1
|
González-Gutiérrez A, Gaete J, Esparza A, Ibacache A, Contreras EG, Sierralta J. Starvation Induces Upregulation of Monocarboxylate Transport in Glial Cells at the Drosophila Blood-Brain Barrier. Glia 2025. [PMID: 40241296 DOI: 10.1002/glia.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood-brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In Drosophila melanogaster, carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of Drosophila monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of Drosophila larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.
Collapse
Affiliation(s)
- Andrés González-Gutiérrez
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| | - Jorge Gaete
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Esparza
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Ibacache
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Esteban G Contreras
- Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jimena Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| |
Collapse
|
2
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2025; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Ye YC, Chai SF, Li XR, Wu MN, Cai HY, Wang ZJ. Intermittent fasting and Alzheimer's disease-Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 2024; 39:129-146. [PMID: 37823968 DOI: 10.1007/s11011-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Collapse
Affiliation(s)
- Yu- Cai Ye
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Ru Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
4
|
Gabuzyan R, Lee C, Nygaard HB. Ketogenic Approaches for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S443-S453. [PMID: 39422952 DOI: 10.3233/jad-240186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dementia represents one of the largest and most urgent public health problems across the globe. Modeling projections have estimated that delaying the onset of Alzheimer's disease (AD) by 6 months would reduce the prevalence by 5%, while a delay of 12 months would reduce the prevalence by 10%. One approach to achieving a delay in the onset of AD is to investigate lifestyle interventions that could be widely implemented with a favorable risk-benefit relationship and socioeconomic profile. Amongst such interventions, there is increasing evidence to support the use of ketogenic interventions in AD. Indeed, it is well known that cerebral glucose metabolism is impaired in AD, even at a preclinical stage, and a growing body of literature suggests that these findings may represent a primary pathogenic mechanism leading to neurodegeneration. Ketones are readily taken up by the brain and can serve as an alternative energy source for neurons and glia, hypothetically bypassing the glucose uptake deficit in AD. In this invited review we discuss the preclinical as well as clinical work aiming to increase ketones as a primary intervention in AD, including variations of the ketogenic diet, medium chain triglyceride supplementation, and newer, more experimental approaches.
Collapse
Affiliation(s)
- Renata Gabuzyan
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Christopher Lee
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Haakon B Nygaard
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Rugiel M, Setkowicz-Janeczko Z, Kosiek W, Rauk Z, Kawon K, Chwiej J. Does Ketogenic Diet Used in Pregnancy Affect the Nervous System Development in Offspring?─FTIR Microspectroscopy Study. ACS Chem Neurosci 2023; 14:2775-2791. [PMID: 37471579 PMCID: PMC10401638 DOI: 10.1021/acschemneuro.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Anti-seizure medications used during pregnancy may have transient or long-lasting impact on the nervous system of the offspring. Therefore, there is a great need to search for alternative therapies for pregnant women suffering from seizures. One of the solutions may be the use of the ketogenic diet (KD), which has been successfully applied as a treatment of drug-resistant epilepsy in children and adults. However, the risks associated with the use of this dietary therapy during pregnancy are unknown and more investigation in this area is needed. To shed some light on this problem, we attempted to determine the potential abnormalities in brain biomolecular composition that may occur in the offspring after the prenatal exposure to KD. To achieve this, the female Wistar rats were, during pregnancy, fed with either ketogenic or standard laboratory diet, and for further studies, their male offspring at 2, 6, or 14 days of age were used. Fourier transform infrared microspectroscopy was applied for topographic and quantitative analysis of main biological macromolecules (proteins, lipids, compounds containing phosphate and carbonyl groups, and cholesterol) in brain samples. Performed chemical mapping and further semi-quantitative and statistical analysis showed that the use of the KD during pregnancy, in general, does not lead to the brain biochemical anomalies in 2 and 6 days old rats. The exception from this rule was increased relative (comparing to proteins) content of compounds containing phosphate groups in white matter and cortex of 2 days old rats exposed prenatally to KD. Greater number of abnormalities was found in brains of the 14 days old offspring of KD-fed mothers. They included the increase of the relative level of compounds containing carbonyl groups (in cortex as well as multiform and molecular cells of the hippocampal formation) as well as the decrease of the relative content of lipids and their structural changes (in white matter). What is more, the surface of the internal capsule (structure of the white matter) determined for this age group was smaller in animals subjected to prenatal KD exposure. The observed changes seem to arise from the elevated exposition to ketone bodies during a fetus life and the disturbance of lipid metabolism after prenatal exposure to the KD. These changes may be also associated with the processes of compensation of mother organism, which slowly began to make up for the deficiencies in carbohydrates postpartum.
Collapse
Affiliation(s)
- Marzena Rugiel
- Faculty
of Physics and Applied Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | | | - Wojciech Kosiek
- Institute
of Zoology and Biomedical Research, Jagiellonian
University, Krakow 31-007, Poland
| | - Zuzanna Rauk
- Institute
of Zoology and Biomedical Research, Jagiellonian
University, Krakow 31-007, Poland
| | - Kamil Kawon
- Faculty
of Physics and Applied Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Joanna Chwiej
- Faculty
of Physics and Applied Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| |
Collapse
|
6
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
8
|
Shcherbakova K, Schwarz A, Apryatin S, Karpenko M, Trofimov A. Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive Effects: A Narrative Review. Front Nutr 2022; 9:934497. [PMID: 35911092 PMCID: PMC9334743 DOI: 10.3389/fnut.2022.934497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
It is now widely accepted that ketosis (a physiological state characterized by elevated plasma ketone body levels) possesses a wide range of neuroprotective effects. There is a growing interest in the use of ketogenic supplements, including medium-chain triglycerides (MCT), to achieve intermittent ketosis without adhering to a strict ketogenic diet. MCT supplementation is an inexpensive and simple ketogenic intervention, proven to benefit both individuals with normal cognition and those suffering from mild cognitive impairment, Alzheimer's disease, and other cognitive disorders. The commonly accepted paradigm underlying MCT supplementation trials is that the benefits stem from ketogenesis and that MCT supplementation is safe. However, medium-chain fatty acids (MCFAs) may also exert effects in the brain directly. Moreover, MCFAs, long-chain fatty acids, and glucose participate in mutually intertwined metabolic pathways. Therefore, the metabolic effects must be considered if the desired procognitive effects require administering MCT in doses larger than 1 g/kg. This review summarizes currently available research on the procognitive effects of using MCTs as a supplement to regular feed/diet without concomitant reduction of carbohydrate intake and focuses on the revealed mechanisms linked to particular MCT metabolites (ketone bodies, MCFAs), highlighting open questions and potential considerations.
Collapse
Affiliation(s)
- Ksenia Shcherbakova
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia,*Correspondence: Ksenia Shcherbakova
| | - Alexander Schwarz
- Laboratory of the Molecular Mechanisms of Neuronal Interactions, Institute of Evolutionary Physiology and Biochemistry (RAS), Saint Petersburg, Russia
| | - Sergey Apryatin
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander Trofimov
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
9
|
Omori NE, Woo GH, Mansor LS. Exogenous Ketones and Lactate as a Potential Therapeutic Intervention for Brain Injury and Neurodegenerative Conditions. Front Hum Neurosci 2022; 16:846183. [PMID: 36267349 PMCID: PMC9577611 DOI: 10.3389/fnhum.2022.846183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic dysfunction is a ubiquitous underlying feature of many neurological conditions including acute traumatic brain injuries and chronic neurodegenerative conditions. A central problem in neurological patients, in particular those with traumatic brain injuries, is an impairment in the utilization of glucose, which is the predominant metabolic substrate in a normally functioning brain. In such patients, alternative substrates including ketone bodies and lactate become important metabolic candidates for maintaining brain function. While the potential neuroprotective benefits of ketosis have been recognized for up to almost a century, the majority of work has focused on the use of ketogenic diets to induce such a state, which is inappropriate in cases of acute disease due to the prolonged periods of time (i.e., weeks to months) required for the effects of a ketogenic diet to be seen. The following review seeks to explore the neuroprotective effects of exogenous ketone and lactate preparations, which have more recently become commercially available and are able to induce a deep ketogenic response in a fraction of the time. The rapid response of exogenous preparations makes their use as a therapeutic adjunct more feasible from a clinical perspective in both acute and chronic neurological conditions. Potentially, their ability to globally moderate long-term, occult brain dysfunction may also be relevant in reducing lifetime risks of certain neurodegenerative conditions. In particular, this review explores the association between traumatic brain injury and contusion-related dementia, assessing metabolic parallels and highlighting the potential role of exogenous ketone and lactate therapies.
Collapse
|
10
|
Brocchi A, Rebelos E, Dardano A, Mantuano M, Daniele G. Effects of Intermittent Fasting on Brain Metabolism. Nutrients 2022; 14:nu14061275. [PMID: 35334932 PMCID: PMC8954770 DOI: 10.3390/nu14061275] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
We are facing an obesity epidemic, and obesity itself and its close companion, type 2 diabetes, are independent risk factors for neurodegeneration. While most medical treatments fail to induce a clinically meaningful improvement in neurodegenerative disorders, lifestyle interventions have emerged in the spotlight. A recently rediscovered approach is intermittent fasting (IF), which, compared to the classic caloric restriction regimens, limits only the time of eating, rather than the number of calories allowed per day. There is already a large amount of evidence from preclinical and clinical studies showing the beneficial effects of IF. In this review, we specifically focus on the effects of IF on brain metabolism. Key molecular players modified during IF and involved in its beneficial central effects (ketone bodies, BDNF, GABA, GH/IGF-1, FGF2, sirtuin-3, mTOR, and gut microbiota) are identified and discussed. Studies suggest that IF induces several molecular and cellular adaptations in neurons, which, overall, enhance cellular stress resistance, synaptic plasticity, and neurogenesis. Still, the absence of guidelines regarding the application of IF to patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge on the different IF protocols and long-term effects of IF on brain metabolism before it can be widely prescribed.
Collapse
Affiliation(s)
- Alex Brocchi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Eleni Rebelos
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy;
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Michele Mantuano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
- Correspondence: ; Tel.: +39-3404618257
| |
Collapse
|
11
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
12
|
Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Med Sci (Basel) 2021; 9:medsci9040072. [PMID: 34842769 PMCID: PMC8628994 DOI: 10.3390/medsci9040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
Due to a difference in genetics, environmental factors, and nutrition, just like in people, dogs age at different rates. Brain aging in people and dogs share similar morphological changes including irreversible cortical atrophy, cerebral amyloid angiopathy, and ventricular enlargement. Due to severe and irreversible brain atrophy, some aging dogs develop cognitive dysfunction syndrome (CDS), which is equivalent to dementia or Alzheimer’s disease (AD) in people. The risk factors and causes of CDS in dogs have not been fully investigated, but age, gender, oxidative stress, and deficiency of sex hormones appears to be associated with increased risk of accelerated brain aging and CDS in dogs. Both AD and CDS are incurable diseases at this moment, therefore more efforts should be focused on preventing or reducing brain atrophy and minimizing the risk of AD in people and CDS in dogs. Since brain atrophy leads to irreversible cognitive decline and dementia, an optimal nutritional solution should be able to not only enhance cognitive function during aging but also reduce irreversible brain atrophy. Up to now, only one nutritional intervention has demonstrated both cognition-enhancing benefits and atrophy-reducing benefits.
Collapse
|
13
|
Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology (Berl) 2021; 238:833-844. [PMID: 33410985 PMCID: PMC7914216 DOI: 10.1007/s00213-020-05735-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE After alcohol ingestion, the brain partly switches from consumption of glucose to consumption of the alcohol metabolite acetate. In heavy drinkers, the switch persists after abrupt abstinence, leading to the hypothesis that the resting brain may be "starved" when acetate levels suddenly drop during abstinence, despite normal blood glucose, contributing to withdrawal symptoms. We hypothesized that ketone bodies, like acetate, could act as alternative fuels in the brain and alleviate withdrawal symptoms. OBJECTIVES We previously reported that a ketogenic diet during alcohol exposure reduced acute withdrawal symptoms in rats. Here, our goals were to test whether (1) we could reproduce our findings, in mice and with longer alcohol exposure; (2) ketone bodies alone are sufficient to reduce withdrawal symptoms (clarifying mechanism); (3) introduction of ketogenic diets at abstinence (a clinically more practical implementation) would also be effective. METHODS Male C57BL/6NTac mice had intermittent alcohol exposure for 3 weeks using liquid diet. Somatic alcohol withdrawal symptoms were measured as handling-induced convulsions; anxiety-like behavior was measured using the light-dark transition test. We tested a ketogenic diet, and a ketone monoester supplement with a regular carbohydrate-containing diet. RESULTS The regular diet with ketone monoester was sufficient to reduce handling-induced convulsions and anxiety-like behaviors in early withdrawal. Only the ketone monoester reduced handling-induced convulsions when given during abstinence, consistent with faster elevation of blood ketones, relative to ketogenic diet. CONCLUSIONS These findings support the potential utility of therapeutic ketosis as an adjunctive treatment in early detoxification in alcohol-dependent patients seeking to become abstinent. TRIAL REGISTRATION clinicaltrials.gov NCT03878225, NCT03255031.
Collapse
|
14
|
Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228767. [PMID: 33233502 PMCID: PMC7699472 DOI: 10.3390/ijms21228767] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.
Collapse
|
15
|
Suissa L, Flachon V, Guigonis JM, Olivieri CV, Burel-Vandenbos F, Guglielmi J, Ambrosetti D, Gérard M, Franken P, Darcourt J, Pellerin L, Pourcher T, Lindenthal S. Urinary ketone body loss leads to degeneration of brain white matter in elderly SLC5A8-deficient mice. J Cereb Blood Flow Metab 2020; 40:1709-1723. [PMID: 31506013 PMCID: PMC7370371 DOI: 10.1177/0271678x19873662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SLC5A8 is a sodium-coupled monocarboxylate and ketone transporter expressed in various epithelial cells. A putative role of SLC5A8 in neuroenergetics has been also hypothesized. To clarify this issue, we studied the cerebral phenotype of SLC5A8-deficient mice during aging. Elderly SLC5A8-deficient mice presented diffuse leukoencephalopathy characterized by intramyelinic oedema without demyelination suggesting chronic energetic crisis. Hypo-metabolism in the white matter of elderly SLC5A8-deficient mice was found using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission CT (SPECT). Since the SLC5A8 protein could not be detected in the mouse brain, it was hypothesized that the leukoencephalopathy of aging SLC5A8-deficient mice was caused by the absence of slc5a8 expression in a peripheral organ, i.e. the kidney, where SLC5A8 is strongly expressed. A hyper-excretion of the ketone β-hydroxybutyrate (BHB) in the urine of SLC5A8-deficient mice was observed and showed that SLC5A8-deficient mice suffered a cerebral BHB insufficiency. Elderly SLC5A8-deficient mice also presented altered glucose metabolism. We propose that the continuous renal loss of BHB leads to a chronic energetic deficiency in the brain of elderly SLC5A8-deficient mice who are unable to counterbalance their glucose deficit. This study highlights the importance of alternative energetic substrates in neuroenergetics especially under conditions of restricted glucose availability.
Collapse
Affiliation(s)
- Laurent Suissa
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France.,Intensive Care Stroke Unit, University Hospital, Nice, France
| | - Virginie Flachon
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | - Charles-Vivien Olivieri
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | | | - Julien Guglielmi
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | | | - Matthieu Gérard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Franken
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France.,Nuclear Medicine Department, Center Antoine Lacassagne, Nice, France
| | - Jacques Darcourt
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France.,Nuclear Medicine Department, Center Antoine Lacassagne, Nice, France
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Université de Bordeaux, Bordeaux, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| | - Sabine Lindenthal
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Institut de biosciences et biotechnologies d'Aix-Marseille (BIAM), Commissariat a l'Energie Atomique, University Côte d'Azur, Nice, France
| |
Collapse
|
16
|
Yamagata K. Astrocytic nutritional dysfunction associated with hypoxia-induced neuronal vulnerability in stroke-prone spontaneously hypertensive rats. Neurochem Int 2020; 138:104786. [PMID: 32579896 DOI: 10.1016/j.neuint.2020.104786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) is a valuable animal model to investigate human strokes. SHRSP Izumo strain (Izm) neurons are highly sensitive to blood supply changes. Furthermore, SHRSP/Izm astrocytes show various abnormalities upon hypoxic stimulation compared to control Wistar Kyoto (WKY/Izm) rats. This study aimed to describe stroke-related characteristics of SHRSP/Izm-derived neurons and astrocytes. In addition, we discuss the role of astrocytes in the development of stroke in SHRSP/Izm model. In SHRSP/Izm, neuronal death is induced upon reoxygenation after hypoxia. Furthermore, it was shown that SHRSP/Izm astrocytes show significantly reduced lactate production and supply ability to nerve cells when subjected to hypoxic stimulation. In particular, decreased lactate production and monocarboxylic acid transporter (MCT) expression in SHRSP/Izm astrocytes are factors that induce neuronal cell death. Remarkable differences in glial cell line-derived neurotrophic factor (GDNF) expression and L-serine production were also observed in SHRSP/Izm-derived astrocytes compared to WKY/Izm. Reduced production of both GDNF and L-serine contributes to diminished neuronal survival. The differences between SHRSP/Izm and WKY/Izm astrocyte cellular properties may contribute to compromised neuronal nutrition and induction of neuronal death. These properties are likely to be the factors that enhance stroke in SHRSP/Izm.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Japan.
| |
Collapse
|
17
|
Leung YB, Cave NJ, Heiser A, Edwards PJB, Godfrey AJR, Wester T. Metabolic and Immunological Effects of Intermittent Fasting on a Ketogenic Diet Containing Medium-Chain Triglycerides in Healthy Dogs. Front Vet Sci 2020; 6:480. [PMID: 31998762 PMCID: PMC6961514 DOI: 10.3389/fvets.2019.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
In several species, intermittent fasting (IF) has been shown to have beneficial effects, including delayed aging, increased lifespan, increased insulin sensitivity, reduced ischemic tissue damage, delayed onset of neurodegenerative disease and improved neuronal repair following injury. However, the metabolic and immunological effects of IF have not been well-established in dogs. The aim of this study was to examine the effects of a 48 h IF regimen using a low fat and a high fat diet in healthy dogs by quantifying the metabolic, hormonal, and immunological changes. We hypothesized that IF dogs would have higher blood ketone and ghrelin concentrations, lower blood leptin, insulin and glucose concentrations, and signs of immunosuppression compared to dogs eating daily. Ten healthy adult dogs were randomized into three group and underwent three feeding regimes in a 3 × 3 Latin square design: twice a day feeding on a low fat (23% energy from fat; LF) diet, 48 h fasting on a low fat diet, and 48 h fasting on a high fat enriched with medium-chain triglycerides (68% energy from fat; HF) diet. Body weight, food intake, activity, blood glucose, β-hydroxybutyrate, leptin, ghrelin, and insulin were measured. Lymphocyte proliferation and neutrophil/macrophage phagocytosis and respiratory burst were measured as markers of immune function. Nuclear magnetic resonance spectroscopy was used to relatively quantify plasma metabolites. When the dogs were IF on a HF diet, they had the highest concentration of blood ketones (mean 0.061 mmol/L, SD 0.024), whereas they had the lowest concentration (mean 0.018 mmol/L, SD 0.004) when fed daily. Blood glucose and insulin concentrations were lower in IF dogs on a HF diet compared to daily feeding or IF on a LF diet. There was an increase in plasma β-hydroxybutyrate concentrations, and a reduction in glucose and insulin concentrations when dogs were IF on a HF diet. There was only a decline in the immune parameters studied when the dogs were IF on a LF diet, which was not seen when on the HF diet. The results of this study indicate the potential of IF to be further investigated as a potential beneficial feeding regime for dogs.
Collapse
Affiliation(s)
- Y. Becca Leung
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nick J. Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Axel Heiser
- AgResearch, Grasslands Research Centre, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | | | - Tim Wester
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
18
|
Camberos-Luna L, Massieu L. Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochem Int 2019; 133:104614. [PMID: 31785349 DOI: 10.1016/j.neuint.2019.104614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The therapeutic use of ketone bodies (KB) against acute brain injury and neurodegenerative disorders has lately been suggested by many studies. Several mechanisms responsible for the protective action of KB have been described, including metabolic, anti-inflammatory and epigenetic. However, it is still not clear whether a specific mechanism of action can be associated with a particular neurological disorder. Different strategies to induce ketosis including the ketogenic diet (KD), caloric restriction (CR), intermittent fasting (IF), as well as the administration of medium chain triglycerides (MCTs), exogenous ketones or KB derivatives, have been used in animal models of brain injury and in humans. They have shown different degrees of success to prevent neuronal damage, motor alterations and cognitive decline. However, more investigation is needed in order to establish safe protocols for clinical application. Throughout the present review, we describe the different approaches that have been used to elevate blood KB and discuss their effectiveness considering their advantages and limitations, as tested in models of brain injury, neurodegeneration and clinical research. We also describe the mechanisms of action of KB in non-pathologic conditions and in association with their protective effect against neuronal damage in acute neurological disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucy Camberos-Luna
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| |
Collapse
|
19
|
Rehni AK, Dave KR. Impact of Hypoglycemia on Brain Metabolism During Diabetes. Mol Neurobiol 2018; 55:9075-9088. [PMID: 29637442 PMCID: PMC6179939 DOI: 10.1007/s12035-018-1044-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022]
Abstract
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
20
|
Potential Synergies of β-Hydroxybutyrate and Butyrate on the Modulation of Metabolism, Inflammation, Cognition, and General Health. J Nutr Metab 2018; 2018:7195760. [PMID: 29805804 PMCID: PMC5902005 DOI: 10.1155/2018/7195760] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
The low-carbohydrate high-fat diet (LCHFD), also known as the ketogenic diet, has cycled in and out of popularity for decades as a therapeutic program to treat metabolic syndrome, weight mismanagement, and drug-resistant disorders as complex as epilepsy, cancer, dementia, and depression. Despite the benefits of this diet, health care professionals still question its safety due to the elevated serum ketones it induces and the limited dietary fiber. To compound the controversy, patient compliance with the program is poor due to the restrictive nature of the diet and symptoms related to energy deficit and gastrointestinal adversity during the introductory and energy substrate transition phase of the diet. The studies presented here demonstrate safety and efficacy of the diet including the scientific support and rationale for the administration of exogenous ketone bodies and ketone sources as a complement to the restrictive dietary protocol or as an alternative to the diet. This review also highlights the synergy provided by exogenous ketone, β-hydroxybutyrate (BHB), accompanied by the short chain fatty acid, butyrate (BA) in the context of cellular and physiological outcomes. More work is needed to unveil the molecular mechanisms by which this program provides health benefits.
Collapse
|
21
|
Val‐Laillet D, Guérin S, Coquery N, Nogret I, Formal M, Romé V, Le Normand L, Meurice P, Randuineau G, Guilloteau P, Malbert C, Parnet P, Lallès J, Segain J. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB J 2018; 32:2160-2171. [DOI: 10.1096/fj.201700547rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Val‐Laillet
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
| | - Sylvie Guérin
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Nicolas Coquery
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Isabelle Nogret
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Michèle Formal
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Véronique Romé
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Laurence Le Normand
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Paul Meurice
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Gwénaëlle Randuineau
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | - Paul Guilloteau
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
| | | | - Patricia Parnet
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
- INRA, Unité Mixte de Recherche (UMR) 1280INRA‐Université de Nantes, Physiologie des Adaptations Nutritionnelles (PhAN)NantesFrance
- Institut des Maladies de l'Appareil DigestifCentre Hospitalier Universitaire (CHU) Ho tel‐DieuNantesFrance
| | - Jean‐Paul Lallès
- Nutrition Metabolisms and Cancer (NuMeCan)INRA, INSERM, Univ Rennes, Université Bretagne Loire (UBL)RennesFrance
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
| | - Jean‐Pierre Segain
- Centre de Recherche en Nutrition Humaine Ouest (CRNH‐Ouest)NantesFrance
- INRA, Unité Mixte de Recherche (UMR) 1280INRA‐Université de Nantes, Physiologie des Adaptations Nutritionnelles (PhAN)NantesFrance
- Institut des Maladies de l'Appareil DigestifCentre Hospitalier Universitaire (CHU) Ho tel‐DieuNantesFrance
| |
Collapse
|
22
|
Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging 2016; 48:34-47. [PMID: 27639119 DOI: 10.1016/j.neurobiolaging.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Md Mahdi Hasan-Olive
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Christine E Regnell
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liv Kleppa
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Albert Gjedde
- Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Zhang Y, Zhang S, Marin-Valencia I, Puchowicz MA. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain. J Neurochem 2014; 132:301-12. [PMID: 25314677 DOI: 10.1111/jnc.12965] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
24
|
Bouteldja N, Andersen LT, Møller N, Gormsen LC. Using positron emission tomography to study human ketone body metabolism: a review. Metabolism 2014; 63:1375-84. [PMID: 25195069 DOI: 10.1016/j.metabol.2014.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/14/2014] [Accepted: 08/02/2014] [Indexed: 11/25/2022]
Abstract
Ketone bodies - 3-hydroxybutyrate and acetoacetate - are important fuel substrates, which can be oxidized by most tissues in the body. They are synthesized in the liver and are derived from fatty acids released from adipose tissue. Intriguingly, under conditions of stress such as fasting, arterio-venous catheterization studies have shown that the brain switches from the use of almost 100% glucose to the use of >50-60% ketone bodies. A similar adaptive mechanism is observed in the heart, where fasting induces a shift toward ketone body uptake that provides the myocardium with an alternate fuel source and also favorably affects myocardial contractility. Within the past years there has been a renewed interest in ketone bodies and the possible beneficial effects of fasting/semi-fasting/exercising and other "ketogenic" regimens have received much attention. In this perspective, it is promising that positron emission tomography (PET) techniques with isotopically labeled ketone bodies, fatty acids and glucose offer an opportunity to study interactions between ketone body, fatty acid and glucose metabolism in tissues such as the brain and heart. PET scans are non-invasive and thus eliminates the need to place catheters in vascular territories not easily accessible. The short half-life of e.g. 11C-labeled PET tracers even allows multiple scans on the same study day and reduces the total radiation burden associated with the procedure. This short review aims to give an overview of current knowledge on ketone body metabolism obtained by PET studies and discusses the methodological challenges and perspectives involved in PET ketone body research.
Collapse
Affiliation(s)
- Nadia Bouteldja
- Department of Radiology, Hospital of Southwest Denmark, 6700 Esbjerg, Denmark
| | - Lone Thing Andersen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Niels Møller
- Department of Endocrinology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Regulation of gonadotropin secretion by monitoring energy availability. Reprod Med Biol 2014; 14:39-47. [PMID: 29259401 DOI: 10.1007/s12522-014-0194-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022] Open
Abstract
Nutrition is a principal environmental factor influencing fertility in animals. Energy deficit causes amenorrhea, delayed puberty, and suppression of copulatory behaviors by inhibiting gonadal activity. When gonadal activity is impaired by malnutrition, the signals originating from an undernourished state are ultimately conveyed to the gonadotropin-releasing hormone (GnRH) pulse generator, leading to suppressed secretion of GnRH and luteinizing hormone (LH). The mechanism responsible for energetic control of gonadotropin release is believed to involve metabolic signals, sensing mechanisms, and neuroendocrine pathways. The availabilities of blood-borne energy substrates such as glucose, fatty acids, and ketone bodies, which fluctuate in parallel with changes in nutritional status, act as metabolic signals that regulate the GnRH pulse generator activity and GnRH/LH release. As components of the specific sensing system, the ependymocytes lining the cerebroventricular wall in the lower brainstem integrate the information derived from metabolic signals to control gonadotropin release. One of the pathways responsible for the energetic control of gonadal activity consists of noradrenergic neurons from the solitary tract nucleus in the lower brainstem, projecting to the paraventricular nucleus of the hypothalamus. Further studies are needed to elucidate the mechanisms underlying energetic control of reproductive function.
Collapse
|
26
|
Lauritzen F, Eid T, Bergersen LH. Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet. Brain Struct Funct 2013; 220:1-12. [PMID: 24248427 DOI: 10.1007/s00429-013-0672-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
Epilepsy is a serious neurological disorder that affects approximately 1 % of the general population, making it one of the most common disorders of the central nervous system. Furthermore, up to 40 % of all patients with epilepsy cannot control their seizures with current medications. More efficacious treatments for medication refractory epilepsy are therefore needed. A better understanding of the mechanisms that cause this disorder is likely to facilitate the discovery of such treatments. Impairment in cerebral energy metabolism has been proposed as a possible causative factor in the pathogenesis of temporal lobe epilepsy (TLE), which is one of the most common types of medication-refractory epilepsies in adults. In this review, we will discuss some of the current hypotheses regarding the possible causal relationship between brain energy metabolism and TLE. Emphasis will be placed on the role of energy substrates (lactate and ketone bodies) and their transporter molecules, particularly monocarboxylate transporters 1 and 2 (MCT1 and MCT2). We recently reported that the cellular distribution of MCT1 and MCT2 is perturbed in the hippocampus in patients with TLE. The changes may be an adaptive response aimed at keeping high levels of lactate in the epileptic tissue, which may serve to counteract epileptic activity by downregulating cAMP levels through the lactate receptor GPR81, newly discovered in hippocampus. We propose that the perturbation of MCTs may be further involved in the pathophysiology of TLE by influencing brain energy homeostasis, mitochondrial function, GABA-ergic and glutamatergic neurotransmission, and flux of lactate through the brain.
Collapse
Affiliation(s)
- Fredrik Lauritzen
- The Brain and Muscle Energy Group, Department of Anatomy and Department of Oral Biology, University of Oslo, P.O. Box 1105, Blindern, 0317, Oslo, Norway
| | | | | |
Collapse
|
27
|
Rodell A, Rasmussen LJ, Bergersen LH, Singh KK, Gjedde A. Natural selection of mitochondria during somatic lifetime promotes healthy aging. FRONTIERS IN NEUROENERGETICS 2013; 5:7. [PMID: 23964235 PMCID: PMC3740293 DOI: 10.3389/fnene.2013.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Stimulation of mitochondrial biogenesis during life-time challenges both eliminates disadvantageous properties and drives adaptive selection of advantageous phenotypic variations. Intermittent fission and fusion of mitochondria provide specific targets for health promotion by brief temporal stressors, interspersed with periods of recovery and biogenesis. For mitochondria, the mechanisms of selection, variability, and heritability, are complicated by interaction of two independent genomes, including the multiple copies of DNA in each mitochondrion, as well as the shared nuclear genome of each cell. The mechanisms of stress-induced fission, followed by recovery-induced fusion and biogenesis, drive the improvement of mitochondrial functions, not only as directed by genotypic variations, but also as enabled by phenotypic diversity. Selective adaptation may explain unresolved aspects of aging, including the health effects of exercise, hypoxic and poisonous preconditioning, and tissue-specific mitochondrial differences. We propose that intermittent purposeful enhancement of mitochondrial biogenesis by stressful episodes with subsequent recovery paradoxically promotes adaptive mitochondrial health and continued healthy aging.
Collapse
Affiliation(s)
- Anders Rodell
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital Aarhus, Denmark
| | | | | | | | | |
Collapse
|
28
|
Zhang Y, Kuang Y, Xu K, Harris D, Lee Z, LaManna J, Puchowicz MA. Ketosis proportionately spares glucose utilization in brain. J Cereb Blood Flow Metab 2013; 33:1307-11. [PMID: 23736643 PMCID: PMC3734783 DOI: 10.1038/jcbfm.2013.87] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023]
Abstract
The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4954, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sussman D, van Eede M, Wong MD, Adamson SL, Henkelman M. Effects of a ketogenic diet during pregnancy on embryonic growth in the mouse. BMC Pregnancy Childbirth 2013; 13:109. [PMID: 23656724 PMCID: PMC3685567 DOI: 10.1186/1471-2393-13-109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/24/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The increasing use of the ketogenic diet (KD), particularly by women of child-bearing age, raises a question about its suitability during gestation. To date, no studies have thoroughly investigated the direct implications of a gestational ketogenic diet on embryonic development. METHODS To fill this knowledge gap we imaged CD-1 mouse embryos whose mothers were fed either a Standard Diet (SD) or a KD 30 days prior to, as well as during gestation. Images were collected at embryonic days (E) 13.5 using Optical Projection Tomography (OPT) and at E17.5 using Magnetic Resonance Imaging (MRI). RESULTS An anatomical comparison of the SD and KD embryos revealed that at E13.5 the average KD embryo was volumetrically larger, possessed a relatively larger heart but smaller brain, and had a smaller pharynx, cervical spinal cord, hypothalamus, midbrain, and pons, compared with the average SD embryo. At E17.5 the KD embryo was found to be volumetrically smaller with a relatively smaller heart and thymus, but with enlarged cervical spine, thalamus, midbrain and pons. CONCLUSION A ketogenic diet during gestation results in alterations in embryonic organ growth. Such alterations may be associated with organ dysfunction and potentially behavioral changes in postnatal life.
Collapse
Affiliation(s)
- Dafna Sussman
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | | | | | | | | |
Collapse
|
30
|
Koranyi L, Bourey RE, James D, Mueckler M, Fiedorek FT, Permutt MA. Glucose transporter gene expression in rat brain: Pretranslational changes associated with chronic insulin-induced hypoglycemia, fasting, and diabetes. Mol Cell Neurosci 2012; 2:244-52. [PMID: 19912805 DOI: 10.1016/1044-7431(91)90051-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1991] [Indexed: 11/24/2022] Open
Abstract
Steady-state levels of the major glucose transporter gene (GLUT-1) of the brain were evaluated under three conditions that induced chronic changes in plasma glucose and insulin in adult rats: (i) repeated injection of insulin for 5 days, resulting in plasma glucose levels of 60-70 mg/dl for at least 3 days; (ii) fasting for 3 days; and (iii) moderate streptozotocin-induced diabetes of 1 week duration. Brain GLUT-1 mRNA was measured by dot blot hybridization with a HepG2/erythrocyte (GLUT1) [(32)P]cRNA probe, and GLUT-1 protein by immunoblot analysis with a polyclonal antibody (11493). Insulin injection resulted in hypoglycemia, increased GLUT-1 mRNA (143 +/- 15%, P < 0.05), and increased GLUT-1 protein (141 +/- 6%, P < 0.05). The increase in GLUT-1 mRNA was specific for brain, as no change was observed in liver or kidney. Fasting resulted in mild hypoglycemia, lower plasma insulin, increased GLUT-1 mRNA (131 +/- 17%, P < 0.05 vs control), and no change in GLUT-1 protein (125 +/- 9%, N.S.). Mild streptozotocin diabetes resulted in hyperglycemia, undetectable plasma insulin, decreased GLUT-1 mRNA (65 +/- 6%, P < 0.05 vs control), and no change in GLUT-1 protein (84 +/- 9%, N.S.). A negative correlation (r = -0.61, P < .0001) between GLUT-1 mRNA levels in brain and plasma glucose concentrations was observed among the three experimental groups and control animals, suggesting that the plasma glucose concentration may be at least one determinant of GLUT-1 levels in rat brain. The importance of these results is the finding that GLUT-1 gene expression in rat brain is regulated in vivo by the nutritional and endocrine status of the animal.
Collapse
Affiliation(s)
- L Koranyi
- Department of Internal Medicine, Division of Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
31
|
Khalilieh A, McCue MD, Pinshow B. Physiological responses to food deprivation in the house sparrow, a species not adapted to prolonged fasting. Am J Physiol Regul Integr Comp Physiol 2012; 303:R551-61. [DOI: 10.1152/ajpregu.00076.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many wild birds fast during reproduction, molting, migration, or because of limited food availability. Species that are adapted to fasting sequentially oxidize endogenous fuels in three discrete phases. We hypothesized that species not adapted to long fasts have truncated, but otherwise similar, phases of fasting, sequential changes in fuel oxidization, and similar changes in blood metabolites to fasting-adapted species. We tested salient predictions in house sparrows ( Passer domesticus biblicus), a subspecies that is unable to tolerate more than ∼32 h of fasting. Our main hypothesis was that fasting sparrows sequentially oxidize substrates in the order carbohydrates, lipids, and protein. We dosed 24 house sparrows with [13C]glucose, palmitic acid, or glycine and measured 13CO2 in their breath while they fasted for 24 h. To ascertain whether blood metabolite levels reflect fasting-induced changes in metabolic fuels, we also measured glucose, triacylglycerides, and β-hydroxybutyrate in the birds' blood. The results of both breath 13CO2 and plasma metabolite analyses did not support our hypothesis; i.e., that sparrows have the same metabolic responses characteristic of fasting-adapted species, but on a shorter time scale. Contrary to our main prediction, we found that recently assimilated 13C-tracers were oxidized continuously in different patterns with no definite peaks corresponding to the three phases of fasting and also that changes in plasma metabolite levels accurately tracked the changes found by breath analysis. Notably, the rate of recently assimilated [13C]glycine oxidization was significantly higher ( P < 0.001) than that of the other metabolic tracers at all postdosing intervals. We conclude that the inability of house sparrows to fast for longer than 32 h is likely related to their inability to accrue large lipid stores, separately oxidize different fuels, and/or spare protein during fasting.
Collapse
Affiliation(s)
- Anton Khalilieh
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel; and
| | - Marshall D. McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| | - Berry Pinshow
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel; and
| |
Collapse
|
32
|
Lauritzen F, Heuser K, de Lanerolle NC, Lee TSW, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 2012; 60:1172-81. [PMID: 22535546 DOI: 10.1002/glia.22344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/30/2012] [Indexed: 01/05/2023]
Abstract
Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic immunohistochemistry revealed significantly less perivascular MCT2 immunoreactivity in the hippocampal formation in MTLE (n = 6) than in non-MTLE (n = 6) patients, and to a lesser degree in non-MTLE than in nonepilepsy patients (n = 4). Immunogold electron microscopy indicated that the loss of MCT2 protein occurred on perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE (especially MTLE) limits the flux of monocarboxylates across the blood-brain barrier and enhances the exchange of monocarboxylates within the brain parenchyma.
Collapse
Affiliation(s)
- Fredrik Lauritzen
- The Brain and Muscle Energy Group, Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, Blindern, NO-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stridh MH, Alt MD, Wittmann S, Heidtmann H, Aggarwal M, Riederer B, Seidler U, Wennemuth G, McKenna R, Deitmer JW, Becker HM. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II. J Physiol 2012; 590:2333-51. [PMID: 22451434 DOI: 10.1113/jphysiol.2011.220152] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a ‘proton collecting antenna' for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate.
Collapse
Affiliation(s)
- Malin H Stridh
- Division of General Zoology, Department of Biology, University of Kaiserslautern, PO Box 3049, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.
Collapse
|
35
|
Abstract
Cerebral energy metabolism is a highly compartmentalized and complex process in which transcellular trafficking of metabolites plays a pivotal role. Over the past decade, a role for lactate in fueling the energetic requirements of neurons has emerged. Furthermore, a neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported. The majority of the current evidence concerning lactate metabolism at the cellular level is based on in vitro data; only a few recent in vivo results have demonstrated that the brain preferentially utilizes lactate over glucose. Using voltage-sensitive dye (VSD) imaging, beta-probe measurements of radiotracer kinetics, and brain activation by sensory stimulation in the anesthetized rat, we investigated several aspects of cerebral lactate metabolism. The present study is the first in vivo demonstration of the maintenance of neuronal activity in the presence of lactate as the primary energy source. The loss of the voltage-sensitive dye signal found during severe insulin-induced hypoglycemia is completely prevented by lactate infusion. Thus, lactate has a direct neuroprotective effect. Furthermore, we demonstrate that the brain readily oxidizes lactate in an activity-dependent manner. The washout of 1-[(11)C]L-lactate, reflecting cerebral lactate oxidation, was observed to increase during brain activation from 0.077 ± 0.009 to 0.105 ± 0.007 min(-1). Finally, our data confirm that the brain prefers lactate over glucose as an energy substrate when both substrates are available. Using [(18)F]fluorodeoxyglucose (FDG) to measure the local cerebral metabolic rate of glucose, we demonstrated a lactate concentration-dependent reduction of cerebral glucose utilization during experimentally increased plasma lactate levels.
Collapse
|
36
|
White H, Venkatesh B. Clinical review: ketones and brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:219. [PMID: 21489321 PMCID: PMC3219306 DOI: 10.1186/cc10020] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury.
Collapse
Affiliation(s)
- Hayden White
- Department of Intensive Care, Griffi ths University, Logan Hospital, Meadowbrook, Queensland 4131, Australia.
| | | |
Collapse
|
37
|
Pan Y. Enhancing brain functions in senior dogs: a new nutritional approach. Top Companion Anim Med 2011; 26:10-6. [PMID: 21435621 DOI: 10.1053/j.tcam.2011.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022]
Abstract
Aging induces many morphological and metabolic changes in the brain, which may eventually lead to cognitive impairment and dementia called cognitive dysfunction syndrome in senior dogs. Cognitive impairment and dementia can adversely affect the quality of life in both dogs and their owners. Progress has been made over the past years to understand how aging affects brain and its functions in humans and animals including dogs. Existing data indicate that aging-induced changes in the brain are gradual and irreversible. Therefore, it is too late to effectively manage dogs with cognitive impairment and cognitive dysfunction syndrome. The best option to manage brain aging successfully is to reduce or prevent aging-induced changes in the brain by correcting early metabolic changes and eliminating risk factors associated with brain aging and dementia. This article reviews behavioral, morphological, and metabolic changes in the brain induced by aging and discusses a novel nutritional solution for the aging-induced metabolic changes in the brain.
Collapse
Affiliation(s)
- Yuanlong Pan
- Nestlé Purina Research, St. Louis, MO 63164, USA.
| |
Collapse
|
38
|
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011; 27:3-20. [PMID: 21035308 PMCID: PMC3478067 DOI: 10.1016/j.nut.2010.07.021] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
Lower brain glucose metabolism is present before the onset of clinically measurable cognitive decline in two groups of people at risk of Alzheimer's disease--carriers of apolipoprotein E4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and therefore contribute to the neuropathologic cascade leading to cognitive decline in AD. The reason brain hypometabolism develops is unclear but may include defects in brain glucose transport, disrupted glycolysis, and/or impaired mitochondrial function. Methodologic issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization, which, in turn, may increase the risk of declining brain glucose uptake, at least in some brain regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e., that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and hence reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to (1) improve insulin sensitivity by improving systemic glucose utilization, or (2) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia.
Collapse
Affiliation(s)
- Stephen Cunnane
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Scott Nugent
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maggie Roy
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Castellano
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Christian Bocti
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hadi Begdouri
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M'hamed Bentourkia
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michèle Allard
- UMR CNRS 5231 and Ecole Pratique des Hautes Etudes, France
| | - Pascale Barberger-Gateau
- INSERM U897, Bordeaux F-33076, France; Université Victor Segalen Bordeaux 2, Bordeaux F-33076, France
| | - Tamas Fulop
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute of Aging, Bethesda, MD, USA
| |
Collapse
|
39
|
Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 2010; 30:1200-13. [PMID: 20125180 PMCID: PMC2879471 DOI: 10.1038/jcbfm.2010.2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetate is a well-known astrocyte-specific substrate that has been used extensively to probe astrocytic function in vitro and in vivo. Analysis of amino acid turnover curves from (13)C-acetate has been limited mainly for estimation of first-order rate constants from exponential fitting or calculation of relative rates from steady-state (13)C enrichments. In this study, we used (1)H-[(13)C]-Nuclear Magnetic Resonance spectroscopy with intravenous infusion of [2-(13)C]acetate-Na(+) in vivo to measure the cerebral kinetics of acetate transport and utilization in anesthetized rats. Kinetics were assessed using a two-compartment (neuron/astrocyte) analysis of the (13)C turnover curves of glutamate-C4 and glutamine-C4 from [2-(13)C]acetate-Na(+), brain acetate levels, and the dependence of steady-state glutamine-C4 enrichment on blood acetate levels. The steady-state enrichment of glutamine-C4 increased with blood acetate concentration until 90% of plateau for plasma acetate of 4 to 5 mmol/L. Analysis assuming reversible, symmetric Michaelis-Menten kinetics for transport yielded 27+/-2 mmol/L and 1.3+/-0.3 micromol/g/min for K(t) and T(max), respectively, and for utilization, 0.17+/-0.24 mmol/L and 0.14+/-0.02 micromol/g/min for K(M_util) and V(max_util), respectively. The distribution space for acetate was only 0.32+/-0.12 mL/g, indicative of a large excluded volume. The astrocytic and neuronal tricarboxylic acid cycle fluxes were 0.37+/-0.03 micromol/g/min and 1.41+/-0.11 micromol/g/min, respectively; astrocytes thus comprised approximately 21%+/-3% of total oxidative metabolism.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | |
Collapse
|
40
|
Denny CA, Heinecke KA, Kim YP, Baek RC, Loh KS, Butters TD, Bronson RT, Platt FM, Seyfried TN. Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem 2010; 113:1525-35. [PMID: 20374428 DOI: 10.1111/j.1471-4159.2010.06733.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sandhoff disease is an autosomal recessive, neurodegenerative disease involving the storage of brain ganglioside GM2 and asialo-GM2. Previous studies showed that caloric restriction, which augments longevity, and N-butyldeoxynojirimycin (NB-DNJ, Miglustat), an imino sugar that hinders the glucosyltransferase catalyzing the first step in glycosphingolipid biosynthesis, both increase longevity and improve motor behavior in the beta-hexosaminidase (Hexb) knockout (-/-) murine model of Sandhoff disease. In this study, we used a restricted ketogenic diet (KD-R) and NB-DNJ to combat ganglioside accumulation. Adult Hexb-/- mice were placed into one of the following groups: (i) a standard diet (SD), (ii) a SD with NB-DNJ (SD + NB-DNJ), (iii) a KD-R, and (iv) a KD-R with NB-DNJ (KD-R + NB-DNJ). Forebrain GM2 content (mug sialic acid/100 mg dry wt) in the four groups was 375 +/- 15, 312 +/- 8, 340 +/- 28, and 279 +/- 26, respectively, indicating an additive interaction between NB-DNJ and the KD-R. Most interestingly, brain NB-DNJ content was 3.5-fold greater in the KD-R + NB-DNJ mice than in the SD + NB-DNJ mice. These data suggest that the KD-R and NB-DNJ may be a potential combinatorial therapy for Sandhoff disease by enhancing NB-DNJ delivery to the brain and may allow lower dosing to achieve the same degree of efficacy as high dose monotherapy.
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The field of neuroimaging witnessed remarkable progress in the post-World War II era, resulting in tremendous benefits for healthcare today. One such important milestone was the development of the computerized axial tomography (CAT) scan. This state of the art technique has paved the way for modern diagnostic imaging like magnetic resonance imaging (MRI). Dr William Oldendorf, the first designer of axial tomography, is regarded by some as the true father of neuroimaging. However, because of various reasons, he was unable to succeed with his concept and was also unfortunately denied his due entitlement of the Nobel Prize for Medicine and Physiology in 1979. This article discusses his contributions to the fields of neuroimaging and neurosciences, along with the politics that surrounded the awarding of the Nobel Prize of 1979. Another associated topic that is touched on in this article is the ever-growing dispute over the interpretations of neuroimaging between neurologists and neuroradiologists.
Collapse
Affiliation(s)
- Shri Kant Mishra
- Keck School of Medicine, University of Southern California, California, USA.
| | | |
Collapse
|
42
|
|
43
|
McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:1-18. [PMID: 20060056 DOI: 10.1016/j.cbpa.2010.01.002] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
44
|
Bentourkia M, Tremblay S, Pifferi F, Rousseau J, Lecomte R, Cunnane S. PET study of 11C-acetoacetate kinetics in rat brain during dietary treatments affecting ketosis. Am J Physiol Endocrinol Metab 2009; 296:E796-801. [PMID: 19176356 DOI: 10.1152/ajpendo.90644.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normally, the brain's fuel is glucose, but during fasting it increasingly relies on ketones (beta-hydroxybutyrate, acetoacetate, and acetone) produced in liver mitochondria from fatty acid beta-oxidation. Although moderately raised blood ketones produced on a very high fat ketogenic diet have important clinical effects on the brain, including reducing seizures, ketone metabolism by the brain is still poorly understood. The aim of the present work was to assess brain uptake of carbon-11-labeled acetoacetate (11C-acetoacetate) by positron emission tomography (PET) imaging in the intact, living rat. To vary plasma ketones, we used three dietary conditions: high carbohydrate control diet (low plasma ketones), fat-rich ketogenic diet (raised plasma ketones), and 48-h fasting (raised plasma ketones). 11C-acetoacetate metabolism was measured in the brain, heart, and tissue in the mouth area. Using 11C-acetoacetate and small animal PET imaging, we have noninvasively quantified an approximately seven- to eightfold enhanced brain uptake of ketones on a ketogenic diet or during fasting. This opens up an opportunity to study brain ketone metabolism in humans.
Collapse
Affiliation(s)
- M'hamed Bentourkia
- Department of Nuclear Medicine and Radiobiology, 3001, 12th Ave. North, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
MATSUYAMA S, OHKURA S, IWATA K, UENOYAMA Y, TSUKAMURA H, MAEDA KI, KIMURA K. Food Deprivation Induces Monocarboxylate Transporter 2 Expression in the Brainstem of Female Rat. J Reprod Dev 2009; 55:256-61. [DOI: 10.1262/jrd.20214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shuichi MATSUYAMA
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| | - Satoshi OHKURA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kinuyo IWATA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Yoshihisa UENOYAMA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Hiroko TSUKAMURA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kei-ichiro MAEDA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Koji KIMURA
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| |
Collapse
|
46
|
Abstract
1. The monocarboxylate transporter (MCT, SLC16) family comprises 14 members, of which to date only MCT1-4 have been shown to carry monocarboxylates, transporting important metabolic compounds such as lactate, pyruvate and ketone bodies in a proton-coupled manner. The transport of such compounds is fundamental for metabolism, and the tissue locations, properties and regulation of these isoforms is discussed. 2. Of the other members of the MCT family, MCT8 (a thyroid hormone transporter) and TAT1 (an aromatic amino acid transporter) have been characterized more recently, and their physiological roles are reviewed herein. The endogenous substrates and functions of the remaining members of the MCT family await elucidation. 3. The MCT proteins have the typical twelve transmembrane-spanning domain (TMD) topology of membrane transporter proteins, and their structure-function relationship is discussed, especially in relation to the future impact of the single nucleotide polymorphism (SNP) databases and, given their ability to transport pharmacologically relevant compounds, the potential impact for pharmacogenomics.
Collapse
Affiliation(s)
- D Meredith
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK.
| | | |
Collapse
|
47
|
Monocarboxylate transporter (MCT)-1 is up-regulated by PPARalpha. Biochim Biophys Acta Gen Subj 2008; 1780:899-904. [PMID: 18375207 DOI: 10.1016/j.bbagen.2008.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-alpha mediates an adaptive response to fasting by up-regulation of genes involved in fatty acid oxidation and ketone body synthesis. Ketone bodies are transferred in and out of cells by monocarboxylate transporter (MCT)-1. In this study we observed for the first time that activation of PPARalpha in rats by clofibrate treatment or fasting increased hepatic mRNA concentration of MCT1. In Fao rat hepatoma cells, incubation with the PPARalpha agonist WY 14,643 increased mRNA concentration of MCT1 whereas the PPARgamma agonist troglitazone did not. To elucidate whether up-regulation of MCT1 is indeed mediated by PPARalpha we treated wild-type and PPARalpha-null mice with WY 14,643. In wild-type mice, treatment with WY 14,643 increased mRNA concentrations of MCT1 in liver, kidney and small intestine whereas no up-regulation was observed in PPARalpha-null mice.
Collapse
|
48
|
The postmortem distribution of ketone bodies between blood, vitreous humor, spinal fluid, and urine. Forensic Sci Med Pathol 2007; 4:100-7. [PMID: 19291479 DOI: 10.1007/s12024-007-9018-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
The distribution of the ketone bodies: acetone, acetoacetate, and D-beta-hydroxybutyrate, between blood, vitreous humor, spinal fluid, and urine was examined in 105 medico-legal autopsies. The ketone body concentration in the body fluids was determinated by head-space gas chromatography. The correlation between blood and the body fluids could be described with regression lines on the logarithmic-transformed results. The correlation is dependent on the ketone body concentration. The ketone bodies in spinal fluid show the best correlation to blood, followed by vitreous humor, and last urine. The concentration dependence in spinal fluid is mainly due to ketone bodies being metabolized in the brain. The human brain utilizes ketone bodies during normal nutritional state. In vitreous humor, the dependence is mainly due to protein bindings of acetoacetate and beta-hydroxybutyrate in blood and the difference in dry matter between blood and vitreous humor.
Collapse
|
49
|
Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 2007; 145:11-9. [PMID: 17218064 DOI: 10.1016/j.neuroscience.2006.11.062] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/08/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Intercellular monocarboxylate transport is important, particularly in tissues with high energy demands, such as brain and muscle. In skeletal muscle, it is well established that glycolytic fast twitch muscle fibers produce lactate, which is transported out of the cell through the monocarboxylate transporter (MCT) 4. Lactate is then taken up and oxidized by the oxidative slow twitch muscle fibers, which express MCT1. In the brain it is still questioned whether lactate produced in astrocytes is taken up and oxidized by neurons upon activation. Several studies have reported that astrocytes express MCT4, whereas neurons express MCT2. By comparing the localizations of MCTs in oxidative and glycolytic compartments I here give support to the idea that there is a lactate shuttle in the brain similar to that in muscle. This conclusion is based on studies in rodents using high resolution immunocytochemical methods at the light and electron microscopical levels.
Collapse
Affiliation(s)
- L H Bergersen
- Centre for Molecular Biology and Neuroscience, and Department of Anatomy, IBM, University of Oslo, Domus Medica, Room 1293, Songsvannsveien 9, POB 1105 Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
50
|
Mejía-Toiber J, Montiel T, Massieu L. D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 2006; 31:1399-408. [PMID: 17115265 DOI: 10.1007/s11064-006-9189-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/03/2006] [Indexed: 01/19/2023]
Abstract
Excitotoxic neuronal death mediated by over-activation of glutamate receptors has been implicated in ischemia, hypoglycemia and some neurodegenerative diseases. It involves oxidative stress and is highly facilitated during impairment of energy metabolism. We have shown previously that in vivo systemic glycolysis inhibition with iodoacetate (IOA), exacerbates glutamate excitotoxicity. We have now investigated whether this effect involves oxidative damage to membrane lipids, as evaluated by the presence of thiobarbituric acid-reactive substances. We have also tested whether the ketone body, D-beta-hydroxybutyrate (D-BHB), prevents lipoperoxidation and tissue damage. Results show that glutamate intrastriatal injection in control rats transiently enhances lipoperoxidation, while in IOA-treated animals increased lipoperoxidation is sustained. Treatment with D-BHB significantly reduces striatal lesions and lipoperoxidation. Vitamin E also reduced neuronal damage and lipoperoxidation. Results suggest that glycolysis impairment favors a pro-oxidant condition and situates oxidative damage as an important mediator of in vivo induced excitotoxicity. Results provide evidence for the neuroprotective effect of D-BHB against glutamate toxicity.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, Mexico DF, Mexico
| | | | | |
Collapse
|