 1 h, and subsequently exposed to a sublethal dosage of hypoxia (<1% O2) for 5 h either within the first (0–3 h) or second window (24–48 h) of preconditioning. Subsequently, the cell viability and proliferation was measured. The argon-induced effects were assessed by evaluation of mRNA and protein expression after preconditioning. Argon preconditioning did not show any cardioprotective effects in the early window of preconditioning, whereas it leads to a significant increase of cell viability 24 h after preconditioning compared to untreated cells (p = 0.015) independent of proliferation. Argon-preconditioning significantly increased the mRNA expression of heat shock protein (HSP) B1 (HSP27) (p = 0.048), superoxide dismutase 2 (SOD2) (p = 0.001), vascular endothelial growth factor (VEGF) (p < 0.001) and inducible nitric oxide synthase (iNOS) (p = 0.001). No difference was found with respect to activation of pro-survival kinases in the early and late window of preconditioning. The findings provide the first evidence of argon-induced effects on the survival of cardiomyocytes during the second window of preconditioning, which may be mediated through the induction of HSP27, SOD2, VEGF and iNOS.
Collapse
|
3
|
Piri N, Kwong JMK, Gu L, Caprioli J. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 2016; 52:22-46. [PMID: 27017896 PMCID: PMC4842330 DOI: 10.1016/j.preteyeres.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.
Collapse
Affiliation(s)
- Natik Piri
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jacky M K Kwong
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Gu
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
5
|
Tang S, Buriro R, Liu Z, Zhang M, Ali I, Adam A, Hartung J, Bao E. Localization and expression of Hsp27 and αB-crystallin in rat primary myocardial cells during heat stress in vitro. PLoS One 2013; 8:e69066. [PMID: 23894407 PMCID: PMC3716771 DOI: 10.1371/journal.pone.0069066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Neonatal rat primary myocardial cells were subjected to heat stress in vitro, as a model for investigating the distribution and expression of Hsp27 and αB-crystallin. After exposure to heat stress at 42°C for different durations, the activities of enzymes expressed during cell damage increased in the supernatant of the heat-stressed myocardial cells from 10 min, and the pathological lesions were characterized by karyopyknosis and acute degeneration. Thus, cell damage was induced at the onset of heat stress. Immunofluorescence analysis showed stronger positive signals for both Hsp27 and αB-crystallin from 10 min to 240 min of exposure compared to the control cells. According to the Western blotting results, during the 480 min of heat stress, no significant variation was found in Hsp27 and αB-crystallin expression; however, significant differences were found in the induction of their corresponding mRNAs. The expression of these small heat shock proteins (sHsps) was probably delayed or overtaxed due to the rapid consumption of sHsps in myocardial cells at the onset of heat stress. Our findings indicate that Hsp27 and αB-crystallin do play a role in the response of cardiac cells to heat stress, but the details of their function remain to be investigated.
Collapse
Affiliation(s)
- Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rehana Buriro
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhijun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miao Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, China
| | - Islam Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Abdelnasir Adam
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jörg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
6
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
7
|
Burniston JG, Kenyani J, Wastling JM, Burant CF, Qi NR, Koch LG, Britton SL. Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity. Proteomics 2011; 11:3369-79. [PMID: 21751351 DOI: 10.1002/pmic.201000593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selection on running capacity has created rat phenotypes of high-capacity runners (HCRs) that have enhanced cardiac function and low-capacity runners (LCRs) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCRs and LCRs from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCRs was six-fold greater than LCRs. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (p<0.05; false discovery rate <10%, calculated using q-values) differences between HCRs and LCRs. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the β-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCRs also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of α B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus, proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pourghadamyari H, Moohebati M, Parizadeh SMR, Falsoleiman H, Dehghani M, Fazlinezhad A, Akhlaghi S, Tavallaie S, Sahebkar A, Paydar R, Ghayour-Mobarhan M, Ferns GA. Serum antibody titers against heat shock protein 27 are associated with the severity of coronary artery disease. Cell Stress Chaperones 2011; 16:309-16. [PMID: 21107776 PMCID: PMC3077226 DOI: 10.1007/s12192-010-0241-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/24/2010] [Accepted: 10/28/2010] [Indexed: 12/16/2022] Open
Abstract
Antibody titers to several heat shock proteins (anti-Hsps) have been reported to be associated with the severity and progression of cardiovascular disease. However, there are little data regarding anti-Hsp27 titers in patients with coronary artery disease (CAD). A total of 400 patients with suspected CAD were recruited. Based on the results of coronary angiography, these patients were classified into CAD(+) (n = 300) and CAD(-) (n = 100) groups defined as patients with ≥50% and <50% stenosis of any major coronary artery, respectively. Eighty-three healthy subjects were also recruited as the control group. Serum anti-Hsp27 IgG titers were measured using an in-house enzyme-linked immunosorbent assay. CAD(+) patients had significantly higher anti-Hsp27 titers compared with both CAD(-) and control groups. Anti-Hsp27 titers were also higher in the CAD(-) group compared with the control group. With regard to the number of affected vessels in the CAD(+) group, patients with three-vessel disease had higher anti-Hsp27 titers compared with both two-vessel disease (2VD) and one-vessel disease (1VD) subgroups. However, there was no significant difference between 1VD and 2VD subgroups. In multiple linear regression analysis, the number of narrowed vessels and smoking were significant independent determinants of serum anti-Hsp27 titers. The present findings indicate that serum anti-Hsp27 titers may be associated with the presence and severity of coronary artery disease.
Collapse
Affiliation(s)
- Hossein Pourghadamyari
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Mohsen Moohebati
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | | | - Homa Falsoleiman
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Mashalla Dehghani
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Afsoon Fazlinezhad
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Saeed Akhlaghi
- Deputy of Research, Faculty of Medicine, MUMS, Mashhad, Iran
| | - Shima Tavallaie
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Amirhossein Sahebkar
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Cardiovascular Research Center, Avicenna (Bu-Ali) Research Institute, MUMS, Mashhad, Iran
| | - Roghayeh Paydar
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
- Cardiovascular Research Center, Avicenna (Bu-Ali) Research Institute, MUMS, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, MUMS, Mashhad, Iran
- Biochemistry and Nutrition Research Center, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Gordon A. Ferns
- Institute for Science and Technology in Medicine, University of Keele, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, Staffordshire ST4 7QB UK
| |
Collapse
|
9
|
Gorog DA, Jabr RI, Tanno M, Sarafraz N, Clark JE, Fisher SG, Cao XB, Bellahcene M, Dighe K, Kabir AMN, Quinlan RA, Kato K, Gaestel M, Marber MS, Heads RJ. MAPKAPK-2 modulates p38-MAPK localization and small heat shock protein phosphorylation but does not mediate the injury associated with p38-MAPK activation during myocardial ischemia. Cell Stress Chaperones 2009; 14:477-89. [PMID: 19214782 PMCID: PMC2728281 DOI: 10.1007/s12192-009-0101-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 01/02/2009] [Accepted: 01/19/2009] [Indexed: 01/22/2023] Open
Abstract
MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and alphaB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2(-/-) compared to MK2(+/+) hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and alphaB crsytallin phosphorylation were reduced to baseline in MK2(-/-) hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2(+/+) hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2(+/+) hearts was lost in MK2(-/-) hearts, it was basally elevated in nuclei of MK2(-/-) hearts and was similar to that seen during ischemia in MK2(+/+) hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2(+/+) and MK2(-/-) hearts, which were decreased by the p38 inhibitor SB203580 (1 microM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2(-/-) hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury independently of MK2.
Collapse
Affiliation(s)
- Diana A. Gorog
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Rita I Jabr
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
- Faculty of Health and Medical Sciences, University of Surrey Postgraduate Medical School, Daphne Jackson Road, Manor Park, Guildford, Surrey GU2 7WG UK
| | - Masaya Tanno
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Negin Sarafraz
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - James E. Clark
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Simon G. Fisher
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Xou Bin Cao
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Mohamed Bellahcene
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Kushal Dighe
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Alamgir M. N. Kabir
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Roy A. Quinlan
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - Kanefusa Kato
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Matthias Gaestel
- Institute of Biochemistry, Medical School Hanover, Hanover, Germany
| | - Michael S. Marber
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| | - Richard J. Heads
- Cardiovascular Division, Department of Cardiology, King’s College London School of Medicine, The Rayne Institute, St. Thomas’s Hospital, London, SE1 7EH UK
| |
Collapse
|
10
|
Vydra N, Winiarski B, Rak-Raszewska A, Piglowski W, Mazurek A, Scieglinska D, Widlak W. The expression pattern of the 70-kDa heat shock protein Hspa2 in mouse tissues. Histochem Cell Biol 2009; 132:319-30. [PMID: 19462178 DOI: 10.1007/s00418-009-0605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
The highest expression level of a 70-kDa heat shock protein family member Hspa2 is detected specifically in meiotic and post-meiotic male germ cells, which is reflected by original name of this protein, i.e., testis-specific Hsp70. However, this chaperon protein could be also detected in certain somatic tissues. Here, the extra-testicular expression pattern of mouse Hspa2 was analyzed. We found expression of Hspa2 in various epithelial cells including lining of bronchioles and oviduct, columnar epithelium of endometrium, epithelial reticular cells of thymus, transitional epithelium of the urinary bladder, or ependymal cells covering walls of the ventricular system of the brain. Surprisingly, Hspa2 was a putative secretory protein in intestine, endometrial glands and subcommissural organ. Hspa2 was detected in central and peripheral nervous system: in neuron's bodies and fiber tracts, in the subventricular zone of the lateral ventricles, in the dentate gyrus of the hippocampus, in enteric ganglia of the gastrointestinal tract. Hspa2 was also expressed in smooth muscles and at low level in immune system (in germinal centers associated with B-lymphocyte production). In addition to somatic tissues listed above, Hspa2 was detected in oocytes arrested at diplotene of the first meiotic division.
Collapse
Affiliation(s)
- Natalia Vydra
- Department of Tumor Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, 44-101, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Ghayour-Mobarhan M, Sahebkar A, Parizadeh SMR, Moohebati M, Tavallaie S, Rezakazemi-Bajestani SM, Esmaeili HA, Ferns G. Antibody titres to heat shock protein 27 are elevated in patients with acute coronary syndrome. Int J Exp Pathol 2008; 89:209-15. [PMID: 18460073 DOI: 10.1111/j.1365-2613.2008.00586.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
IgG antibody titres to heat shock protein 27 (anti-Hsp27) were measured to determine whether these titres were affected in patients admitted with acute coronary syndrome. Blood samples were taken from 94 patients admitted with acute coronary syndrome. Anti-Hsp27 IgG titres were determined using an in-house enzyme-linked immunosorbent assay (ELISA) in the first and second 12 h after the onset of symptoms and compared with values for 81 age- and sex-matched control subjects. Median antibody titres to Hsp27 in the first sample from patients whose diagnosis was a myocardial infarction (n = 42) was 0.41 absorbancy units (range 0.28-0.57) and for those with unstable angina (n = 52) was 0.31 (range 0.20-0.42), both being significantly higher than for controls (n = 81), which was 0.08 (range 0.05-0.15) (P < 0.05). However, titres fell in the second samples collected in the coronary syndrome patients and were then no longer significantly different from controls (P > 0.05). Myocardial infarction patients also had significantly higher anti-Hsp27 titres in the first 12 h than patients with unstable angina (P < 0.05), but again the difference in the second sample did not reach statistical significance (P > 0.05). Serum antibody titres to Hsp27 rise and fall rapidly after the onset of acute coronary syndrome, and may be an early marker of myocardial ischaemia as patients with myocardial infarction or unstable angina both had high titres.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Heart and Vascular Research Center, Avicenna Research Institute, Mashhad University of Medical Science (MUMS), Mashhad, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Williamson CL, Dabkowski ER, Dillmann WH, Hollander JM. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am J Physiol Heart Circ Physiol 2007; 294:H249-56. [PMID: 17982016 DOI: 10.1152/ajpheart.00775.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as preproteins containing a mitochondria import sequence. Preproteins traverse the outer mitochondrial membrane in an unfolded state and then translocate through the inner membrane into the matrix via import machinery that includes mitochondrial heat shock protein 70 (mtHSP70). Neonatal rat cardiac myocytes (NCM) infected with an adenoviral vector expressing mtHSP70 or an empty control (Adv(-)) for 48 h were submitted to 8 h of simulated ischemia (hypoxia) followed by 16 h of reperfusion (reoxygenation). Infection with mtHSP70 virus yielded an increase in mtHSP70 protein in NCM mitochondria compared with Adv(-) (P < 0.05). Cell viability after simulated ischemia/reperfusion (I/R) was decreased in both Adv(-) and mtHSP70 groups, relative to control (P < 0.05), but mtHSP70-infected NCM had enhanced viability after I/R relative to Adv-infected NCM (P < 0.05). Simulated I/R caused an increase in reactive oxygen species generation and lipid peroxidation in Adv-infected NCM (P < 0.05, for both) that was not observed in mtHSP70-infected NCM. Mitochondrial complex III and IV activities were greater in mtHSP70-infected NCM after simulated I/R compared with Adv(-) (P < 0.05 for both). After simulated I/R, ATP content increased in mtHSP70-infected NCM, compared with Adv(-) (P < 0.05). Apoptotic markers were decreased in mtHSP70-infected NCM compared with Adv(-) after simulated I/R (P < 0.05). These results indicate that overexpression of mtHSP70 protects the mitochondria against damage from simulated I/R that may be due to a decrease in reactive oxygen species leading to preservation of mitochondrial complex function activities and ATP formation.
Collapse
Affiliation(s)
- Courtney L Williamson
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Interdisciplinary Research in Cardiovascular Sciences, 1 Medical Center Drive, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
13
|
Ferns G, Shams S, Shafi S. Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 2006; 87:253-74. [PMID: 16875491 PMCID: PMC2517372 DOI: 10.1111/j.1365-2613.2006.00484.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/23/2006] [Indexed: 11/30/2022] Open
Abstract
Heat shock proteins are molecular chaperones that have an ability to protect proteins from damage induced by environmental factors such as free radicals, heat, ischaemia and toxins, allowing denatured proteins to adopt their native configuration. Heat shock protein-27 (Hsp27) is a member of the small Hsp (sHsp) family of proteins, and has a molecular weight of approximately 27 KDa. In addition to its role as a chaperone, it has also been reported to have many additional functions. These include effects on the apoptotic pathway, cell movement and embryogenesis. In this review, we have focused on its possible role in vascular disease.
Collapse
Affiliation(s)
- Gordon Ferns
- Centre for Clinical Science and Measurement, School of Biomedical Science, University of Surrey, Guildford Surrey, UK.
| | | | | |
Collapse
|
14
|
Parhar K, Baer KA, Parker K, Ropeleski MJ. Short-chain fatty acid mediated phosphorylation of heat shock protein 25: effects on camptothecin-induced apoptosis. Am J Physiol Gastrointest Liver Physiol 2006; 291:G178-88. [PMID: 16469826 DOI: 10.1152/ajpgi.00304.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although short-chain fatty acid (SCFA)-induced heat shock protein 25 (Hsp25) is associated with increased cellular resistance to injury, withdrawal of lumenal butyrate in vivo is associated with intestinal epithelial injury and apoptosis. Recognizing that SCFA-dependent posttranslational modification of Hsp25 may involve altered Hsp25 phosphorylation, we hypothesized that butyrate regulates Hsp25 phosphorylation and secondarily affects cellular responses to apoptosis-inducing agents. Intestinal epithelial crypt IEC-18 cells were treated with butyrate, propionate, or the histone deacetylase inhibitor trichostatin A for 6-24 h. Immunolocalization of Hsp25 was examined by confocal laser microscopy. Hsp25 phosphorylation was characterized using two-dimensional isoelectric focusing gel electrophoresis. Hsp25 accumulation in cytoskeletal- and mitochondrial-enriched fractions was examined by immunoblotting. The activation of p38 MAP kinase was determined using phospho-specific antibodies and MAPKAPK 2 kinase assays. The effects of SCFA on apoptosis were studied by ELISA detection of cleaved DNA and using antibodies recognizing cleaved caspase-3. Five-millimolar butyrate induced no significant injury to IEC-18 cells. Hsp25 did not accumulate in Triton X-100-insoluble cytoskeletal fractions with butyrate treatment but did localize to mitochondria in a p38 MAP kinase-dependent manner. Hsp25 phosphorylation was induced by butyrate, propionate, and trichostatin A. Butyrate-mediated changes in Hsp25 phosphorylation coincide with the activation of the p38 MAP kinase and MAPKAPK 2. Butyrate, propionate, and low-dose trichostatin A confer significant protection from camptothecin-induced apoptosis, which was not reversed by the p38 inhibitor SB203580. We conclude that butyrate-mediated phosphorylation of Hsp25 is associated with significant resistance to apoptosis, which appears to be independent of p38-mediated targeting of Hsp25 to mitochondria.
Collapse
Affiliation(s)
- Kuljit Parhar
- Department of Medicine, Gastrointestinal Diseases Research Unit, Queen's University, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Mineva I, Gartner W, Hauser P, Kainz A, Löffler M, Wolf G, Oberbauer R, Weissel M, Wagner L. Differential expression of alphaB-crystallin and Hsp27-1 in anaplastic thyroid carcinomas because of tumor-specific alphaB-crystallin gene (CRYAB) silencing. Cell Stress Chaperones 2005; 10:171-84. [PMID: 16184762 PMCID: PMC1226015 DOI: 10.1379/csc-107r.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression of the small heat shock protein alphaB-crystallin in differentiated thyroid tumors has been described recently. In this study, we investigated the molecular mechanisms that affect the expression of alphaB-crystallin in benign goiters (n = 7) and highly malignant anaplastic thyroid carcinomas (ATCs) (n = 3). AlphaB-crystallin expression was compared with that of Hsp27-1. Immunoblot and quantitative real-time (RT) polymerase chain reaction revealed marked downregulation of alphaB-crystallin in all the tested ATCs and the ATC-derived cell line C-643 . In contrast, considerable expression of Hsp27-1 in benign and malignant thyroid tissue was demonstrated. Immunofluorescence analysis revealed no relevant topological differences between benign and malignant thyrocytes in the cytoplasmic staining of both proteins. Consistent and marked downregulation of TFCP2L1 was identified as one of the main mechanisms contributing to CRYAB gene silencing in ATCs. In addition, CRYAB gene promoter methylation seems to occur in distinct ATCs. In silico analysis revealed that the differential expression of alphaB-crystallin and Hsp27-1 results from differences between the alphaB-crystallin and Hsp27-1 promoter fragments (712 bp upstream from the transcriptional start site). Biological activity of the analyzed promoter element is confirmed by its heat shock inducibility. In conclusion, we demonstrate downregulation of alphaB-crystallin expression in highly dedifferentiated ATCs because of a tumor-specific transcription factor pattern. The differential expression of alphaB-crystallin and Hsp27-1 indicates functional differences between both proteins.
Collapse
Affiliation(s)
- Ivelina Mineva
- Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
17
|
Sakurai T, Fujita Y, Ohto E, Oguro A, Atomi Y. The decrease of the cytoskeleton tubulin follows the decrease of the associating molecular chaperone alphaB-crystallin in unloaded soleus muscle atrophy without stretch. FASEB J 2005; 19:1199-201. [PMID: 15894563 DOI: 10.1096/fj.04-3060fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cytoskeletal component tubulin/microtubule commonly allows the cell to respond mechanically to the environment. The concentration of free tubulin dimer is autoregulated in the balance of free dimer and polymeric forms of microtubule (MT) protein, having an intrinsic property of "dynamic instability", and through cotranslational beta-tubulin mRNA degradation. Recently, we have demonstrated that alphaB-crystallin is a key molecule of muscle atrophy, since alphaB-crystallin has a chaperone-like-activity that suppresses tubulin aggregation and protects the MT disassembly against both Ca2+ and depolymelizing alkaloid in vitro. Most of the small heat-shock proteins (sHsps), including alphaB-crystallin, are expressed in skeletal muscle. However, no report to date has studied the changes of tubulin/MT during muscle adaptation. Here, we examined changes in tubulin content in rat soleus muscles after hindlimb suspension (HS) with/without passive stretch and the recovery. HS induced rapid decreases of soleus muscle mass, most Hsps (alphaB-crystallin, Hsp90, Hsp70, Hsp27, and p20) and tubulin contents in soleus muscle, while heat-shock cognate 70-kDa protein (Hsc70) did not decrease. Soleus muscle mass, most Hsps, and tubulin were maintained with passive stretch. After 5 days' recovery, the levels of tubulin and Hsps, but not Hsc70, were restored to control levels. The interactions of alphaB-crystallin and tubulin/MT were observed with immunoprecipitation with an anti-alpha-tubulin antibody and taxol-dependent MT assembly. Other sHsps were also associated with alphaB-crystallin and MT, whereas Hsp90 and Hsp70 did not co-precipitate with them. These data imply an interaction and close relationship between alphaB-crystallin and tubulin/MTs in muscle tissues. The amount of mRNA of alphaB-crystallin decreased with the muscle atrophy level, whereas the gene expression level of betaI-tubulin was maintained during HS. This means a significant role of post-transcriptional regulation in tubulin/MT system in muscle adaptation, whereas alphaB-crystallin and most sHsps are regulated at the transcriptional level. Additional functional contribution of alphaB-crystallin to tubulin/MTs during myotube formation was examined using C2C12 myoblast cultured cells, the alphaB-crystallin expression of which was decreased or increased. It indicated the necessity of alphaB-crystallin during microtubule reorganization. In conclusion, tubulin/MTs were revealed to be one of the substrates of alphaB-crystallin, and also serial decreases of alphaB-crystallin and tubulin/MT in early soleus muscle atrophy suggest that the chaperone effect of alphaB-crystallin on the cytoskeleton, which may be also dynamically regulated in the muscle cell, is a key mechanism for muscle adaptation and protection of the atrophy and also muscle differentiation.
Collapse
Affiliation(s)
- Takashi Sakurai
- Department of Life Sciences, The Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Vandroux D, Schaeffer C, Tissier C, Lalande A, Bès S, Rochette L, Athias P. Microtubule alteration is an early cellular reaction to the metabolic challenge in ischemic cardiomyocytes. Mol Cell Biochem 2004; 258:99-108. [PMID: 15030174 DOI: 10.1023/b:mcbi.0000012840.67616.cc] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytoskeleton damage, particularly microtubule (MT) alterations, may play an important role in the pathogenesis of ischemia-induced myocardial injury. However, this disorganization has been scarcely confirmed in the cellular context. We evaluated MT network disassembly in myoblast cell line H9c2 and in neonatal rat cardiomyocytes in an in vitro substrate-free hypoxia model of simulated ischemia (SI). After different duration of SI from 30 up to 180 min, the cells were fixed and the microtubule network was revealed by immunocytochemistry. The microtubule alterations were quantified using a house-developed image analysis program. Additionally, the tubulin fraction were extracted and quantified by Western blotting. The cell respiration, the release of cellular LDH and the cell viability were evaluated at the same periods. An early MT disassembly was observed after 60 min of SI. The decrease in MT fluorescence intensity at 60 and 90 min was correlated with a microtubule disassembly. Conversely, SI-induced significant LDH release (35%) and decrease in cell viability (34%) occurred after 120 min only. These results suggest that the simulated ischemia-induced changes in MT network should not be considered as an ultrastructural hallmark of the cell injury and could rather be an early ultrastructural correlate of the cellular reaction to the metabolic challenge.
Collapse
Affiliation(s)
- David Vandroux
- Laboratory of Cardiovascular Physiopathology and Pharmacology, Institute of Cardiovascular Research, University Hospital Center, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Dahlin K, Mager EM, Allen L, Tigue Z, Goodglick L, Wadehra M, Dobbs L. Identification of genes differentially expressed in rat alveolar type I cells. Am J Respir Cell Mol Biol 2004; 31:309-16. [PMID: 15205179 DOI: 10.1165/rcmb.2003-0423oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although approximately 98% of the internal surface area of the lung is lined by alveolar type I cells, little is known about the functions of this cell type. Using freshly isolated rat type I and type II cells, we created a subtraction library by suppression subtractive hybridization to identify genes differentially expressed by type I cells. We identified twelve genes of known function that are differentially expressed by type I cells. Differential expression of all 12 genes was confirmed by Northern blotting; we confirmed differential expression by immunocytochemistry for 3 genes for which suitable antibodies were available. Most of the genes code for proteins that are multifunctional. From the known functions of these genes, we infer that type I cells may play a role in the maintenance of normal alveolar homeostasis and protection from injury, lung development and remodeling, host defense, tumor/growth suppression, and surfactant metabolism, among other functions.
Collapse
Affiliation(s)
- Katherine Dahlin
- Department of Medicine, University of California San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC. Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Physiol Heart Circ Physiol 2003; 286:H847-55. [PMID: 14592939 DOI: 10.1152/ajpheart.00715.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression studies have shown that the small heat shock proteins (sHSP) protect the myocardium from ischemia-reperfusion (I/R)-induced damage. However, gene deletion studies are necessary to demonstrate whether sHSPs are required for protection. The genes for alphaB-crystallin (alphaBC) and HSPB2, two sHSPs that are expressed in high levels in the heart, are in close proximity to one another; as a result, both genes were disrupted in a recently generated knockout (KO) mouse line. The alphaBC/HSPB2 KO mouse line is currently the only model that features disruption of sHSPs normally expressed in the heart. Accordingly, we examined the cardiac morphology, function, and response to I/R-induced stress in alphaBC-HSPB2 KO mice. Initial gross, light microscopic and echocardiographic characterization showed that the morphological and functional properties of hearts from adult KO mice were indistinguishable from age-matched wild-type (WT) mice. Electron microscopy showed that, compared with WT mouse hearts, KO mouse heart sarcomeres were relatively normal. Isolated perfused KO mouse hearts displayed normal contractility; however, when compared with WT, after I/R, KO mouse hearts exhibited a twofold reduction in contractile recovery, as well as increased necrosis and apoptosis. Additionally, when compared with WT, KO mouse hearts exhibited 43% less reduced glutathione, which is known to protect from I/R-induced damage. Thus, whereas neither alphaBC nor HSPB2 is essential for myocardial development and function under nonstressful conditions, one or both are required for maximal functional recovery and protection from I/R-induced necrosis and apoptosis.
Collapse
|
21
|
Yellon DM, Downey JM. Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiol Rev 2003; 83:1113-51. [PMID: 14506302 DOI: 10.1152/physrev.00009.2003] [Citation(s) in RCA: 700] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Yellon, Derek M., and James M. Downey. Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiol Rev 83: 1113-1151, 2003; 10.1152/physrev.00009.2003.—The phenomenon of ischemic preconditioning, in which a period of sublethal ischemia can profoundly protect the cell from infarction during a subsequent ischemic insult, has been responsible for an enormous amount of research over the last 15 years. Ischemic preconditioning is associated with two forms of protection: a classical form lasting ∼2 h after the preconditioning ischemia followed a day later by a second window of protection lasting ∼3 days. Both types of preconditioning share similarities in that the preconditioning ischemia provokes the release of several autacoids that trigger protection by occupying cell surface receptors. Receptor occupancy activates complex signaling cascades which during the lethal ischemia converge on one or more end-effectors to mediate the protection. The end-effectors so far have eluded identification, although a number have been proposed. A range of different pharmacological agents that activate the signaling cascades at the various levels can mimic ischemic preconditioning leading to the hope that specific therapeutic agents can be designed to exploit the profound protection seen with ischemic preconditioning. This review examines, in detail, the complex mechanisms associated with both forms of preconditioning as well as discusses the possibility to exploit this phenomenon in the clinical setting. As our understanding of the mechanisms associated with preconditioning are unravelled, we believe we can look forward to the development of new therapeutic agents with novel mechanisms of action that can supplement current treatment options for patients threatened with acute myocardial infarction.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Institute for Cardiovascular Studies, Centre for Cardiology, University College London Hospital and Medical School, Grafton Way, London, UK.
| | | |
Collapse
|
22
|
Voss MR, Stallone JN, Li M, Cornelussen RNM, Knuefermann P, Knowlton AA. Gender differences in the expression of heat shock proteins: the effect of estrogen. Am J Physiol Heart Circ Physiol 2003; 285:H687-92. [PMID: 12714326 DOI: 10.1152/ajpheart.01000.2002] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heat shock proteins (HSPs) are an important family of endogenous, protective proteins that are found in all tissues. In the heart, HSP72, the inducible form of HSP70, has been the most intensely studied. It is well established that HSP72 is induced with ischemia and is cardioprotective. Overexpression of other HSPs also is protective against cardiac injury. Recently, we observed that 17beta-estradiol increases levels of HSPs in male rat cardiac myocytes. We hypothesized that there were gender differences in HSP72 expression in the heart secondary to estrogen. To test this hypothesis, we examined cardiac levels of HSP72 by ELISA in male and female Sprague-Dawley rats. In addition, three other HSPs were assessed by Western blot (HSP27, HSP60, and HSP90). To determine whether estrogen status affected HSP72 expression in other muscles or tissues, two other muscle tissues, slow twitch muscle (soleus muscle) and fast twitch muscle (gastrocnemius muscle), were studied as well as two other organs, the kidney and liver. Because HSP72 is cardioprotective, and females are known to have less cardiovascular disease premenopause, the effects of ovariectomy were examined. We report that female Sprague-Dawley rat hearts have twice as much HSP72 as male hearts. Ovariectomy reduced the level of HSP72 in female hearts, and this could be prevented by estrogen replacement therapy. These data show that the expression of cardiac HSP72 is greater in female rats than in male rats, due to upregulation by estrogen.
Collapse
Affiliation(s)
- M R Voss
- Cardiology Research, Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Decker RS, Decker ML, Nakamura S, Zhao YS, Hedjbeli S, Harris KR, Klocke FJ. HSC73-tubulin complex formation during low-flow ischemia in the canine myocardium. Am J Physiol Heart Circ Physiol 2002; 283:H1322-33. [PMID: 12234782 DOI: 10.1152/ajpheart.00062.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canine myocardium was exposed to bouts of low-flow ischemia to identify the interactions that develop between the microtubule-based cytoskeleton and the heat shock protein 70 (HSP70) family of heat shock proteins in viable cardiomyocytes. "Moderate" or "severe" low-flow ischemia was produced in chronically instrumented dogs by reducing circumflex coronary flow by 50% for 2 h or by 75% for 5 h followed by reperfusion for 2 and 24 h, respectively. Electron and immunofluorescence microscopy demonstrated either partial or nearly complete depolymerization of the intermyofibrillar microtubules in areas of myofibril disruption and partial dissolution of the perinuclear microtubule girdle. In contrast, centrosomal tubulin arrays appeared to remain intact following low-flow ischemia. In cardiomyocytes displaying myofibril disruption, constitutively expressed HSP73 (HSC73) colocalized with intact but not disrupted microtubules and with perinuclear and centrosomal tubulin following moderate ischemia. Microtubule depolymerization and high molecular weight tubulin-HSC73 complexes were present in more severely ischemic tissue. These results suggest that HSC73 directly interacts with tubulin and may protect selected elements of the microtubule network and limit myofibril disruption during reversible low-flow ischemia.
Collapse
Affiliation(s)
- Robert S Decker
- Feinberg Cardiovascular Research Institute, Northwestern University, The Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Martin JL, Bluhm WF, He H, Mestril R, Dillmann WH. Mutation of COOH-terminal lysines in overexpressed alpha B-crystallin abrogates ischemic protection in cardiomyocytes. Am J Physiol Heart Circ Physiol 2002; 283:H85-91. [PMID: 12063278 DOI: 10.1152/ajpheart.00512.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High levels of alpha B-crystallin are present in the cardiomyocyte, yet little is understood about the function and importance of this protein. Like many other small heat shock proteins, alpha B-crystallin forms large oligomeric complexes whose size can be regulated by posttranslational modifications. The size of these complexes can modify the function of the protein. A naturally occurring COOH-terminal mutant has many detrimental effects in the lens of the eye and altered oligomerization. Therefore, we mutated the two COOH-terminal lysines of alpha B-crystallin to glycines (K174/175G) and adenovirally mounted them to transduce cardiomyocytes. We analyzed the effect of this mutation on oligomerization, microtubular stabilization, and ischemic outcome. A nearly 45% downward shift in complex size was observed with the mutant by native PAGE followed by immunoblotting. The overexpressed protein no longer protected the tubulin cytoskeleton against ischemic stress by confocal analysis. The mutant caused a 30% increase in cytosolic enzyme release with ischemia compared with control, whereas a 33% decrease was associated with wild-type alpha B-crystallin overexpression. We conclude that the COOH terminus of alpha B-crystallin is crucial to its proper function.
Collapse
Affiliation(s)
- Jody L Martin
- Department of Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| | | | | | | | | |
Collapse
|
25
|
Tanonaka K, Furuhama KI, Yoshida H, Kakuta K, Miyamoto Y, Toga W, Takeo S. Protective effect of heat shock protein 72 on contractile function of perfused failing heart. Am J Physiol Heart Circ Physiol 2001; 281:H215-22. [PMID: 11406488 DOI: 10.1152/ajpheart.2001.281.1.h215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of heat shock protein 72 (HSP72) to the protection of cardiac function was examined in rats with chronic heat failure (CHF) following coronary artery ligation (CAL). The CAL animals revealed functional deterioration without low cardiac output 2 wk after CAL and with low cardiac output 8 wk after CAL, suggesting that CHF had developed by 8 wk after CAL. The hearts isolated from animals 2 and 8 wk after CAL (2-wk CAL heart and 8-wk CAL heart, respectively) were subjected to hyperthermia (at 42 degrees C) for 15 min, followed by 6-h perfusion (hyperthermia/6-h perfusion). The 2-wk CAL heart showed a 19.0 +/- 3.9% decline in the rate- pressure product (RPP) after hyperthermia/6-h perfusion, similar to the nonoperated control (19.8 +/- 2.9% decline). The production of myocardial HSP72 increased in the 2-wk CAL heart in response to hyperthermia (412.7 +/- 29.5% of each prehyperthermia value). The 8-wk CAL heart showed a reduction in the RPP (45.2 +/- 4.3% decline) after hyperthermia/6-h perfusion, associated with blunting of the production of HSP72 (68.9 +/- 22.6% increase, respectively). The results suggest that functional deterioration of the isolated failing heart may be attributed to a reduction in the production of myocardial HSP72.
Collapse
Affiliation(s)
- K Tanonaka
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, 1432 - 1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK. Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 2001; 15:393-402. [PMID: 11156955 DOI: 10.1096/fj.00-0199com] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated whether enhanced expression of alphaB crystallin, a stress-inducible molecular chaperone of the small heat shock family, can protect myocardial contractile apparatus against ischemia reperfusion (I/R) injury. Transgenic mice overexpressing alphaB crystallin were generated using the 0.76 kb rat alphaB crystallin cDNA cloned into a pCAGGS plasmid driven by a human cytomegalovirus expression system. Southern analysis confirmed transgene integration and Northern and Western blotting characterized expression (3.1-fold and 6.9-fold elevations in myocardial mRNA and protein levels, respectively). Extent of functional recovery over a 3 h reperfusion period following a 20 min ischemic period in transgenic and wild-type mouse hearts was assessed using an ex vivo work-performing heart preparation. The transgenic group displayed significantly higher values of DP at R45 min (29.14+/-1.9 mm Hg vs. 17.6+/-0.7 mm Hg), R60 min (31.56+/-1.7 mm Hg vs. 17.8+/-0.8 mm Hg), and R75 min (32.5+/-2.2 mm Hg vs. 16.9+/-0.9 mm Hg), and of dLVP/dt at R45 min (1740.2+/-111.5 mm Hg.s-1 vs. 548.7+/-82.2 mm Hg.s-1) and R60 min (1199.8+/-104.6 mm Hg.s-1 vs. 466.9+/-61.1 mm Hg.s-1). The transgenic group also displayed development of less oxidative stress, decreased extent of infarction, and attenuated cardiomyocyte apoptotic cell death. Transgene overexpression of alphaB crystallin was therefore successful in diminishing the independent contributory effects of both necrosis and apoptosis on I/R-induced cell death.
Collapse
Affiliation(s)
- P S Ray
- Cardiovascular Research Center, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030-1110, USA
| | | | | | | | | | | |
Collapse
|
27
|
Maida V, Bennardini F, Bonomi F, Ganadu ML, Iametti S, Mura GM. Dissociation of human alphaB-crystallin aggregates by thiocyanate is structurally and functionally reversible. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:311-8. [PMID: 11043936 DOI: 10.1023/a:1007051514282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Conformational modifications and changes in the aggregation state of human alphaB-crystallin were investigated at different concentrations of SDS, KBr, urea, and NH4SCN and at different temperatures. Intrinsic fluorescence measurements indicated complete and reversible unfolding of the protein at 2 M NH4SCN, whereas the concentration of urea required for complete and irreversible unfolding was 6 M. Gel permeation chromatography indicated almost complete dissociation of the micelle-like aggregate of alphaB-crystallin in 2 M NH4SCN, but only partial dissociation into large-sized aggregates in 6 M urea. Thiocyanate-treated alphaB-crystallin recovered its chaperone-like activity upon dilution of the dissociating agent, whereas the urea-treated protein did not.
Collapse
Affiliation(s)
- V Maida
- Dipartimento di Chimica, Università degli Studi di Sassari, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and alphaB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hsp10 when coexpressed, and hsp27 and alphaB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types.
Collapse
Affiliation(s)
- W H Dillmann
- Department of Medicine, Endocrinology, and Metabolism, University of California at San Diego, La Jolla 92093-0618, USA.
| |
Collapse
|