1
|
Meer E. Role of Noncoding RNAs in Modulating Microglial Phenotype. Glob Med Genet 2024; 11:304-311. [PMID: 39258255 PMCID: PMC11383642 DOI: 10.1055/s-0044-1790283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Microglia are immunocompetent cells that are present in the retina and central nervous system, and are involved in the development maintenance and immune functions in these systems. Developing from yolk sac-primitive macrophages, they proliferate in the local tissues during the embryonic period without resorting to the production from the hematopoietic stem cells, and are critical in sustaining homeostasis and performing in disease and injury; they have morphological characteristics and distinct phenotypes according to the microenvironment. Microglia are also present in close association with resident cells in the retina where they engage in synapse formation, support normal functions, as well as immune defense. They are involved in the development of numerous neurodegenerative and ophthalmic diseases and act as diversity shields and triggers. Noncoding ribonucleic acids (ncRNAs) refer to RNA molecules synthesized from the mammalian genome, and these do not have protein-coding capacity. These ncRNAs play a role in the regulation of gene expression patterns. ncRNAs have only been recently identified as vastly significant molecules that are involved in the posttranscriptional regulation. Microglia are crucial for brain health and functions and current studies have focused on the effects caused by ncRNA on microglial types. Thus, the aim of the review was to provide an overview of the current knowledge about the regulation of microglial phenotypes by ncRNAs.
Collapse
Affiliation(s)
- Eiman Meer
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| |
Collapse
|
2
|
Wang R, Xu J, Wei S, Liu X. Increased Lipocalin 2 detected by RNA sequencing regulates apoptosis and ferroptosis in COPD. BMC Pulm Med 2024; 24:535. [PMID: 39462322 PMCID: PMC11515215 DOI: 10.1186/s12890-024-03357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by environmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes and potential therapeutic targets for COPD. METHODS Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using next-generation sequencing. Key genes involved in COPD pathogenesis were identified through protein-protein interaction network analysis. In vitro, bronchial epithelial cells treated with cigarette smoke extract (CSE) were used to study the effects on gene expression, cell viability, apoptosis, and ferroptosis. Additionally, Lipocalin 2 (LCN2) inhibition experiments were conducted to elucidate its role in COPD-related cellular processes. RESULTS Analysis of RNA profiles revealed consistent downregulation of 17 genes and upregulation of 21 genes across all COPD groups. Among these, Cathelicidin Antimicrobial Peptide(CAMP), Defensin Alpha 4(DEFA4), Neutrophil Elastase(ELANE), LCN2 and Lactotransferrin(LTF) were identified as potentially important players in COPD pathogenesis. Particularly, LCN2 exhibited a close association with COPD and was found to be involved in cellular processes. In vitro experiments demonstrated that CSE treatment significantly increased LCN2 expression in bronchial epithelial cells in a concentration-dependent manner. Moreover, CSE-induced apoptosis and ferroptosis were observed, along with alterations in cell viability, Glutathione content, Fe2 + accumulation, ROS: Reactive Oxygen Species and Malondialdehyde levels, Lactate Dehydrogenase(LDH) release and Glutathione Peroxidase 4(GPX4) expression. Inhibition of LCN2 expression partially reversed these effects, indicating the pivotal role of LCN2 in COPD-related cellular processes. CONCLUSION Our study identified six candidate genes: CAMP, DEFA4, ELANE, LCN2, and LTF were upregulated, HSPA1B was downregulated. Notably, LCN2 emerges as a significant biomarker in COPD pathogenesis, exerting its effects by promoting apoptosis and ferroptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Shuang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
4
|
Sólis-Suarez DL, Cifuentes-Mendiola SE, González-Alva P, Rodríguez-Hernández AP, Martínez-Dávalos A, Llamosas-Hernandez FE, Godínez-Victoria M, García-Hernández AL. Lipocalin-2 as a fundamental protein in type 2 diabetes and periodontitis in mice. J Periodontol 2024. [PMID: 39189666 DOI: 10.1002/jper.24-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lipocalin-2 (LCN-2) is an osteokine that suppresses appetite, stimulates insulin secretion, regulates bone remodeling, and is induced by proinflammatory cytokines. The aim of this work was to investigate the participation of LCN-2 in periodontitis associated with type 2 diabetes (T2D) by evaluating alveolar bone loss, glycemic control, inflammation, and femur fragility. METHODS A murine model of periodontitis with T2D and elevated LCN-2 concentration was used. Functional LCN-2 inhibition was achieved using an anti-LCN-2 polyclonal antibody, and isotype immunoglobulin G was used as a control. The alveolar bone and femur were evaluated by micro-CT. Glucose metabolism was determined. Tumor necrosis factor (TNF-α) and receptor activator of nuclear factor kappa-B ligand (RANKL) levels in alveolar bone lysates were quantified using ELISA, and serum cytokines were quantified using flow cytometry. A three-point bending test was performed in the femur, and RANKL levels were measured in femur lysates using ELISA. RESULTS Functional inhibition of LCN-2 in T2D-periodontitis mice decreased alveolar bone loss in buccal and palatal surfaces and preserved the microarchitecture of the remaining bone, decreased TNF-α and RANKL in alveolar bone, reduced hyperglycemia, glucose intolerance, and insulin resistance, and increased insulin production through improving the functionality of pancreatic β cells. Furthermore, this inhibition increased serum free-glycerol levels, decreased serum interleukin (IL)-6, increased serum IL-4, and reduced femur fragility and RANKL expression in the femur. CONCLUSIONS LCN-2 participates in periodontitis associated with T2D. Inhibiting its function in mice with T2D and periodontitis improves pancreatic β-cell function, and glucose metabolism and decreases inflammatory cytokines and bone-RANKL levels, which results in the preservation of femoral and alveolar bone microarchitecture. PLAIN LANGUAGE SUMMARY In this study, we explored the role of a bone protein known as lipocalin-2 (LCN-2) in the connection between periodontitis and type 2 diabetes (T2D). Periodontitis is a destructive gum and alveolar bone disease. LCN-2 levels are increased in both T2D and periodontitis. Using a mouse model of T2D with periodontitis, we examined how blocking LCN-2 function affected various aspects of these two diseases. We found that this inhibition led to significant improvements. First, it reduced alveolar bone loss and preserved bone structure by decreasing local inflammation and bone resorption. Second, it improved glucose and lipid metabolism, leading to better blood-sugar control and decreased insulin resistance. Blocking the functions of LCN-2 also decreased systemic inflammation throughout the body and strengthened bone integrity. Overall, our results suggest that LCN-2 plays a crucial role in the periodontitis associated with T2D. By inhibiting LCN-2 function, we were able to improve pancreatic function, improve glucose metabolism, reduce inflammation, and enhance bone health. Targeting LCN-2 could be a promising strategy for the harmful effects of T2D and periodontitis.
Collapse
Affiliation(s)
- Diana Laura Sólis-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
- Postgraduate Course in Dental Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Arnulfo Martínez-Dávalos
- Endo-periodontology Department, Physics Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
| |
Collapse
|
5
|
Yao X, Redekar NR, Keeran KJ, Qu X, Jeffries KR, Soria-Florido M, Saxena A, Dagur PK, Lin WC, McCoy JP, Levine SJ. Neutrophil Heterogeneity Is Modified during Acute Lung Inflammation in Apoa1-/- Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:456-468. [PMID: 38912868 PMCID: PMC11300144 DOI: 10.4049/jimmunol.2300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/01/2024] [Indexed: 06/25/2024]
Abstract
Neutrophils play important roles in inflammatory airway diseases. In this study, we assessed whether apolipoprotein A-I modifies neutrophil heterogeneity as part of the mechanism by which it attenuates acute airway inflammation. Neutrophilic airway inflammation was induced by daily intranasal administration of LPS plus house dust mite (LPS+HDM) to Apoa1-/- and Apoa1+/+ mice for 3 d. Single-cell RNA sequencing was performed on cells recovered from bronchoalveolar lavage fluid on day 4. Unsupervised profiling identified 10 clusters of neutrophils in bronchoalveolar lavage fluid from Apoa1-/- and Apoa1+/+ mice. LPS+HDM-challenged Apoa1-/- mice had an increased proportion of the Neu4 neutrophil cluster that expressed S100a8, S100a9, and Mmp8 and had high maturation, aggregation, and TLR4 binding scores. There was also an increase in the Neu6 cluster of immature neutrophils, whereas neutrophil clusters expressing IFN-stimulated genes were decreased. An unsupervised trajectory analysis showed that Neu4 represented a distinct lineage in Apoa1-/- mice. LPS+HDM-challenged Apoa1-/- mice also had an increased proportion of recruited airspace macrophages, which was associated with a reciprocal reduction in resident airspace macrophages. Increased expression of a common set of proinflammatory genes, S100a8, S100a9, and Lcn2, was present in all neutrophils and airspace macrophages from LPS+HDM-challenged Apoa1-/- mice. These findings show that Apoa1-/- mice have increases in specific neutrophil and macrophage clusters in the lung during acute inflammation mediated by LPS+HDM, as well as enhanced expression of a common set of proinflammatory genes. This suggests that modifications in neutrophil and macrophage heterogeneity contribute to the mechanism by which apolipoprotein A-I attenuates acute airway inflammation.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Neelam R. Redekar
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technologies Branch, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland
| | - Karen J. Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Kenneth R. Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - M.T. Soria-Florido
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Ankit Saxena
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Pradeep K. Dagur
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Wan-Chi Lin
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - J. Philip McCoy
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Stewart J. Levine
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Lv T, Hou Z, Yang K, Wang J. IL-17 Mildly Rescued the Impaired Proliferation of Alveolar Epithelial Cells Induced by LCN2 Overexpression. Can Respir J 2024; 2024:9284430. [PMID: 39139502 PMCID: PMC11321888 DOI: 10.1155/2024/9284430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The impaired proliferative capacity of alveolar epithelial cells after injury is an important factor causing epithelial repair dysfunction, leading to the occurrence of idiopathic pulmonary fibrosis (IPF). Alveolar type 2 (AT2) cells as the stem cells of alveolar epithelium participate in the repair process after alveolar injury. Lipocalin-2 (LCN2) participates in multiple processes regulating the pathological process of alveolar epithelial cells, but the mechanisms involved are still unclear. Method We used a BLM-treated mouse model to characterize the expression of LCN2 in lung fibrosis regions and analyzed the location of LCN2 in alveolar epithelial cells. Moreover, human pulmonary alveolar epithelial cells (HPAEpiCs) were transfected with the LCN2 overexpression plasmid vector in vitro. Recombinant human interleukin-17 (IL-17) protein (rhIL-17) at different concentrations was administered to intervene in HPAEpiCs, observing cell viability and analyzing the concentration-dependent effect of IL-17. Results LCN2 was increased in the alveolar epithelium post-BLM injury, and highly expressed LCN2 was mainly concentrated on AT2 cells in BLM-injured lungs. Meanwhile, LCN2-overexpressing HPAEpiCs showed impaired cell viability and cell growth. HPAEpiC intervention with rhIL-17 mildly rescued the impaired cell proliferation induced by LCN2 overexpression, and the effect of IL-17 intervention was partially concentration-dependent. Conclusions The results revealed the reversed effect of IL-17 on the impaired proliferative capacity of the alveolar epithelium induced by LCN2 overexpression. The target alveolar epithelial cells regulated by this process were AT2 cells, providing new clues for alveolar epithelium repair after injury and the treatment of lung injury diseases.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| | - Ziliang Hou
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| | - Kaiyuan Yang
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| | - Jinxiang Wang
- Department of Respiratory and Critical Care MedicineBeijing Luhe HospitalCapital Medical University, Beijing 101100, China
| |
Collapse
|
7
|
Charoensaensuk V, Yeh WL, Huang BR, Hsu TC, Xie SY, Chen CW, Wang YW, Yang LY, Tsai CF, Lu DY. Repetitive Administration of Low-Dose Lipopolysaccharide Improves Repeated Social Defeat Stress-Induced Behavioral Abnormalities and Aberrant Immune Response. J Neuroimmune Pharmacol 2024; 19:38. [PMID: 39066908 DOI: 10.1007/s11481-024-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Repetitive exposure of innate immune cells to a subthreshold dosage of endotoxin components may modulate inflammatory responses. However, the regulatory mechanisms in the interactions between the central nervous system (CNS) and the immune system remain unclear. This study aimed to investigate the effects of lipopolysaccharide (LPS) preconditioning in repeated social defeat stress (RSDS)-induced abnormal immune responses and behavioral impairments. This study aimed to elucidate the mechanisms that underlie the protective effects of repeated administration of a subthreshold dose LPS on behavioral impairments using the RSDS paradigm. LPS preconditioning improved abnormal behaviors in RSDS-defeated mice, accompanied by decreased monoamine oxidases and increased glucocorticoid receptor expression in the hippocampus. In addition, pre-treated with LPS significantly decreased the recruited peripheral myeloid cells (CD11b+CD45hi), mainly circulating inflammatory monocytes (CD11b+CD45hiLy6ChiCCR2+) into the brain in response to RSDS challenge. Importantly, we found that LPS preconditioning exerts its protective properties by regulating lipocalin-2 (LCN2) expression in microglia, which subsequently induces expressions of chemokine CCL2 and pro-inflammatory cytokine. Subsequently, LPS-preconditioning lessened the resident microglia population (CD11b+CD45intCCL2+) in the brains of the RSDS-defeated mice. Moreover, RSDS-associated expressions of leukocytes (CD11b+CD45+CCR2+) and neutrophils (CD11b+CD45+Ly6G+) in the bone marrow, spleen, and blood were also attenuated by LPS-preconditioning. In particular, LPS preconditioning also promoted the expression of endogenous antioxidants and anti-inflammatory proteins in the hippocampus. Our results demonstrate that LPS preconditioning ameliorates lipocalin 2-associated microglial activation and aberrant immune response and promotes the expression of endogenous antioxidants and anti-inflammatory protein, thereby maintaining the homeostasis of pro-inflammation/anti-inflammation in both the brain and immune system, ultimately protecting the mice from RSDS-induced aberrant immune response and behavioral changes.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Che Hsu
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
9
|
Afridi R, Kim JH, Bhusal A, Lee WH, Suk K. Lipocalin-2 as a mediator of neuroimmune communication. J Leukoc Biol 2024; 116:357-368. [PMID: 38149462 DOI: 10.1093/jleuko/qiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Lipocalin-2, a neutrophil gelatinase-associated lipocalin, is a 25-kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and nonimmune cells throughout the body. Importantly, the surge in lipocalin-2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of lipocalin-2, which plays a definitive role in determining their functional phenotypes. In different central nervous system pathologies, an increased expression of glial lipocalin-2 has been linked to neurotoxicity. Lipocalin-2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated lipocalin-2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of lipocalin-2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores lipocalin-2 as a mediator of neuroimmune crosstalk in various central nervous system pathologies and highlights the role of lipocalin-2 in carrying inflammatory signals along the neuroimmune axis.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Go S, Yang JW, Lee WJ, Jeong EJ, Park S, Lee G. Lipocalin-2 as a prognostic biomarker and its association with systemic inflammation in small cell lung cancer. Thorac Cancer 2024; 15:1646-1655. [PMID: 38886905 PMCID: PMC11260553 DOI: 10.1111/1759-7714.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Systemic inflammation is believed to contribute to small cell lung cancer (SCLC) progression, but the underlying relationship remains unclear. Lipocalin-2, a potential biomarker of inflammation, has been implicated in various cancers but its prognostic value in SCLC is underexplored. METHODS We retrospectively analyzed 191 patients with SCLC (72 with limited-stage [LD] and 119 with extensive-stage) treated using platinum-based chemotherapy. Lipocalin-2 expression was evaluated using immunohistochemistry. Optimal cutoff values for lipocalin-2 and neutrophil-to-lymphocyte ratio (NLR) were determined using time-dependent receiver operating characteristic curve analysis. The pectoralis muscle index was used to assess sarcopenia. RESULTS In LD-SCLC, high lipocalin-2 expression was associated with worse progression-free survival (PFS; median: 7.0 vs. 15.9 months, p = 0.015) and overall survival (OS; median: 12.9 vs. 30.3 months, p = 0.035) compared with low lipocalin-2 expression. Patients were stratified into three prognostic groups by combining lipocalin-2 with NLR: low lipocalin-2/low NLR, high lipocalin-2/low NLR or low lipocalin-2/high NLR, and high lipocalin-2/high NLR (median PFS: 17.3 vs. 11.0 vs. 6.3 months, p = 0.004; median OS: 30.5 vs. 17.3 vs. 8.6 months, p = 0.002). Similar trends were observed when combining lipocalin-2 with the pectoralis muscle index. High lipocalin-2 expression was also associated with lower complete response rates (18.9% vs. 34.3%, p = 0.035). No significant prognostic implications were found for lipocalin-2 in extensive-stage SCLC. CONCLUSIONS High lipocalin-2 expression is potentially associated with poorer survival in LD-SCLC. Combining lipocalin-2 with other inflammation-related markers could improve prognostic stratification.
Collapse
Affiliation(s)
- Se‐Il Go
- Department of Internal MedicineGyeongsang National University Changwon HospitalChangwonKorea
- Department of Internal MedicineGyeongsang National University College of MedicineJinjuKorea
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
| | - Jung Wook Yang
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
- Department of PathologyGyeongsang National University HospitalJinjuKorea
- Department of PathologyGyeongsang National University College of MedicineJinjuKorea
| | - Woo Je Lee
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| | - Eun Jeong Jeong
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| | - Sungwoo Park
- Department of Internal MedicineGyeongsang National University College of MedicineJinjuKorea
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| | - Gyeong‐Won Lee
- Department of Internal MedicineGyeongsang National University College of MedicineJinjuKorea
- Institute of Medical Science, Gyeongsang National UniversityJinjuKorea
- Division of Hematology and Oncology, Department of Internal MedicineGyeongsang National University HospitalJinjuKorea
| |
Collapse
|
11
|
Lin Q, Huang E, Fan K, Zhang Z, Shangguan H, Zhang W, Fang W, Ou Q, Liu X. Cerebrospinal Fluid Neutrophil Gelatinase-Associated Lipocalin as a Novel Biomarker for Postneurosurgical Bacterial Meningitis: A Prospective Observational Cohort Study. Neurosurgery 2024:00006123-990000000-01205. [PMID: 38856216 DOI: 10.1227/neu.0000000000003021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Postneurosurgical bacterial meningitis (PNBM) was a significant clinical challenge, as early identification remains difficult. This study aimed to explore the potential of neutrophil gelatinase-associated lipocalin (NGAL) as a novel biomarker for the early diagnosis of PNBM in patients who have undergone neurosurgery. METHODS A total of 436 postneurosurgical adult patients were enrolled in this study. Clinical information, cerebrospinal fluid (CSF), and blood samples were collected. After the screening, the remaining 267 patients were divided into the PNBM and non-PNBM groups, and measured CSF and serum NGAL levels to determine the diagnostic utility of PNBM. Subsequently, patients with PNBM were categorized into gram-positive and gram-negative bacterial infection groups to assess the effectiveness of CSF NGAL in differentiating between these types of infections. We analyzed the changes in CSF NGAL expression before and after anti-infection treatment in PNBM. Finally, an additional 60 patients were included as an independent validation cohort to further validate the diagnostic performance of CSF NGAL. RESULTS Compared with the non-PNBM group, CSF NGAL was significantly higher in the PNBM group (305.1 [151.6-596.5] vs 58.5 [30.7-105.8] ng/mL; P < .0001). The area under the curve of CSF NGAL for diagnosing PNBM was 0.928 (95% CI: 0.897-0.960), at a threshold of 119.7 ng/mL. However, there was no significant difference in serum NGAL between the 2 groups (142.5 [105.0-248.6] vs 161.9 [126.6-246.6] ng/mL, P = .201). Furthermore, CSF NGAL levels were significantly higher in patients with gram-negative bacterial infections than those with gram-positive bacteria (P = .023). In addition, CSF NGAL levels decrease after treatment compared with the initial stage of infection (P < .0001). Finally, in this validation cohort, the threshold of 119.7 ng/mL CSF NGAL shows good diagnostic performance with a sensitivity and specificity of 90% and 80%, respectively. CONCLUSION CSF NGAL holds promise as a potential biomarker for the diagnosis, early drug selection, and efficacy monitoring of PNBM.
Collapse
Affiliation(s)
- Qingwen Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Er Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kengna Fan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zeqin Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huangcheng Shangguan
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenhua Fang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaofeng Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Xiao X, Ge H, Wang Y, Wan X, Li D, Xie Z. (-)-Gallocatechin Gallate Mitigates Metabolic Syndrome-Associated Diabetic Nephropathy in db/db Mice. Foods 2024; 13:1755. [PMID: 38890983 PMCID: PMC11171689 DOI: 10.3390/foods13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic syndrome (MetS) significantly predisposes individuals to diabetes and is a prognostic factor for the progression of diabetic nephropathy (DN). This study aimed to evaluate the efficacy of (-)-gallocatechin gallate (GCG) in alleviating signs of MetS-associated DN in db/db mice. We administered GCG and monitored its effects on several metabolic parameters, including food and water intake, urinary output, blood glucose levels, glucose and insulin homeostasis, lipid profiles, blood pressure, and renal function biomarkers. The main findings indicated that GCG intervention led to marked improvements in these metabolic indicators and renal function, signifying its potential in managing MetS and DN. Furthermore, transcriptome analysis revealed substantial modifications in gene expression, notably the downregulation of pro-inflammatory genes such as S100a8, S100a9, Cd44, Socs3, Mmp3, Mmp9, Nlrp3, IL-1β, Osm, Ptgs2, and Lcn2 and the upregulation of the anti-oxidative gene Gstm3. These genetic alterations suggest significant effects on pathways related to inflammation and oxidative stress. In conclusion, GCG demonstrates therapeutic efficacy for MetS-associated DN, mitigating metabolic disturbances and enhancing renal health by modulating inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Xin Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| |
Collapse
|
13
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Nagarkatti PS, Nagarkatti M. 6-Formylindolo[3,2-b]carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells. J Leukoc Biol 2024; 115:1070-1083. [PMID: 38366630 PMCID: PMC11135611 DOI: 10.1093/jleuko/qiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024] Open
Abstract
FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.
Collapse
Affiliation(s)
- Alkeiver S Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Bryan L Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| |
Collapse
|
14
|
Tanahashi H, Iwamoto H, Yamaguchi K, Sakamoto S, Horimasu Y, Masuda T, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N. Lipocalin-2 as a prognostic marker in patients with acute exacerbation of idiopathic pulmonary fibrosis. Respir Res 2024; 25:195. [PMID: 38704585 PMCID: PMC11070072 DOI: 10.1186/s12931-024-02825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Lipocalin-2 (LCN2) is a secretory glycoprotein upregulated by oxidative stress; moreover, patients with idiopathic pulmonary fibrosis (IPF) have shown increased LCN2 levels in bronchoalveolar lavage fluid (BALF). This study aimed to determine whether circulatory LCN2 could be a systemic biomarker in patients with IPF and to investigate the role of LCN2 in a bleomycin-induced lung injury mouse model. METHODS We measured serum LCN2 levels in 99 patients with stable IPF, 27 patients with acute exacerbation (AE) of IPF, 51 patients with chronic hypersensitivity pneumonitis, and 67 healthy controls. Further, LCN2 expression in lung tissue was evaluated in a bleomycin-induced lung injury mouse model, and the role of LCN2 was investigated using LCN2-knockout (LCN2 -/-) mice. RESULTS Serum levels of LCN2 were significantly higher in patients with AE-IPF than in the other groups. The multivariate Cox proportional hazards model showed that elevated serum LCN2 level was an independent predictor of poor survival in patients with AE-IPF. In the bleomycin-induced lung injury mouse model, a higher dose of bleomycin resulted in higher LCN2 levels and shorter survival. Bleomycin-treated LCN2 -/- mice exhibited increased BALF cell and protein levels as well as hydroxyproline content. Moreover, compared with wild-type mice, LCN2-/- mice showed higher levels of circulatory 8-isoprostane as well as lower Nrf-2, GCLC, and NQO1 expression levels in lung tissue following bleomycin administration. CONCLUSIONS Our findings demonstrate that serum LCN2 might be a potential prognostic marker of AE-IPF. Moreover, LCN2 expression levels may reflect the severity of lung injury, and LCN2 may be a protective factor against bleomycin-induced acute lung injury and oxidative stress.
Collapse
Affiliation(s)
- Hiroki Tanahashi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
15
|
Akaraphanth M, Nordgren TM, Gries CM. CXCR2 perturbation promotes Staphylococcus aureus implant-associated infection. J Med Microbiol 2024; 73:001821. [PMID: 38567642 PMCID: PMC11084549 DOI: 10.1099/jmm.0.001821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.
Collapse
Affiliation(s)
- Mike Akaraphanth
- School of Medicine, University of Colorado, Aurora CO 80045, USA
| | - Tara M. Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Casey M. Gries
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO 80523, USA
| |
Collapse
|
16
|
Zhong S, Borlak J. Sex differences in the tumor promoting effects of tobacco smoke in a cRaf transgenic lung cancer disease model. Arch Toxicol 2024; 98:957-983. [PMID: 38245882 PMCID: PMC10861769 DOI: 10.1007/s00204-023-03671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Zhang Y, Song X, Qi T, Zhou X. Review of lipocalin-2-mediated effects in diabetic retinopathy. Int Ophthalmol 2024; 44:78. [PMID: 38351392 DOI: 10.1007/s10792-024-03015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Studies have uncovered LCN2 as a marker of inflammation strongly related to obesity, insulin resistance, and abnormal glucose metabolism in humans, and is involved in vascular diseases, inflammatory diseases, and neurological diseases. In recent years, studies have shown that elevated levels of LCN2 have a strong association with diabetic retinopathy (DR), but the pathogenesis is unknown. Here, we reviewed the relevant literature and compiled the pathogenesis associated with LCN2-induced DR. METHODS We searched PubMed and Web of Science electronic databases using "lipocalin-2, diabetic retinopathy, retinal degeneration, diabetic microangiopathies, diabetic neuropathy and inflammation" as subject terms. RESULTS In diabetic retinal neuropathy, LCN2 causes impaired retinal photoreceptor function and retinal neurons; in retinal microangiopathy, LCN2 induces apoptosis of retinal vascular endothelial cells and promotes angiogenesis; in retinal inflammation, increased secretion of LCN2 recruits inflammatory cells and induces pro-inflammatory cytokines. Moreover, LCN2 has the potential as a biomarker for DR. Recent studies have shown that retinal damage can be attenuated by silencing LCN2, which may be associated with the inhibition of caspase-1-mediated pyroptosis, and LCN2 may be a new target for the treatment of DR. CONCLUSIONS In conclusion, LCN2, involved in the development of diabetic retinopathy, is a key factor in diabetic retinal microangiopathy, neurodegeneration, and retinal inflammation. LCN2 is likely to be a novel molecular target leading to DR, and a more in-depth study of the pathogenesis of DR caused by LCN2 may provide considerable benefits for clinical research and potential drug development.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiaojun Song
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Tianying Qi
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xinli Zhou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.
| |
Collapse
|
18
|
永 胜, 郭 玉, 陈 晓, 许 玉, 胡 英. [Mechanism of IL-17 Signaling Pathway in Spleen Inflammatory Response Induced by Altitude Hypoxia in Mice]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:118-124. [PMID: 38322537 PMCID: PMC10839503 DOI: 10.12182/20240160208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 02/08/2024]
Abstract
Objective To explore the mechanism of spleen tissue inflammatory response induced by altitude hypoxia in mice. Methods C57BL/6 mice were randomly assigned to a plain, i.e., low-altitude, normoxia group and an altitude hypoxia group, with 5 mice in each group. In the plain normoxia group, the mice were kept in a normoxic environment at the altitude of 400 m above sea level (with an oxygen concentration of 19.88%). The mice in the altitude hypoxia group were kept in an environment at the altitude of 4200 m above sea level (with an oxygen concentration of 14.23%) to establish the animal model of altitude hypoxia. On day 30, spleen tissues were collected to determine the splenic index. HE staining was performed to observe the histopathological changes in the spleen tissues of the mice. Real time fluorogenic quantitative PCR (RT-qPCR) and Western blot were conducted to determine the mRNA and protein expressions of interleukin (IL)-6, IL-12, and IL-1β in the spleen tissue of the mice. High-throughput transcriptome sequencing was performed with RNA sequencing (RNA-seq). KEGG enrichment analysis was performed for the differentially expressed genes (DEGs). The DEGs in the key pathways were verified by RT-qPCR. Results Compared with the plain normoxia group, the mice exposed to high-altitude hypoxic environment had decreased spleen index (P<0.05) and exhibited such pathological changes as decreased white pulp, enlarged germinal center, blurred edge, and venous congestion. The mRNA and protein expression levels of IL-6, IL-12, and IL-1β in the spleen tissue of mice in the altitude hypoxia group were up-regulated (P<0.05). According to the results of transcriptome sequencing and KEGG pathway enrichment analysis, 4218 DEGs were enriched in 178 enrichment pathways (P<0.05). DEGs were significantly enriched in multiple pathways associated with immunity and inflammation, such as T cell receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway (P<0.05) in the spleen of mice exposed to high-altitude hypoxic environment. Among them, IL-17 signaling pathway and the downstream inflammatory factors were highly up-regulated (P<0.05). Compared with the plain normoxia group, the mRNA expression levels of key genes in the IL-17 signaling pathway, including IL-17, IL-17R, and mitogen-activated protein kinase genes (MAPKs), and the downstream inflammatory factors, including matrix metallopeptidase 9 (MMP9), S100 calcium binding protein A8 gene (S100A8), S100 calcium binding protein A9 gene (S100A9), and tumor necrosis factor α (TNF-α), were up-regulated or down-regulated (P<0.05) in the altitude hypoxia group. According to the validation of RT-qPCR results, the mRNA expression levels of DEGs were consistent with the RNA-seq results. Conclusion Altitude hypoxia can induce inflammatory response in the mouse spleen tissue by activating IL-17 signaling pathway and promoting the release of downstream inflammatory factors.
Collapse
Affiliation(s)
- 胜 永
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉静 郭
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 晓晨 陈
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉珍 许
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 英 胡
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| |
Collapse
|
19
|
Zhang C, Wang H, Hu L, Zhang Q, Chen J, Shi L, Song X, Liu J, Xue K, Wang J, Wang D, Sun X. Lipocalin-2 promotes neutrophilic inflammation in nasal polyps and its value as biomarker. Allergol Int 2024; 73:115-125. [PMID: 37567832 DOI: 10.1016/j.alit.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common chronic inflammatory disease of the nasal cavity and paranasal sinuses. The role of neutrophils in the pathogenesis of CRSwNP has attracted more attention in recent years, due to its association with more severe disease and reduced steroid responsiveness. Lipocalin-2 (LCN2) has been found to modulate neutrophils infiltration in other neutrophilic inflammation including inflammatory bowel disease, rheumatoid arthritis, and psoriasis. The aim was to evaluate the expression and regulator role of LCN2 in neutrophilic inflammation in CRSwNP, and its role as a potential biomarker predicting non-eosinophilic CRSwNP (neCRSwNP). METHODS Bioinformatic analysis, immunostainings, real-time PCR and ELISA were used to analyze the expression and location of LCN2 in nasal tissues. The expression of proinflammatory mediators were assessed in nasal tissues and secretions. LCN2 production in human nasal epithelial cells (HNECs) and neutrophils, as well as its role in neutrophilic inflammation was evaluated by in vitro experiments. RESULTS LCN2 was mainly located in neutrophils and HNECs of nasal polyps. LCN2 expression was also significantly higher in the polyp tissue and nasal secretions from patients with neCRSwNP. The LCN2 levels were positively correlated with type 3 inflammation markers, including G-CSF, IL-8, and IL-17. LCN2 expression could be upregulated by IL-17 A and TNF-α in HNECs, and LCN2 could also promote the expression of IL-8 in dispersed polyp cells and HNECs. CONCLUSIONS LCN2 could serve as a novel biomarker predicting patients with neCRSwNP, and the increased expression of LCN2 may participate in the pathogenesis of neCRSwNP.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Li Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China; High Altitude Rhinology Research Center of Eye & ENT Hospital of Fudan University and People's Hospital of Shigatse City, Shigatse, China
| | - Qianqian Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jiani Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Le Shi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaole Song
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Juan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Kai Xue
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jingjing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China; High Altitude Rhinology Research Center of Eye & ENT Hospital of Fudan University and People's Hospital of Shigatse City, Shigatse, China; Department of Otolaryngology, People's Hospital of Shigatse City, Shigatse, China.
| |
Collapse
|
20
|
Konrad ER, Soo J, Conroy AL, Namasopo S, Opoka RO, Hawkes MT. Circulating markers of neutrophil activation and lung injury in pediatric pneumonia in low-resource settings. Pathog Glob Health 2023; 117:708-716. [PMID: 36562081 PMCID: PMC10614712 DOI: 10.1080/20477724.2022.2160885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diagnostic biomarkers for childhood pneumonia could guide management and improve antibiotic stewardship in low-resource settings where chest x-ray (CXR) is not always available. In this cross-sectional study, we measured chitinase 3-like protein 1 (CHI3L1), surfactant protein D (SP-D), lipocalin-2 (LCN2), and tissue inhibitor of metalloproteinases-1 (TIMP-1) in Ugandan children under the age of five hospitalized with acute lower respiratory tract infection. We determined the association between biomarker levels and primary end-point pneumonia, indicated by CXR consolidation. We included 89 children (median age 11 months, 39% female). Primary endpoint pneumonia was present in 22 (25%). Clinical signs were similar in children with and without CXR consolidation. Broad-spectrum antibiotics (ceftriaxone) were administered in 83 (93%). Levels of CHI3L1, SP-D, LCN2 and TIMP-1 were higher in patients with primary end-point pneumonia compared to patients with normal CXR or other infiltrates. All markers were moderately accurate predictors of primary end-point pneumonia, with area under receiver operator characteristic curves of 0.66-0.70 (p<0.05 for all markers). The probability of CXR consolidation increased monotonically with the number of markers above cut-off. Among 28 patients (31%) in whom all four markers were below the cut-off, the likelihood ratio of CXR consolidation was 0.11 (95%CI 0.015 to 0.73). CHI3L1, SP-D, LCN2 and TIMP-1 were associated with CXR consolidation in children with clinical pneumonia in a low-resource setting. Combinations of quantitative biomarkers may be useful to safely withhold antibiotics in children with a low probability of bacterial infection.
Collapse
Affiliation(s)
- Emily R. Konrad
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Jeremy Soo
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, USA
| | - Sophie Namasopo
- Department of Pediatrics, Kabale District Hospital, Kabale, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala, Uganda
| | - Michael T. Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- School of Public Health, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- Distinguished Researcher, Stollery Science Lab, Edmonton, Canada
- Member, Women and Children’s Health Research Institute, Edmonton, Canada
| |
Collapse
|
21
|
Sisti G, Rubin G, Zhou C, Orth T, Schiattarella A. Neutrophil gelatinase-associated lipocalin as a predictor of pre-eclampsia: A systematic review and meta-analysis. Int J Gynaecol Obstet 2023; 163:63-74. [PMID: 37040030 DOI: 10.1002/ijgo.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Protein neutrophil gelatinase-associated lipocalin (NGAL) has been associated with kidney injury and inflammatory conditions. In particular, several studies have found an association between maternal blood and urine levels and the development of pre-eclampsia. OBJECTIVES To examine whether maternal blood and urine levels of NGAL are good predictors of pre-eclampsia. SEARCH STRATEGY The authors searched MEDLINE databases via PubMed, Embase, Scopus, Scielo, Google Scholar, PROSPERO International Prospective Register of Systematic Reviews, and the Cochrane Central Register of Controlled Trials. SELECTION CRITERIA The authors included case-control observational clinical studies comparing protein levels of NGAL in serum and urine in women with pre-eclampsia with uncomplicated pregnancies. Only studies where the collection of blood or urine was peformed before the occurrence of pre-eclampsia were selected. DATA COLLECTION AND ANALYSIS The primary outcome was the difference in NGAL levels in blood or urine between women with and without pre-eclampsia. RESULTS Seven studies in total were included: five studies measuring NGAL in blood and two in urine. Regarding the serum studies, 315 patients were included as cases and 540 as controls. Higher NGAL in maternal blood during all three trimesters together was associated with pre-eclampsia; the standardized mean difference was 1.15 ng/mL (95% confidence interval, 0.92-1.39; P < 0.01). Regarding the urine studies, 39 patients were included as cases and 220 as controls. There was no statistically significant difference between patients with pre-eclampsia and controls regarding urine NGAL. CONCLUSIONS NGAL in maternal blood is higher in patients who later develop pre-eclampsia compared with controls and could be used as a potential predicting test in the routine clinical setting.
Collapse
Affiliation(s)
- Giovanni Sisti
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
| | - Gal Rubin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
| | - Chi Zhou
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Teresa Orth
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Galaris A, Fanidis D, Tsitoura E, Kanellopoulou P, Barbayianni I, Ntatsoulis K, Touloumi K, Gramenoudi S, Karampitsakos T, Tzouvelekis A, Antoniou K, Aidinis V. Increased lipocalin-2 expression in pulmonary inflammation and fibrosis. Front Med (Lausanne) 2023; 10:1195501. [PMID: 37746070 PMCID: PMC10513431 DOI: 10.3389/fmed.2023.1195501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease with dismal prognosis. The underlying pathogenic mechanisms are poorly understood, resulting in a lack of effective treatments. However, recurrent epithelial damage is considered critical for disease initiation and perpetuation, via the secretion of soluble factors that amplify inflammation and lead to fibroblast activation and exuberant deposition of ECM components. Lipocalin-2 (LCN2) is a neutrophil gelatinase-associated lipocalin (NGAL) that has been suggested as a biomarker of kidney damage. LCN2 has been reported to modulate innate immunity, including the recruitment of neutrophils, and to protect against bacterial infections by sequestering iron. Methods In silico analysis of publicly available transcriptomic datasets; ELISAs on human IPF patients' bronchoalveolar lavage fluids (BALFs); bleomycin (BLM)-induced pulmonary inflammation and fibrosis and LPS-induced acute lung injury (ALI) in mice: pulmonary function tests, histology, Q-RT-PCR, western blot, and FACS analysis. Results and discussion Increased LCN2 mRNA expression was detected in the lung tissue of IPF patients negatively correlating with respiratory functions, as also shown for BALF LCN2 protein levels in a cohort of IPF patients. Increased Lcn2 expression was also detected upon BLM-induced pulmonary inflammation and fibrosis, especially at the acute phase correlating with neutrophilic infiltration, as well as upon LPS-induced ALI, an animal model characterized by neutrophilic infiltration. Surprisingly, and non withstanding the limitations of the study and the observed trends, Lcn2-/- mice were found to still develop BLM- or LPS-induced pulmonary inflammation and fibrosis, thus questioning a major pathogenic role for Lcn2 in mice. However, LCN2 qualifies as a surrogate biomarker of pulmonary inflammation and a possible indicator of compromised pulmonary functions, urging for larger studies.
Collapse
Affiliation(s)
- Apostolos Galaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eliza Tsitoura
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Konstantinos Ntatsoulis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Katerina Touloumi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Sofia Gramenoudi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Theodoros Karampitsakos
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Katerina Antoniou
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
23
|
Zhao H, Wang P, Wang X, Du W, Yang HH, Liu Y, Cui SN, Huang W, Peng T, Chen J, Gao C, Wang Y, Sadayappan S, Ma C, Fan Y, Wang C, Fan GC. Lipocalin 10 is essential for protection against inflammation-triggered vascular leakage by activating LDL receptor-related protein 2-slingshot homologue 1 signalling pathway. Cardiovasc Res 2023; 119:1981-1996. [PMID: 37392461 PMCID: PMC10681662 DOI: 10.1093/cvr/cvad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 07/03/2023] Open
Abstract
AIMS Systemic inflammation occurs commonly during many human disease settings and increases vascular permeability, leading to organ failure, and lethal outcomes. Lipocalin 10 (Lcn10), a poorly characterized member of the lipocalin family, is remarkably altered in the cardiovascular system of human patients with inflammatory conditions. Nonetheless, whether Lcn10 regulates inflammation-induced endothelial permeability remains unknown. METHODS AND RESULTS Systemic inflammation models were induced using mice by injection of endotoxin lipopolysaccharide (LPS) or caecal ligation and puncture (CLP) surgery. We observed that the expression of Lcn10 was dynamically altered only in endothelial cells (ECs), but not in either fibroblasts or cardiomyocytes isolated from mouse hearts following the LPS challenge or CLP surgery. Using in vitro gain- and loss-of-function approaches and an in vivo global knockout mouse model, we discovered that Lcn10 negatively regulated endothelial permeability upon inflammatory stimuli. Loss of Lcn10 augmented vascular leakage, leading to severe organ damage and higher mortality following LPS challenge, compared to wild-type controls. By contrast, overexpression of Lcn10 in ECs displayed opposite effects. A mechanistic analysis revealed that both endogenous and exogenous elevation of Lcn10 in ECs could activate slingshot homologue 1 (Ssh1)-Cofilin signalling cascade, a key axis known to control actin filament dynamics. Accordingly, a reduced formation of stress fibre and increased generation of cortical actin band were exhibited in Lcn10-ECs, when compared to controls upon endotoxin insults. Furthermore, we identified that Lcn10 interacted with LDL receptor-related protein 2 (LRP2) in ECs, which acted as an upstream factor of the Ssh1-Confilin signalling. Finally, injection of recombinant Lcn10 protein into endotoxic mice showed therapeutic effects against inflammation-induced vascular leakage. CONCLUSION This study identifies Lcn10 as a novel regulator of EC function and illustrates a new link in the Lcn10-LRP2-Ssh1 axis to controlling endothelial barrier integrity. Our findings may provide novel strategies for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Peng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Shu-Nan Cui
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
- Department of Anesthesiology, Beijing Cancer Hospital, Peking University School of Oncology, Beijing, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tianqing Peng
- The Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chengen Ma
- Department of Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| |
Collapse
|
24
|
Luostarinen S, Hämäläinen M, Pemmari A, Moilanen E. The regulation of TRPA1 expression and function by Th1 and Th2-type inflammation in human A549 lung epithelial cells. Inflamm Res 2023:10.1007/s00011-023-01750-y. [PMID: 37386145 DOI: 10.1007/s00011-023-01750-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Transient Receptor Potential Ankyrin 1 (TRPA1) is a cation channel that mediates pain, itch, cough, and neurogenic inflammation in response to pungent compounds such as acrolein in cigarette smoke. TRPA1 is also activated by endogenous factors and promotes inflammation in asthma models. We have recently shown that TRPA1 is upregulated by inflammatory cytokines in A549 human lung epithelial cells. Here, we explored the effects of Th1 and Th2-type inflammation on TRPA1. METHODS AND RESULTS TRPA1 expression and function was studied in A549 human lung epithelial cells. To induce inflammation, the cells were exposed to a combination of cytokines TNF-α and IL-1β; and to model Th1 or Th2-type responses, IFN-γ or IL-4/IL-13 was added, respectively. TRPA1 expression (measured by RT-PCR and Western blot) and function (assessed by Fluo-3AM intracellular calcium measurement) was enhanced under the influence of TNF-α + IL-1β. IFN-γ further enhanced TRPA1 expression and function, whereas IL-4 and IL-13 suppressed them. The effects of IFN-γ and IL-4 on TRPA1 expression were reversed by the Janus kinase (JAK) inhibitors baricitinib and tofacitinib, and those of IL-4 also by the STAT6 inhibitor AS1517499. The glucocorticoid dexamethasone downregulated TRPA1 expression, whereas the PDE4 inhibitor rolipram had no effect. Under all conditions, TRPA1 blockade was found to reduce the production of LCN2 and CXCL6. CONCLUSIONS TRPA1 expression and function in lung epithelial cells was upregulated under inflammatory conditions. IFN-γ further increased TRPA1 expression while IL-4 and IL-13 suppressed that in a JAK-STAT6 dependent manner which is novel. TRPA1 also modulated the expression of genes relevant to innate immunity and lung disease. We propose that the paradigm of Th1 and Th2 inflammation is a major determinant of TRPA1 expression and function, which should be considered when targeting TRPA1 for pharmacotherapy in inflammatory (lung) disease.
Collapse
Affiliation(s)
- Samu Luostarinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
25
|
Kessel JC, Weiskirchen R, Schröder SK. Expression Analysis of Lipocalin 2 (LCN2) in Reproductive and Non-Reproductive Tissues of Esr1-Deficient Mice. Int J Mol Sci 2023; 24:ijms24119280. [PMID: 37298232 DOI: 10.3390/ijms24119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Estrogen receptor alpha (ERα) is widely expressed in reproductive organs, but also in non-reproductive tissues of females and males. There is evidence that lipocalin 2 (LCN2), which has diverse immunological and metabolic functions, is regulated by ERα in adipose tissue. However, in many other tissues, the impact of ERα on LCN2 expression has not been studied yet. Therefore, we used an Esr1-deficient mouse strain and analyzed LCN2 expression in reproductive (ovary, testes) and non-reproductive tissues (kidney, spleen, liver, lung) of both sexes. Tissues collected from adult wild-type (WT) and Esr1-deficient animals were analyzed by immunohistochemistry, Western blot analysis, and RT-qPCR for Lcn2 expression. In non-reproductive tissues, only minor genotype- or sex-specific differences in LCN2 expression were detected. In contrast, significant differences in LCN2 expression were observed in reproductive tissues. Particularly, there was a strong increase in LCN2 in Esr1-deficient ovaries when compared to WTs. In summary, we found an inverse correlation between the presence of ERα and the expression of LCN2 in testes and ovaries. Our results provide an important basis to better understand LCN2 regulation in the context of hormones and in health and disease.
Collapse
Affiliation(s)
- Jan C Kessel
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
26
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
27
|
An X, Qin J, Hu X, Zhou Y, Fu B, Wei H. Overexpression of lipocalin 2 in PBX1-deficient decidual NK cells promotes inflammation at the maternal-fetal interface. Am J Reprod Immunol 2023; 89:e13676. [PMID: 36621850 DOI: 10.1111/aji.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023] Open
Abstract
PROBLEM Impairment of PBX1 expression in decidual natural killer (dNK) cells is associated with the pathogenesis of unexplained recurrent spontaneous abortion, which results in fetal growth restriction (FGR) by affecting the secretion of downstream growth factors. However, whether other mechanisms limit embryo growth in decidua containing PBX1-deficient natural killer (NK) cells is unknown. METHOD OF STUDY Pbx1f/f ; Ncr1Cre mice were employed to explore the underlying mechanisms by which PBX1- NK cells affect embryonic development. To simulate the clinical testing of pregnant women, Doppler ultrasound imaging was used to detect embryo implantation and development. Differentially expressed genes (DEGs) in PBX1- NK cells that may affect normal pregnancy were screened using RNA-sequencing and real-time PCR. Immune cell changes caused by DEGs were detected by flow cytometry. Finally, the mechanism of FGR was explored by injecting the protein LCN2, corresponding to the selected DEG, into mice. RESULTS We verified the embryonic dysplasia in pregnant Pbx1f/f ; Ncr1Cre mice by Doppler ultrasound imaging and found that LCN2 was upregulated in dNK cells. We also observed higher infiltration of neutrophils and macrophages in the decidua of Pbx1f/f ; Ncr1Cre mice. Finally, we found an increase in the number and activation of neutrophils at the maternal-fetal interface after injecting LCN2 into pregnant mice and observed that these mice showed signs of FGR. CONCLUSION Excessive LCN2 secreted by PBX1- dNK cells at the maternal-fetal interface recruit neutrophils and causes an inflammatory response, which is related to FGR.
Collapse
Affiliation(s)
- Xue An
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Tang J, Suo L, Li F, Yang C, Bian K, Wang Y. ITRAQ-based quantitative proteomics analysis of forest musk deer with pneumonia. Front Vet Sci 2022; 9:1012276. [DOI: 10.3389/fvets.2022.1012276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pneumonia can seriously threaten the life of forest musk deer (FMD, an endangered species). To gain a comprehensive understanding of pneumonia pathogenesis in FMD, iTRAQ-based proteomics analysis was performed in diseased (Pne group) lung tissues of FMD that died of pneumonia and normal lung tissues (Ctrl group) of FMD that died from fighting against each other. Results showed that 355 proteins were differentially expressed (fold change ≥ 1.2 and adjusted P-value < 0.05) in Pne vs. Ctrl. GO/KEGG annotation and enrichment analyses showed that dysregulated proteins might play vital roles in bacterial infection and immunity. Given the close association between bacterial infection and pneumonia, 32 dysregulated proteins related to Staphylococcus aureus infection, bacterial invasion of epithelial cells, and pathogenic Escherichia coli infection were screened out. Among these 32 proteins, 13 proteins were mapped to the bovine genome. Given the close phylogenetic relationships of FMD and bovine, the protein-protein interaction networks of the above-mentioned 13 proteins were constructed by the String database. Based on the node degree analysis, 5 potential key proteins related to pneumonia-related bacterial infection in FMD were filtered out. Moreover, 85 dysregulated proteins related to the immune system process were identified given the tight connection between immune dysregulation and pneumonia pathogenesis. Additionally, 12 proteins that might function as crucial players in pneumonia-related immune response in FMD were screened out using the same experimental strategies described above. In conclusion, some vital proteins, biological processes, and pathways in pneumonia development were identified in FMD.
Collapse
|
29
|
CD14 signaling mediates lung immunopathology and mice mortality induced by Achromobacter xylosoxidans. Inflamm Res 2022; 71:1535-1546. [PMID: 36280620 PMCID: PMC9592541 DOI: 10.1007/s00011-022-01641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022] Open
Abstract
Objective and design Our research aimed to investigate the role of CD14 in pulmonary infection by Achromobacter xylosoxidans in an experimental murine model. Methods C57Bl/6 or CD14-deficient mice were infected intratracheally with non-lethal inoculum of A. xylosoxidans. At times 1, 3 and 7 days after infection, lungs, bronchoalveolar lavage and blood were collected. CD14 gene expression was determined by RT-PCR. The bacterial load in the lungs was assessed by counting colony forming units (CFU). Cytokines, chemokines, lipocalin-2 and sCD14 were quantified by the ELISA method. Inflammatory infiltrate was observed on histological sections stained with HE, and leukocyte subtypes were assessed by flow cytometry. In another set of experiments, C57Bl/6 or CD14-deficient mice were inoculated with lethal inoculum and the survival rate determined. Results CD14-deficient mice are protected from A. xylosoxidans-induced death, which is unrelated to bacterial load. The lungs of CD14-deficient mice presented a smaller area of tissue damage, less neutrophil and macrophage infiltration, less pulmonary edema, and a lower concentration of IL-6, TNF-α, CXCL1, CCL2 and CCL3 when compared with lungs of C57Bl/6 mice. We also observed that A. xylosoxidans infection increases the number of leukocytes expressing mCD14 and the levels of sCD14 in BALF and serum of C57Bl/6-infected mice. Conclusions In summary, our data show that in A. xylosoxidans infection, the activation of CD14 induces intense pulmonary inflammatory response resulting in mice death. Supplementary Information The online version contains supplementary material available at 10.1007/s00011-022-01641-8.
Collapse
|
30
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
31
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|