1
|
Sallam NA, Wang B, Laher I. Exercise training and vascular heterogeneity in db/db mice: evidence for regional- and duration-dependent effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2421-2436. [PMID: 37843589 DOI: 10.1007/s00210-023-02775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Exercise training (ET) has several health benefits; however, our understanding of regional adaptations to ET is limited. We examined the functional and molecular adaptations to short- and long-term ET in elastic and muscular conduit arteries of db/db mice in relation to changes in cardiovascular risk factors. Diabetic mice and their controls were exercised at moderate intensity for 4 or 8 weeks. The vasodilatory and contractile responses of thoracic aortae and femoral arteries isolated from the same animals were examined. Blood and aortic samples were used to measure hyperglycemia, oxidative stress, inflammation, dyslipidemia, protein expression of SOD isoforms, COX, eNOS, and Akt. Short-term ET improved nitric oxide (NO) mediated vasorelaxation in the aortae and femoral arteries of db/db mice in parallel with increased SOD2 and SOD3 expression, reduced oxidative stress and triglycerides, and independent of weight loss, glycemia, or inflammation. Long-term ET reduced body weight in parallel with reduced systemic inflammation and improved insulin sensitivity along with increased SOD1, Akt, and eNOS expression and improved NO vasorelaxation. Exercise did not restore NOS- and COX-independent vasodilatation in femoral arteries, nor did it mitigate the hypercontractility in the aortae of db/db mice; rather ET transiently increased contractility in association with upregulated COX-2. Long-term ET differentially affected the aortae and femoral arteries contractile responses. ET improved NO-mediated vasodilation in both arteries likely due to collective systemic effects. ET did not mitigate all diabetes-induced vasculopathies. Optimization of the ET regimen can help develop comprehensive management of type 2 diabetes.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Baohua Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
2
|
Baldwin SN, Jepps TA, Greenwood IA. Cycling matters: Sex hormone regulation of vascular potassium channels. Channels (Austin) 2023; 17:2217637. [PMID: 37243715 PMCID: PMC10228406 DOI: 10.1080/19336950.2023.2217637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Sex hormones and the reproductive cycle (estrus in rodents and menstrual in humans) have a known impact on arterial function. In spite of this, sex hormones and the estrus/menstrual cycle are often neglected experimental factors in vascular basic preclinical scientific research. Recent research by our own laboratory indicates that cyclical changes in serum concentrations of sex -hormones across the rat estrus cycle, primary estradiol, have significant consequences for the subcellular trafficking and function of KV. Vascular potassium channels, including KV, are essential components of vascular reactivity. Our study represents a small part of a growing field of literature aimed at determining the role of sex hormones in regulating arterial ion channel function. This review covers key findings describing the current understanding of sex hormone regulation of vascular potassium channels, with a focus on KV channels. Further, we highlight areas of research where the estrus cycle should be considered in future studies to determine the consequences of physiological oscillations in concentrations of sex hormones on vascular potassium channel function.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
3
|
Här K, Lysenko NN, Dimitrova D, Schlüter T, Zavaritskaya O, Kamkin AG, Mladenov M, Grisk O, Köhler R, Gagov H, Schubert R. Kv2.1 Channels Prevent Vasomotion and Safeguard Myogenic Reactivity in Rat Small Superior Cerebellar Arteries. Cells 2023; 12:1989. [PMID: 37566068 PMCID: PMC10416909 DOI: 10.3390/cells12151989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Vascular smooth muscle voltage-gated potassium (Kv) channels have been proposed to contribute to myogenic autoregulation. Surprisingly, in initial experiments, we observed that the Kv2 channel inhibitor stromatoxin induced vasomotion without affecting myogenic tone. Thus, we tested the hypothesis that Kv2 channels contribute to myogenic autoregulation by fine-tuning the myogenic response. Expression of Kv2 channel mRNA was determined using real-time PCR and 'multiplex' single-cell RT-PCR. Potassium currents were measured using the patch-clamp technique. Contractile responses of intact arteries were studied using isobaric myography. Expression of Kv2.1 but not Kv2.2 channels was detected in intact rat superior cerebellar arteries and in single smooth muscle cells. Stromatoxin, a high-affinity inhibitor of Kv2 channels, reduced smooth muscle Kv currents by 61% at saturating concentrations (EC50 36 nmol/L). Further, stromatoxin (10-100 nmol/L) induced pronounced vasomotion in 48% of the vessels studied. In vessels not exhibiting vasomotion, stromatoxin did not affect myogenic reactivity. Notably, in vessels exhibiting stromatoxin-induced vasomotion, pressure increases evoked two effects: First, they facilitated the occurrence of random vasodilations and/or vasoconstrictions, disturbing the myogenic response (24% of the vessels). Second, they modified the vasomotion by decreasing its amplitude and increasing its frequency, thereby destabilizing myogenic tone (76% of the vessels). Our study demonstrates that (i) Kv2.1 channels are the predominantly expressed Kv channels in smooth muscle cells of rat superior cerebellar arteries, and (ii) Kv2.1 channels provide a novel type of negative feedback mechanism in myogenic autoregulation by preventing vasomotion and thereby safeguarding the myogenic response.
Collapse
Affiliation(s)
- Kristina Här
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Natalia N. Lysenko
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Torsten Schlüter
- Institute of Physiology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Olga Zavaritskaya
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andrej G. Kamkin
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mitko Mladenov
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, 1000 Skopje, North Macedonia
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Ralf Köhler
- ARAID-IACS, UIT University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
4
|
Seo MS, An JR, Heo R, Kang M, Park S, Mun SY, Park H, Han ET, Han JH, Chun W, Song G, Park WS. The inhibitory effects of pimozide, an antipsychotic drug, on voltage-gated K + channels in rabbit coronary arterial smooth muscle cells. Drug Chem Toxicol 2023; 46:271-280. [PMID: 35317682 DOI: 10.1080/01480545.2021.2021932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pimozide is an antipsychotic drug used to treat chronic psychosis, such as Tourette's syndrome. Despite its widespread clinical use, pimozide can cause unexpected adverse effects, including arrhythmias. However, the adverse effects of pimozide on vascular K+ channels have not yet been determined. Therefore, we investigated the effects of pimozide on voltage-gated K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Pimozide concentration-dependently inhibited the Kv currents with an IC50 value of 1.78 ± 0.17 μM and a Hill coefficient of 0.90 ± 0.05. The inhibitory effect on the Kv current by pimozide was highly voltage-dependent in the voltage range of Kv channel activation, and additive inhibition of the Kv current by pimozide was observed in the full activation voltage range. The decay rate of inactivation was significantly accelerated by pimozide. Pimozide shifted the inactivation curve to a more negative potential. The recovery time constant from inactivation increased in the presence of pimozide. Furthermore, pimozide-induced inhibition of the Kv current was augmented by applying train pulses. Although pretreatment with the Kv2.1 subtype inhibitor guangxitoxin and the Kv7 subtype inhibitor linopirdine did not alter the degree of pimozide-induced inhibition of the Kv currents, pretreatment with the Kv1.5 channel inhibitor DPO-1 reduced the inhibitory effects of pimozide on Kv currents. Pimozide induced membrane depolarization. We conclude that pimozide inhibits Kv currents in voltage-, time-, and use (state)-dependent manners. Furthermore, the major Kv channel target of pimozide is the Kv1.5 channel.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seojin Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Geehyun Song
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
5
|
Pereira da Silva EA, Martín-Aragón Baudel M, Navedo MF, Nieves-Cintrón M. Ion channel molecular complexes in vascular smooth muscle. Front Physiol 2022; 13:999369. [PMID: 36091375 PMCID: PMC9459047 DOI: 10.3389/fphys.2022.999369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Ion channels that influence membrane potential and intracellular calcium concentration control vascular smooth muscle excitability. Voltage-gated calcium channels (VGCC), transient receptor potential (TRP) channels, voltage (KV), and Ca2+-activated K+ (BK) channels are key regulators of vascular smooth muscle excitability and contractility. These channels are regulated by various signaling cues, including protein kinases and phosphatases. The effects of these ubiquitous signaling molecules often depend on the formation of macromolecular complexes that provide a platform for targeting and compartmentalizing signaling events to specific substrates. This manuscript summarizes our current understanding of specific molecular complexes involving VGCC, TRP, and KV and BK channels and their contribution to regulating vascular physiology.
Collapse
|
6
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
7
|
De Silva TM, Sobey CG. Cerebral Vascular Biology in Health and Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Rhee SW, Rusch NJ. Molecular determinants of beta-adrenergic signaling to voltage-gated K + channels in the cerebral circulation. Microcirculation 2018; 25. [PMID: 29072364 DOI: 10.1111/micc.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Voltage-gated K+ (Kv ) channels are major determinants of membrane potential in vascular smooth muscle cells (VSMCs) and regulate the diameter of small cerebral arteries and arterioles. However, the intracellular structures that govern the expression and function of vascular Kv channels are poorly understood. Scaffolding proteins including postsynaptic density 95 (PSD95) recently were identified in rat cerebral VSMCs. Primarily characterized in neurons, the PSD95 scaffold has more than 50 known binding partners, and it can mediate macromolecular signaling between cell-surface receptors and ion channels. In cerebral arteries, Shaker-type Kv 1 channels appear to associate with the PSD95 molecular scaffold, and PSD95 is required for the normal expression and vasodilator influence of members of this K+ channel gene family. Furthermore, recent findings suggest that the β1-subtype adrenergic receptor is expressed in cerebral VSMCs and forms a functional vasodilator complex with Kv 1 channels on the PSD95 scaffold. Activation of β1-subtype adrenergic receptors in VSMCs enables protein kinase A-dependent phosphorylation and opening of Kv 1 channels in the PSD95 complex; the subsequent K+ efflux mediates membrane hyperpolarization and vasodilation of small cerebral arteries. Early evidence from other studies suggests that other families of Kv channels and scaffolding proteins are expressed in VSMCs. Future investigations into these macromolecular complexes that modulate the expression and function of Kv channels may reveal unknown signaling cascades that regulate VSMC excitability and provide novel targets for ion channel-based medications to optimize vascular tone.
Collapse
Affiliation(s)
- Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Koide M, Moshkforoush A, Tsoukias NM, Hill-Eubanks DC, Wellman GC, Nelson MT, Dabertrand F. The yin and yang of K V channels in cerebral small vessel pathologies. Microcirculation 2018; 25. [PMID: 29247493 DOI: 10.1111/micc.12436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Cerebral SVDs encompass a group of genetic and sporadic pathological processes leading to brain lesions, cognitive decline, and stroke. There is no specific treatment for SVDs, which progress silently for years before becoming clinically symptomatic. Here, we examine parallels in the functional defects of PAs in CADASIL, a monogenic form of SVD, and in response to SAH, a common type of hemorrhagic stroke that also targets the brain microvasculature. Both animal models exhibit dysregulation of the voltage-gated potassium channel, KV 1, in arteriolar myocytes, an impairment that compromises responses to vasoactive stimuli and impacts CBF autoregulation and local dilatory responses to neuronal activity (NVC). However, the extent to which this channelopathy-like defect ultimately contributes to these pathologies is unknown. Combining experimental data with computational modeling, we describe the role of KV 1 channels in the regulation of myocyte membrane potential at rest and during the modest increase in extracellular potassium associated with NVC. We conclude that PA resting membrane potential and myogenic tone depend strongly on KV 1.2/1.5 channel density, and that reciprocal changes in KV channel density in CADASIL and SAH produce opposite effects on extracellular potassium-mediated dilation during NVC.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | | | - George C Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
11
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Nieves-Cintrón M, Syed AU, Nystoriak MA, Navedo MF. Regulation of voltage-gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation 2018; 25:10.1111/micc.12423. [PMID: 29044853 PMCID: PMC5760350 DOI: 10.1111/micc.12423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Voltage-gated potassium (KV ) channels are key regulators of vascular smooth muscle contractility and vascular tone, and thus have major influence on the microcirculation. KV channels are important determinants of vascular smooth muscle membrane potential (Em ). A number of KV subunits are expressed in the plasma membrane of smooth muscle cells. Each subunit confers distinct kinetics and regulatory properties that allow for fine control of Em to orchestrate vascular tone. Modifications in KV subunit expression and/or channel activity can contribute to changes in vascular smooth muscle contractility in response to different stimuli and in diverse pathological conditions. Consistent with this, a number of studies suggest alterations in KV subunit expression and/or function as underlying contributing mechanisms for small resistance artery dysfunction in pathologies such as hypertension and metabolic disorders, including diabetes. Here, we review our current knowledge on the effects of these pathologies on KV channel expression and function in vascular smooth muscle cells, and the repercussions on (micro)vascular function.
Collapse
Affiliation(s)
| | - Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, CA 95616
| |
Collapse
|
13
|
Salomonsson M, Brasen JC, Sorensen CM. Role of renal vascular potassium channels in physiology and pathophysiology. Acta Physiol (Oxf) 2017; 221:14-31. [PMID: 28371470 DOI: 10.1111/apha.12882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K+ conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage-operated Ca2+ channels (VOCC) in VSMC. When K+ conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K+ channels leads to depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by endothelium-derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K+ channels have a potential role in the control of fluid homoeostasis and blood pressure as well as in the protection of the renal parenchyma. The main classes of K+ channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare the ambiguous in vitro and in vivo results. We discuss the role of single types of K+ channels and the integrated function of several classes. We also deal with the possible role of renal vascular K+ channels in the pathophysiology of hypertension, diabetes mellitus and sepsis.
Collapse
Affiliation(s)
| | - J. C. Brasen
- Department of Electrical Engineering; Technical University of Denmark; Kgs. Lyngby Denmark
| | - C. M. Sorensen
- Department of Biomedical Sciences; Division of Renal and Vascular Physiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
14
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
16
|
Cox RH, Fromme S. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries. Cell Biochem Biophys 2016; 74:263-76. [PMID: 27286858 PMCID: PMC4905591 DOI: 10.1007/s12013-015-0715-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
| | - Samantha Fromme
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| |
Collapse
|
17
|
Fancher IS, Butcher JT, Brooks SD, Rottgen TS, Skaff PR, Frisbee JC, Dick GM. Diphenyl phosphine oxide-1-sensitive K(+) channels contribute to the vascular tone and reactivity of resistance arteries from brain and skeletal muscle. Microcirculation 2016; 22:315-25. [PMID: 25808400 DOI: 10.1111/micc.12201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/17/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Many types of vascular smooth muscle cells exhibit prominent KDR currents. These KDR currents may be mediated, at least in part, by KV1.5 channels, which are sensitive to inhibition by DPO-1. We tested the hypothesis that DPO-1-sensitive KDR channels regulate the tone and reactivity of resistance-sized vessels from rat brain (MCA) and skeletal muscle (GA). METHODS Middle cerebral and gracilis arteries were isolated and subjected to three kinds of experimental analysis: (i) western blot/immunocytochemistry; (ii) patch clamp electrophysiology; and (iii) pressure myography. RESULTS Western blot and immunocytochemistry experiments demonstrated KV1.5 immunoreactivity in arteries and smooth muscle cells isolated from them. Whole-cell patch clamp experiments revealed smooth muscle cells from resistance-sized arteries to possess a KDR current that was blocked by DPO-1. Resistance arteries constricted in response to increasing concentrations of DPO-1. DPO-1 enhanced constrictions to PE and serotonin in gracilis and middle cerebral arteries, respectively. When examining the myogenic response, we found that DPO-1 reduced the diameter at any given pressure. Dilations in response to ACh and SNP were reduced by DPO-1. CONCLUSION We suggest that KV1.5, a DPO-1-sensitive KDR channel, plays a major role in determining microvascular tone and the response to vasoconstrictors and vasodilators.
Collapse
Affiliation(s)
- Ibra S Fancher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Kidd MW, Leo MD, Bannister JP, Jaggar JH. Intravascular pressure enhances the abundance of functional Kv1.5 channels at the surface of arterial smooth muscle cells. Sci Signal 2015; 8:ra83. [PMID: 26286025 DOI: 10.1126/scisignal.aac5128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Voltage-dependent potassium (K(v)) channels are present in various cell types, including smooth muscle cells (myocytes) of resistance-sized arteries that control systemic blood pressure and regional organ blood flow. Intravascular pressure depolarizes arterial myocytes, stimulating calcium (Ca(2+)) influx through voltage-dependent Ca(2+) (Ca(v)) channels that results in vasoconstriction and also K(+) efflux through K(v) channels that oppose vasoconstriction. We hypothesized that pressure-induced depolarization may not only increase the open probability of plasma membrane-resident K(v) channels but also increase the abundance of these channels at the surface of arterial myocytes to limit vasoconstriction. We found that K(v)1.5 and K(v)2.1 proteins were abundant in the myocytes of resistance-sized mesenteric arteries. K(v)1.5, but not K(v)2.1, continuously recycled between the intracellular compartment and the plasma membrane in contractile arterial myocytes. Using ex vivo preparations of intact arteries, we showed that physiological intravascular pressure through membrane depolarization or membrane depolarization in the absence of pressure inhibited the degradation of internalized K(v)1.5 and increased recycling of K(v)1.5 to the plasma membrane. Accordingly, by stimulating the activity of Ca(v)1.2, membrane depolarization increased whole-cell K(v)1.5 current density in myocytes and K(v)1.5 channel activity in pressurized arteries. In contrast, the total amount and cell surface abundance of K(v)2.1 were independent of intravascular pressure or membrane potential. Thus, our data indicate that intravascular pressure-induced membrane depolarization selectively increased K(v)1.5 surface abundance to increase K(v) currents in arterial myocytes, which would limit vasoconstriction.
Collapse
Affiliation(s)
- Michael W Kidd
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John P Bannister
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Moore CL, Nelson PL, Parelkar NK, Rusch NJ, Rhee SW. Protein kinase A-phosphorylated KV1 channels in PSD95 signaling complex contribute to the resting membrane potential and diameter of cerebral arteries. Circ Res 2014; 114:1258-67. [PMID: 24585759 DOI: 10.1161/circresaha.114.303167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Postsynaptic density-95 (PSD95) is a scaffolding protein that associates with voltage-gated, Shaker-type K(+) (KV1) channels and promotes the expression of KV1 channels in vascular smooth muscle cells of the cerebral (cVSMCs) circulation. However, the physiological role of PSD95 in mediating molecular signaling in cVSMCs is unknown. OBJECTIVE We explored whether a specific interaction between PSD95 and KV1 channels enables protein kinase A phosphorylation of KV1 channels in cVSMCs to promote vasodilation. METHODS AND RESULTS Rat cerebral arteries were used for analyses. A membrane-permeable peptide (KV1-C peptide) corresponding to the postsynaptic density-95, discs large, zonula occludens-1 binding motif in the C terminus of KV1.2α was designed as a dominant-negative peptide to disrupt the association of KV1 channels with PSD95. Application of KV1-C peptide to cannulated, pressurized cerebral arteries rapidly induced vasoconstriction and depolarized cVSMCs. These events corresponded to reduced coimmunoprecipitation of the PSD95 and KV1 proteins without altering surface expression. Middle cerebral arterioles imaged in situ through cranial window also constricted rapidly in response to local application of KV1-C peptide. Patch-clamp recordings confirmed that KV1-C peptide attenuates KV1 channel blocker (5-(4-phenylalkoxypsoralen))-sensitive current in cVSMCs. Western blots using a phospho-protein kinase A substrate antibody revealed that cerebral arteries exposed to KV1-C peptide showed markedly less phosphorylation of KV1.2α subunits. Finally, phosphatase inhibitors blunted both KV1-C peptide-mediated and protein kinase A inhibitor peptide-mediated vasoconstriction. CONCLUSIONS These findings provide initial evidence that protein kinase A phosphorylation of KV1 channels is enabled by a dynamic association with PSD95 in cerebral arteries and suggest that a disruption of such association may compromise cerebral vasodilation and blood flow.
Collapse
Affiliation(s)
- Christopher L Moore
- From the Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock (C.L.M., P.L.N., N.J.R., S.W.R.); and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City (N.K.P.)
| | | | | | | | | |
Collapse
|
21
|
Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proc Natl Acad Sci U S A 2013; 110:E2239-48. [PMID: 23729813 DOI: 10.1073/pnas.1221206110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Obesity is an epidemic, calling for innovative and reliable pharmacological strategies. Here, we show that ShK-186, a selective and potent blocker of the voltage-gated Kv1.3 channel, counteracts the negative effects of increased caloric intake in mice fed a diet rich in fat and fructose. ShK-186 reduced weight gain, adiposity, and fatty liver; decreased blood levels of cholesterol, sugar, HbA1c, insulin, and leptin; and enhanced peripheral insulin sensitivity. These changes mimic the effects of Kv1.3 gene deletion. ShK-186 did not alter weight gain in mice on a chow diet, suggesting that the obesity-inducing diet enhances sensitivity to Kv1.3 blockade. Several mechanisms may contribute to the therapeutic benefits of ShK-186. ShK-186 therapy activated brown adipose tissue as evidenced by a doubling of glucose uptake, and increased β-oxidation of fatty acids, glycolysis, fatty acid synthesis, and uncoupling protein 1 expression. Activation of brown adipose tissue manifested as augmented oxygen consumption and energy expenditure, with no change in caloric intake, locomotor activity, or thyroid hormone levels. The obesity diet induced Kv1.3 expression in the liver, and ShK-186 caused profound alterations in energy and lipid metabolism in the liver. This action on the liver may underlie the differential effectiveness of ShK-186 in mice fed a chow vs. an obesity diet. Our results highlight the potential use of Kv1.3 blockers for the treatment of obesity and insulin resistance.
Collapse
|
22
|
Sorensen CM, Braunstein TH, Holstein-Rathlou NH, Salomonsson M. Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol 2012; 302:F505-18. [DOI: 10.1152/ajprenal.00052.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K+ conductance is a major determinant of membrane potential ( Vm) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm through the action of voltage-operated Ca2+ channels (VOCC) in VSMC. Increased K+ conductance leads to hyperpolarization and vasodilation, while inactivation of K+ channels causes depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K+ channel function, the role of renal vascular K+ channels in the control of salt and water excretion deserves attention.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| | - Thomas Hartig Braunstein
- Danish National Research Foundation Center for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Salomonsson
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| |
Collapse
|
23
|
Joseph BK, Thakali KM, Pathan AR, Kang E, Rusch NJ, Rhee SW. Postsynaptic density-95 scaffolding of Shaker-type K⁺ channels in smooth muscle cells regulates the diameter of cerebral arteries. J Physiol 2011; 589:5143-52. [PMID: 21911612 DOI: 10.1113/jphysiol.2011.213843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Postsynaptic density-95 (PSD95) is a 95 kDa scaffolding molecule in the brain that clusters postsynaptic proteins including ion channels, receptors, enzymes and other signalling partners required for normal cognition. The voltage-gated, Shaker-type K(+) (K(V)1) channel is one key binding partner of PSD95 scaffolds in neurons. However, K(V)1 channels composed of α1.2 and α1.5 pore-forming subunits also are expressed in the vascular smooth muscle cells (cVSMCs) of the cerebral circulation, although the identity of their molecular scaffolds is unknown. Since α1.2 contains a binding motif for PSD95, we explored the possibility that cVSMCs express PSD95 as a scaffold to promote K(V)1 channel expression and cerebral vasodilatation. Cerebral arteries from Sprague-Dawley rats were isolated for analysis of PSD95 and K(V)1 channel proteins. PSD95 was detected in cVSMCs and it co-immunoprecipitated and co-localized with the pore-forming α1.2 subunit of the K(V)1 channel. Antisense-mediated knockdown of PSD95 profoundly reduced K(V)1 channel expression and suppressed K(V)1 current in patch-clamped cVSMCs. Loss of PSD95 also depolarized cVSMCs in pressurized cerebral arteries and induced a strong constriction associated with a loss of functional K(V)1 channels. Our findings provide initial evidence that PSD95 is expressed in cVSMCs, and the K(V)1 channel is one of its important binding partners. PSD95 appears to function as a critical 'dilator' scaffold in cerebral arteries by increasing the number of functional K(V)1 channels at the plasma membrane.
Collapse
Affiliation(s)
- Biny K Joseph
- Department of Pharmacology and Toxicology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mogensen C, Bergner B, Wallner S, Ritter A, d'Avis S, Ninichuk V, Kameritsch P, Gloe T, Nagel W, Pohl U. Isolation and functional characterization of pericytes derived from hamster skeletal muscle. Acta Physiol (Oxf) 2011; 201:413-26. [PMID: 20969729 DOI: 10.1111/j.1748-1716.2010.02206.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM At the interface of tissue and capillaries, pericytes (PC) may generate electrical signals to be conducted along the skeletal muscle vascular network, but they are functionally not well characterized. We aimed to isolate and cultivate muscle PC allowing to analyse functional properties considered important for signal generation and conduction. METHODS Pericytes were enzymatically isolated from hamster thigh muscles and further selected during a 16-30 days' cultivation period. PC markers were studied by fluorescence activated cell scanning (FACS) and immunocytochemistry. Electrical properties of the cultured PC were investigated by patch clamp technique as well as the membrane potential sensitive dye DiBAC(4) (3). RESULTS The cultured cells showed typical PC morphology and were positive for NG2, alpha smooth muscle actin, PDGFR-β and the gap junction protein Cx43. Expressions of at least one single or combinations of several markers were found in 80-90% of subpopulations. A subset of the patched cells expressed channel activities consistent with a Kv1.5 channel. In vivo presence of the channels was confirmed in sections of hamster thigh muscles. Interleukin-8, a myokine known to be released from exercising muscle, increased the expression but not the activity of this channel. Pharmacologic stimulation of the channel activity by flufenamic acid induced hyperpolarization of PC alone but not of endothelial cells [human umbilical vein endothelial cells (HUVEC)] alone. However, hyperpolarization was observed in HUVEC adjacent to PC when kept in co-culture. CONCLUSION We established a culture method for PC from skeletal muscle. A first functional characterization revealed properties which potentially enable these cells to generate hyperpolarizing signals and to communicate them to endothelial cells.
Collapse
Affiliation(s)
- C Mogensen
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Cheong A, Li J, Sukumar P, Kumar B, Zeng F, Riches K, Munsch C, Wood IC, Porter KE, Beech DJ. Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers. Cardiovasc Res 2010; 89:282-9. [PMID: 20884640 PMCID: PMC3020133 DOI: 10.1093/cvr/cvq305] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIM The aim of the study was to determine the potential for K(V)1 potassium channel blockers as inhibitors of human neoinitimal hyperplasia. METHODS AND RESULTS Blood vessels were obtained from patients or mice and studied in culture. Reverse transcriptase-polymerase chain reaction and immunocytochemistry were used to detect gene expression. Whole-cell patch-clamp, intracellular calcium measurement, cell migration assays, and organ culture were used to assess channel function. K(V)1.3 was unique among the K(V)1 channels in showing preserved and up-regulated expression when the vascular smooth muscle cells switched to the proliferating phenotype. There was strong expression in neointimal formations. Voltage-dependent potassium current in proliferating cells was sensitive to three different blockers of K(V)1.3 channels. Calcium entry was also inhibited. All three blockers reduced vascular smooth muscle cell migration and the effects were non-additive. One of the blockers (margatoxin) was highly potent, suppressing cell migration with an IC(50) of 85 pM. Two of the blockers were tested in organ-cultured human vein samples and both inhibited neointimal hyperplasia. CONCLUSION K(V)1.3 potassium channels are functional in proliferating mouse and human vascular smooth muscle cells and have positive effects on cell migration. Blockers of the channels may be useful as inhibitors of neointimal hyperplasia and other unwanted vascular remodelling events.
Collapse
Affiliation(s)
- Alex Cheong
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci 2010; 30:5167-75. [PMID: 20392939 DOI: 10.1523/jneurosci.5591-09.2010] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mice lacking Kv1.1 Shaker-like potassium channels encoded by the Kcna1 gene exhibit severe seizures and die prematurely. The channel is widely expressed in brain but only minimally, if at all, in mouse myocardium. To test whether Kv1.1-potassium deficiency could underlie primary neurogenic cardiac dysfunction, we performed simultaneous video EEG-ECG recordings and found that Kcna1-null mice display potentially malignant interictal cardiac abnormalities, including a fivefold increase in atrioventricular (AV) conduction blocks, as well as bradycardia and premature ventricular contractions. During seizures the occurrence of AV conduction blocks increased, predisposing Kv1.1-deficient mice to sudden unexplained death in epilepsy (SUDEP), which we recorded fortuitously in one animal. To determine whether the interictal AV conduction blocks were of cardiac or neural origin, we examined their response to selective pharmacological blockade of the autonomic nervous system. Simultaneous administration of atropine and propranolol to block parasympathetic and sympathetic branches, respectively, eliminated conduction blocks. When administered separately, only atropine ameliorated AV conduction blocks, indicating that excessive parasympathetic tone contributes to the neurocardiac defect. We found no changes in Kv1.1-deficient cardiac structure, but extensive Kv1.1 expression in juxtaparanodes of the wild-type vagus nerve, the primary source of parasympathetic input to the heart, suggesting a novel site of action leading to Kv1.1-associated cardiac bradyarrhythmias. Together, our data suggest that Kv1.1 deficiency leads to impaired neural control of cardiac rhythmicity due in part to aberrant parasympathetic neurotransmission, making Kcna1 a strong candidate gene for human SUDEP.
Collapse
|
28
|
Dua AK, Dua N, Murrant CL. Skeletal muscle contraction-induced vasodilator complement production is dependent on stimulus and contraction frequency. Am J Physiol Heart Circ Physiol 2009; 297:H433-42. [DOI: 10.1152/ajpheart.00216.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that the vasodilator complement that produces arteriolar vasodilation during muscle contraction depends on both stimulus and contraction frequency, we stimulated four to five skeletal muscle fibers in the anesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibers. Diameter was measured before, during, and after 2 min of skeletal muscle contraction stimulated over a range of stimulus frequencies [4, 20, and 40 Hz; 15 contractions/min (cpm), 250 ms train duration] and a range of contraction frequencies (6, 15, and 60 cpm; 20 Hz stimulus frequency, 250 ms train duration). Muscle fibers were stimulated in the absence and presence of an inhibitor of adenosine receptors [10−6 M xanthine amine congener (XAC)], an ATP-dependent potassium (K+) channel inhibitor (10−5 M glibenclamide), an inhibitor of a source of K+ by inhibition of voltage-dependent K+ channels [3 × 10−4 M 3,4-diaminopyridine (DAP)], and an inhibitor of nitric oxide synthase [10−6 M NG-nitro-l-arginine methyl ester (l-NAME) + 10−7 S-nitroso- N-acetylpenicillamine (a nitric oxide donor)]. l-NAME inhibited the dilations at all stimulus frequencies and contraction frequencies except 60 cpm. XAC inhibited the dilations at all contraction frequencies and stimulus frequencies except 40 Hz. Glibenclamide inhibited all dilations at all stimulus and contraction frequencies, and DAP did not inhibit dilations at any stimulus frequencies while attenuating dilation at a contraction frequency of 60 cpm only. Our data show that the complement of dilators responsible for the vasodilations induced by skeletal muscle contraction differed depending on the stimulus and contraction frequency; therefore, both are important determinants of the dilators involved in the processes of arteriolar vasodilation associated with active hyperemia.
Collapse
|
29
|
Tobin AA, Joseph BK, Al-Kindi HN, Albarwani S, Madden JA, Nemetz LT, Rusch NJ, Rhee SW. Loss of cerebrovascular Shaker-type K(+) channels: a shared vasodilator defect of genetic and renal hypertensive rats. Am J Physiol Heart Circ Physiol 2009; 297:H293-303. [PMID: 19411284 DOI: 10.1152/ajpheart.00991.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral arteries of hypertensive rats are depolarized and highly myogenic, suggesting a loss of K(+) channels in the vascular smooth muscle cells (VSMCs). The present study evaluated whether the dilator function of the prominent Shaker-type voltage-gated K(+) (K(V)1) channels is attenuated in middle cerebral arteries from two rat models of hypertension. Block of K(V)1 channels by correolide (1 micromol/l) or psora-4 (100 nmol/l) reduced the resting diameter of pressurized (80 mmHg) cerebral arteries from normotensive rats by an average of 28 +/- 3% or 26 +/- 3%, respectively. In contrast, arteries from spontaneously hypertensive rats (SHR) and aortic-banded (Ao-B) rats with chronic hypertension showed enhanced Ca(2+)-dependent tone and failed to significantly constrict to correolide or psora-4, implying a loss of K(V)1 channel-mediated vasodilation. Patch-clamp studies in the VSMCs of SHR confirmed that the peak K(+) current density attributed to K(V)1 channels averaged only 5.47 +/- 1.03 pA/pF, compared with 9.58 +/- 0.82 pA/pF in VSMCs of control Wistar-Kyoto rats. Subsequently, Western blots revealed a 49 +/- 7% to 66 +/- 7% loss of the pore-forming alpha(1.2)- and alpha(1.5)-subunits that compose K(V)1 channels in cerebral arteries of SHR and Ao-B rats compared with control animals. In each case, the deficiency of K(V)1 channels was associated with reduced mRNA levels encoding either or both alpha-subunits. Collectively, these findings demonstrate that a deficit of alpha(1.2)- and alpha(1.5)-subunits results in a reduced contribution of K(V)1 channels to the resting diameters of cerebral arteries from two rat models of hypertension that originate from different etiologies.
Collapse
Affiliation(s)
- Ann A Tobin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kang LS, Kim S, Dominguez JM, Sindler AL, Dick GM, Muller-Delp JM. Aging and muscle fiber type alter K+ channel contributions to the myogenic response in skeletal muscle arterioles. J Appl Physiol (1985) 2009; 107:389-98. [PMID: 19407249 DOI: 10.1152/japplphysiol.91245.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging diminishes myogenic tone in arterioles from skeletal muscle. Recent evidence indicates that both large-conductance Ca2+-activated (BKCa) and voltage-dependent (KV) K+ channels mediate negative feedback control of the myogenic response. Thus we tested the hypothesis that aging increases the contributions of KV and BKCa channels to myogenic regulation of vascular tone. Because myogenic responsiveness differs between oxidative and glycolytic muscles, we predicted that KV and BKCa channel contributions to myogenic responsiveness vary with fiber type. Myogenic responses of first-order arterioles from the gastrocnemius and soleus muscles of 4- and 24-mo-old Fischer 344 rats were evaluated in the presence and absence of 4-aminopyridine (5 mM) or iberiotoxin (30 nM), inhibitors of KV and BKCa, respectively. 4-Aminopyridine enhanced myogenic tone with aging and normalized age-related differences in both muscle types. By contrast, iberiotoxin eliminated age-related differences in soleus arterioles and had no effect in gastrocnemius vessels. KV1.5 is an integral component of KV channels in vascular smooth muscle; therefore, we determined the relative protein expression of KV1.5, as well as BKCa, in soleus and gastrocnemius arterioles. Immunoblot analysis revealed no differences in KV1.5 protein with aging or between variant fiber types, whereas BKCa protein levels declined with age in arterioles from both muscle groups. Collectively, these results suggest that the contribution of BKCa to myogenic regulation of vascular tone changes with age in soleus muscle arterioles, whereas increased KV channel expression and negative feedback regulation of myogenic tone increases with advancing age in arterioles from both oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | | | | | | | |
Collapse
|
31
|
Moreno-Domínguez A, Cidad P, Miguel-Velado E, López-López JR, Pérez-García MT. De novo expression of Kv6.3 contributes to changes in vascular smooth muscle cell excitability in a hypertensive mice strain. J Physiol 2008; 587:625-40. [PMID: 19074965 DOI: 10.1113/jphysiol.2008.165217] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Essential hypertension involves a gradual and sustained increase in total peripheral resistance, reflecting an increased vascular tone. This change associates with a depolarization of vascular myocytes, and relies on a change in the expression profile of voltage-dependent ion channels (mainly Ca(2+) and K(+) channels) that promotes arterial contraction. However, changes in expression and/or modulation of voltage-dependent K(+) channels (Kv channels) are poorly defined, due to their large molecular diversity and their vascular bed-specific expression. Here we endeavor to characterize the molecular and functional expression of Kv channels in vascular smooth muscle cells (VSMCs) and their regulation in essential hypertension, by using VSMCs from resistance (mesenteric) or conduit (aortic) arteries obtained from a hypertensive inbred mice strain, BPH, and the corresponding normotensive strain, BPN. Real-time PCR reveals a differential distribution of Kv channel subunits in the different vascular beds as well as arterial bed-specific changes under hypertension. In mesenteric arteries, the most conspicuous change was the de novo expression of Kv6.3 (Kcng3) mRNA in hypertensive animals. The functional relevance of this change was studied by using patch-clamp techniques. VSMCs from BPH arteries were more depolarized than BPN ones, and showed significantly larger capacitance values. Moreover, Kv current density in BPH VSMCs is decreased mainly due to the diminished contribution of the Kv2 component. The kinetic and pharmacological profile of Kv2 currents suggests that the expression of Kv6.3 could contribute to the natural development of hypertension.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Departamento de Fisiología, Universidad de Valladolid, Instituto de Biología y Genética Molecular, c/Sanz y Forés s/n, Valladolid, Spain
| | | | | | | | | |
Collapse
|
32
|
Voltage-gated K+ channel dysfunction in myocytes from a dog model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 2008; 28:797-811. [PMID: 17987046 DOI: 10.1038/sj.jcbfm.9600577] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Delayed cerebral vasospasm after subarachnoid hemorrhage is primarily due to sustained contraction of arterial smooth muscle cells. Its pathogenesis remains unclear. The degree of arterial constriction is regulated by membrane potential that in turn is determined predominately by K+ conductance (GK). Here, we identified the main voltage-gated K+ (Kv) channels contributing to outward delayed rectifier currents in dog basilar artery smooth muscle as Kv2 class through a combination of electrophysiological and pharmacological methods. Kv2 current density was nearly halved in vasospastic myocytes after subarachnoid hemorrhage (SAH) in dogs, and Kv2.1 and Kv2.2 were downregulated in vasospastic myocytes when examined by quantitative mRNA, Western blotting, and immunohistochemistry. Vasospastic myocytes were depolarized and had a smaller contribution of GK toward maintenance of their membrane potential. Pharmacological block of Kv current in control myocytes mimicked the depolarization observed in vasospastic arteries. The degree of membrane depolarization was found to be compatible with the amount of vasoconstriction observed after SAH. We conclude that Kv2 dysfunction after SAH contributes to the pathogenesis of delayed cerebral vasospasm. This may confer a novel target for treatment of delayed cerebral vasospasm.
Collapse
|
33
|
|
34
|
Abstract
The excitability of smooth muscle cells is regulated, in part, by stretch-activated ion channels in the plasma membrane. The response to stretch of a particular muscle or organ is tuned to specific functional needs by the types of ion channels expressed. Mechanosensitive ionic conductances that yield either inward or outward currents have been observed in and characterized in studies of smooth muscles. In vascular muscles, the dominant response to stretch is muscle contraction (the myogenic response). This chapter proposes several mechanisms for the myogenic response; one of these hypotheses involves stretch-dependent activation of nonselective cation channels. The inward current resulting from an activation of these channels causes plasma membrane depolarization, activation of voltage-gated Ca(2+) channels, Ca(2+) entry, and excitation-contraction coupling. Thus, increasing the vascular pressure and distension of blood vessels cause responsive vasoconstriction. Other conductances are also proposed as participants in the myogenic response, and progress characterizing the inward current channels responsive to stretch is summarized. Outward currents responding to muscle stretch are also present in smooth muscles. For example, expression of stretch-sensitive two-pore domain K(+) (K2P) channels has been reported in visceral smooth muscles. These organs resist contraction on filling and provide a reservoir function. Stretch-dependent outward current channels are hypothesized to help stabilize membrane potential until it becomes desirable to empty the stored contents. Mechanosensitive conductances participate in the integrated responses of smooth muscle tissues. The chapter summarizes the class of channels found in smooth muscles.
Collapse
|
35
|
Armstrong ML, Dua AK, Murrant CL. Potassium initiates vasodilatation induced by a single skeletal muscle contraction in hamster cremaster muscle. J Physiol 2007; 581:841-52. [PMID: 17363384 PMCID: PMC2075172 DOI: 10.1113/jphysiol.2007.130013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rapid onset of vasodilatation within seconds of a single contraction suggests that the vasodilators involved may be products of skeletal muscle activation, such as potassium (K(+)). To test the hypothesis that K(+) was in part responsible for the rapid dilatation produced by muscle contraction we stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibres before and after a single contraction stimulated over a range of stimulus frequencies (4, 10, 20, 30, 40, 60 and 80 Hz; 250 ms train duration). Muscle fibres were stimulated in the absence and presence of an inhibitor of a source of K(+), the voltage dependent K(+) channel inhibitor 3,4-diaminopyridine (DAP, 3 x 10(-4) M) and inhibitors of the K(+) dilatory signal transduction pathway, either a Na(+) K(+)-ATPase inhibitor (ouabain; 10(-4) M) or an inward rectifying K(+) channel inhibitor (barium chloride, BaCl(2); 5 x 10(-5) M). We observed significant inhibitions of the rapid dilatation at all stimulus frequencies with each inhibitor. The dilatory event at 4 s was significantly inhibited at all stimulus frequencies by an average of 65.7 +/- 3.6%, 58.8 +/- 6.1% and 64.4 +/- 2.1% in the presence DAP, ouabain and BaCl(2), respectively. These levels of inhibition did not correlate with non-specific changes in force generation by skeletal muscle measured in vitro. Therefore, our data support that K(+) is involved in the rapid dilatation in response to a single muscle contraction across a wide range of stimulus frequencies.
Collapse
Affiliation(s)
- Marika L Armstrong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario Canada, N1G 2W1
| | | | | |
Collapse
|
36
|
Novakovic A, Bukarica LG, Kanjuh V, Heinle H. Potassium Channels-Mediated Vasorelaxation of Rat Aorta Induced by Resveratrol. Basic Clin Pharmacol Toxicol 2006; 99:360-4. [PMID: 17076688 DOI: 10.1111/j.1742-7843.2006.pto_531.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resveratrol, a phenolic substance present in grapes and a variety of medical plants, has been reported to induce vasorelaxation, however the mechanisms are uncertain. In this paper we investigate the possible participation of K(+) channels in the endothelium-independent vasodilatation of rat aorta induced by resveratrol. Resveratrol induced concentration-dependent relaxation of rings with endothelium and without endothelium. We used different potassium channel inhibitors to determine whether the K(+) channels mediated endothelium-independent relaxation of rat aorta induced by resveratrol. Highly selective blocker of ATP-sensitive K(+) channels, glibenclamide, as well as non-selective blockers of K(+) channels, tetraethylammonium, did not block resveratrol-induced relaxation of rat aortic rings. Charybdotoxin, a blocker of calcium-sensitive K(+) channels did not affect the resveratrol-induced relaxation. 4-Aminopiridine, non-selective blocker of voltage-gated K(+) (Kv) channels, and margatoxin that inhibits Kv1 channels abolished relaxation of rat aortic rings induced by resveratrol. In conclusion, we have shown that resveratrol potently relaxed rat aortic rings with denuded endothelium. It seems that 4-aminopiridine and margatoxin-sensitive K(+) channels located in the smooth muscle of rat aorta mediated this relaxation.
Collapse
|
37
|
McGahon MK, Dawicki JM, Arora A, Simpson DA, Gardiner TA, Stitt AW, Scholfield CN, McGeown JG, Curtis TM. Kv1.5 is a major component underlying the A-type potassium current in retinal arteriolar smooth muscle. Am J Physiol Heart Circ Physiol 2006; 292:H1001-8. [PMID: 17040965 PMCID: PMC2593469 DOI: 10.1152/ajpheart.01003.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Little is known about the molecular characteristics of the voltage-activated K+ (Kv) channels that underlie the A-type K+ current in vascular smooth muscle cells of the systemic circulation. We investigated the molecular identity of the A-type K+ current in retinal arteriolar myocytes using patch-clamp techniques, RT-PCR, immunohistochemistry, and neutralizing antibody studies. The A-type K+ current was resistant to the actions of specific inhibitors for Kv3 and Kv4 channels but was blocked by the Kv1 antagonist correolide. No effects were observed with pharmacological agents against Kv1.1/2/3/6 and 7 channels, but the current was partially blocked by riluzole, a Kv1.4 and Kv1.5 inhibitor. The current was not altered by the removal of extracellular K+ but was abolished by flecainide, indicative of Kv1.5 rather than Kv1.4 channels. Transcripts encoding Kv1.5 and not Kv1.4 were identified in freshly isolated retinal arterioles. Immunofluorescence labeling confirmed a lack of Kv1.4 expression and revealed Kv1.5 to be localized to the plasma membrane of the arteriolar smooth muscle cells. Anti-Kv1.5 antibody applied intracellularly inhibited the A-type K+ current, whereas anti-Kv1.4 antibody had no effect. Co-expression of Kv1.5 with Kvβ1 or Kvβ3 accessory subunits is known to transform Kv1.5 currents from delayed rectifers into A-type currents. Kvβ1 mRNA expression was detected in retinal arterioles, but Kvβ3 was not observed. Kvβ1 immunofluorescence was detected on the plasma membrane of retinal arteriolar myocytes. The findings of this study suggest that Kv1.5, most likely co-assembled with Kvβ1 subunits, comprises a major component underlying the A-type K+ current in retinal arteriolar smooth muscle cells.
Collapse
Affiliation(s)
- Mary K McGahon
- Centre of Vision Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA. UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Straub SV, Nelson MT. Molecular Coding of Kv1 Channels to Oppose Myogenic Constriction. Circ Res 2006; 99:13-4. [PMID: 16825586 DOI: 10.1161/01.res.0000233147.38981.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Gautier M, Hyvelin JM, de Crescenzo V, Eder V, Bonnet P. Heterogeneous Kv1 function and expression in coronary myocytes from right and left ventricles in rats. Am J Physiol Heart Circ Physiol 2006; 292:H475-82. [PMID: 16731637 DOI: 10.1152/ajpheart.00774.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronary blood flow control is not uniform along the vascular tree and particularly between the right coronary artery and the left anterior descending artery. Resting membrane potential that contributes largely to the vascular tone is mainly regulated by K(+) channels in coronary myocytes. In the present study, we hypothesized that right coronary artery (RCA) and left coronary artery (LCA) exhibited a cell-specific function of K(+) channels. The net outward current was markedly greater in RCA compared with LCA cells, and this difference was due to a larger 4-aminopyridine (4-AP)-sensitive voltage-gated potssium (Kv) current in RCA cells, whereas the iberiotoxin (IbTx)-sensitive, large conductance Ca(2+)-dependent potassium (BK(Ca)) current was smaller in RCA cells. To go further in the molecular identity of this Kv current, we used 50 nM correolide, which specifically blocked Kv1 family alpha-subunits. Outward currents generated by ramp depolarization protocols were highly sensitive to correolide in both RCA and LCA cells, suggesting that Kv1 contributed for a large part to the net outward current. 4-AP-induced contractions in isolated RCA, and LCA were greater than IbTx-induced contraction. Furthermore, the 4-AP-induced contraction in RCA was significantly greater than that in LCA, which is in agreement with the electrophysiological data. Finally, the Kv1.2 alpha-subunit but not the Kv1.5 was detected in both RCA and LCA using primary specific antibody in Western blotting and immunofluorescence assay, and expression of Kv1.2 alpha-subunit was markedly higher in RCA compared with LCA. In summary, we reported for the first time a heterogeneous function and expression of Kv1 alpha-subunits in rat coronary myocytes isolated from RCA or LCA.
Collapse
Affiliation(s)
- Mathieu Gautier
- LABPART-EA 3852, UFR Médecine, Université François Rabelais, 10 Bld Tonnellé-BP 3223, 37032 Tours Cedex-France
| | | | | | | | | |
Collapse
|
40
|
Novakovic A, Gojkovic-Bukarica L, Peric M, Nezic D, Djukanovic B, Markovic-Lipkovski J, Heinle H. The Mechanism of Endothelium-Independent Relaxation Induced by the Wine Polyphenol Resveratrol in Human Internal Mammary Artery. J Pharmacol Sci 2006; 101:85-90. [PMID: 16682785 DOI: 10.1254/jphs.fp0050863] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Resveratrol, a stilbene polyphenol found in grapes and red wine, produces vasorelaxation in both endothelium-dependent and endothelium-independent manners. The mechanisms by which resveratrol causes vasodilatation are uncertain. The aim of this study was to investigate the mechanism(s) of endothelium-independent resveratrol-induced vasorelaxation in human internal mammary artery (HIMA) obtained from male patients undergoing coronary artery bypass surgery and to clarify the contribution of different K+ channel subtypes in resveratrol action in this blood vessel. HIMA rings without endothelium were precontracted with phenylephrine. Resveratrol induced a concentration-dependent relaxation of the HIMA. A highly selective blocker of ATP-sensitive K+ channels, glibenclamide, as well as nonselective blockers of Ca2+-sensitive K+ channels, tetraethylammonium and charybdotoxin, did not block resveratrol induced relaxation of HIMA rings. 4-Aminopyridine (4-AP), non selective blocker of voltage gated K+ (KV) channels, and margatoxin that inhibits KV1.2, KV1.3, and KV1.6 channels abolished relaxation of HIMA rings induced by resveratrol. In conclusion, we have shown that resveratrol potently relaxed HIMA rings with denuded endothelium. It seems that 4-AP- and margatoxin-sensitive K+ channels located in smooth muscle of HIMA mediated this relaxation.
Collapse
Affiliation(s)
- Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | |
Collapse
|
41
|
Miguel-Velado E, Moreno-Domínguez A, Colinas O, Cidad P, Heras M, Pérez-García MT, López-López JR. Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells. Circ Res 2005; 97:1280-7. [PMID: 16269658 DOI: 10.1161/01.res.0000194322.91255.13] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular smooth muscle cells (VSMCs) perform diverse functions that can be classified into contractile and synthetic (or proliferating). All of these functions can be fulfilled by the same cell because of its capacity of phenotypic modulation in response to environmental changes. The resting membrane potential is a key determinant for both contractile and proliferating functions. Here, we have explored the expression of voltage-dependent K+ (Kv) channels in contractile (freshly dissociated) and proliferating (cultured) VSMCs obtained from human uterine arteries to establish their contribution to the functional properties of the cells and their possible participation in the phenotypic switch. We have studied the expression pattern (both at the mRNA and at the protein level) of Kvalpha subunits in both preparations as well as their functional contribution to the K+ currents of VSMCs. Our results indicate that phenotypic remodeling associates with a change in the expression and distribution of Kv channels. Whereas Kv currents in contractile VSMCs are mainly performed by Kv1 channels, Kv3.4 is the principal contributor to K+ currents in cultured VSMCs. Furthermore, selective blockade of Kv3.4 channels resulted in a reduced proliferation rate, suggesting a link between Kv channels expression and phenotypic remodeling.
Collapse
Affiliation(s)
- Eduardo Miguel-Velado
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética, Universidad de Valladolid, Facultad de Medicina, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Erdogan A, Schaefer CA, Schaefer M, Luedders DW, Stockhausen F, Abdallah Y, Schaefer C, Most AK, Tillmanns H, Piper HM, Kuhlmann CRW. Margatoxin inhibits VEGF-induced hyperpolarization, proliferation and nitric oxide production of human endothelial cells. J Vasc Res 2005; 42:368-76. [PMID: 16043967 DOI: 10.1159/000087159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/14/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) induces proliferation of endothelial cells (EC) in vitro and angiogenesis in vivo. Furthermore, a role of VEGF in K(+) channel, nitric oxide (NO) and Ca(2+) signaling was reported. We examined whether the K(+) channel blocker margatoxin (MTX) influences VEGF-induced signaling in human EC. METHODS Fluorescence imaging was used to analyze changes in the membrane potential (DiBAC), intracellular Ca(2+) (FURA-2) and NO (DAF) levels in cultured human EC derived from human umbilical vein EC (HUVEC). Proliferation of HUVEC was examined by cell counts (CC) and [(3)H]-thymidine incorporation (TI). RESULTS VEGF (5--50 ng/ml) caused a dose-dependent hyperpolarization of EC, with a maximum at 30 ng/ml (n=30, p<0.05). This effect was completely blocked by MTX (5 micromol/l). VEGF caused an increase in transmembrane Ca(2+) influx (n=30, p<0.05) that was sensitive to MTX and the blocker of transmembrane Ca(2+) entry 2-aminoethoxydiphenyl borate (APB, 100 micromol/l). VEGF-induced NO production was significantly reduced by MTX, APB and a reduction in extracellular Ca(2+) (n=30, p<0.05). HUVEC proliferation, examined by CC and TI, was significantly increased by VEGF and inhibited by MTX (CC: -58%, TI --121%); APB (CC --99%, TI--187%); N-monomethyl-L-arginine (300 micromol/l: CC: -86%, TI --164%). CONCLUSIONS VEGF caused an MTX-sensitive hyperpolarization which results in an increased transmembrane Ca(2+) entry that is responsible for the effects on endothelial proliferation and NO production.
Collapse
Affiliation(s)
- Ali Erdogan
- Department of Cardiology and Angiology, Justus Liebig University of Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
| | - Alex Cheong
- School of Biomedical Sciences, University of Leeds, UK
| | - Nancy J. Rusch
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|
44
|
Abstract
Vascular smooth muscle (VSM) cells, endothelial cells (EC), and pericytes that form the walls of vessels in the microcirculation express a diverse array of ion channels that play an important role in the function of these cells and the microcirculation in both health and disease. This brief review focuses on the K+ channels expressed in smooth muscle and endothelial cells in arterioles. Microvascular VSM cells express at least four different classes of K+ channels, including inward-rectifier K+ channels (Kin), ATP-sensitive K+ channels (KATP), voltage-gated K+ channels (Kv), and large conductance Ca2+-activated K+ channels (BKCa). VSM KIR participate in dilation induced by elevated extracellular K+ and may also be activated by C-type natriuretic peptide, a putative endothelium-derived hyperpolarizing factor (EDHF). Vasodilators acting through cAMP or cGMP signaling pathways in VSM may open KATP, Kv, and BKCa, causing membrane hyperpolarization and vasodilation. VSMBKc. may also be activated by epoxides of arachidonic acid (EETs) identified as EDHF in some systems. Conversely, vasoconstrictors may close KATP, Kv, and BKCa through protein kinase C, Rho-kinase, or c-Src pathways and contribute to VSM depolarization and vasoconstriction. At the same time Kv and BKCa act in a negative feedback manner to limit depolarization and prevent vasospasm. Microvascular EC express at least 5 classes of K+ channels, including small (sKCa) and intermediate(IKCa) conductance Ca2+-activated K+ channels, Kin, KATP, and Kv. Both sK and IK are opened by endothelium-dependent vasodilators that increase EC intracellular Ca2+ to cause membrane hyper-polarization that may be conducted through myoendothelial gap junctions to hyperpolarize and relax arteriolar VSM. KIR may serve to amplify sKCa- and IKCa-induced hyperpolarization and allow active transmission of hyperpolarization along EC through gap junctions. EC KIR channels may also be opened by elevated extracellular K+ and participate in K+-induced vasodilation. EC KATP channels may be activated by vasodilators as in VSM. Kv channels may provide a negative feedback mechanism to limit depolarization in some endothelial cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
45
|
Tammaro P, Smith AL, Hutchings SR, Smirnov SV. Pharmacological evidence for a key role of voltage-gated K+ channels in the function of rat aortic smooth muscle cells. Br J Pharmacol 2004; 143:303-17. [PMID: 15326038 PMCID: PMC1575342 DOI: 10.1038/sj.bjp.0705957] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/01/2004] [Accepted: 07/15/2004] [Indexed: 11/09/2022] Open
Abstract
The role of voltage-dependent (I(K(v))) and large conductance Ca(2+)-activated (BK(Ca)) K(+) currents in the function of the rat aorta was investigated using specific BK(Ca) and K(V) channel inhibitors in single rat aortic myocytes (RAMs) with patch-clamp technique and in endothelium-denuded aortic rings with isometric tension measurements. The whole-cell K(+) currents were recorded in RAMs dialysed with 200 and 444 nm Ca(2+) and in perforated-patch configuration. Electrophysiological analysis demonstrated that I(K(v)) appeared at >/=-40 mV, while BK(Ca) (isolated using 1 microm paxilline) were seen positive to -20 mV in all conditions. Voltage-dependent characteristics, but not maximal conductance, of I(K(v)) was significantly altered in increased [Ca(2+)](i). Correolide (1 microm) (a K(V)1 channel blocker) did not inhibit the I(K(v)), whereas millimolar concentration of TEA (IC(50)=3.1+/-0.6 mm, n=5) and 4-aminopyridine (4-AP, IC(50)=5.9+/-1.9 mm, n=7) suppressed I(K(v)). These results and immunocytochemical analysis suggest the K(V)2.1 channel to be a molecular correlate for I(K(v)). In nonstimulated aortic rings 1-5 mm TEA and 4-AP (inhibitors of I(K(v))), but not paxilline (1 microm), caused contraction. The frequency of contractile responses to TEA and 4-AP was increased in the presence of 10 mm KCl, which itself did not significantly affect the aortic basal tone. Phenylephrine (15-40 nm) induced sustained tension with superimposed slow oscillatory contractions (termed OWs). OWs were blocked by diltiazem, ryanodine and cyclopiazonic acid, suggesting the involvement of L-type Ca(2+) channels and ryanodine-sensitive Ca(2+) stores in this process. TEA and 4-AP, but not IbTX, paxilline or correolide, increased the duration and amplitude of OWs, indicating that I(K(v)) is involved in the control of oscillatory activity. In conclusion, our findings suggest that the K(V)2.1-mediated I(K(v)), and not BK(Ca), plays an important role in the regulation of the excitability and contractility of rat aorta.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Electrophysiology/methods
- Immunochemistry/methods
- Indoles/pharmacology
- Male
- Membrane Potentials/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Patch-Clamp Techniques/methods
- Peptides/pharmacology
- Potassium Channels, Calcium-Activated/drug effects
- Potassium Channels, Calcium-Activated/physiology
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Protein Isoforms
- Rats
- Rats, Wistar
- Tetraethylammonium/pharmacology
- Triterpenes/pharmacology
- United Kingdom
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Paolo Tammaro
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY
| | - Amy L Smith
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY
| | - Simon R Hutchings
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY
| | - Sergey V Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY
| |
Collapse
|
46
|
Speake T, Kibble JD, Brown PD. Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+conductance in rat choroid plexus epithelial cells. Am J Physiol Cell Physiol 2004; 286:C611-20. [PMID: 14602579 DOI: 10.1152/ajpcell.00292.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The choroid plexuses secrete, and maintain the composition of, the cerebrospinal fluid. K+channels play an important role in these processes. In this study the molecular identity and properties of the delayed-rectifying K+(Kv) conductance in rat choroid plexus epithelial cells were investigated. Whole cell K+currents were significantly reduced by 10 nM dendrotoxin-K and 1 nM margatoxin, which are specific inhibitors of Kv1.1 and Kv1.3 channels, respectively. A combination of dendrotoxin-K and margatoxin caused a depolarization of the membrane potential in current-clamp experiments. Western blot analysis indicated the presence of Kv1.1 and Kv1.3 proteins in the choroid plexus. Furthermore, the Kv1.3 and Kv1.1 proteins appear to be expressed in the apical membrane of the epithelial cells in immunocytochemical studies. The Kv conductance was inhibited by 1 μM serotonin (5-HT), with maximum inhibition to 48% of control occurring in 8 min ( P < 0.05 by Student's t-test for paired data). Channel inhibition by 5-HT was prevented by the 5-HT2Cantagonist mesulergine (300 nM). It was also attenuated in the presence of calphostin C (a protein kinase C inhibitor). The conductance was partially inhibited by 1,2-dioctanoyl- sn-glycerol and phorbol 12-myristate 13-acetate, both of which activate protein kinase C. These data suggest that 5-HT acts at 5-HT2Creceptors to activate protein kinase C, which inhibits the Kv channels. In conclusion, Kv1.1 and Kv1.3 channels make a significant contribution to K+efflux at the apical membrane of the choroid plexus.
Collapse
Affiliation(s)
- Tracey Speake
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
47
|
Fountain SJ, Cheong A, Flemming R, Mair L, Sivaprasadarao A, Beech DJ. Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle. J Physiol 2004; 556:29-42. [PMID: 14742730 PMCID: PMC1664901 DOI: 10.1113/jphysiol.2003.058594] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study focused on the hypothesis that KCNA genes (which encode K(V)alpha1 voltage-gated K(+) channels) have enhanced functional expression in smooth muscle cells of a primary determinant of peripheral resistance - the small mesenteric artery. Real-time PCR methodology was developed to measure cell type-specific in situ gene expression. Profiles were determined for arterial myocyte expression of RNA species encoding K(V)alpha1 subunits as well as K(V)beta1, K(V)alpha2.1, K(V)gamma9.3, BK(Ca)alpha1 and BK(Ca)beta1. The seven major KCNA genes were expressed and more readily detected in endothelium-denuded mesenteric resistance artery compared with thoracic aorta; quantification revealed dramatic differential expression of one to two orders of magnitude. There was also four times more RNA encoding K(V)alpha2.1 but less or similar amounts encoding K(V)beta1, K(V)gamma9.3, BK(Ca)alpha1 and BK(Cabeta)1. Patch-clamp recordings from freshly isolated smooth muscle cells revealed dominant K(V)alpha1 K(+) current and current density twice as large in mesenteric cells. Therefore, we suggest the increased RNA production of the resistance artery impacts on physiological function, although there is quantitatively less K(+) current than might be expected. The mechanism conferring up-regulated expression of KCNA genes may be common to all the gene family and play a functional role in the physiological control of blood pressure.
Collapse
Affiliation(s)
- S J Fountain
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Albarwani S, Nemetz LT, Madden JA, Tobin AA, England SK, Pratt PF, Rusch NJ. Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels. J Physiol 2003; 551:751-63. [PMID: 12815189 PMCID: PMC2343285 DOI: 10.1113/jphysiol.2003.040014] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated potassium (KV) channels represent an important dilator influence in the cerebral circulation, but the composition of these tetrameric ion channels remains unclear. The goals of the present study were to evaluate the contribution of KV1 family channels to the resting membrane potential and diameter of small rat cerebral arteries, and to identify the alpha-subunit composition of these channels using patch-clamp, molecular and immunological techniques. Initial studies indicated that 1 micromol l(-1) correolide (COR), a specific antagonist of KV1 channels, depolarized vascular smooth muscle cells (VSMCs) in pressurized (60 mmHg) cerebral arteries from -55 +/- 1 mV to -34 +/- 1 mV, and reduced the resting diameter from 152 +/- 15 microm to 103 +/- 20 microm. In patch clamped VSMCs from these arteries, COR-sensitive KV1 current accounted for 65 % of total outward KV current and was observed at physiological membrane potentials. RT-PCR identified mRNA encoding each of the six classical KV1 alpha-subunits, KV1.1-1.6, in rat cerebral arteries. However, only the KV1.2 and 1.5 proteins were detected by Western blot. The expression of these proteins in VSMCs was confirmed by immunocytochemistry and co-immunoprecipitation of KV1.2 and 1.5 from VSMC membranes suggested KV1.2/1.5 channel assembly. Subsequently, the pharmacological and voltage-sensitive properties of KV1 current in VSMCs were found to be consistent with a predominant expression of KV1.2/1.5 heterotetrameric channels. The findings of this study suggest that KV1.2/1.5 heterotetramers are preferentially expressed in rat cerebral VSMCs, and that these channels contribute to the resting membrane potential and diameter of rat small cerebral arteries.
Collapse
Affiliation(s)
- Sulayma Albarwani
- Department of Physiology, College of Medicine, Sultan Qaboos University, Al-khod, Sultanate of Oman
| | | | | | | | | | | | | |
Collapse
|
49
|
Allen T, Iftinca M, Cole WC, Plane F. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions. J Physiol 2002; 545:975-86. [PMID: 12482900 PMCID: PMC2290719 DOI: 10.1113/jphysiol.2002.031823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The release of endothelium-derived relaxing factors, such as nitric oxide (NO), is dependent on an increase in intracellular calcium levels ([Ca(2+)](i)) within endothelial cells. Endothelial cell membrane potential plays a critical role in the regulation of [Ca(2+)](i) in that calcium influx from the extracellular space is dependent on membrane hyperpolarization. In this study, the effect of inhibition of vascular smooth muscle delayed rectifier K(+) (K(DR)) channels by 4-aminopyridine (4-AP) on endothelium-dependent relaxation of rat basilar artery to acetylcholine (ACh) was assessed. ACh-evoked endothelium-dependent relaxations were inhibited by N-(Omega)-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), confirming a role for NO and guanylyl cyclase. 4-AP (300 microM) also suppressed ACh-induced relaxation, with the maximal response reduced from approximately 92 to approximately 33 % (n = 11; P < 0.01). However, relaxations in response to exogenous NO, applied in the form of authentic NO, sodium nitroprusside or diethylamineNONOate (DEANONOate), were not affected by 4-AP treatment (n = 3-11). These data are not consistent with the view that 4-AP-sensitive K(DR) channels are mediators of vascular hyperpolarization and relaxation in response to endothelium-derived NO. Inhibition of ACh-evoked relaxation by 4-AP was reversed by pinacidil (0.5-1 microM; n = 5) or 18beta-glycyrrhetinic acid (18betaGA; 5 microM; n = 5), indicating that depolarization and electrical coupling of the smooth muscle to the endothelium were involved. 4-AP caused depolarization of both endothelial and vascular smooth muscle cells of isolated segments of basilar artery (mean change 11 +/- 1 and 9 +/- 2 mV, respectively; n = 15). Significantly, 18betaGA almost completely prevented the depolarization of endothelial cells (n = 6), but not smooth muscle cells (n = 6) by 4-AP. ACh-induced hyperpolarization of endothelium and smooth muscle cells was also reduced by 4-AP, but this inhibition was not observed in the combined presence of 4-AP and 18betaGA. These data indicate that 4-AP can induce an indirect inhibition of endothelium-dependent relaxation in the rat basilar artery by electrical coupling of smooth muscle membrane depolarization to the endothelium via myo-endothelial gap junctions.
Collapse
Affiliation(s)
- Tracy Allen
- The Smooth Muscle Research Group, Canadian Institutes of Health Research Group in Regulation of Vascular Contractility, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
50
|
Teng GQ, Nauli SM, Brayden JE, Pearce WJ. Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 133:81-91. [PMID: 11882339 DOI: 10.1016/s0165-3806(01)00304-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To address the hypothesis that maturation alters the contribution of K-channels to resting and agonist-induced tone in small cerebral arteries, second branch middle cerebral arteries (approximately 200 microm) were taken from term fetal (139-141 days gestation) and adult sheep, denuded of endothelium, and mounted in myographs. After determination of length-tension relations, the arteries were stretched to 55, 100, and 145% of optimum length. At each level of stretch, contractile responses to 5 mM 4-aminopyridine (4-AP, voltage-sensitive K-channel blocker), 100 nM iberiotoxin (calcium-sensitive K-channel blocker), 10 microM glibenclamide (ATP-sensitive K-channel blocker), or 10 microM Ba(2+) (inward rectifier K-channel blocker) were recorded. In separate experiments, concentration--response relations were determined for 5-HT in the presence and absence of each of the four K-channel blockers at the same concentrations. Both 4-AP and iberiotoxin produced stretch-dependent contractions of greater magnitude in adult (37% for 4-AP and 43% for iberiotoxin at 100% optimum) than in fetal (5% for 4-AP and 7% for iberiotoxin at 100% optimum) arteries. 4-AP also enhanced the pD(2) for 5-HT in adult (from 7.15 to 7.49), but not in fetal, arteries. Conversely, glibenclamide attenuated the pD(2) for 5-HT in fetal (from 7.02 to 6.71), but not in adult, arteries. Iberiotoxin enhanced the pD(2) for 5-HT in both fetal (from 7.05 to 7.51) and adult (from 7.15 to 7.75) arteries. In addition, iberiotoxin enhanced maximum responses to 5-HT (from 59 to 82%) in adult but not fetal arteries. Finally, 4-AP enhanced the maximum responses to 5-HT in both fetal (from 67 to 85%) and adult (from 59 to 79%) arteries. These results indicate that maturation modulates the contribution of K(V), K(Ca), and K(ATP), but not K(IR) channels to basal and/or 5HT-induced cerebrovascular tone, and demonstrate that K(V) and K(Ca) channels are coupled to stretch-sensitive receptors, and that K(V) and K(Ca) limit contractile responses to 5-HT. To the extent that changes in pD(2) values reflect changes in agonist--ligand interactions, the data also suggest that K(V), K(Ca), and K(ATP) channels may possibly influence ligand--receptor binding for 5-HT.
Collapse
Affiliation(s)
- Guo Qi Teng
- Center for Perinatal Biology, Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|