1
|
Zhang FL, Chen YL, Luo ZY, Song ZB, Chen Z, Zhang JX, Zheng ZZ, Tan XM. Huashi baidu granule alleviates inflammation and lung edema by suppressing the NLRP3/caspase-1/GSDMD-N pathway and promoting fluid clearance in a porcine reproductive and respiratory syndrome (PRRS) model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119207. [PMID: 39653102 DOI: 10.1016/j.jep.2024.119207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huashi Baidu Granule (HSBDG), a traditional Chinese medicine (TCM), is used for treating coronavirus disease 2019 (COVID-19). Porcine reproductive and respiratory syndrome (PRRS) is considered the "COVID-19" for swine. According to the TCM theory, "dampness" is the main pathogenic factor in COVID-19 and PRRS, and "Huashi" means that this formula is good at removing "dampness". Studies have demonstrated that HSBDG's effect in COVID-19; but the mechanism of removing "dampness" remains elusive. AIM OF THE STUDY We aimed to assess the effect of HSBDG on PRRS, and elucidate its potential mechanism in removing "dampness". MATERIALS AND METHODS We established a PRRS-virus (PRRSV)-infected Marc-145 cells model, and performed qRT-PCR, Western blot analysis, and indirect immunofluorescence assay to examine the anti-PRRSV effects of HSBDG in vitro. PRRSV-infected pig model was established and used to investigate HSBDG's effect in PRRS and explore underlying mechanisms in removing "dampness" using ELISA and immunohistochemistry assay methods. RESULTS HSBDG exhibited anti-PRRSV activity and suppressed the viral replication and release phases. HSBDG treatment alleviated PRRS, lowered rectal temperature, reduced histopathological changes and viral load in lung tissues, and ameliorated organ lesions. Moreover, IL-1β, IL-6, IL-8, and TNF-α expressions were decreased in lung tissues. Mechanistically, HSBDG inhibited the NLRP3/Caspase-1/GSDMD-N pathway to reduce the inflammatory response and upregulated AQP1, AQP5, α-ENaC, and Na-K-ATPase expressions to promote lung fluid clearance. CONCLUSION HSBDG exerted anti-PRRSV effects and could attenuate PRRS. HSBDG potentially removes "dampness" by attenuating inflammation by suppressing the NLRP3/Caspase-1/GSDMD-N pathway and inhibiting pulmonary edema by upregulating the expression of AQP1, AQP5, α-ENaC, and Na-K-ATPase.
Collapse
Affiliation(s)
- Feng-Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Yi-Lin Chen
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Bu Song
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhe Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Jia-Xuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Zhong Zheng
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Sasidharan A, Grosche A, Xu X, Kinane TB, Angoli D, Vidyasagar S. Select amino acids recover cytokine-altered ENaC function in human bronchial epithelial cells. PLoS One 2024; 19:e0307809. [PMID: 39052685 PMCID: PMC11271875 DOI: 10.1371/journal.pone.0307809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The airway epithelium plays a pivotal role in regulating mucosal immunity and inflammation. Epithelial barrier function, homeostasis of luminal fluid, and mucociliary clearance are major components of mucosal defense mechanisms. The epithelial sodium channel (ENaC) is one of the key players in controlling airway fluid volume and composition, and characteristic cytokines cause ENaC and barrier dysfunctions following pulmonary infections or allergic reactions. Given the limited understanding of the requisite duration and magnitude of cytokines to affect ENaC and barrier function, available treatment options for restoring normal ENaC activity are limited. Previous studies have demonstrated that distinct amino acids can modulate epithelial ion channel activities and barrier function in intestines and airways. Here, we have investigated the time- and concentration-dependent effect of representative cytokines for Th1- (IFN-γ and TNF-α), Th2- (IL-4 and IL-13), and Treg-mediated (TGF-β1) immune responses on ENaC activity and barrier function in human bronchial epithelial cells. When cells were exposed to Th1 and Treg cytokines, ENaC activity decreased gradually while barrier function remained largely unaffected. In contrast, Th2 cytokines had an immediate and profound inhibitory effect on ENaC activity that was subsequently followed by epithelial barrier disruption. These functional changes were associated with decreased membrane protein expression of α-, β-, and γ-ENaC, and decreased mRNA levels of β- and γ-ENaC. A proprietary blend of amino acids was developed based on their ability to prevent Th2 cytokine-induced ENaC dysfunction. Exposure to the select amino acids reversed the inhibitory effect of IL-13 on ENaC activity by increasing mRNA levels of β- and γ-ENaC, and protein expression of γ-ENaC. This study indicates the beneficial effect of select amino acids on ENaC activity in an in vitro setting of Th2-mediated inflammation suggesting these amino acids as a novel therapeutic approach for correcting this condition.
Collapse
Affiliation(s)
- Anusree Sasidharan
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Astrid Grosche
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Xiaodong Xu
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - T. Bernard Kinane
- Pediatric Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Damiano Angoli
- Pediatric Pulmonary Division, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
4
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
6
|
Yin S, Ding M, Fan L, Yu X, Liang Z, Wu L, Gao Z, Lin L, Chen Y. Inhibition of Inflammation and Regulation of AQPs/ENaCs/Na +-K +-ATPase Mediated Alveolar Fluid Transport by Total Flavonoids Extracted From Nervilia fordii in Lipopolysaccharide-induced Acute Lung Injury. Front Pharmacol 2021; 12:603863. [PMID: 34887746 PMCID: PMC8650715 DOI: 10.3389/fphar.2021.603863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: The occurrence of vascular permeability pulmonary edema in acute lung injury (ALI) is related to the imbalance of alveolar fluid transport. Regulating the active transport of alveolar fluid by aquaporins (AQPs), epithelial sodium channels (ENaCs), and Na+-K+-ATPase can effectively reduce the edema fluid in the alveolar cavity and protect against ALI. We evaluated the therapeutic effects of total flavonoids, extracted from Nervilia fordii (TFENF), and investigated its potential mechanisms of alveolar fluid transport in a rat ALI model. Materials and methods: A model of lipopolysaccharide (LPS, 5 mg/kg)-induced ALI was established in Sprague-Dawley (SD) rats through the arteriae dorsalis penis. SD rats were divided into six groups, including the vehicle, LPS model, TFENF (6 mg/kg, 12 mg/kg, 24 mg/kg), and dexamethasone group (DEX group, 5 mg/kg). The wet-to-dry (W/D) lung weight ratio, oxygenation index, and histopathological observation were used to evaluate the therapeutic effect of TFENF. The mRNA expression of AQPs, ENaCs, and pro-inflammatory cytokines was determined using real-time polymerase chain reaction, whereas protein expression was determined using immunohistochemistry. The Na + -K + -ATPase activity was assessed using enzyme-linked immunosorbent assay. Results: LPS significantly stimulated the production of inflammatory mediators including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and disrupted the water transport balance in the alveolar cavity by inhibiting AQPs/ENaCs/Na + -K + -ATPase. Pretreatment with TFENF reduced the pathological damage and W/D ratio of the lungs and ameliorated the arterial blood oxygen partial pressure (PaO2) and oxygenation index. TFENF further decreased the mRNA level of TNF-α and IL-1β; increased the expression of AQP-1, AQP-5, αENaC, and βENaC; and increased Na + -K + -ATPase activity. Moreover, the regulation of AQPs, βENaC, and Na + -K + -ATPase and the inhibition of TNF-α and IL-1β by TFENF were found to be dose dependent. Conclusion: TFENF protects against LPS-induced ALI, at least in part, through the suppression of inflammatory cytokines and regulation of the active transport capacity of AQPs/ENaCs/Na + -K + -ATPase. These findings suggest the therapeutic potential of TFENF as phytomedicine to treat inflammation and pulmonary edema in ALI.
Collapse
Affiliation(s)
- Shuomiao Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meizhu Ding
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Long Fan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuhua Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ziyao Liang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lei Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zhiling Gao
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lin Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| |
Collapse
|
7
|
Liu J, Dean DA. Gene transfer of MRCKα rescues lipopolysaccharide-induced acute lung injury by restoring alveolar capillary barrier function. Sci Rep 2021; 11:20862. [PMID: 34675326 PMCID: PMC8531330 DOI: 10.1038/s41598-021-99897-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is characterized by alveolar edema accumulation with reduced alveolar fluid clearance (AFC), alveolar-capillary barrier disruption, and substantial inflammation, all leading to acute respiratory failure. Enhancing AFC has long been considered one of the primary therapeutic goals in gene therapy treatments for ARDS. We previously showed that electroporation-mediated gene delivery of the Na+, K+-ATPase β1 subunit not only increased AFC, but also restored alveolar barrier function through upregulation of tight junction proteins, leading to treatment of LPS-induced ALI in mice. We identified MRCKα as an interaction partner of β1 which mediates this upregulation in cultured alveolar epithelial cells. In this study, we investigate whether electroporation-mediated gene transfer of MRCKα to the lungs can attenuate LPS-induced acute lung injury in vivo. Compared to mice that received a non-expressing plasmid, those receiving the MRCKα plasmid showed attenuated LPS-increased pulmonary edema and lung leakage, restored tight junction protein expression, and improved overall outcomes. Interestingly, gene transfer of MRCKα did not alter AFC rates. Studies using both cultured microvascular endothelial cells and mice suggest that β1 and MRCKα upregulate junctional complexes in both alveolar epithelial and capillary endothelial cells, and that one or both barriers may be positively affected by our approach. Our data support a model of treatment for ALI/ARDS in which improvement of alveolar-capillary barrier function alone may be of more benefit than improvement of alveolar fluid clearance.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.,Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA. .,Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Wen XP, Wan QQ. Regulatory effect of insulin on the structure, function and metabolism of Na +/K +-ATPase (Review). Exp Ther Med 2021; 22:1243. [PMID: 34539839 PMCID: PMC8438676 DOI: 10.3892/etm.2021.10678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Na+/K+-ATPase is an ancient enzyme, the role of which is to maintain Na+ and K+ gradients across cell membranes, thus preserving intracellular ion homeostasis. The regulation of Na+/K+-ATPase is affected by several regulatory factors through a number of pathways, with hormones serving important short-term and long-term regulatory functions. Na+/K+-ATPase can also be degraded through activation of the ubiquitin proteasome and autophagy-lysosomal pathways, thereby affecting its abundance and enzymatic activity. As regards the regulatory effect of insulin, it has been found to upregulate the relative abundance of Na+/K+-ATPase and restore the transport efficiency in multiple in vitro and in vivo experiments. Therefore, elucidating the role of insulin in the regulation Na+/K+-ATPase may help uncover new drug targets for the treatment of related diseases. The aim of the present study was to review the structure and function of Na+/K+-ATPase and to discuss the possible mechanisms through which it may be regulated by insulin, in order to investigate the possibility of designing new therapies for related diseases.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qi-Quan Wan
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
9
|
Schmid B, Kredel M, Ullrich R, Krenn K, Lucas R, Markstaller K, Fischer B, Kranke P, Meybohm P, Zwißler B, Frank S. Safety and preliminary efficacy of sequential multiple ascending doses of solnatide to treat pulmonary permeability edema in patients with moderate-to-severe ARDS-a randomized, placebo-controlled, double-blind trial. Trials 2021; 22:643. [PMID: 34544463 PMCID: PMC8450703 DOI: 10.1186/s13063-021-05588-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a complex clinical diagnosis with various possible etiologies. One common feature, however, is pulmonary permeability edema, which leads to an increased alveolar diffusion pathway and, subsequently, impaired oxygenation and decarboxylation. A novel inhaled peptide agent (AP301, solnatide) was shown to markedly reduce pulmonary edema in animal models of ARDS and to be safe to administer to healthy humans in a Phase I clinical trial. Here, we present the protocol for a Phase IIB clinical trial investigating the safety and possible future efficacy endpoints in ARDS patients. Methods This is a randomized, placebo-controlled, double-blind intervention study. Patients with moderate to severe ARDS in need of mechanical ventilation will be randomized to parallel groups receiving escalating doses of solnatide or placebo, respectively. Before advancing to a higher dose, a data safety monitoring board will investigate the data from previous patients for any indication of patient safety violations. The intervention (application of the investigational drug) takes places twice daily over the course of 7 days, ensued by a follow-up period of another 21 days. Discussion The patients to be included in this trial will be severely sick and in need of mechanical ventilation. The amount of data to be collected upon screening and during the course of the intervention phase is substantial and the potential timeframe for inclusion of any given patient is short. However, when prepared properly, adherence to this protocol will make for the acquisition of reliable data. Particular diligence needs to be exercised with respect to informed consent, because eligible patients will most likely be comatose and/or deeply sedated at the time of inclusion. Trial registration This trial was prospectively registered with the EU Clinical trials register (clinicaltrialsregister.eu). EudraCT Number: 2017-003855-47.
Collapse
Affiliation(s)
- Benedikt Schmid
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Markus Kredel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Krenn
- Department of Anaesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Rudolf Lucas
- Vascular Biology Center, Division of Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, USA
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Peter Kranke
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Bernhard Zwißler
- Department of Anesthesiology, University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany.,Comprehensive Pulmonary Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sandra Frank
- Department of Anesthesiology, University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
| | | |
Collapse
|
10
|
Adamantos S. Fluid Therapy in Pulmonary Disease: How Careful Do We Need to Be? Front Vet Sci 2021; 8:624833. [PMID: 34434982 PMCID: PMC8380830 DOI: 10.3389/fvets.2021.624833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Intravenous fluid therapy is a vital and life-saving therapeutic in veterinary medicine. In the absence of heart or lung disease, trauma or sepsis there is limited evidence that fluid therapy will have a detrimental effect on lung function. In healthy dogs there is a reasonable level of experimental evidence that supraphysiologic rates of fluid are required before signs of fluid overload are made evident. In cats, however, this may not be the case. There are higher rates of asymptomatic myocardial disease, but even in the absence of that it seems that some cats may be susceptible to fluid overload. Where systemic inflammation already exists the careful homeostatic and protective mechanisms within the lung are deranged and increases in hydrostatic pressure are more likely to result in fluid movement into the lung tissues. Strategies including restricting the use of intravenous crystalloid fluid administration and using blood products for management of severe hemorrhage are of increasing importance in human trauma and seem to be associated with fewer pulmonary complications, and lower mortality. Managing dogs and cats with sepsis and acute respiratory distress syndrome is already challenging, but ensuring adequate vascular expansion needs to be balanced with avoiding excessive volume administration which may negatively impact pulmonary function. While fluids remain crucial to management of these conditions, there will be an ongoing requirement to balance need without providing excess. The use of point of care ultrasound may provide clinicians with a non-invasive and accessible way to do this.
Collapse
|
11
|
Kryvenko V, Vagin O, Dada LA, Sznajder JI, Vadász I. Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease. J Membr Biol 2021; 254:447-457. [PMID: 34114062 PMCID: PMC8192048 DOI: 10.1007/s00232-021-00184-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Klinikstrasse 33, 35392, Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - István Vadász
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Klinikstrasse 33, 35392, Giessen, Germany. .,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
12
|
Cui Y, Hou Y, Zhang H, Liu Y, Mao K, Nie H, Ding Y. Regulation of Electrolyte Permeability by Herbal Monomers in Edematous Disorders. Curr Pharm Des 2021; 27:833-839. [PMID: 32940173 DOI: 10.2174/1381612826666200917144655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Edema is a gradual accumulation of fluid in the interstitial tissues or luminal cavities, which is regulated by ion transport pathways and reflects dysfunction of fluid and salt homeostasis. Increasing evidence suggests that some herbal monomers significantly reduce organ/tissue edema. In this review, we briefly summarized the electrolyte permeability involved in pathomechanisms of organ edema, and the benefits of herbal monomers on ionic transport machinery, including Na+-K+-ATPase, Na+ and Cl- channels, Na+-K+-2Cl- co-transporter, etc. Pharmaceutical relevance is implicated in developing advanced strategies to mitigate edematous disorders. In conclusion, the natural herbal monomers regulate electrolyte permeability in many edematous disorders, and further basic and clinical studies are needed.
Collapse
Affiliation(s)
- Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Kinaneh S, Knany Y, Khoury EE, Ismael-Badarneh R, Hamoud S, Berger G, Abassi Z, Azzam ZS. Identification, localization and expression of NHE isoforms in the alveolar epithelial cells. PLoS One 2021; 16:e0239240. [PMID: 33882062 PMCID: PMC8059851 DOI: 10.1371/journal.pone.0239240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs), encoded by Solute Carrier 9A (SLC9A) genes in human, are ubiquitous integral membrane ion transporters that mediate the electroneutral exchange of H+ with Na+ or K+. NHEs, found in the kidney and intestine, play a major role in the process of fluid reabsorption together via Na+,K+-ATPase pump and Na+ channels. Nevertheless, the expression pattern of NHE in the lung and its role in alveolar fluid homeostasis has not been addressed. Therefore, we aimed to examine the expression of NHE specific isoforms in alveolar epithelial cells (AECs), and assess their role in congestive heart failure (CHF). Three NHE isoforms were identified in AEC and A549 cell line, at the level of protein and mRNA; NHE1, NHE2 and mainly NHE8, the latter was shown to be localized in the apical membrane of AEC. Treating A549 cells with angiotensin (Ang) II for 3, 5 and 24 hours displayed a significant reduction in NHE8 protein abundance. Moreover, the abundance of NHE8 protein was downregulated in A549 cells that were treated overnight with Ang II. NHE8 abundance in whole lung lysate was increased in rats with 1-week CHF compared to sham operated rats. However, lower abundance of NHE8 was observed in 4-week CHF group. In conclusion, we herein show for the first time, the expression of a novel NHE isoform in AEC, namely NHE8. Notably, Ang II decreased NHE8 protein levels. Moreover, NHE8 was distinctly affected in CHF rats, probably depending on the severity of the heart failure.
Collapse
Affiliation(s)
- Safa Kinaneh
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yara Knany
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Emad E. Khoury
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | | | - Shadi Hamoud
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “E”, Rambam: Human Health Care Campus, Haifa, Israel
| | - Gidon Berger
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “B”, Rambam: Human Health Care Campus, Haifa, Israel
| | - Zaid Abassi
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Zaher S. Azzam
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “B”, Rambam: Human Health Care Campus, Haifa, Israel
- * E-mail:
| |
Collapse
|
14
|
Kryvenko V, Vadász I. Molecular mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial barrier failure in severe COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1186-L1193. [PMID: 33689516 PMCID: PMC8238442 DOI: 10.1152/ajplung.00056.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A significant number of patients with coronavirus disease 2019 (COVID-19) develop acute respiratory distress syndrome (ARDS) that is associated with a poor outcome. The molecular mechanisms driving failure of the alveolar barrier upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain incompletely understood. The Na,K-ATPase is an adhesion molecule and a plasma membrane transporter that is critically required for proper alveolar epithelial function by both promoting barrier integrity and resolution of excess alveolar fluid, thus enabling appropriate gas exchange. However, numerous SARS-CoV-2-mediated and COVID-19-related signals directly or indirectly impair the function of the Na,K-ATPase, thereby potentially contributing to disease progression. In this Perspective, we highlight some of the putative mechanisms of SARS-CoV-2-driven dysfunction of the Na,K-ATPase, focusing on expression, maturation, and trafficking of the transporter. A therapeutic mean to selectively inhibit the maladaptive signals that impair the Na,K-ATPase upon SARS-CoV-2 infection might be effective in reestablishing the alveolar epithelial barrier and promoting alveolar fluid clearance and thus advantageous in patients with COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
15
|
Baloglu E, Nonnenmacher G, Seleninova A, Berg L, Velineni K, Ermis-Kaya E, Mairbäurl H. The role of hypoxia-induced modulation of alveolar epithelial Na +- transport in hypoxemia at high altitude. Pulm Circ 2020; 10:50-58. [PMID: 33110497 PMCID: PMC7557693 DOI: 10.1177/2045894020936662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reabsorption of excess alveolar fluid is driven by vectorial Na+-transport across alveolar epithelium, which protects from alveolar flooding and facilitates gas exchange. Hypoxia inhibits Na+-reabsorption in cultured cells and in-vivo by decreasing activity of epithelial Na+-channels (ENaC), which impairs alveolar fluid clearance. Inhibition also occurs during in-vivo hypoxia in humans and laboratory animals. Signaling mechanisms that inhibit alveolar reabsorption are poorly understood. Because cellular adaptation to hypoxia is regulated by hypoxia-inducible transcription factors (HIF), we tested whether HIFs are involved in decreasing Na+-transport in hypoxic alveolar epithelium. Expression of HIFs was suppressed in cultured rat primary alveolar epithelial cells (AEC) with shRNAs. Hypoxia (1.5% O2, 24 h) decreased amiloride-sensitive transepithelial Na+-transport, decreased the mRNA expression of α-, β-, and γ-ENaC subunits, and reduced the amount of αβγ-ENaC subunits in the apical plasma membrane. Silencing HIF-2α partially prevented impaired fluid reabsorption in hypoxic rats and prevented the hypoxia-induced decrease in α- but not the βγ-subunits of ENaC protein expression resulting in a less active form of ENaC in hypoxic AEC. Inhibition of alveolar reabsorption also caused pulmonary vasoconstriction in ventilated rats. These results indicate that a HIF-2α-dependent decrease in Na+-transport in hypoxic alveolar epithelium decreases alveolar reabsorption. Because susceptibles to high-altitude pulmonary edema (HAPE) have decreased Na+-transport even in normoxia, inhibition of alveolar reabsorption by hypoxia at high altitude might further impair alveolar gas exchange. Thus, aggravated hypoxemia might further enhance hypoxic pulmonary vasoconstriction and might subsequently cause HAPE.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Pharmacology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey.,Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | | | - Anna Seleninova
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Lena Berg
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Kalpana Velineni
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Ezgi Ermis-Kaya
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
17
|
Peesapati VSR, Sadik M, Verma S, Attallah MA, Khan S. Panoramic Dominance of the Immune System in Cardiorenal Syndrome Type I. Cureus 2020; 12:e9869. [PMID: 32963910 PMCID: PMC7500732 DOI: 10.7759/cureus.9869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Physiological organ cross-talk is necessary to maintain equilibrium and homeostasis. Heart and kidney are the essences of this equilibrium. Organ failure in either of these organs can perturb the bidirectional communication between them, impinging this unpleasant vascular and cellular milieu on other distant organs. Cardiorenal syndrome (CRS) type I occurs due to acute deterioration of cardiac function, ultimately causing acute kidney injury (AKI). This syndrome is an intricate condition with neurohormonal and inflammatory aspects. Inflammation creates a vicious circle filled with the innate and adaptive immune systems, pro-inflammatory cytokines, chemokines to actuate hemodynamic compromise in CRS type I patients. Pro-inflammatory cytokines not only aggravate fluid retention and venous congestion but also initiate apoptosis and oxidative stress. The immune response's primary motive is to elicit the heart and kidney to produce cytokines, intensifying the inflammatory process. Despite the possible standard of care, patient mortality, treatment cost, readmissions are extreme in CRS type I, and inflammation certainly has critical inferences warranting future research in humans.
Collapse
Affiliation(s)
| | - Mohammad Sadik
- Research, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
| | - Sadhika Verma
- Research, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, Manipal College of Medical Sciences, Pokhara, NPL
| | - Marline A Attallah
- Research, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavorial Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
18
|
Lee EH, Shin MH, Gi M, Park J, Song D, Hyun YM, Ryu JH, Seong JK, Jeon Y, Han G, Namkung W, Park MS, Choi JY. Inhibition of Pendrin by a small molecule reduces Lipopolysaccharide-induced acute Lung Injury. Theranostics 2020; 10:9913-9922. [PMID: 32929324 PMCID: PMC7481407 DOI: 10.7150/thno.46417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Pendrin is encoded by SLC26A4 and its mutation leads to congenital hearing loss. Additionally, pendrin is up-regulated in inflammatory airway diseases such as chronic obstructive pulmonary disease, allergic rhinitis, and asthma. In this study, the effects of a novel pendrin inhibitor, YS-01, were investigated in an LPS-induced acute lung injury (ALI) mice model, and the mechanism underlying the effect of YS-01 was examined. Methods: Lipopolysaccharide (LPS, 10 mg/kg) was intranasally instilled in wild type (WT) and pendrin-null mice. YS-01 (10 mg/kg) was administered intra-peritoneally before or after LPS inhalation. Lung injury parameters were assessed in the lung tissue and bronchoalveolar lavage fluid (BALF). Pendrin levels in the BALF of 41 patients with acute respiratory distress syndrome (ARDS) due to pneumonia and 25 control (solitary pulmonary nodule) patients were also measured. Results: LPS instillation induced lung injury in WT mice but not in pendrin-null mice. Pendrin expression was increased by LPS stimulation both in vitro and in vivo. YS-01 treatment dramatically attenuated lung injury and reduced BALF cell counts and protein concentration after LPS instillation in WT mice. Proinflammatory cytokines and NF-κB activation were suppressed by YS-01 treatment in LPS-induced ALI mice. In BALF of patients whose ARDS was caused by pneumonia, pendrin expression was up-regulated compared to that in controls (mean, 24.86 vs. 6.83 ng/mL, P < 0.001). Conclusions: A novel pendrin inhibitor, YS-01, suppressed lung injury in LPS-induced ALI mice and our data provide a new strategy for the treatment of inflammatory airway diseases including sepsis-induced ALI.
Collapse
|
19
|
Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate Matter Induces Tissue OxInflammation: From Mechanism to Damage. Antioxid Redox Signal 2020; 33:308-326. [PMID: 32443938 DOI: 10.1089/ars.2019.8015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Brittany Woodby
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sandra María Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome. Redox Biol 2020; 36:101592. [PMID: 32506040 PMCID: PMC7276446 DOI: 10.1016/j.redox.2020.101592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time that CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) are increased in the plasma of patients exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive epithelial Na+ channel (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. A single intramuscular injection of the heme-scavenging protein, hemopexin (4 μg/kg body weight), one hour post halogen gas exposure, decreased plasma CFH and improved lung ENaC activity in mice. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.
Collapse
|
21
|
Contini M, Spadafora E, Barbieri S, Gugliandolo P, Salvioni E, Magini A, Apostolo A, Palermo P, Alimento M, Agostoni P. Effects of β 2-receptor stimulation by indacaterol in chronic heart failure treated with selective or non-selective β-blockers: a randomized trial. Sci Rep 2020; 10:7101. [PMID: 32345990 PMCID: PMC7188807 DOI: 10.1038/s41598-020-62644-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/24/2020] [Indexed: 11/09/2022] Open
Abstract
Alveolar β2-receptor blockade worsens lung diffusion in heart failure (HF). This effect could be mitigated by stimulating alveolar β2-receptors. We investigated the safety and the effects of indacaterol on lung diffusion, lung mechanics, sleep respiratory behavior, cardiac rhythm, welfare, and exercise performance in HF patients treated with a selective (bisoprolol) or a non-selective (carvedilol) β-blocker. Study procedures were performed before and after indacaterol and placebo treatments according to a cross-over, randomized, double-blind protocol in forty-four patients (27 on bisoprolol and 17 on carvedilol). No differences between indacaterol and placebo were observed in the whole population except for a significantly higher VE/VCO2 slope and lower maximal PETCO2 during exercise with indacaterol, entirely due to the difference in the bisoprolol group (VE/VCO2 31.8 ± 5.9 vs. 28.5 ± 5.6, p < 0.0001 and maximal PETCO2 36.7 ± 5.5 vs. 37.7 ± 5.8 mmHg, p < 0.02 with indacaterol and placebo, respectively). In carvedilol, indacaterol was associated with a higher peak heart rate (119 ± 34 vs. 113 ± 30 bpm, with indacaterol and placebo) and a lower prevalence of hypopnea during sleep (3.8 [0.0;6.3] vs. 5.8 [2.9;10.5] events/hour, with indacaterol and placebo). Inhaled indacaterol is well tolerated in HF patients, it does not influence lung diffusion, and, in bisoprolol, it increases ventilation response to exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy. .,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy.
| |
Collapse
|
22
|
Sinagra G, Corrà U, Contini M, Magrì D, Paolillo S, Perrone Filardi P, Sciomer S, Badagliacca R, Agostoni P. Choosing among β-blockers in heart failure patients according to β-receptors' location and functions in the cardiopulmonary system. Pharmacol Res 2020; 156:104785. [PMID: 32224252 DOI: 10.1016/j.phrs.2020.104785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Several large clinical trials showed a favorable effect of β-blocker treatment in patients with chronic heart failure (HF) as regards overall mortality, cardiovascular mortality, and hospitalizations. Indeed, the use of β-blockers is strongly recommended by current international guidelines, and it remains a cornerstone in the pharmacological treatment of HF. Although different types of β-blockers are currently approved for HF therapy, possible criteria to choose the best β-blocking agent according to HF patients' characteristics and to β-receptors' location and functions in the cardiopulmonary system are still lacking. In such a context, a growing body of literature shows remarkable differences between β-blocker types (β1-selective blockers versus β1-β2 blockers) with respect to alveolar-capillary gas diffusion and chemoreceptor response in HF patients, both factors able to impact on quality of life and, most likely, on prognosis. This review suggests an original algorithm for choosing among the currently available β-blocking agents based on the knowledge of cardiopulmonary pathophysiology. Particularly, starting from lung physiology and from some experimental models, it focuses on the mechanisms underlying lung mechanics, chemoreceptors, and alveolar-capillary unit impairment in HF. This paper also remarks the significant benefit deriving from the correct use of the different β-blockers in HF patients through a brief overview of the most important clinical trials.
Collapse
Affiliation(s)
- Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ugo Corrà
- Cardiology Department, Istituti Clinici Scientifici Maugeri, Veruno Institute, Veruno, Italy
| | | | - Damiano Magrì
- Department of Clinical and Molecular Medicine, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | | | - Susanna Sciomer
- Dipartimento Di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Roberto Badagliacca
- Dipartimento Di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy.
| |
Collapse
|
23
|
Abstract
The pulmonary blood-gas barrier represents a remarkable feat of engineering. It achieves the exquisite thinness needed for gas exchange by diffusion, the strength to withstand the stresses and strains of repetitive and changing ventilation, and the ability to actively maintain itself under varied demands. Understanding the design principles of this barrier is essential to understanding a variety of lung diseases, and to successfully regenerating or artificially recapitulating the barrier ex vivo. Many classical studies helped to elucidate the unique structure and morphology of the mammalian blood-gas barrier, and ongoing investigations have helped to refine these descriptions and to understand the biological aspects of blood-gas barrier function and regulation. This article reviews the key features of the blood-gas barrier that enable achievement of the necessary design criteria and describes the mechanical environment to which the barrier is exposed. It then focuses on the biological and mechanical components of the barrier that preserve integrity during homeostasis, but which may be compromised in certain pathophysiological states, leading to disease. Finally, this article summarizes recent key advances in efforts to engineer the blood-gas barrier ex vivo, using the platforms of lung-on-a-chip and tissue-engineered whole lungs. © 2020 American Physiological Society. Compr Physiol 10:415-452, 2020.
Collapse
Affiliation(s)
- Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
24
|
The Hen or the Egg: Impaired Alveolar Oxygen Diffusion and Acute High-altitude Illness? Int J Mol Sci 2019; 20:ijms20174105. [PMID: 31443549 PMCID: PMC6747186 DOI: 10.3390/ijms20174105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
Abstract
Individuals ascending rapidly to altitudes >2500 m may develop symptoms of acute mountain sickness (AMS) within a few hours of arrival and/or high-altitude pulmonary edema (HAPE), which occurs typically during the first three days after reaching altitudes above 3000-3500 m. Both diseases have distinct pathologies, but both present with a pronounced decrease in oxygen saturation of hemoglobin in arterial blood (SO2). This raises the question of mechanisms impairing the diffusion of oxygen (O2) across the alveolar wall and whether the higher degree of hypoxemia is in causal relationship with developing the respective symptoms. In an attempt to answer these questions this article will review factors affecting alveolar gas diffusion, such as alveolar ventilation, the alveolar-to-arterial O2-gradient, and balance between filtration of fluid into the alveolar space and its clearance, and relate them to the respective disease. The resultant analysis reveals that in both AMS and HAPE the main pathophysiologic mechanisms are activated before aggravated decrease in SO2 occurs, indicating that impaired alveolar epithelial function and the resultant diffusion limitation for oxygen may rather be a consequence, not the primary cause, of these altitude-related illnesses.
Collapse
|
25
|
Abstract
Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by noncardiogenic pulmonary edema. Despite five decades of basic and clinical research, there is still no effective pharmacotherapy for this condition and the treatment remains primarily supportive. It is critical to study the molecular and physiologic mechanisms that cause ARDS to improve our understanding of this syndrome and reduce mortality. The goal of this review is to describe our current understanding of the pathogenesis and pathophysiology of ARDS. First, we will describe how pulmonary edema fluid accumulates in ARDS due to lung inflammation and increased alveolar endothelial and epithelial permeabilities. Next, we will review how pulmonary edema fluid is normally cleared in the uninjured lung, and describe how these pathways are disrupted in ARDS. Finally, we will explain how clinical trials and preclinical studies of novel therapeutic agents have further refined our understanding of this condition, highlighting, in particular, the study of mesenchymal stromal cells in the treatment of ARDS.
Collapse
Affiliation(s)
- Laura A. Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
26
|
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight 2019; 4:e124061. [PMID: 30674720 PMCID: PMC6413834 DOI: 10.1172/jci.insight.124061] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality and arises after lung infection or infection at extrapulmonary sites. An aberrant host response to infection leads to disruption of the pulmonary alveolar-capillary barrier, resulting in lung injury characterized by hypoxemia, inflammation, and noncardiogenic pulmonary edema. Despite increased understanding of the molecular biology underlying sepsis-induced ARDS, there are no targeted pharmacologic therapies for this devastating condition. Here, we review the molecular underpinnings of sepsis-induced ARDS with a focus on relevant clinical and translational studies that point toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Joshua A. Englert
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Keddissi JI, Youness HA, Jones KR, Kinasewitz GT. Fluid management in Acute Respiratory Distress Syndrome: A narrative review. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2018; 55:1-8. [PMID: 31297439 PMCID: PMC6591787 DOI: 10.29390/cjrt-2018-016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute Respiratory Distress Syndrome remains a major source of morbidity and mortality in the modern intensive care unit (ICU). Major advances in the understanding and management of this condition were made in the last two decades. The use of low tidal ventilation is a well-established therapy. Conservative fluid management is now another cornerstone of management. However, much remains to be understood in this arena. Assessing volume status in these patients may be challenging and the tools available to do so are far from perfect. Several dynamic measures including pulse pressures variation are used. Ultrasound of the lungs and the vascular system may also have a role. In addition, the type of fluid to administer when needed is still open to debate. Finally, supportive measures in these patients, early during their ICU stay and later after discharge continue to be crucial for survival and adequate recovery.
Collapse
Affiliation(s)
- Jean I Keddissi
- Section of Pulmonary, Critical Care and Sleep Medicine, The Oklahoma City VA HealthCare System and the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Houssein A Youness
- Section of Pulmonary, Critical Care and Sleep Medicine, The Oklahoma City VA HealthCare System and the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kellie R Jones
- Section of Pulmonary, Critical Care and Sleep Medicine, The Oklahoma City VA HealthCare System and the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Gary T Kinasewitz
- Section of Pulmonary, Critical Care and Sleep Medicine, The Oklahoma City VA HealthCare System and the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
28
|
Li Y, Zhang Y, Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir Med 2018; 145:145-152. [DOI: 10.1016/j.rmed.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|
29
|
Li Y, Han J, Chen Y, Chen C, Chu B, Zhang Y. p-Coumaric acid as a prophylactic measure against normobaric hypoxia induced pulmonary edema in mice. Life Sci 2018; 211:215-223. [PMID: 30248349 DOI: 10.1016/j.lfs.2018.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023]
Abstract
AIMS Previous studies indicate that the anti-hypoxia effects of Tibetan Turnip (Brassica rapa ssp. rapa) were closely related to its characteristic components being p-coumaric acid (CA) and p-coumaric acid‑β‑d‑glucopyranoside (CAG). Since CAG would be converted to CA in vivo, this study aims to further examine the efficacy and mechanism of CA against pulmonary edema induced by normobaric hypoxia. MAIN METHODS Male ICR mice were assigned to the normoxia group and several hypoxia groups, given sterile water, CA or dexamethasone orally, once daily for four consecutive days. One hour after the final gavage, mice in the above hypoxia groups were put into the normobaric hypoxia chamber (9.5% O2) for 24 h while mice in normoxia group remained outside the chamber. After hypoxia exposure, lung water content (LWC), pulmonary vascular permeability, the protein content of bronchoalveolar lavage fluid (BALF), plasma total nitrate/nitrite (NOx) and endothelin-1 (ET-1) content, histological and ultra-microstructure analyses were performed. Expression of occludin was assayed by immunohistochemistry. KEY FINDINGS In a hypoxic environment of 9.5% O2, mice treated with 100 mg/kg body wt CA had significantly lower LWC and BALF protein content than mice in the hypoxia vehicle group. Meanwhile, mice in CA group showed intact lung blood-gas-barrier, increased levels of plasma total NO, decreased levels of plasma ET-1 and upregulation of occludin expression. SIGNIFICANCE CA exerts preventive effects against normobaric hypoxic pulmonary edema in mice, its mechanisms involved improving the integrity of the lung barrier, inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yunhong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianxin Han
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yufeng Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chun Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bingquan Chu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science & Technology, Hangzhou 310023, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
30
|
Richard C, Shabbir W, Ferraro P, Massé C, Berthiaume Y. Alveolar liquid clearance in lung injury: Evaluation of the impairment of the β 2-adrenergic agonist response in an ischemia-reperfusion lung injury model. Respir Physiol Neurobiol 2018; 259:104-110. [PMID: 30171906 DOI: 10.1016/j.resp.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023]
Abstract
While alveolar liquid clearance (ALC) mediated by the β2-adrenergic receptor (β2-AR) plays an important role in lung edema resolution in certain models of lung injury, in more severe lung injury models, this response might disappear. Indeed, we have shown that in an ischemia-reperfusion-induced lung injury model, β2-agonists do not enhance ALC. The objective of this study was to determine if downregulation of the β2-AR could explain the lack of response to β2-agonists in this lung injury model. In an in vivo canine model of lung transplantation, we observed no change in β2-AR concentration or affinity in the injured transplanted lungs compared to the native lungs. Furthermore, we could not enhance ALC in transplanted lungs with dcAMP + aminophylline, a treatment that bypasses the β2-adrenergic receptor and is known to stimulate ALC in normal lungs. However, transplantation decreased αENaC expression in the lungs by 50%. We conclude that the lack of response to β2-agonists in ischemia-reperfusion-induced lung injury is not associated with significant downregulation of the β2-adrenergic receptors but is attributable to decreased expression of the ENaC channel, which is essential for sodium transport and alveolar liquid clearance in the lung.
Collapse
Affiliation(s)
- Chloé Richard
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Pasquale Ferraro
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Département de chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Massé
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Yves Berthiaume
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada.
| |
Collapse
|
31
|
Abstract
Heart failure treatment depends on several drugs, all providing improvement in outcome, but that cannot be realistically used all together in the same patient. It would be useful to have a tool that allows the arrangement of the most appropriate therapy cocktail for each patient. The aim of this article is to show the main differences in the effects of several drugs on cardiopulmonary function in patients with heart failure, both while resting and during exercise, and to discuss how these differences can be taken into account when choosing the most appropriate therapeutic protocol. In summary, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers act synergistically to increase exercise capacity and peak oxygen uptake, but through different mechanisms: the former improving lung diffusion and exercise ventilatory efficiency, an action that is counteracted by concomitant aspirin therapy, and the latter probably by improving muscle perfusion. As for β-blockers, nonselective compounds, such as carvedilol, improve ventilation efficiency on the one hand, but interfere with lung diffusion on the other, and they are probably less tolerated under hypoxic conditions. On the contrary, β1-selective compounds, such as bisoprolol or nebivolol, have a neutral effect on both lung diffusion and ventilation efficiency. These observations could be the basis for the choice of pharmacological therapy in patients with heart failure.
Collapse
|
32
|
Jaffee W, Hodgins S, McGee WT. Tissue Edema, Fluid Balance, and Patient Outcomes in Severe Sepsis: An Organ Systems Review. J Intensive Care Med 2017; 33:502-509. [DOI: 10.1177/0885066617742832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severe sepsis and septic shock remain among the deadliest diseases managed in the intensive care unit. Fluid resuscitation has been a mainstay of early treatment, but the deleterious effects of excessive fluid administration leading to tissue edema are becoming clearer. A positive fluid balance at 72 hours is associated with significantly increased mortality, yet ongoing fluid administration beyond a durable increase in cardiac output is common. We review the pathophysiologic and clinical data showing the negative effects of edema on pulmonary, renal, central nervous, hepatic, and cardiovascular systems. We discuss data showing increased morbidity and mortality following nonjudicious fluid administration and challenge the assumption that patients who are fluid responsive are also likely to benefit from that fluid. The distinctions between fluid requirement, responsiveness, and tolerance are central to newer concepts of resuscitation. We summarize data in each organ system showing a predictable increase in morbidity and mortality with nonbeneficial fluid administration, providing a better framework for precision in volume management of the patient with severe sepsis.
Collapse
Affiliation(s)
- Will Jaffee
- Baystate Medical Center, University of Massachusetts Medical School, Springfield, MA, USA
| | - Spencer Hodgins
- Baystate Medical Center, University of Massachusetts Medical School, Springfield, MA, USA
| | - William T. McGee
- Baystate Medical Center, University of Massachusetts Medical School, Springfield, MA, USA
| |
Collapse
|
33
|
Brazee PL, Soni PN, Tokhtaeva E, Magnani N, Yemelyanov A, Perlman HR, Ridge KM, Sznajder JI, Vagin O, Dada LA. FXYD5 Is an Essential Mediator of the Inflammatory Response during Lung Injury. Front Immunol 2017; 8:623. [PMID: 28620381 PMCID: PMC5451504 DOI: 10.3389/fimmu.2017.00623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
The alveolar epithelium secretes cytokines and chemokines that recruit immune cells to the lungs, which is essential for fighting infections but in excess can promote lung injury. Overexpression of FXYD5, a tissue-specific regulator of the Na,K-ATPase, in mice, impairs the alveolo-epithelial barrier, and FXYD5 overexpression in renal cells increases C-C chemokine ligand-2 (CCL2) secretion in response to lipopolysaccharide (LPS). The aim of this study was to determine whether FXYD5 contributes to the lung inflammation and injury. Exposure of alveolar epithelial cells (AEC) to LPS increased FXYD5 levels at the plasma membrane, and FXYD5 silencing prevented both the activation of NF-κB and the secretion of cytokines in response to LPS. Intratracheal instillation of LPS into mice increased FXYD5 levels in the lung. FXYD5 overexpression increased the recruitment of interstitial macrophages and classical monocytes to the lung in response to LPS. FXYD5 silencing decreased CCL2 levels, number of cells, and protein concentration in bronchoalveolar lavage fluid (BALF) after LPS treatment, indicating that FXYD5 is required for the NF-κB-stimulated epithelial production of CCL2, the influx of immune cells, and the increase in alveolo-epithelial permeability in response to LPS. Silencing of FXYD5 also prevented the activation of NF-κB and cytokine secretion in response to interferon α and TNF-α, suggesting that pro-inflammatory effects of FXYD5 are not limited to the LPS-induced pathway. Furthermore, in the absence of other stimuli, FXYD5 overexpression in AEC activated NF-κB and increased cytokine production, while FXYD5 overexpression in mice increased cytokine levels in BALF, indicating that FXYD5 is sufficient to induce the NF-κB-stimulated cytokine secretion by the alveolar epithelium. The FXYD5 overexpression also increased cell counts in BALF, which was prevented by silencing the CCL2 receptor (CCR2), or by treating mice with a CCR2-blocking antibody, confirming that FXYD5-induced CCL2 production leads to the recruitment of monocytes to the lung. Taken together, the data demonstrate that FXYD5 is a key contributor to inflammatory lung injury.
Collapse
Affiliation(s)
- Patricia L Brazee
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Pritin N Soni
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elmira Tokhtaeva
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Natalia Magnani
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alex Yemelyanov
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Harris R Perlman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen M Ridge
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Laura A Dada
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
34
|
Gwoździńska P, Buchbinder BA, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia Impairs ENaC Cell Surface Stability by Promoting Phosphorylation, Polyubiquitination and Endocytosis of β-ENaC in a Human Alveolar Epithelial Cell Line. Front Immunol 2017; 8:591. [PMID: 28588583 PMCID: PMC5440515 DOI: 10.3389/fimmu.2017.00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/04/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury is associated with formation of pulmonary edema leading to impaired gas exchange. Patients with acute respiratory distress syndrome (ARDS) require mechanical ventilation to improve oxygenation; however, the use of relatively low tidal volumes (to minimize further injury of the lung) often leads to further accumulation of carbon dioxide (hypercapnia). Hypercapnia has been shown to impair alveolar fluid clearance (AFC), thereby causing retention of pulmonary edema, and may lead to worse outcomes; however, the underlying molecular mechanisms remain incompletely understood. AFC is critically dependent on the epithelial sodium channel (ENaC), which drives the vectorial transport of Na+ across the alveolar epithelium. Thus, in the current study, we investigated the mechanisms by which hypercapnia effects ENaC cell surface stability in alveolar epithelial cells (AECs). Elevated CO2 levels led to polyubiquitination of β-ENaC and subsequent endocytosis of the α/β-ENaC complex in AECs, which were prevented by silencing the E3 ubiquitin ligase, Nedd4-2. Hypercapnia-induced ubiquitination and cell surface retrieval of ENaC were critically dependent on phosphorylation of the Thr615 residue of β-ENaC, which was mediated by the extracellular signal-regulated kinase (ERK)1/2. Furthermore, activation of ERK1/2 led to subsequent activation of AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK)1/2 that in turn phosphorylated Nedd4-2 at the Thr899 residue. Importantly, mutation of Thr899 to Ala markedly inhibited the CO2-induced polyubiquitination of β-ENaC and restored cell surface stability of the ENaC complex, highlighting the critical role of Nedd4-2 phosphorylation status in targeting ENaC. Collectively, our data suggest that elevated CO2 levels promote activation of the ERK/AMPK/JNK axis in a human AEC line, in which ERK1/2 phosphorylates β-ENaC whereas JNK mediates phosphorylation of Nedd4-2, thereby facilitating the channel-ligase interaction. The hypercapnia-induced ENaC dysfunction may contribute to impaired alveolar edema clearance and thus, interfering with these molecular mechanisms may improve alveolar fluid balance and lead to better outcomes in patients with ARDS.
Collapse
Affiliation(s)
- Paulina Gwoździńska
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Benno A Buchbinder
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
35
|
Zhang JL, Zhuo XJ, Lin J, Luo LC, Ying WY, Xie X, Zhang HW, Yang JX, Li D, Gao Smith F, Jin SW. Maresin1 stimulates alveolar fluid clearance through the alveolar epithelial sodium channel Na,K-ATPase via the ALX/PI3K/Nedd4-2 pathway. J Transl Med 2017; 97:543-554. [PMID: 28218740 DOI: 10.1038/labinvest.2016.150] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Maresin1 (MaR1) is a new docosahexaenoic acid-derived pro-resolving agent that promotes the resolution of inflammation. In this study, we sought to investigate the effect and underlining mechanisms of MaR1 in modulating alveolar fluid clearance (AFC) on LPS-induced acute lung injury. MaR1 was injected intravenously or administered by instillation (200 ng/kg) 8 h after LPS (14 mg/kg) administration and AFC was measured in live rats. In primary rat alveolar type II epithelial cells, MaR1 (100 nM) was added to the culture medium with lipopolysaccharide for 6 h. MaR1 markedly stimulated AFC in LPS-induced lung injury, with the outcome of decreased pulmonary edema and lung injury. In addition, rat lung tissue protein was isolated after intervention, and we found MaR1 improved epithelial sodium channel (ENaC), Na,K-adenosine triphosphatase (ATPase) protein expression and Na,K-ATPase activity. MaR1 down-regulated Nedd4-2 protein expression though PI3k/Akt but not though PI3k/SGK1 pathway in vivo. In primary rat alveolar type II epithelial cells stimulated with LPS, MaR1-upregulated ENaC and Na,K-ATPase protein abundance in the plasma membrane. Finally, the lipoxin A4 Receptor inhibitor (BOC-2) and PI3K inhibitor (LY294002) not only blocked MaR1's effects on cAMP/cGMP, the expression of phosphorylated Akt and Nedd4-2, but also inhibited the effect of MaR1 on AFC in vivo. In conclusion, MaR1 stimulates AFC through a mechanism partly dependent on alveolar epithelial ENaC and Na,K-ATPase activation via the ALX/PI3K/Nedd4-2 signaling pathway. Our findings reveal a novel mechanism for pulmonary edema fluid reabsorption and MaR1 may provide a new therapy for the resolution of ALI/ARDS.
Collapse
Affiliation(s)
- Jun-Li Zhang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiao-Jun Zhuo
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing Lin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ling-Chun Luo
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wei-Yang Ying
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Xie
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hua-Wei Zhang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing-Xiang Yang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dan Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Academic Department of Anesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
36
|
Huppert LA, Matthay MA. Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Front Immunol 2017; 8:371. [PMID: 28439268 PMCID: PMC5383664 DOI: 10.3389/fimmu.2017.00371] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 01/11/2023] Open
Abstract
Critically ill patients with respiratory failure from acute respiratory distress syndrome (ARDS) have reduced ability to clear alveolar edema fluid. This reduction in alveolar fluid clearance (AFC) contributes to the morbidity and mortality in ARDS. Thus, it is important to understand why AFC is reduced in ARDS in order to design targeted therapies. In this review, we highlight experiments that have advanced our understanding of ARDS pathogenesis, with particular reference to the alveolar epithelium. First, we review how vectorial ion transport drives the clearance of alveolar edema fluid in the uninjured lung. Next, we describe how alveolar edema fluid is less effectively cleared in lungs affected by ARDS and describe selected in vitro and in vivo experiments that have elucidated some of the molecular mechanisms responsible for the reduced AFC. Finally, we describe one potential therapy that targets this pathway: bone marrow-derived mesenchymal stem (stromal) cells (MSCs). Based on preclinical studies, MSCs enhance AFC and promote the resolution of pulmonary edema and thus may offer a promising cell-based therapy for ARDS.
Collapse
Affiliation(s)
- Laura A Huppert
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, UCSF School of Medicine, Cardiovascular Research Institute, San Francisco, CA, USA
| |
Collapse
|
37
|
Involvement of the Bufadienolides in the Detection and Therapy of the Acute Respiratory Distress Syndrome. Lung 2017; 195:323-332. [PMID: 28260175 DOI: 10.1007/s00408-017-9989-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE The acute respiratory distress syndrome (ARDS) represents a major challenge for clinicians as well as basic scientists. The mortality rate for ARDS has been maintained within the range of 40-52%. The authors have examined the involvement of the "cardiotonic steroids" in the pathogenesis and therapy of ARDS. We have studied the possible role of the bufadienolide, marinobufagenin (MBG), in the pathogenesis of ARDS in both a rat model of ARDS and in patients afflicted with that disorder. In addition, the potential therapeutic benefit of an antagonist of MBG, resibufogenin (RBG), in an animal model has been evaluated. METHOD A syndrome resembling human ARDS was produced in the rat by exposing the animals to 100% oxygen for 48 h. In other animals, RBG was administered to these "hyperoxic" rats, and the serum MBG was measured. In human ICU patients, urinary samples were examined for levels of MBG, and the values were compared to those obtained from other ICU patients admitted with diagnoses other than ARDS. RESULTS (1) Exposure of rats to hyperoxia produced a histologic picture which resembled that of human ARDS. (2) Serum levels of MBG in the "hyperoxic" rats substantially exceeded those obtained in animals exposed to ambient oxygen levels and were reduced to normal by RBG. (3) In ARDS patients, substantial elevations in urinary MBG were obtained compared to those in non-ARDS ICU patients. CONCLUSIONS MBG may serve as an important biomarker for the development of ARDS, and RBG may represent a preventative/therapy in this disorder.
Collapse
|
38
|
Rozanski E, Lynch A. Fluid Therapy in Lung Disease. Vet Clin North Am Small Anim Pract 2016; 47:461-470. [PMID: 27914758 DOI: 10.1016/j.cvsm.2016.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluid therapy is the cornerstone of supportive care in veterinary medicine. In dogs and cats with preexisting confirmed or suspected pulmonary disease, concerns may exist that the fluid therapy may impair gas exchange, either through increases in hydrostatic pressures or extravasation. Colloidal therapy is more likely to magnify lung injury compared with isotonic crystalloids. Radiographic evidence of fluid overload is a late-stage finding, whereas point-of-care ultrasound may provide earlier information that can also be assessed periodically at the patient side. Cases should be evaluated individually, but generally a conservative fluid therapy plan is preferred with close monitoring of its tolerance.
Collapse
Affiliation(s)
- Elizabeth Rozanski
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, 55 Willard Street, North Grafton, MA 01536, USA.
| | - Alex Lynch
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32608, USA
| |
Collapse
|
39
|
Tokhtaeva E, Sun H, Deiss-Yehiely N, Wen Y, Soni PN, Gabrielli NM, Marcus EA, Ridge KM, Sachs G, Vazquez-Levin M, Sznajder JI, Vagin O, Dada LA. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci 2016; 129:2394-406. [PMID: 27142834 DOI: 10.1242/jcs.186148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/26/2016] [Indexed: 12/24/2022] Open
Abstract
FXYD5 (also known as dysadherin), a regulatory subunit of the Na,K-ATPase, impairs intercellular adhesion by a poorly understood mechanism. Here, we determined whether FXYD5 disrupts the trans-dimerization of Na,K-ATPase molecules located in neighboring cells. Mutagenesis of the Na,K-ATPase β1 subunit identified four conserved residues, including Y199, that are crucial for the intercellular Na,K-ATPase trans-dimerization and adhesion. Modulation of expression of FXYD5 or of the β1 subunit with intact or mutated β1-β1 binding sites demonstrated that the anti-adhesive effect of FXYD5 depends on the presence of Y199 in the β1 subunit. Immunodetection of the plasma membrane FXYD5 was prevented by the presence of O-glycans. Partial FXYD5 deglycosylation enabled antibody binding and showed that the protein level and the degree of O-glycosylation were greater in cancer than in normal cells. FXYD5-induced impairment of adhesion was abolished by both genetic and pharmacological inhibition of FXYD5 O-glycosylation. Therefore, the extracellular O-glycosylated domain of FXYD5 impairs adhesion by interfering with intercellular β1-β1 interactions, suggesting that the ratio between FXYD5 and α1-β1 heterodimer determines whether the Na,K-ATPase acts as a positive or negative regulator of intercellular adhesion.
Collapse
Affiliation(s)
- Elmira Tokhtaeva
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| | - Haying Sun
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nimrod Deiss-Yehiely
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yi Wen
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| | - Pritin N Soni
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nieves M Gabrielli
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Instituto de Biología y Medicina Experimental (CONICET-FIBYME), Buenos Aires C1418ADN, Argentina
| | - Elizabeth A Marcus
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Sachs
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| | - Mónica Vazquez-Levin
- Instituto de Biología y Medicina Experimental (CONICET-FIBYME), Buenos Aires C1418ADN, Argentina
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Li J, Huang S, Zhang J, Feng C, Gao D, Yao B, Wu X, Fu X. Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2016; 13:3755-62. [PMID: 27035760 PMCID: PMC4838139 DOI: 10.3892/mmr.2016.5004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 02/04/2016] [Indexed: 01/18/2023] Open
Abstract
Lung epithelium restoration subsequent to injury is of concern in association with the outcomes of diverse inflammatory lung diseases. Previous studies have demonstrated that mesenchymal stem cells (MSCs) may promote epithelial repair subsequent to inflammatory injury, however the mechanism that mediates this effect remains unclear. The current study examined the role of MSCs in alveolar type II epithelial cell (AT-II cell) restoration subsequent to an inflammatory insult. AT-II cells were firstly exposed to inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, then were co-cultured with MSCs in Transwell for 72 h. Cell proliferation, expression of surfactant protein A (SP-A) and expression of the α1 subunit were evaluated respectively by the Cell Counting Kit-8 assay, western blotting and semiquantitative reverse transcription-polymerase chain reaction. Keratinocyte growth factor (KGF) small interfering RNA (siRNA) was applied to knockdown the main cytoprotective factors in the MSCs. Subsequent to an inflammatory insult, AT-II cells were observed to be impaired, exhibiting the characteristics of injured cell morphology, reduced cell proliferation and reduced expression of SP-A and the α1 subunit. Co-culture with MSCs significantly ameliorated these cell impairments, while these benefits were weakened by the application of KGF siRNA. Simultaneously, expression levels of phosphorylated (p-) protein kinase B (AKT) and p-mammalian target of rapamycin (mTOR) in AT-II cells were upregulated by MSCs, suggesting activation of the phosphoinositide 3-kinase (PI3K) pathway. These data demonstrate that administration of MSCs to the inflammation-insulted AT-II cells may ameliorate the impairments through a KGF-dependent PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Thoracic and Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sha Huang
- Key Laboratory of Wound Repair and Regeneration of People's Liberation Army, The First Affiliated Hospital, Trauma Center of Postgraduate Medical College, Beijing 100048, P.R. China
| | - Junhua Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Changjiang Feng
- Department of Thoracic and Cardiovascular Surgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Dongyun Gao
- Department of Oncology, Dongtai People's Hospital, Dongtai, Jiangsu 224200, P.R. China
| | - Bin Yao
- Key Laboratory of Wound Repair and Regeneration of People's Liberation Army, The First Affiliated Hospital, Trauma Center of Postgraduate Medical College, Beijing 100048, P.R. China
| | - Xu Wu
- Department of Thoracic and Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of People's Liberation Army, The First Affiliated Hospital, Trauma Center of Postgraduate Medical College, Beijing 100048, P.R. China
| |
Collapse
|
41
|
β1-Na(+),K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury. Gene Ther 2016; 23:489-99. [PMID: 26910760 DOI: 10.1038/gt.2016.19] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 01/05/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with diverse disorders and characterized by disruption of the alveolar-capillary barrier, leakage of edema fluid into the lung, and substantial inflammation leading to acute respiratory failure. Gene therapy is a potentially powerful approach to treat ALI/ARDS through repair of alveolar epithelial function. Herein, we show that delivery of a plasmid expressing β1-subunit of the Na(+),K(+)-ATPase (β1-Na(+),K(+)-ATPase) alone or in combination with epithelial sodium channel (ENaC) α1-subunit using electroporation not only protected from subsequent lipopolysaccharide (LPS)-mediated lung injury, but also treated injured lungs. However, transfer of α1-subunit of ENaC (α1-ENaC) alone only provided protection benefit rather than treatment benefit although alveolar fluid clearance had been remarkably enhanced. Gene transfer of β1-Na(+),K(+)-ATPase, but not α1-ENaC, not only enhanced expression of tight junction protein zona occludins-1 (ZO-1) and occludin both in cultured cells and in mouse lungs, but also reduced pre-existing increase of lung permeability in vivo. These results demonstrate that gene transfer of β1-Na(+),K(+)-ATPase upregulates tight junction formation and therefore treats lungs with existing injury, whereas delivery of α1-ENaC only maintains pre-existing tight junction but not for generation. This indicates that the restoration of epithelial/endothelial barrier function may provide better treatment of ALI/ARDS.
Collapse
|
42
|
Contini M, Compagnino E, Cattadori G, Magrì D, Camera M, Apostolo A, Farina S, Palermo P, Gertow K, Tremoli E, Fiorentini C, Agostoni P. ACE-Inhibition Benefit on Lung Function in Heart Failure is Modulated by ACE Insertion/Deletion Polymorphism. Cardiovasc Drugs Ther 2016; 30:159-68. [DOI: 10.1007/s10557-016-6645-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Im D, Shi W, Driscoll B. Pediatric Acute Respiratory Distress Syndrome: Fibrosis versus Repair. Front Pediatr 2016; 4:28. [PMID: 27066462 PMCID: PMC4811965 DOI: 10.3389/fped.2016.00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 01/11/2023] Open
Abstract
Clinical and basic experimental approaches to pediatric acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), have historically focused on acute care and management of the patient. Additional efforts have focused on the etiology of pediatric ALI and ARDS, clinically defined as diffuse, bilateral diseases of the lung that compromise function leading to severe hypoxemia within 7 days of defined insult. Insults can include ancillary events related to prematurity, can follow trauma and/or transfusion, or can present as sequelae of pulmonary infections and cardiovascular disease and/or injury. Pediatric ALI/ARDS remains one of the leading causes of infant and childhood morbidity and mortality, particularly in the developing world. Though incidence is relatively low, ranging from 2.9 to 9.5 cases/100,000 patients/year, mortality remains high, approaching 35% in some studies. However, this is a significant decrease from the historical mortality rate of over 50%. Several decades of advances in acute management and treatment, as well as better understanding of approaches to ventilation, oxygenation, and surfactant regulation have contributed to improvements in patient recovery. As such, there is a burgeoning interest in the long-term impact of pediatric ALI/ARDS. Chronic pulmonary deficiencies in survivors appear to be caused by inappropriate injury repair, with fibrosis and predisposition to emphysema arising as irreversible secondary events that can severely compromise pulmonary development and function, as well as the overall health of the patient. In this chapter, the long-term effectiveness of current treatments will be examined, as will the potential efficacy of novel, acute, and long-term therapies that support repair and delay or even impede the onset of secondary events, including fibrosis.
Collapse
Affiliation(s)
- Daniel Im
- Pediatric Critical Care Medicine, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Barbara Driscoll
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
45
|
Betz T, Dehnert C, Bärtsch P, Schommer K, Mairbäurl H. Does High Alveolar Fluid Reabsorption Prevent HAPE in Individuals with Exaggerated Pulmonary Hypertension in Hypoxia? High Alt Med Biol 2015; 16:283-9. [DOI: 10.1089/ham.2015.0050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theresa Betz
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christoph Dehnert
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bärtsch
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kai Schommer
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
46
|
Wujak ŁA, Blume A, Baloğlu E, Wygrecka M, Wygowski J, Herold S, Mayer K, Vadász I, Besuch P, Mairbäurl H, Seeger W, Morty RE. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells. Respir Physiol Neurobiol 2015; 220:54-61. [PMID: 26410457 DOI: 10.1016/j.resp.2015.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence.
Collapse
Affiliation(s)
- Łukasz A Wujak
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Biochemistry, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anna Blume
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Emel Baloğlu
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, University of Heidelberg, Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Medical Pharmacology, Acibadem University, İstanbul, Turkey
| | - Małgorzata Wygrecka
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Biochemistry, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jegor Wygowski
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Petra Besuch
- Department of Pathology, Klinikum Frankfurt (Oder) GmbH, Frankfurt (Oder), Germany
| | - Heimo Mairbäurl
- Department of Biochemistry, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
47
|
High CO2 Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation. Mol Cell Biol 2015; 35:3962-73. [PMID: 26370512 DOI: 10.1128/mcb.00813-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 01/04/2023] Open
Abstract
The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and β-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.
Collapse
|
48
|
Azizi F, Arredouani A, Mohammad RM. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema. Physiol Rep 2015; 3:3/9/e12453. [PMID: 26333829 PMCID: PMC4600371 DOI: 10.14814/phy2.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema.
Collapse
Affiliation(s)
- Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Ramzi M Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
49
|
Ramsi MA, Henry M, Milla CE, Cornfield DN. Inhaled β2-Agonist Therapy Increases Functional Residual Capacity in Mechanically Ventilated Children With Respiratory Failure. Pediatr Crit Care Med 2015; 16:e189-93. [PMID: 25901546 DOI: 10.1097/pcc.0000000000000448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To test the hypothesis that in mechanically ventilated children with respiratory failure, aerosolized albuterol modifies functional residual capacity, lung mechanics, oxygen consumption, and hemodynamics. DESIGN Prospective, self-control clinical trial. SETTING A 24-bed PICU in a quaternary care, academic children's hospital. PATIENTS 25 children (age range, 1-18 yr) undergoing mechanical ventilation to treat respiratory failure. Entry criteria included previously prescribed inhaled β2 agonists. Physiologic measurements were performed prior to and 20 minutes after administration of aerosolized albuterol solution. Functional residual capacity was determined via nitrogen washout. INTERVENTIONS Functional residual capacity, oxygen consumption, respiratory mechanics, and vital signs were measured were measured prior to and 20 minutes after administration of aerosolized albuterol solution. Functional residual capacity was determined via nitrogen washout. MEASUREMENT AND MAIN RESULTS At baseline, functional residual capacity is only 53% of predicted. After aerosolized albuterol, functional residual capacity increased by 18.3% (p = 0.008). Overall, aerosolized albuterol had no effect on airway resistance. However, in patients with an endotracheal tube size of more than or equal to 4.0 mm, resistance decreased from 33 ± 3 to 25 ± 3 (p < 0.02). Inhaled albuterol administration had no effect on oxygen consumption despite an increase in heart rate from 116 ± 2 to 128 ± 2 beats/min (p < 0.0001). CONCLUSIONS In pediatric patients with respiratory failure, aerosolized albuterol increases functional residual capacity without a decrease in resistance. In infants and children, aerosolized albuterol might favorably enhance pulmonary mechanics and thereby represent a novel strategy for lung recruitment in children with respiratory failure.
Collapse
Affiliation(s)
- Musaab A Ramsi
- 1Division of Pediatric Critical Care Medicine, Sheikh Khalifa Medical City (SKMC) in affiliation with Cleveland Clinic, Abu Dhabi, United Arab Emirates. 2Respiratory Therapy Department, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA. 3Division of Pulmonary Medicine, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA. 4Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA
| | | | | | | |
Collapse
|
50
|
Abstract
Pulmonary edema clearance is necessary for patients with lung injury to recover and survive. The mechanisms regulating edema clearance from the lungs are distinct from the factors contributing edema formation during injury. Edema clearance is effected via vectorial transport of Na(+) out of the airspaces which generates an osmotic gradient causing water to follow the gradient out of the cells. This Na(+) transport across the alveolar epithelium is mostly effected via apical Na(+) and chloride channels and basolateral Na,K-ATPase. The Na,K-ATPase pumps Na(+) out of the cell and K(+) into the cell against their respective gradients in an ATP-consuming reaction. Two mechanisms contribute to the regulation of the Na,K-ATPase activity:recruitment of its subunits from intracellular compartments into the basolateral membrane, and transcriptional/translational regulation. Na,K-ATPase activity and edema clearance are increased by catecholamines, aldosterone, vasopressin, overexpression of the pump genes, and others. During lung injury, mechanisms regulating edema clearance are inhibited by yet unclear pathways. Better understanding of the mechanisms that regulate pulmonary edema clearance may lead to therapeutic interventions that counterbalance the inhibition of edema clearance during lung injury and improve the lungs' ability to clear fluid, which is crucial for patient survival.
Collapse
Affiliation(s)
- Zaher S. Azzam
- Internal Medicine “B”, Rambam Health Care Campus, Department of Physiology and Biophysics, The Rappaport Family Faculty of Medicine and Research Institute, Technion, Israel Institute of Technology, Haifa, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|