1
|
van der Geest R, Fan H, Peñaloza HF, Bain WG, Xiong Z, Kohli N, Larson E, Sullivan MLG, Franks JM, Stolz DB, Ito R, Chen K, Doi Y, Harriff MJ, Lee JS. Phagocytosis is a primary determinant of pulmonary clearance of clinical Klebsiella pneumoniae isolates. Front Cell Infect Microbiol 2023; 13:1150658. [PMID: 37056705 PMCID: PMC10086180 DOI: 10.3389/fcimb.2023.1150658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Klebsiella pneumoniae (Kp) is a common cause of hospital-acquired pneumonia. Although previous studies have suggested that evasion of phagocytic uptake is a virulence determinant of Kp, few studies have examined phagocytosis sensitivity in clinical Kp isolates. Methods We screened 19 clinical respiratory Kp isolates that were previously assessed for mucoviscosity for their sensitivity to macrophage phagocytic uptake, and evaluated phagocytosis as a functional correlate of in vivo Kp pathogenicity. Results The respiratory Kp isolates displayed heterogeneity in the susceptibility to macrophage phagocytic uptake, with 14 out of 19 Kp isolates displaying relative phagocytosis-sensitivity compared to the reference Kp strain ATCC 43816, and 5 out of 19 Kp isolates displaying relative phagocytosis-resistance. Intratracheal infection with the non-mucoviscous phagocytosis-sensitive isolate S17 resulted in a significantly lower bacterial burden compared to infection with the mucoviscous phagocytosis-resistant isolate W42. In addition, infection with S17 was associated with a reduced inflammatory response, including reduced bronchoalveolar lavage fluid (BAL) polymorphonuclear (PMN) cell count, and reduced BAL TNF, IL-1β, and IL-12p40 levels. Importantly, host control of infection with the phagocytosis-sensitive S17 isolate was impaired in alveolar macrophage (AM)-depleted mice, whereas AM-depletion had no significant impact on host defense against infection with the phagocytosis-resistant W42 isolate. Conclusion Altogether, these findings show that phagocytosis is a primary determinant of pulmonary clearance of clinical Kp isolates.
Collapse
Affiliation(s)
- Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongye Fan
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hernán F. Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - William G. Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Veterans Affairs (VA) Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naina Kohli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Larson
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryota Ito
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kong Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Japan
| | - Melanie J. Harriff
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health State University, Portland, OR, United States
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Teitz-Tennenbaum S, Viglianti SP, Jomma A, Palone Q, Andrews H, Selbmann KN, Lahiri S, Subbotina N, Walker N, Perl AKT, Lama VN, Sisson TH, Osterholzer JJ. Sustained Club Cell Injury in Mice Induces Histopathologic Features of Deployment-Related Constrictive Bronchiolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:410-425. [PMID: 34954211 PMCID: PMC8895425 DOI: 10.1016/j.ajpath.2021.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
Histopathologic evidence of deployment-related constrictive bronchiolitis (DRCB) has been identified in soldiers deployed to Southwest Asia. While inhalational injury to the airway epithelium is suspected, relatively little is known about the pathogenesis underlying this disabling disorder. Club cells are local progenitors critical for repairing the airway epithelium after exposure to various airborne toxins, and a prior study using an inducible transgenic murine model reported that 10 days of sustained targeted club cell injury causes constrictive bronchiolitis. To further understand the mechanisms leading to small airway fibrosis, a murine model was employed to show that sustained club cell injury elicited acute weight loss, caused increased local production of proinflammatory cytokines, and promoted accumulation of numerous myeloid cell subsets in the lung. Transition to a chronic phase was characterized by up-regulated expression of oxidative stress-associated genes, increased activation of transforming growth factor-β, accumulation of alternatively activated macrophages, and enhanced peribronchiolar collagen deposition. Comparative histopathologic analysis demonstrated that sustained club cell injury was sufficient to induce epithelial metaplasia, airway wall thickening, peribronchiolar infiltrates, and clusters of intraluminal airway macrophages that recapitulated key abnormalities observed in DRCB. Depletion of alveolar macrophages in mice decreased activation of transforming growth factor-β and ameliorated constrictive bronchiolitis. Collectively, these findings implicate sustained club cell injury in the development of DRCB and delineate pathways that may yield biomarkers and treatment targets for this disorder.
Collapse
Affiliation(s)
- Seagal Teitz-Tennenbaum
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven P Viglianti
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan
| | - Ahmad Jomma
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Quentin Palone
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Halia Andrews
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kayla N Selbmann
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shayanki Lahiri
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Natalie Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anne-Karina T Perl
- Pulmonary Biology, The Perinatal Institute and Section of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John J Osterholzer
- Research Service and the Pulmonary Section Medical Service, VA Ann Arbor Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Wang HC, Liu KY, Wang LT, Hsu SH, Wang SC, Huang SK. Aryl hydrocarbon receptor promotes lipid droplet biogenesis and metabolic shift in respiratory Club cells. Hum Cell 2021; 34:785-799. [PMID: 33683656 DOI: 10.1007/s13577-021-00491-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Club cells are critical in maintaining airway integrity via, in part, secretion of immunomodulatory Club cell 10 kd protein (CC10) and xenobiotic detoxification. Aryl hydrocarbon receptor (AhR) is important in xenobiotic metabolism, but its role in Club cell function is unclear. To this end, an AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ, 10 nM) was found to induce, in a ligand and AhR-dependent manner, endoplasmic reticulum stress, phospholipid remodeling, free fatty acid and triglyceride synthesis, leading to perilipin 2-dependent lipid droplet (LD) biogenesis in a Club cell-like cell line, NL20. The increase in LDs was due, in part, to the blockade of adipose triglyceride lipase to LDs, while perilipin 5 facilitated LDs-mitochondria connection, leading to the breakdown of LDs via mitochondrial β-oxidation and acetyl-coA generation. In FICZ-treated cells, increased CC10 secretion and its intracellular association with LDs were noted. Administration of low (0.28 ng), medium (1.42 ng), and high (7.10 ng) doses of FICZ in C57BL/6 mice significantly enhanced lipopolysaccharide (LPS, 0.1 μg)-induced airway inflammation, mucin secretion, pro-inflammatory cytokines and CC10 in the bronchoalveolar lavage fluids, as compared to those seen in mice receiving LPS alone, suggesting the importance of AhR signaling in controlling the metabolic homeostasis and functions of Club cells.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 40402, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Kwei-Yan Liu
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Xu M, Yang W, Wang X, Nayak DK. Lung Secretoglobin Scgb1a1 Influences Alveolar Macrophage-Mediated Inflammation and Immunity. Front Immunol 2020; 11:584310. [PMID: 33117399 PMCID: PMC7558713 DOI: 10.3389/fimmu.2020.584310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
Alveolar macrophage (AM) is a mononuclear phagocyte key to the defense against respiratory infections. To understand AM’s role in airway disease development, we examined the influence of Secretoglobin family 1a member 1 (SCGB1A1), a pulmonary surfactant protein, on AM development and function. In a murine model, high-throughput RNA-sequencing and gene expression analyses were performed on purified AMs isolated from mice lacking in Scgb1a1 gene and were compared with that from mice expressing the wild type Scgb1a1 at weaning (4 week), puberty (8 week), early adult (12 week), and middle age (40 week). AMs from early adult mice under Scgb1a1 sufficiency demonstrated a total of 37 up-regulated biological pathways compared to that at weaning, from which 30 were directly involved with antigen presentation, anti-viral immunity and inflammation. Importantly, these pathways under Scgb1a1 deficiency were significantly down-regulated compared to that in the age-matched Scgb1a1-sufficient counterparts. Furthermore, AMs from Scgb1a1-deficient mice showed an early activation of inflammatory pathways compared with that from Scgb1a1-sufficient mice. Our in vitro experiments with AM culture established that exogenous supplementation of SCGB1a1 protein significantly reduced AM responses to microbial stimuli where SCGB1a1 was effective in blunting the release of cytokines and chemokines (including IL-1b, IL-6, IL-8, MIP-1a, TNF-a, and MCP-1). Taken together, these findings suggest an important role for Scgb1a1 in shaping the AM-mediated inflammation and immune responses, and in mitigating cytokine surges in the lungs.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Deepak Kumar Nayak
- Interdisciplinary Oncology, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
5
|
Sheikh Z, Bradbury P, Pozzoli M, Young PM, Ong HX, Traini D. An in vitro model for assessing drug transport in cystic fibrosis treatment: Characterisation of the CuFi-1 cell line. Eur J Pharm Biopharm 2020; 156:121-130. [PMID: 32916267 DOI: 10.1016/j.ejpb.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
Cystic fibrosis (CF) is a disease that most commonly affects the lungs and is characterized by mucus retention and a continuous cycle of bacterial infection and inflammation. Current CF treatment strategies are focused on targeted drug delivery to the lungs. Novel inhalable drug therapies require an in vitro CF model that appropriately mimics the in vivo CF lung environment to better understand drug delivery and transport across the CF epithelium, and predict drug therapeutic efficacy. Therefore, the aim of this research was to determine the appropriate air-liquid interface (ALI) culture method of the CuFi-1 (CF cell line) compared to the NuLi-1 (healthy cell line) cells to be used as in vitro models of CF airway epithelia. Furthermore, drug transport on both CuFi-1 and NuLi-1 was investigated to determine whether these cell lines could be used to study transport of drugs used in CF treatment using Ibuprofen (the only anti-inflammatory drug currently approved for CF) as a model drug. Differentiating characteristics specific to airway epithelia such as mucus production, inflammatory response and tight junction formation at two seeding densities (Low and High) were assessed throughout an 8-week ALI culture period. This study demonstrated that both the NuLi-1 and CuFi-1 cell lines fully differentiate in ALI culture with significant mucus secretion, IL-6 and IL-8 production, and functional tight junctions at week 8. Additionally, the High seeding density was found to alter the phenotype of the NuLi-1 cell line. For the first time, this study identifies that ibuprofen is transported via the paracellular pathway in ALI models of NuLi-1 and CuFi-1 cell lines. Overall, these findings highlight that NuLi-1 and CuFi-1 as promising in vitro ALI models to investigate the transport properties of novel inhalable drug therapies for CF treatment.
Collapse
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Peta Bradbury
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Liu G, Lu Y, Shi L, Ren Y, Kong J, Zhang M, Chen M, Liu W. TLR4-MyD88 signaling pathway is responsible for acute lung inflammation induced by reclaimed water. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122586. [PMID: 32315938 DOI: 10.1016/j.jhazmat.2020.122586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Previous research found that inhalation exposure of reclaimed water could cause severe pulmonary inflammation, and the endotoxin was proposed to be the key risk factor. To further support this view, the toxic effects of different reclaimed water induced by acute inhalation exposure were compared between wildtype C57BL/6J and TLR4 signaling pathway defect mice. It was found that reclaimed water with high levels of endotoxin could induce strong inflammation in wildtype mice, but not in Tlr4-/- and MyD88-/- mutants. The mixed bacterial culture from the reclaimed water showed very weak response in wildtype mice and no response in TLR4-signaling pathway deficient mice, which further suggested that the cell-bound endotoxins contribute little in the inflammation induced by reclaimed water. In addition, conditional knockout of the Tlr4 gene in myeloid cells resulted in a significant reduction of sensitivity to the reclaimed water in mutants, which indicates that myeloid cells play the most important role in the defensive immune system against the pollutants in the water. In general, this study demonstrated that the TLR4-MyD88 signaling pathway is responsible for the acute lung inflammation induced by reclaimed water, which excludes the possibility of other signaling pathway dependent inflammation inducers in reclaimed water.
Collapse
Affiliation(s)
- Gang Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Liangliang Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunru Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Mengyu Zhang
- School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Menghao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- School of Life Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
García LN, Leimgruber C, Nicola JP, Quintar AA, Maldonado CA. Neonatal endotoxin stimulation is associated with a long-term bronchiolar epithelial expression of innate immune and anti-allergic markers that attenuates the allergic response. PLoS One 2020; 15:e0226233. [PMID: 32379832 PMCID: PMC7205282 DOI: 10.1371/journal.pone.0226233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
Allergic asthma is the most common phenotype of the pathology, having an early-onset in childhood and producing a Th2-driven airways remodeling process that leads to symptoms and pathophysiological changes. The avoidance of aeroallergen exposure in early life has been shown to prevent asthma, but without repeated success and with the underlying preventive mechanisms at the beginning of asthma far to be fully recognized. In the present study, we aimed to evaluate if neonatal LPS-induced boost in epithelial host defenses contribute to prevent OVA-induced asthma in adult mice. To this, we focused on the response of bronchiolar club cells (CC), which are highly specialized in maintaining the epithelial homeostasis in the lung. In these cells, neonatal LPS administration increased the expression of TLR4 and TNFα, as well as the immunodulatory/antiallergic proteins: club cell secretory protein (CCSP) and surfactant protein D (SP-D). LPS also prevented mucous metaplasia of club cells and reduced the epidermal growth factor receptor (EGFR)-dependent mucin overproduction, with mice displaying normal breathing patterns after OVA challenge. Furthermore, the overexpression of the epithelial Th2-related molecule TSLP was blunted, and normal TSLP and IL-4 levels were found in the bronchoalveolar lavage. A lower eosinophilia was detected in LPS-pretreated mice, along with an increase in phagocytes and regulatory cells (CD4+CD25+FOXP3+ and CD4+IL-10+), together with higher levels of IL-12 and TNFα. In conclusion, our study demonstrates stable asthma-preventive epithelial effects promoted by neonatal LPS stimulation, leading to the presence of regulatory cells in the lung. These anti-allergic dynamic mechanisms would be overlaid in the epithelium, favored by an adequate epidemiological environment, during the development of asthma.
Collapse
Affiliation(s)
- Luciana Noemi García
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Carolina Leimgruber
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Amado Alfredo Quintar
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Cristina Alicia Maldonado
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| |
Collapse
|
8
|
Pariollaud M, Gibbs JE, Hopwood TW, Brown S, Begley N, Vonslow R, Poolman T, Guo B, Saer B, Jones DH, Tellam JP, Bresciani S, Tomkinson NC, Wojno-Picon J, Cooper AW, Daniels DA, Trump RP, Grant D, Zuercher W, Willson TM, MacDonald AS, Bolognese B, Podolin PL, Sanchez Y, Loudon AS, Ray DW. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J Clin Invest 2018. [PMID: 29533925 PMCID: PMC5983347 DOI: 10.1172/jci93910] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBβ alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.
Collapse
Affiliation(s)
- Marie Pariollaud
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Julie E Gibbs
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas W Hopwood
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sheila Brown
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ryan Vonslow
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Toryn Poolman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Baoqiang Guo
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ben Saer
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - D Heulyn Jones
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - James P Tellam
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Stefano Bresciani
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Nicholas Co Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Justyna Wojno-Picon
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.,GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Anthony Wj Cooper
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.,GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | - Ryan P Trump
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Daniel Grant
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,Novartis AG, East Hannover, New Jersey, USA
| | - William Zuercher
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy M Willson
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew S MacDonald
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Brian Bolognese
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Patricia L Podolin
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Yolanda Sanchez
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Andrew Si Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David W Ray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Wasserman GA, Szymaniak AD, Hinds AC, Yamamoto K, Kamata H, Smith NM, Hilliard KL, Carrieri C, Labadorf AT, Quinton LJ, Ai X, Varelas X, Chen F, Mizgerd JP, Fine A, O'Carroll D, Jones MR. Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells. J Clin Invest 2017; 127:3866-3876. [PMID: 28920925 PMCID: PMC5617666 DOI: 10.1172/jci94639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
P-element-induced wimpy testes (Piwi) proteins are known for suppressing retrotransposon activation in the mammalian germline. However, whether Piwi protein or Piwi-dependent functions occur in the mammalian soma is unclear. Contrary to germline-restricted expression, we observed that Piwi-like Miwi2 mRNA is indeed expressed in epithelial cells of the lung in adult mice and that it is induced during pneumonia. Further investigation revealed that MIWI2 protein localized to the cytoplasm of a discrete population of multiciliated airway epithelial cells. Isolation and next-generation sequencing of MIWI2-positive multiciliated cells revealed that they are phenotypically distinct from neighboring MIWI2-negative multiciliated cells. Mice lacking MIWI2 exhibited an altered balance of airway epithelial cells, demonstrating fewer multiciliated cells and an increase in club cells. During pneumococcal pneumonia, Miwi2-deficient mice exhibited increased expression of inflammatory mediators and increased immune cell recruitment, leading to enhanced bacterial clearance. Taken together, our data delineate MIWI2-dependent functions outside of the germline and demonstrate the presence of distinct subsets of airway multiciliated cells that can be discriminated by MIWI2 expression. By demonstrating roles for MIWI2 in airway cell identity and pulmonary innate immunity, these studies elucidate unanticipated physiological functions for Piwi proteins in somatic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Ms Smith
- The Pulmonary Center.,Department of Medicine.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kristie L Hilliard
- The Pulmonary Center.,Department of Medicine.,Department of Microbiology
| | - Claudia Carrieri
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam T Labadorf
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lee J Quinton
- The Pulmonary Center.,Department of Medicine.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Joseph P Mizgerd
- The Pulmonary Center.,Department of Medicine.,Department of Microbiology.,Department of Biochemistry, and
| | - Alan Fine
- The Pulmonary Center.,Department of Medicine
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
10
|
Hasegawa K, Sato A, Tanimura K, Uemasu K, Hamakawa Y, Fuseya Y, Sato S, Muro S, Hirai T. Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation. Respir Res 2017; 18:150. [PMID: 28784128 PMCID: PMC5545863 DOI: 10.1186/s12931-017-0635-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
Backgound Alveolar type 2 (AT2) cells play important roles in maintaining adult lung homeostasis. AT2 cells isolated from the lung have revealed the cell-specific functions of AT2 cells. Comprehensive molecular and transcriptional profiling of purified AT2 cells would be helpful for elucidating the underlying mechanisms of their cell-specific functions. To enable the further purification of AT2 cells, we aimed to discriminate AT2 cells from non-AT2 lung epithelial cells based on surface antigen expression via fluorescence activated cell sorting (FACS). Methods Single-cell suspensions obtained from enzymatically digested murine lungs were labeled for surface antigens (CD45/CD31/epithelial cell adhesion molecule (EpCAM)/ major histocompatibility complex class II (MHCII)) and for pro-surfactant protein C (proSP-C), followed by FACS analysis for surface antigen expression on AT2 cells. AT2 cells were sorted, and purity was evaluated by immunofluorescence and FACS. This newly developed strategy for AT2 cell isolation was validated in different strains and ages of mice, as well as in a lung injury model. Results FACS analysis revealed that EpCAM+ epithelial cells existed in 3 subpopulations based on EpCAM and MHCII expression: EpCAMmedMHCII+ cells (Population1:P1), EpCAMhiMHCII− cells (P2), and EpCAMlowMHCII− cells (P3). proSP-C+ cells were enriched in P1 cells, and the purity values of the sorted AT2 cells in P1 were 99.0% by immunofluorescence analysis and 98.0% by FACS analysis. P2 cells were mainly composed of ciliated cells and P3 cells were composed of AT1 cells, respectively, based on the gene expression analysis and immunofluorescence. EpCAM and MHCII expression levels were not significantly altered in different strains or ages of mice or following lipopolysaccharide (LPS)-induced lung injury. Conclusions We successfully classified murine distal lung epithelial cells based on EpCAM and MHCII expression. The discrimination of AT2 cells from non-AT2 epithelial cells resulted in the isolation of pure AT2 cells. Highly pure AT2 cells will provide accurate and deeper insights into the cell-specific mechanisms of alveolar homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0635-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan.
| | - Kazuya Tanimura
- Pulmonary Medicine, Kishiwada City Hospital, 1001 Gakuhara Kishiwada, Osaka, 596-8501, Japan
| | - Kiyoshi Uemasu
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Yoko Hamakawa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Yoshinori Fuseya
- Pulmonary Medicine, Otsu City Hospital, 2 Chome-9-9 Motomiya Otsu, Shiga, 520-0804, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Anas AA, Claushuis TAM, Mohan RA, Christoffels VM, Aidinis V, Florquin S, Van't Veer C, Hou B, de Vos AF, van der Poll T. Epithelial Myeloid-Differentiation Factor 88 Is Dispensable during Klebsiella Pneumonia. Am J Respir Cell Mol Biol 2017; 56:648-656. [PMID: 28187270 DOI: 10.1165/rcmb.2016-0190oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of pneumonia. Previous studies have documented an important role for Toll-like receptors (TLRs) expressed by myeloid cells in the recognition of K. pneumoniae and the initiation of a protective immune response. Lung epithelial cells also express TLRs and can participate in innate immune defense. The aim of this study was to examine the role of the common TLR adaptor protein myeloid-differentiation factor (MyD) 88 in lung epithelium during host defense against K. pneumoniae-induced pneumonia. To this end, we first crossed mice expressing cre recombinase under the control of the surfactant protein C (SftpCcre) or the club cell 10 kD (CC10cre) promoter with reporter mice to show that SftpCcre mice mainly express cre in type II alveolar cells, whereas CC10cre mice express cre almost exclusively in bronchiolar epithelial cells. We then generated mice with cell-targeted deletion of MyD88 in type II alveolar (SftpCcre-MyD88-lox) and bronchiolar epithelial (CC10cre-MyD88-lox) cells, and infected them with K. pneumoniae via the airways. Bacterial growth and dissemination were not affected by the loss of MyD88 in SftpCcre-MyD88-lox or CC10cre-MyD88-lox mice compared with control littermates. Furthermore, inflammatory responses induced by K. pneumoniae in the lung were not dependent on MyD88 expression in type II alveolar or bronchiolar epithelial cells. These results indicate that MyD88 expression in two distinct lung epithelial cell types does not contribute to host defense during pneumonia caused by a common human gram-negative pathogen.
Collapse
Affiliation(s)
- Adam A Anas
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Theodora A M Claushuis
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Rajiv A Mohan
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,3 Department of Anatomy, Embryology, and Physiology, and
| | - Vincent M Christoffels
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,3 Department of Anatomy, Embryology, and Physiology, and
| | - Vassilis Aidinis
- 4 Division of Immunology, Biomedical Sciences Research Center Alexander Flemming, Athens, Greece
| | - Sandrine Florquin
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,5 Department of Pathology
| | - Cornelis Van't Veer
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Baidong Hou
- 6 Institute of Biophysics, Chaoyang District, Beijing, China; and
| | - Alex F de Vos
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine
| | - Tom van der Poll
- 1 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,2 Center of Experimental and Molecular Medicine.,7 Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Lee KP, Park SJ, Kang S, Koh JM, Sato K, Chung HY, Okajima F, Im DS. ω-3 Polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L835-L844. [DOI: 10.1152/ajplung.00350.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 01/02/2023] Open
Abstract
A G protein-coupled receptor (GPCR) named free fatty acid receptor 4 (FFA4, also known as GPR120) was found to act as a GPCR for ω-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. We investigated whether supplementation of the ω-3 fatty acids benefits lung health. Omacor (7.75 mg/kg), clinically prescribed preparation of ω-3 fatty acids, and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (1 injection of 30 mg/kg ip). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of Omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in Omacor-treated mice. In isolated club cells, ω-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. With the use of pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for ω-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in Omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that ω-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for Omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of Omacor needs to be tested for acute airway injury because ω-3 fatty acids stimulate proliferation but inhibit differentiation of club cells.
Collapse
Affiliation(s)
- Kyoung-Pil Lee
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi, Maebashi, Japan
| | - Hae-Young Chung
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi, Maebashi, Japan
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention and College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
13
|
Nayak DK, Saravanan PB, Bansal S, Naziruddin B, Mohanakumar T. Autologous and Allogenous Antibodies in Lung and Islet Cell Transplantation. Front Immunol 2016; 7:650. [PMID: 28066448 PMCID: PMC5179571 DOI: 10.3389/fimmu.2016.00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
The field of organ transplantation has undoubtedly made great strides in recent years. Despite the advances in donor-recipient histocompatibility testing, improvement in transplantation procedures, and development of aggressive immunosuppressive regimens, graft-directed immune responses still pose a major problem to the long-term success of organ transplantation. Elicitation of immune responses detected as antibodies to mismatched donor antigens (alloantibodies) and tissue-restricted self-antigens (autoantibodies) are two major risk factors for the development of graft rejection that ultimately lead to graft failure. In this review, we describe current understanding on genesis and pathogenesis of antibodies in two important clinical scenarios: lung transplantation and transplantation of islet of Langerhans. It is evident that when compared to any other clinical solid organ or cellular transplant, lung and islet transplants are more susceptible to rejection by combination of allo- and autoimmune responses.
Collapse
Affiliation(s)
- Deepak Kumar Nayak
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | | | | |
Collapse
|
14
|
Lung epithelium and myeloid cells cooperate to clear acute pneumococcal infection. Mucosal Immunol 2016; 9:1288-302. [PMID: 26627460 PMCID: PMC4990776 DOI: 10.1038/mi.2015.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/01/2015] [Indexed: 02/04/2023]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae causes life-threatening infections, especially among immunocompromised patients. The host's immune system senses S. pneumoniae via different families of pattern recognition receptors, in particular the Toll-like receptor (TLR) family that promotes immune cell activation. Yet, while single TLRs are dispensable for initiating inflammatory responses against S. pneumoniae, the central TLR adapter protein myeloid differentiation factor 88 (MyD88) is of vital importance, as MyD88-deficient mice succumb rapidly to infection. Since MyD88 is ubiquitously expressed in hematopoietic and non-hematopoietic cells, the extent to which MyD88 signaling is required in different cell types to control S. pneumoniae is unknown. Therefore, we used novel conditional knockin mice to investigate the necessity of MyD88 signaling in distinct lung-resident myeloid and epithelial cells for the initiation of a protective immune response against S. pneumoniae. Here, we show that MyD88 signaling in lysozyme M (LysM)- and CD11c-expressing myeloid cells, as well as in pulmonary epithelial cells, is critical to restore inflammatory cytokine and antimicrobial peptide production, leading to efficient neutrophil recruitment and enhanced bacterial clearance. Overall, we show a novel synergistic requirement of compartment-specific MyD88 signaling in S. pneumoniae immunity.
Collapse
|
15
|
Cardenas H, Arango D, Nicholas C, Duarte S, Nuovo GJ, He W, Voss OH, Gonzalez-Mejia ME, Guttridge DC, Grotewold E, Doseff AI. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function. Int J Mol Sci 2016; 17:323. [PMID: 26938530 PMCID: PMC4813185 DOI: 10.3390/ijms17030323] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022] Open
Abstract
The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors’ accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.
Collapse
Affiliation(s)
- Horacio Cardenas
- Department of Physiology and Cell Biology, the Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
| | - Daniel Arango
- Department of Physiology and Cell Biology, the Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
- Molecular Cellular and Developmental Biology Graduate Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Courtney Nicholas
- Department of Physiology and Cell Biology, the Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
- Molecular Cellular and Developmental Biology Graduate Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Silvia Duarte
- Department of Physiology and Cell Biology, the Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
- Nutrition Graduate Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Gerard J Nuovo
- Comprehensive Cancer Center, the Ohio State University, Columbus, OH 43210, USA.
| | - Wei He
- Molecular Cellular and Developmental Biology Graduate Program, the Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, the Ohio State University, Columbus, OH 43210, USA.
| | - Oliver H Voss
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
| | - M Elba Gonzalez-Mejia
- Department of Physiology and Cell Biology, the Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
| | - Denis C Guttridge
- Comprehensive Cancer Center, the Ohio State University, Columbus, OH 43210, USA.
| | - Erich Grotewold
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
- Center for Applied Plant Sciences, the Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department of Physiology and Cell Biology, the Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, the Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Yang C, Jiang J, Yang X, Wang H, Du J. Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. J Transl Med 2016; 14:47. [PMID: 26865361 PMCID: PMC4750219 DOI: 10.1186/s12967-016-0804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
The repair of organs and tissues has stepped into a prospective era of regenerative medicine. However, basic research and clinical practice in the lung regeneration remains crawling. Owing to the complicated three dimensional structures and above 40 types of pulmonary cells, the regeneration of lung tissues becomes a great challenge. Compelling evidence has showed that distinct populations of intrapulmonary and extrapulmonary stem/progenitor cells can regenerate epithelia as well as endothelia in various parts of the respiratory tract. Recently, the discovery of human lung stem cells and their relevant studies has opened the door of hope again, which might put us on the path to repair our injured body parts, lungs on demand. Herein, we emphasized the role of endogenous and exogenous stem/progenitor cells in lungs as well as artificial tissue repair for the injured lungs, which constitute a marvelous toolbox for the treatment of acute lung injury. Finally, we further discussed the potential problems in the pulmonary remodeling and regeneration.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, 400042, Chongqing, China.
| |
Collapse
|
17
|
Yang C, Yang X, Du J, Wang H, Li H, Zeng L, Gu W, Jiang J. Retinoic acid promotes the endogenous repair of lung stem/progenitor cells in combined with simvastatin after acute lung injury: a stereological analysis. Respir Res 2015; 16:140. [PMID: 26561298 PMCID: PMC4642746 DOI: 10.1186/s12931-015-0300-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of acute respiratory distress syndrome (ARDS), most commonly seen during the organ dysfunction remains unsatisfied. Presently, the stem/progenitor cell-based endogenous repair has been aroused attention enormously. This report investigated the effects of retinoic acid (RA) plus simvastatin (SS) with respect to dynamics of lung repair cells as well as to elucidate the underlying mechanism. Materials and methods The experimental Sprague–Dawley rats were divided randomly into normal control (control), sham operated (sham), ARDS, ARDS + vehicle and ARDS + RA + SS groups. ARDS was reproduced through hemorrhagic shock/resuscitation (shock) and subsequent intratracheal LPS (4.5 mg/kg, Escherichia coli serotype O55: B5) injection. The rats were treated by intragastric administration of RA (2 mg/kg/day) and SS (2 mg/kg/day) for 5 days in the ARDS + RA + SS group. Seven days after the first RA-SS injection, a right lower lobe of lung was sampled for histological analysis concerning systemic uniform random sampling method. Immunohistochemistry of inflation-fixed lungs for alveolar type 1 (AT1), alveolar type 2 (AT2) and Clara cells was measured by AQP5, Pro-SPC and CCSP staining respectively. The alveolar cell proliferation and apoptosis were analyzed with Ki67 staining and terminal deoxylnucleotidyl transferase mediated-dUTP nick end labeling (TUNEL) method. Meanwhile, the alveolar cell numerical and surface density (alveolar cells, AT1, AT2, Clara, proliferating and apoptotic cells) were evaluated by stereology. Results RA-SS compound exerted anti-inflammatory and pro-repairing effects on respiratory tracts in ARDS induced by hemorrhagic-endotoxin shock. The numerical density and surface density of alveolar cells, AT1 cell fraction, and numerical density of AT2 and Clara cells were significantly increased after treatment with RA-SS compound in ARDS. Concurrently, the Ki67+ alveolar cells were obviously increased while the TUNEL+ alveolar cells were reduced, which was correlated with the attenuation of inflammatory injury and functional repair in injured lung tissues. Conclusions Our data convincingly indicated that the prophylactic and therapeutic treatment of RA plus SS had obvious beneficial effect on the remodeling/regeneration of injured pulmonary tissues, suggesting that the underlying mechanisms are related to the re-balance between regeneration and apoptosis in lung stem/progenitor cells.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haisheng Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| |
Collapse
|
18
|
Pathogenic Escherichia coli and lipopolysaccharide enhance the expression of IL-8, CXCL5, and CXCL10 in canine endometrial stromal cells. Theriogenology 2015; 84:34-42. [PMID: 25765298 DOI: 10.1016/j.theriogenology.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/05/2023]
Abstract
Chemokines play a central role in cellular communication in response to bacterial infection. However, the knowledge of the chemokine responses to bacterial infections in dogs remains limited. Uterine bacterial infection (pyometra) is one of the most common bacterial diseases in dogs and causes sepsis in most of the cases. We have shown previously that dogs with pyometra have higher messenger RNA (mRNA) levels of chemokines in uterus. To assess whether the stromal part of the endometrium expresses chemokines in response to bacterial infection, we cultured endometrial stromal cells isolated from healthy dogs and exposed them to either live pathogenic Escherichia coli, isolated from the uterus of a dog with pyometra, or lipopolysaccharide. Changes in the mRNA expression of ELR(+) CXC chemokines, IL-8, CXCL5, CXCL7, and ELR(-) CXC chemokine, CXCL10, were measured after 24 hours using quantitative real-time polymerase chain reaction. Levels of IL-8, CXCL5, and CXCL10 were upregulated in endometrial stromal cells exposed to E coli and lipopolysaccharide, whereas the level of CXCL7 was decreased or unaffected. In addition, levels of IL-8 and CXCL5, but not CXCL7 or CXCL10, were significantly higher in dogs with pyometra than those in healthy dogs. Our findings show that pathogenic uterine-derived E coli induces a CXC chemokine response both in cultured endometrial stromal cells within 24 hours and in pyometra-affected uteri from dogs. Stromal cells could therefore play an important role in early neutrophil and T cell recruitment to the site of inflammation during gram-negative bacterial infection of the uterus. Further studies are needed to clarify the role of chemokines in host response to bacterial infection in dogs and the possibility of using chemokines as diagnostic parameters for bacterial infection in this species.
Collapse
|
19
|
García LN, Leimgruber C, Uribe Echevarría EM, Acosta PL, Brahamian JM, Polack FP, Miró MS, Quintar AA, Sotomayor CE, Maldonado CA. Protective phenotypes of club cells and alveolar macrophages are favored as part of endotoxin-mediated prevention of asthma. Exp Biol Med (Maywood) 2014; 240:904-16. [PMID: 25504013 DOI: 10.1177/1535370214562338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022] Open
Abstract
Atopic asthma is a chronic allergic disease that involves T-helper type 2 (Th2)-inflammation and airway remodeling. Bronchiolar club cells (CC) and alveolar macrophages (AM) are sentinel cells of airway barrier against inhaled injuries, where allergy induces mucous metaplasia of CC and the alternative activation of AM, which compromise host defense mechanisms and amplify Th2-inflammation. As there is evidence that high levels of environmental endotoxin modulates asthma, the goal of this study was to evaluate if the activation of local host defenses by Lipopolysaccharide (LPS) previous to allergy development can contribute to preserving CC and AM protective phenotypes. Endotoxin stimulus before allergen exposition reduced hallmarks of allergic inflammation including eosinophil influx, Interleukin-4 and airway hyperreactivity, while the T-helper type 1 related cytokines IL-12 and Interferon-γ were enhanced. This response was accompanied by the preservation of the normal CC phenotype and the anti-allergic proteins Club Cell Secretory Protein (CCSP) and Surfactant-D, thereby leading to lower levels of CC metaplasia and preventing the increase of the pro-Th2 cytokine Thymic stromal lymphopoietin. In addition, classically activated alveolar macrophages expressing nitric oxide were promoted over the alternatively activated ones that expressed arginase-1. We verified that LPS induced a long-term overexpression of CCSP and the innate immune markers Toll-like receptor 4, and Tumor Necrosis Factor-α, changes that were preserved in spite of the allergen challenge. These results demonstrate that LPS pre-exposition modifies the local bronchioalveolar microenvironment by inducing natural anti-allergic mechanisms while reducing local factors that drive Th2 type responses, thus modulating allergic inflammation.
Collapse
Affiliation(s)
- Luciana N García
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Centro de Microscopía Electrónica- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo, Ciudad Universitaria X5000HRA, Córdoba, Argentina
| | - Carolina Leimgruber
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Centro de Microscopía Electrónica- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo, Ciudad Universitaria X5000HRA, Córdoba, Argentina
| | - Elisa M Uribe Echevarría
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Centro de Microscopía Electrónica- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo, Ciudad Universitaria X5000HRA, Córdoba, Argentina
| | - Patricio L Acosta
- Fundación INFANT, Gavilan 94 C1406ABC, Capital Federal, Buenos Aires, Argentina
| | - Jorge M Brahamian
- Fundación INFANT, Gavilan 94 C1406ABC, Capital Federal, Buenos Aires, Argentina
| | - Fernando P Polack
- Fundación INFANT, Gavilan 94 C1406ABC, Capital Federal, Buenos Aires, Argentina Department of Pediatrics, Vanderbilt University, MCN, Vanderbilt University, Nashville, TN 37232, USA
| | - María S Miró
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende (X5000HRA), Ciudad Universitaria, Córdoba, Argentina
| | - Amado A Quintar
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Centro de Microscopía Electrónica- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo, Ciudad Universitaria X5000HRA, Córdoba, Argentina
| | - Claudia E Sotomayor
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende (X5000HRA), Ciudad Universitaria, Córdoba, Argentina
| | - Cristina A Maldonado
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Centro de Microscopía Electrónica- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo, Ciudad Universitaria X5000HRA, Córdoba, Argentina
| |
Collapse
|
20
|
Characterization of a novel model incorporating airway epithelial damage and related fibrosis to the pathogenesis of asthma. J Transl Med 2014; 94:1326-39. [PMID: 25264707 DOI: 10.1038/labinvest.2014.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/05/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022] Open
Abstract
Asthma develops from injury to the airways/lungs, stemming from airway inflammation (AI) and airway remodeling (AWR), both contributing to airway hyperresponsiveness (AHR). Airway epithelial damage has been identified as a new etiology of asthma but is not targeted by current treatments. Furthermore, it is poorly studied in currently used animal models of AI and AWR. Therefore, this study aimed to incorporate epithelial damage/repair with the well-established ovalbumin (OVA)-induced model of chronic allergic airway disease (AAD), which presents with AI, AWR, and AHR, mimicking several features of human asthma. A 3-day naphthalene (NA)-induced model of epithelial damage/repair was superimposed onto the 9-week OVA-induced model of chronic AAD, before 6 weeks of OVA nebulization (NA+OVA group), during the second last OVA nebulization period (OVA/NA group) or 1 day after the 6-week OVA nebulization period (OVA+NA group), using 6-8-week-old female Balb/c mice (n=6-12/group). Mice subjected to the 9-week OVA model, 3-day NA model or respective vehicle treatments (saline and corn oil) were used as appropriate controls. OVA alone significantly increased epithelial thickness and apoptosis, goblet cell metaplasia, TGF-β1, subepithelial collagen (assessed by morphometric analyses of various histological stains), total lung collagen (hydroxyproline analysis), and AHR (invasive plethysmography) compared with that in saline-treated mice (all P<0.05 vs saline treatment). NA alone caused a significant increase in epithelial denudation and apoptosis, TGF-β1, subepithelial, and total lung collagen compared with respective measurements from corn oil-treated controls (all P<0.01 vs corn oil treatment). All three combined models underwent varying degrees of epithelial damage and AWR, with the OVA+NA model demonstrating the greatest increase in subepithelial/total lung collagen and AHR (all P<0.05 vs OVA alone or NA alone). These combined models of airway epithelial damage/AAD demonstrated that epithelial damage is a key contributor to AWR, fibrosis and related AHR, and augments the effects of AI on these parameters.
Collapse
|
21
|
Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, Malkinson AM, Dwyer-Nield LD. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol 2014; 5:587. [PMID: 25505466 PMCID: PMC4243558 DOI: 10.3389/fimmu.2014.00587] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation is a risk factor for lung cancer, and low-dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programing changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤50% of control levels after 4–6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of insulin-like growth factor-I, CXCL1, IL-6, and CCL2 diminished with clodronate liposome treatment. Tumor-associated macrophages expressed markers of both M1 and M2 programing in vehicle and clodronate liposome-treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.
Collapse
Affiliation(s)
- Jason M Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Meredith A Tennis
- Pulmonary Division, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - Hao Lin
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | | | - Kevin S Choo
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Taylor A Staab
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Ronald J Bouchard
- Research Division, Eastern Colorado Veterans Administration Medical Center , Denver, CO , USA
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Denver , Aurora, CO , USA
| | - Alvin M Malkinson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|
22
|
Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, Farrow S, DeMayo F, Hussell T, Worthen GS, Ray D, Loudon A. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 2014; 20:919-26. [PMID: 25064128 PMCID: PMC4268501 DOI: 10.1038/nm.3599] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
The circadian system is an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and an impaired host response to Streptococcus pneumoniae infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. The therapeutic effects of the synthetic glucocorticoid dexamethasone depend on intact clock function in the airway. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and the magnitude of pulmonary inflammation and responses to bacterial infection.
Collapse
Affiliation(s)
- Julie Gibbs
- Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Louise Ince
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Laura Matthews
- Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Junjie Mei
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Bell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, UK
| | - Nan Yang
- Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ben Saer
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Nicola Begley
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Toryn Poolman
- Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Marie Pariollaud
- Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stuart Farrow
- 1] Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK. [2] Respiratory Therapy Area, GlaxoSmithKline, Stevenage, UK
| | - Francesco DeMayo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, UK
| | - G Scott Worthen
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Ray
- Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Andrew Loudon
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Abstract
The bronchial epithelium has been increasingly recognized as an important immunomodulatory compartment in asthma and other lung diseases. Clara cells, which comprise the nonciliated secretory epithelial cells, are an important epithelial cell type with functions in the regulation of lung homeostasis and inflammation. Using naphthalene, Clara cells can be depleted within 24 h and regenerate by 1 month, hence, providing an easy method to study the impact of Clara cells on lung inflammation.
Collapse
|
24
|
Abstract
Expression of the activating transcription factor 3 (ATF3) gene is induced by Toll-like receptor (TLR) signaling. In turn, ATF3 protein inhibits the expression of various TLR-driven proinflammatory genes. Given its counter-regulatory role in diverse innate immune responses, we defined the effects of ATF3 on neutrophilic airway inflammation in mice. ATF3 deletion was associated with increased lipopolysaccharide (LPS)-driven airway epithelia production of CXCL1, but not CXCL2, findings concordant with a consensus ATF3-binding site identified solely in the Cxcl1 promoter. Unexpectedly, ATF3-deficient mice did not exhibit increased airway neutrophilia after LPS challenge. Bone marrow chimeras revealed a specific reduction in ATF3(-/-) neutrophil recruitment to wild-type lungs. In vitro, ATF3(-/-) neutrophils exhibited a profound chemotaxis defect. Global gene expression analysis identified ablated Tiam2 expression in ATF3(-/-) neutrophils. TIAM2 regulates cellular motility by activating Rac1-mediated focal adhesion disassembly. Notably, ATF3(-/-) and ATF3-sufficient TIAM2 knockdown neutrophils, both lacking TIAM2, exhibited increased focal complex area, along with excessive CD11b-mediated F-actin polymerization. Together, our data describe a dichotomous role for ATF3-mediated regulation of neutrophilic responses: inhibition of neutrophil chemokine production but promotion of neutrophil chemotaxis.
Collapse
|
25
|
Ackermann MR. Lamb model of respiratory syncytial virus-associated lung disease: insights to pathogenesis and novel treatments. ILAR J 2014; 55:4-15. [PMID: 24936027 PMCID: PMC4158344 DOI: 10.1093/ilar/ilu003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Preterm birth is a risk factor for respiratory syncytial virus (RSV) bronchiolitis and hospitalization. The pathogenesis underlying this is not fully understood, and in vivo studies are needed to better clarify essential cellular features and molecular mechanisms. Such studies include analysis of lung tissue from affected human infants and various animal models. The preterm and newborn lamb lung has developmental, structural, cellular, physiologic, and immunologic features similar to that of human infants. Also, the lamb lung is susceptible to various strains of RSV that infect infants and cause similar bronchiolar lesions. Studies in lambs suggest that viral replication in airways (especially bronchioles) is extensive by 4 days after infection, along with bronchiolitis characterized by degeneration and necrosis of epithelial cells, syncytial cell formation, neutrophil infiltration, epithelial cell hypertrophy and hyperplasia, and innate and adaptive immune responses. RSV bronchiolitis greatly affects airflow and gaseous exchange. RSV disease severity is increased in preterm lambs compared with full-term lambs; similar to human infants. The lamb is conducive to experimental assessment of novel, mechanistic therapeutic interventions such as delivery of vascular endothelial growth factor and enhancement of airway epithelial oxidative responses, Club (Clara) cell protein 10, and synthesized compounds such as nanobodies. In contrast, exposure of the fetal ovine lung in vivo to ethanol, a risk factor for preterm birth, reduces pulmonary alveolar development and surfactant protein A expression. Because the formalin-inactivated RSV vaccination enhances some inflammatory responses to RSV infection in lambs, this model has the potential to assess mechanisms of formalin-inactivated RSV enhanced disease as well as newly developed vaccines.
Collapse
|
26
|
Derscheid RJ, Ackermann MR. The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection. Vet Pathol 2013; 50:827-41. [DOI: 10.1177/0300985813480216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.
Collapse
Affiliation(s)
- R. J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - M. R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
27
|
Derscheid RJ, Ackermann MR. Perinatal lamb model of respiratory syncytial virus (RSV) infection. Viruses 2012; 4:2359-78. [PMID: 23202468 PMCID: PMC3497056 DOI: 10.3390/v4102359] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. Many animal models are used to study RSV, but most studies investigate disease in adult animals which does not address the unique physiology and immunology that makes infants more susceptible. The perinatal (preterm and term) lamb is a useful model of infant RSV disease as lambs have similar pulmonary structure including airway branching, Clara and type II cells, submucosal glands and Duox/lactoperoxidase (LPO) oxidative system, and prenatal alveologenesis. Lambs can be born preterm (90% gestation) and survive for experimentation although both preterm and term lambs are susceptible to ovine, bovine and human strains of RSV and develop clinical symptoms including fever, tachypnea, and malaise as well as mild to moderate gross and histologic lesions including bronchiolitis with epithelial injury, neutrophil infiltration and syncytial cell formation. RSV disease in preterm lambs is more severe than in term lambs; disease is progressively less in adults and age-dependent susceptibility is a feature similar to humans. Innate and adaptive immune responses by perinatal lambs closely parallel those of infants. The model is used to test therapeutic regimens, risk factors such as maternal ethanol consumption, and formalin inactivated RSV vaccines.
Collapse
Affiliation(s)
- Rachel J Derscheid
- Department of Veterinary Pathology, 2738 College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
28
|
Adair-Kirk TL, Griffin GL, Meyer MJ, Kelley DG, Miner JH, Keene DR, Marinkovich MP, Ruppert JM, Uitto J, Senior RM. Keratinocyte-targeted expression of human laminin γ2 rescues skin blistering and early lethality of laminin γ2 deficient mice. PLoS One 2012; 7:e45546. [PMID: 23029085 PMCID: PMC3445496 DOI: 10.1371/journal.pone.0045546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/22/2012] [Indexed: 01/06/2023] Open
Abstract
Laminin-332 is a heterotrimeric basement membrane component comprised of the α3, ß3, and γ2 laminin chains. Laminin-332 modulates epithelial cell processes, such as adhesion, migration, and differentiation and is prominent in many embryonic and adult tissues. In skin, laminin-332 is secreted by keratinocytes and is a key component of hemidesmosomes connecting the keratinocytes to the underlying dermis. In mice, lack of expression of any of the three Laminin-332 chains result in impaired anchorage and detachment of the epidermis, similar to that seen in human junctional epidermolysis bullosa, and death occurs within a few days after birth. To bypass the early lethality of laminin-332 deficiency caused by the knockout of the mouse laminin γ2 chain, we expressed a dox-controllable human laminin γ2 transgene under a keratinocyte-specific promoter on the laminin γ2 (Lamc2) knockout background. These mice appear similar to their wild-type littermates, do not develop skin blisters, are fertile, and survive >1.5 years. Immunofluorescence analyses of the skin showed that human laminin γ2 colocalized with mouse laminin α3 and ß3 in the basement membrane zone underlying the epidermis. Furthermore, the presence of “humanized” laminin-332 in the epidermal basement membrane zone rescued the alterations in the deposition of hemidesmosomal components, such as plectin, collagen type XVII/BP180, and integrin α6 and ß4 chains, seen in conventional Lamc2 knockout mice, leading to restored formation of hemidesmosomes. These mice will be a valuable tool for studies of organs deficient in laminin-332 and the role of laminin-332 in skin, including wound healing.
Collapse
Affiliation(s)
- Tracy L Adair-Kirk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsuchiya K, Siddiqui S, Risse PA, Hirota N, Martin JG. The presence of LPS in OVA inhalations affects airway inflammation and AHR but not remodeling in a rodent model of asthma. Am J Physiol Lung Cell Mol Physiol 2012; 303:L54-63. [PMID: 22523281 DOI: 10.1152/ajplung.00208.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.
Collapse
Affiliation(s)
- Kimitake Tsuchiya
- Meakins Christie Laboratories, 3626 St Urbain, Montreal, Québec, Canada, H2X 2P2
| | | | | | | | | |
Collapse
|
30
|
Britt RD, Locy ML, Tipple TE, Nelin LD, Rogers LK. Lipopolysaccharide-induced cyclooxygenase-2 expression in mouse transformed Clara cells. Cell Physiol Biochem 2012; 29:213-22. [PMID: 22415090 DOI: 10.1159/000337602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Exacerbation of innate immune responses can contribute to development of acute lung injury. Multiple cell populations, including the bronchiolar epithelium, coordinate these inflammatory responses. Clara cells, non-ciliated epithelial cells, are located in the distal airways in humans and conducting airways in mice. These cells actively participate in innate immune responses but their precise contributions remain poorly defined. METHODS To test the hypothesis that E. coli lipopolysaccaride (LPS) treatment stimulates production of pro-inflammatory mediators in mouse transformed Clara cells (MTCC), MTCC were treated with E. coli lipopolysaccaride (LPS). RESULTS LPS increased COX-2 expression and stimulated production of prostaglandins, including prostaglandin E(2) (PGE(2)). Enhanced mitogen activated protein kinase (MAPK) activation, nuclear factor-κB (NFκB) activation, and chemokine production were observed in MTCC in response to LPS treatment. CONCLUSIONS While the role for Clara cells in the regulation of host defense and the progression of acute lung injury needs further characterization, our data suggests the importance of this unique cell population in the pathogenesis of LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
31
|
Yatera K, Morimoto Y, Kim HN, Myojo T, Mukae H. Foam cell formation of alveolar macrophages in Clara cell ablated mice inhaling crystalline silica. Inhal Toxicol 2012; 23:736-44. [PMID: 21967498 DOI: 10.3109/08958378.2011.608741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the function of Clara cells in vivo during exposure to inhaled crystalline silica by morphological and immunohistochemical examination of intra-alveolar cells and alveolar macrophages in Clara cell-ablated mice. The Clara cells of male FVB/n mice (8-12 weeks old) were ablated by intraperitoneal administration of naphthalene (300 mg/kg). The mice were then exposed to crystalline silica (Min-U-Sil-5, 97.1 ± 9.5 mg/m³, 6 hours/day, 5 days/week) for up to two weeks. The lungs were assessed by morphometry, as well as by immunohistochemistry of CD36, lectin-like oxygenated low-density lipoprotein receptor (LOX)-1, and matrix metalloproteinases (MMPs) -2, -9 and -12. There was a significantly greater number of intra-alveolar cells in Clara cell-ablated mouse groups than in wild-type mouse groups that were exposed to crystalline silica. A marked number of foamy alveolar macrophages were only detected in the Clara cell-ablated group exposed to crystalline silica, indicating that Clara cells inhibit infiltration and foam cell formation of alveolar macrophages. Immunohistochemical analysis indicated that foamy alveolar macrophages in the Clara cell-ablated group that inhaled crystalline silica overexpress CD36 and LOX-1, indicating upregulation of scavenger receptors of alveolar macrophages. These cells also express MMP-2, -9 and -12, suggesting increased gelatinolytic and elastolytic activities. Our findings suggest that Clara cells not only inhibit infiltration of alveolar macrophages but also their phagocytotic and gelatinolytic functions in silica-induced pulmonary injury.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan.
| | | | | | | | | |
Collapse
|
32
|
Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol Immunol 2011; 48:1468-76. [DOI: 10.1016/j.molimm.2011.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
|
33
|
Zhou F, Onizawa S, Nagai A, Aoshiba K. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir Res 2011; 12:78. [PMID: 21663649 PMCID: PMC3118351 DOI: 10.1186/1465-9921-12-78] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/10/2011] [Indexed: 12/20/2022] Open
Abstract
Background Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury. Methods C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation. Results BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation. Conclusions Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Fang Zhou
- Graduate School of Medical Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Summers SA, van der Veen BS, O'Sullivan KM, Gan PY, Ooi JD, Heeringa P, Satchell SC, Mathieson PW, Saleem MA, Visvanathan K, Holdsworth SR, Kitching AR. Intrinsic renal cell and leukocyte-derived TLR4 aggravate experimental anti-MPO glomerulonephritis. Kidney Int 2010; 78:1263-74. [DOI: 10.1038/ki.2010.327] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Raoust E, Balloy V, Garcia-Verdugo I, Touqui L, Ramphal R, Chignard M. Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One 2009; 4:e7259. [PMID: 19806220 PMCID: PMC2752798 DOI: 10.1371/journal.pone.0007259] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/02/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa is the main pathogen that infects the lungs of cystic fibrosis patients. Based on whole animal experiments, using TLR knockout mice, the control of this bacterium is believed to occur by the recognition of LPS and flagellin by TLRs 2,4 and 5, respectively. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we investigated in vitro the role of these same TLR and ligands, in alveolar macrophage (AM) and epithelial cell (EC) activation. Cellular responses to P. aeruginosa was evaluated by measuring KC, TNF-alpha, IL-6 and G-CSF secretion, four different markers of the innate immune response. AM and EC from WT and TLR2, 4, 5 and MyD88 knockout mice for were stimulated with the wild-type P. aeruginosa or with a mutant devoid of flagellin production. CONCLUSIONS/SIGNIFICANCE The results clearly demonstrate that only two ligand/receptor pairs are necessary for the induction of KC, TNF-alpha, and IL-6 synthesis by P. aeruginosa-activated cells, i.e. TLR2,4/LPS and TLR5/flagellin. Either ligand/receptor pair is sufficient to sense the bacterium and to trigger cell activation, and when both are missing lung EC and AM are unable to produce such a response as were cells from MyD88(-/-) mice.
Collapse
Affiliation(s)
- Eloïse Raoust
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- INSERM U874, Paris, France
| | - Viviane Balloy
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- INSERM U874, Paris, France
| | - Ignacio Garcia-Verdugo
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- INSERM U874, Paris, France
| | - Lhousseine Touqui
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- INSERM U874, Paris, France
| | - Reuben Ramphal
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- INSERM U874, Paris, France
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michel Chignard
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- INSERM U874, Paris, France
| |
Collapse
|
36
|
Snyder JC, Reynolds SD, Hollingsworth JW, Li Z, Kaminski N, Stripp BR. Clara cells attenuate the inflammatory response through regulation of macrophage behavior. Am J Respir Cell Mol Biol 2009; 42:161-71. [PMID: 19423773 DOI: 10.1165/rcmb.2008-0353oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic lung diseases are marked by excessive inflammation and epithelial remodeling. Reduced Clara cell secretory function and corresponding decreases in the abundance of the major Clara cell secretory protein (CCSP) are characteristically seen in these disease states. We sought to define the impact of Clara cell and CCSP depletion on regulation of the lung inflammatory response. We used chemical and genetic mouse models of Clara cell and CCSP deficiency (CCSP(-/-)) coupled with Pseudomonas aeruginosa LPS elicited inflammation. Exposure of Clara cell-depleted or CCSP(-/-) mice to LPS resulted in augmented inflammation as assessed by polymorphonuclear leukocyte recruitment to the airspace. Gene expression analysis and pathway modeling of the CCSP(-/-) inflammatory response implicated increased TNF-alpha signaling. Consistent with this model was the demonstration of significantly elevated TNF-alpha in airway fluid of LPS-stimulated CCSP(-/-) mice compared with similarly exposed wild-type mice. Increased LPS-elicited TNF-alpha production was also observed in cultured lung macrophages from CCSP(-/-) mice compared with wild-type mice. We demonstrate that macrophages from Clara cell-depleted and CCSP(-/-) mice displayed increased Toll-like receptor 4 surface expression. Our results provide evidence that Clara cells can attenuate inflammation through regulation of macrophage behavior, and suggest that epithelial remodeling leading to reduced Clara cell secretory function is an important factor that increases the intensity of lung inflammation in chronic lung disease.
Collapse
Affiliation(s)
- Joshua C Snyder
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
37
|
Snyder JC, Teisanu RM, Stripp BR. Endogenous lung stem cells and contribution to disease. J Pathol 2009; 217:254-64. [PMID: 19039828 DOI: 10.1002/path.2473] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epithelial branching during the process of lung development results in the establishment of distinct functional zones, each of which is characterized by a unique cellular composition and repertoire of local progenitor cells. Significant new insights into cellular and molecular mechanisms of epithelial maintenance that provide insights into the pathophysiology of lung disease have been made in recent years. This review focuses on the complex structure-function relationship in the airway epithelium, how this epithelium is maintained in the normal state and repaired following injury, and how deregulation may contribute to airway disease and cancer.
Collapse
Affiliation(s)
- J C Snyder
- Department of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
38
|
Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S, Ray DW, Loudon ASI. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 2009; 150:268-76. [PMID: 18787022 PMCID: PMC4340583 DOI: 10.1210/en.2008-0638] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology.
Collapse
Affiliation(s)
- J E Gibbs
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Snyder JC, Zemke AC, Stripp BR. Reparative capacity of airway epithelium impacts deposition and remodeling of extracellular matrix. Am J Respir Cell Mol Biol 2008; 40:633-42. [PMID: 18978301 DOI: 10.1165/rcmb.2008-0334oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Defective epithelial repair in the setting of chronic lung disease has been suggested to contribute to uncontrolled extracellular matrix (ECM) deposition and development of fibrosis. We sought to directly test this hypothesis through gene expression profiling of total lung RNA isolated from mouse models of selective epithelial cell injury that are associated with either productive or abortive repair. Analysis of gene expression in repairing lungs of naphthalene-exposed mice revealed prominent clusters of up-regulated genes with putative roles in regulation of the extracellular matrix and cellular proliferation. Further analysis of tenascin C (Tnc), a representative matrix protein, in total lung RNA revealed a transient 4.5-fold increase in mRNA abundance 1 day after injury and a return to steady-state levels by Recovery Day 3. Tnc was deposited by the peribronchiolar mesenchyme immediately after injury and was remodeled to basement membrane subtending the bronchiolar epithelium during epithelial repair. Epithelial restitution was accompanied by a decrease in Tnc mRNA and protein expression to steady-state levels. In contrast, abortive repair using a transgenic model allowing ablation of all reparative cells led to a progressive increase in Tnc mRNA within lung tissue and accumulation of its gene product within the subepithelial mesenchyme of both conducting airways and alveoli. These data demonstrate that the ECM is dynamically remodeled in response to selective epithelial cell injury and that this process is activated without resolution in the setting of defective airway epithelial repair.
Collapse
Affiliation(s)
- Joshua C Snyder
- Department of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
40
|
Bolton SJ, Pinnion K, Marshall CV, Wilson E, Barker JE, Oreffo V, Foster ML. Changes in Clara cell 10 kDa protein (CC10)-positive cell distribution in acute lung injury following repeated lipopolysaccharide challenge in the rat. Toxicol Pathol 2008; 36:440-8. [PMID: 18420837 DOI: 10.1177/0192623308315357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clara cell 10 kDa protein (CC10) is the major secretory protein of Clara cells and is thought to play a protective role in the lung owing to its anti-inflammatory properties. There is little information on the anatomical distribution of CC10-positive cells in rat lung following lipopolysaccharide (LPS) challenge. We have determined the expression of CC10 along the tracheobronchial tree in saline-treated and LPS-treated rats. Saline-treated rats showed sporadic CC10 staining in central airways and abundant staining in bronchioles. In transitional airways, most cells were positive except for squamous cells. Following LPS challenge, there was a reduction in staining in the upper airways but little change within bronchioles. Squamous epithelia within the transitional airways now showed positive staining. These cells also co-stained for pancytokeratin and appeared to co-localize with surfactant D- and Ki67-positive cells, indicating the presence of a dedifferentiated cell type with both epithelial and pneumocyte phenotypes. These data show that diffuse inflammatory injury results in generalized loss of CC10 in central airways. Conversely, the transitional airways showed evidence of a dedifferentiated population of squamous cells that now stained for CC10. We hypothesize that this is an attempt by peripheral lung to maintain alveolar sac integrity during an inflammatory episode.
Collapse
Affiliation(s)
- S J Bolton
- Department of Pathology, Safety Assessment UK, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Betsuyaku T, Hamamura I, Hata J, Takahashi H, Mitsuhashi H, Adair-Kirk TL, Senior RM, Nishimura M. Bronchiolar chemokine expression is different after single versus repeated cigarette smoke exposure. Respir Res 2008; 9:7. [PMID: 18208591 PMCID: PMC2248575 DOI: 10.1186/1465-9921-9-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 01/21/2008] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bronchioles are critical zones in cigarette smoke (CS)-induced lung inflammation. However, there have been few studies on the in vivo dynamics of cytokine gene expression in bronchiolar epithelial cells in response to CS. METHODS We subjected C57BL/6J mice to CS (whole body exposure, 90 min/day) for various periods, and used laser capture microdissection to isolate bronchiolar epithelial cells for analysis of mRNA by quantitative reverse transcription-polymerase chain reaction. RESULTS We detected enhanced expression of keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) by bronchial epithelial cells after 10 consecutive days of CS exposure. This was mirrored by increases in neutrophils and KC, MIP-2, TNF-alpha, and IL-1beta proteins in the bronchoalveolar lavage (BAL) fluid. The initial inhalation of CS resulted in rapid and robust upregulation of KC and MIP-2 with concomitant DNA oxidation within 1 hr, followed by a return to control values within 3 hrs. In contrast, after CS exposure for 10 days, this initial surge was not observed. As the CS exposure was extended to 4, 12, 18 and 24 weeks, the bronchiolar KC and MIP-2 expression and their levels in BAL fluid were relatively dampened compared to those at 10 days. However, neutrophils in BAL fluid continuously increased up to 24 weeks, suggesting that neutrophil accumulation as a result of long-term CS exposure became independent of KC and MIP-2. CONCLUSION These findings indicate variable patterns of bronchiolar epithelial cytokine expression depending on the duration of CS exposure, and that complex mechanisms govern bronchiolar molecular dynamics in vivo.
Collapse
Affiliation(s)
- Tomoko Betsuyaku
- First Department of Medicine, Hokkaido University School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8683, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Elizur A, Adair-Kirk TL, Kelley DG, Griffin GL, Demello DE, Senior RM. Tumor necrosis factor-alpha from macrophages enhances LPS-induced clara cell expression of keratinocyte-derived chemokine. Am J Respir Cell Mol Biol 2007; 38:8-15. [PMID: 17673686 PMCID: PMC2176132 DOI: 10.1165/rcmb.2007-0203oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha is a cytokine produced by alveolar macrophages in response to LPS in the lung. Clara cells are bronchiolar epithelial cells that produce a variety of proinflammatory cytokines in response to LPS but not to TNF-alpha. In this study, we examined whether TNF-alpha affects Clara cell cytokine production in the setting of LPS stimulation. Using a transformed murine Clara cell line (C22), we observed that both LPS and TNF-alpha induced production of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein (MCP)-1. We also found that simultaneous LPS and TNF-alpha stimulation is synergistic for KC production, but additive for MCP-1 production. By using a Transwell coculture system of RAW264.7 macrophages and Clara cells isolated from C57Bl/6 mice, we found that macrophages produce a soluble factor that enhances Clara cell KC production in response to LPS. Cocultures of Clara cells from mice deficient in TNF-alpha receptors with RAW264.7 macrophages demonstrated that the effect of macrophages on Clara cells is mediated primarily via TNF-alpha. To determine whether these findings occur in vivo, we treated wild-type and TNF receptor-deficient mice intratracheally with LPS and examined the expression of KC. LPS-treated, TNF receptor-deficient mice showed much less KC mRNA in airway epithelial cells compared with wild-type mice. In contrast, a similar number of KC-expressing cells was seen in the lung periphery. Thus, upregulation of KC by Clara cells in the setting of LPS stimulation is largely dependent on TNF-alpha originating from alveolar macrophages. These findings shed light on macrophage-Clara cell interactions in regulating the pulmonary inflammatory response to LPS.
Collapse
Affiliation(s)
- Arnon Elizur
- Department of Medicine, Washington University School of Medicine, 902 Yalem, Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|