1
|
Li H, Liu Y, Zhang H, Shi X, Luo Y, Fu G, Zhao C, Guo L, Li X, Shan L. Identification of potential diagnostic biomarkers and therapeutic targets in patients with hypoxia pulmonary hypertension. Int Immunopharmacol 2024; 142:113028. [PMID: 39226824 DOI: 10.1016/j.intimp.2024.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Pulmonary hypertension is a serious disease. Emerging studies have shown that M2 macrophages play an essential role in pulmonary hypertension; however, their mechanism of action is uncertain. METHODS Four GEO datasets were downloaded. The differentially expressed genes (DEGs) were obtained using the limma package. Simultaneously, the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and weighted gene co-expression network analysis (WGCNA) were used to get the information about M2 macrophage-related modules. Potential key genes were obtained by intersecting DEGs with M2 macrophage-related module genes (M2MRGs), and finally the area under the curve (AUC) was calculated. Rats were exposed to hypoxia condition (10 % O2) for 4 weeks to induce PH. Subsequently, potential key genes with AUC>0.7 were analyzed by quantitative real-time polymerase chain reaction and Western blot using normoxia and hypoxia rat lungs. We knocked down EPHA3 in Raw264.7 cells and detected the protein expression of M2 macrophage markers including arginase 1 (ARG1) and interleukin 10 (IL-10), phospho-protein kinase B (P-Akt), and protein kinase B (Akt) to explore the downstream pathways of EPHA3. RESULTS Seven potential hub genes were detected by intersecting M2MRGs and DEGs. Six genes with AUC values above 0.7 were used for further exploration. The expression of EPHA3 mRNA and protein was significantly more upregulated in rats with hypoxia than in rats with normoxia. The expression levels of IL10, ARG1, and P-Akt/Akt decreased after knocking down EPHA3. CONCLUSIONS This study suggested that the activation of the P-Akt/Akt signaling pathway promoted by EPHA3 played an essential role in the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongli Zhang
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Churong Zhao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lixuan Guo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
2
|
Yang C, Liu YH, Zheng HK. Identification of TFRC as a biomarker for pulmonary arterial hypertension based on bioinformatics and experimental verification. Respir Res 2024; 25:296. [PMID: 39097701 PMCID: PMC11298087 DOI: 10.1186/s12931-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disease. However, there is a paucity of studies that reflect the available biomarkers from separate gene expression profiles in PAH. METHODS The GSE131793 and GSE113439 datasets were combined for subsequent analyses, and batch effects were removed. Bioinformatic analysis was then performed to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and a protein-protein interaction (PPI) network analysis were then used to further filter the hub genes. Functional enrichment analysis of the intersection genes was performed using Gene Ontology (GO), Disease Ontology (DO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA). The expression level and diagnostic value of hub gene expression in pulmonary arterial hypertension (PAH) patients were also analyzed in the validation datasets GSE53408 and GSE22356. In addition, target gene expression was validated in the lungs of a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model and in the serum of PAH patients. RESULTS A total of 914 differentially expressed genes (DEGs) were identified, with 722 upregulated and 192 downregulated genes. The key module relevant to PAH was selected using WGCNA. By combining the DEGs and the key module of WGCNA, 807 genes were selected. Furthermore, protein-protein interaction (PPI) network analysis identified HSP90AA1, CD8A, HIF1A, CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 as hub genes. The GSE53408 and GSE22356 datasets were used to evaluate the expression of TFRC, which also showed robust diagnostic value. According to GSEA enrichment analysis, PAH-relevant biological functions and pathways were enriched in patients with high TFRC levels. Furthermore, TFRC expression was found to be upregulated in the lung tissues of our experimental PH rat model compared to those of the controls, and the same conclusion was reached in the serum of the PAH patients. CONCLUSIONS According to our bioinformatics analysis, the observed increase of TFRC in the lung tissue of human PAH patients, as indicated by transcriptomic data, is consistent with the alterations observed in PAH patients and rodent models. These data suggest that TFRC may serve as a potential biomarker for PAH.
Collapse
Affiliation(s)
- Chuang Yang
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Yi-Hang Liu
- Department of cardiology, The second hospital of Jilin University, Changchun, China
| | - Hai-Kuo Zheng
- Department of cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. BMPR2 Loss Activates AKT by Disrupting DLL4/NOTCH1 and PPARγ Signaling in Pulmonary Arterial Hypertension. Int J Mol Sci 2024; 25:5403. [PMID: 38791441 PMCID: PMC11121464 DOI: 10.3390/ijms25105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Endothelial Cells/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Male
- Cell Proliferation
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Female
- Cells, Cultured
Collapse
Affiliation(s)
- Keytam S. Awad
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Shuibang Wang
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Edward J. Dougherty
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Ali Keshavarz
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Zu Xi Yu
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| | - Latonia Miller
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Jason M. Elinoff
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| | - Robert L. Danner
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| |
Collapse
|
4
|
Aravamudhan A, Dieffenbach PB, Choi KM, Link PA, Meridew JA, Haak AJ, Fredenburgh LE, Tschumperlin DJ. Non-canonical IKB kinases regulate YAP/TAZ and pathological vascular remodeling behaviors in pulmonary artery smooth muscle cells. Physiol Rep 2024; 12:e15999. [PMID: 38610069 PMCID: PMC11014870 DOI: 10.14814/phy2.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Patrick A. Link
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
5
|
Mai H, Yang X, Xie Y, Zhou J, Wei Y, Luo T, Yang J, Cui P, Ye L, Liang H, Huang J. Identification of the shared hub gene signatures and molecular mechanisms between HIV-1 and pulmonary arterial hypertension. Sci Rep 2024; 14:7048. [PMID: 38528047 DOI: 10.1038/s41598-024-55645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
The close link between HIV-1 infection and the occurrence of pulmonary arterial hypertension (PAH). However, the underlying molecular mechanisms of their interrelation remain unclear. The microarray data of HIV-1 and PAH were downloaded from GEO database. We utilized WGCNA to identify shared genes between HIV-1 and PAH, followed by conducting GO and pathway enrichment analyses. Subsequently, differentially genes analysis was performed using external validation datasets to further filter hub genes. Immunoinfiltration analysis was performed using CIBERSORT. Finally, hub gene expression was validated using scRNA-seq data. We identified 109 shared genes through WGCNA, primarily enriched in type I interferon (IFN) pathways. By taking the intersection of WGCNA important module genes and DEGs, ISG15 and IFI27 were identified as pivotal hub genes. Immunoinfiltration analysis and scRNA-seq results indicated the significant role of monocytes in the shared molecular mechanisms of HIV-1 and PAH. In summary, our study illustrated the possible mechanism of PAH secondary to HIV-1 and showed that the heightened IFN response in HIV-1 might be a crucial susceptibility factor for PAH, with monocytes being pivotal cells involved in the type I IFN response pathway. This provides potential new insights for further investigating the molecular mechanisms connecting HIV-1 and PAH.
Collapse
Affiliation(s)
- Huanzhuo Mai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Xing Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yulan Xie
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Yiru Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Tingyan Luo
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Jing Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, China
| | - Li Ye
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Hao Liang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiegang Huang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Lu Y, Tang K, Wang S, Gao P, Tian Z, Wang M, Chen J, Xiao C, Zhao J, Xie J. Genetic Programs Between Steroid-Sensitive and Steroid-Insensitive Interstitial Lung Disease. Inflammation 2023; 46:2120-2131. [PMID: 37561311 PMCID: PMC10673734 DOI: 10.1007/s10753-023-01866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
The effectiveness of corticosteroids (GCs) varies greatly in interstitial lung diseases (ILDs). In this study, we aimed to compare the gene expression profiles of patients with cryptogenic organizing pneumonia (COP), idiopathic pulmonary fibrosis (IPF), and non-specific interstitial pneumonia (NSIP) and identify the molecules and pathways responsible for GCs sensitivity in ILDs. Three datasets (GSE21411, GSE47460, and GSE32537) were selected. Differentially expressed genes (DEGs) among COP, IPF, NSIP, and healthy control (CTRL) groups were identified. Functional enrichment analysis and protein-protein interaction network analysis were performed to examine the potential functions of DEGs. There were 128 DEGs when COP versus CTRL, 257 DEGs when IPF versus CTRL, 205 DEGs when NSIP versus CTRL, and 270 DEGs when COP versus IPF. The DEGs in different ILDs groups were mainly enriched in the inflammatory response. Further pathway analysis showed that "interleukin (IL)-17 signaling pathway" (hsa04657) and "tumor necrosis factor (TNF) signaling pathway" were associated with different types of ILDs. A total of 10 genes associated with inflammatory response were identified as hub genes and their expression levels in the IPF group were higher than those in the COP group. Finally, we identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4). Our bioinformatics analysis demonstrated that the inflammatory response played a pathogenic role in the progression of ILDs. We also illustrated that the inflammatory reaction was more severe in the IPF group compared to the COP group and identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4) in ILDs.
Collapse
Affiliation(s)
- Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhen Tian
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinkun Chen
- Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Chengfeng Xiao
- Department of Biology, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Rothman A, Mann D, Nunez JA, Tarmidi R, Restrepo H, Sarukhanov V, Williams R, Evans WN. A Bioinformatic Algorithm based on Pulmonary Endoarterial Biopsy for Targeted Pulmonary Arterial Hypertension Therapy. Open Respir Med J 2023; 17:e187430642308160. [PMID: 38655076 PMCID: PMC11037516 DOI: 10.2174/18743064-v17-230927-2023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 04/26/2024] Open
Abstract
Background Optimal pharmacological therapy for pulmonary arterial hypertension (PAH) remains unclear, as pathophysiological heterogeneity may affect therapeutic outcomes. A ranking methodology based on pulmonary vascular genetic expression analysis could assist in medication selection and potentially lead to improved prognosis. Objective To describe a bioinformatics approach for ranking currently approved pulmonary arterial antihypertensive agents based on gene expression data derived from percutaneous endoarterial biopsies in an animal model of pulmonary hypertension. Methods We created a chronic PAH model in Micro Yucatan female swine by surgical anastomosis of the left pulmonary artery to the descending aorta. A baseline catheterization, angiography and pulmonary endoarterial biopsy were performed. We obtained pulmonary vascular biopsy samples by passing a biopsy catheter through a long 8 French sheath, introduced via the carotid artery, into 2- to 3-mm peripheral pulmonary arteries. Serial procedures were performed on days 7, 21, 60, and 180 after surgical anastomosis. RNA microarray studies were performed on the biopsy samples. Results Utilizing the medical literature, we developed a list of PAH therapeutic agents, along with a tabulation of genes affected by these agents. The effect on gene expression from pharmacogenomic interactions was used to rank PAH medications at each time point. The ranking process allowed the identification of a theoretical optimum three-medication regimen. Conclusion We describe a new potential paradigm in the therapy for PAH, which would include endoarterial biopsy, molecular analysis and tailored pharmacological therapy for patients with PAH.
Collapse
Affiliation(s)
- Abraham Rothman
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - David Mann
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
| | - Jose A. Nunez
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Reinhardt Tarmidi
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Humberto Restrepo
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - Valeri Sarukhanov
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
| | - Roy Williams
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- Institute of Genomic Medicine, University of California, San Diego, 9500 Gilman Drive #0761, La Jolla, CA 92093, USA
| | - William N. Evans
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| |
Collapse
|
8
|
Dougherty EJ, Chen LY, Awad KS, Ferreyra GA, Demirkale CY, Keshavarz A, Gairhe S, Johnston KA, Hicks ME, Sandler AB, Curran CS, Krack JM, Ding Y, Suffredini AF, Solomon MA, Elinoff JM, Danner RL. Inflammation and DKK1-induced AKT activation contribute to endothelial dysfunction following NR2F2 loss. Am J Physiol Lung Cell Mol Physiol 2023; 324:L783-L798. [PMID: 37039367 PMCID: PMC10202490 DOI: 10.1152/ajplung.00171.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Edward J Dougherty
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Li-Yuan Chen
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Keytam S Awad
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriela A Ferreyra
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Cumhur Y Demirkale
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Ali Keshavarz
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Salina Gairhe
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Kathryn A Johnston
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Madelyn E Hicks
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexis B Sandler
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Colleen S Curran
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Janell M Krack
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Yi Ding
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony F Suffredini
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael A Solomon
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Jason M Elinoff
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert L Danner
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Benincasa G, Napoli C, Loscalzo J, Maron BA. Pursuing functional biomarkers in complex disease: Focus on pulmonary arterial hypertension. Am Heart J 2023; 258:96-113. [PMID: 36565787 DOI: 10.1016/j.ahj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 05/11/2023]
Abstract
A major gap in diagnosis, classification, risk stratification, and prediction of therapeutic response exists in pulmonary arterial hypertension (PAH), driven in part by a lack of functional biomarkers that are also disease-specific. In this regard, leveraging big data-omics analyses using innovative approaches that integrate network medicine and machine learning correlated with clinically useful indices or risk stratification scores is an approach well-positioned to advance PAH precision medicine. For example, machine learning applied to a panel of 48 cytokines, chemokines, and growth factors could prognosticate PAH patients with immune-dominant subphenotypes at elevated or low-risk for mortality. Here, we discuss strengths and weaknesses of the most current studies evaluating omics-derived biomarkers in PAH. Progress in this field is offset by studies with small sample size, pervasive limitations in bioinformatics, and lack of standardized methods for data processing and interpretation. Future success in this field, in turn, is likely to hinge on mechanistic validation of data outputs in order to couple functional biomarker data with target-specific therapeutics in clinical practice.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
10
|
Pi H, Xia L, Ralph DD, Rayner SG, Shojaie A, Leary PJ, Gharib SA. Metabolomic Signatures Associated With Pulmonary Arterial Hypertension Outcomes. Circ Res 2023; 132:254-266. [PMID: 36597887 PMCID: PMC9904878 DOI: 10.1161/circresaha.122.321923] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a complex disease characterized by progressive right ventricular (RV) failure leading to significant morbidity and mortality. Investigating metabolic features and pathways associated with RV dilation, mortality, and measures of disease severity can provide insight into molecular mechanisms, identify subphenotypes, and suggest potential therapeutic targets. METHODS We collected data from a prospective cohort of PAH participants and performed untargeted metabolomic profiling on 1045 metabolites from circulating blood. Analyses were intended to identify metabolomic differences across a range of common metrics in PAH (eg, dilated versus nondilated RV). Partial least squares discriminant analysis was first applied to assess the distinguishability of relevant outcomes. Significantly altered metabolites were then identified using linear regression, and Cox regression models (as appropriate for the specific outcome) with adjustments for age, sex, body mass index, and PAH cause. Models exploring RV maladaptation were further adjusted for pulmonary vascular resistance. Pathway enrichment analysis was performed to identify significantly dysregulated processes. RESULTS A total of 117 participants with PAH were included. Partial least squares discriminant analysis showed cluster differentiation between participants with dilated versus nondilated RVs, survivors versus nonsurvivors, and across a range of NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, REVEAL 2.0 composite scores, and 6-minute-walk distances. Polyamine and histidine pathways were associated with differences in RV dilation, mortality, NT-proBNP, REVEAL score, and 6-minute walk distance. Acylcarnitine pathways were associated with NT-proBNP, REVEAL score, and 6-minute walk distance. Sphingomyelin pathways were associated with RV dilation and NT-proBNP after adjustment for pulmonary vascular resistance. CONCLUSIONS Distinct plasma metabolomic profiles are associated with RV dilation, mortality, and measures of disease severity in PAH. Polyamine, histidine, and sphingomyelin metabolic pathways represent promising candidates for identifying patients at high risk for poor outcomes and investigation into their roles as markers or mediators of disease progression and RV adaptation.
Collapse
Affiliation(s)
- Hongyang Pi
- University of Washington, Department of Medicine
| | - Lu Xia
- University of Washington, Department of Biostatistics
| | | | | | - Ali Shojaie
- University of Washington, Department of Biostatistics
| | - Peter J. Leary
- University of Washington, Department of Medicine
- University of Washington, Department of Epidemiology
| | | |
Collapse
|
11
|
Wang R, Loscalzo J. Uncovering common pathobiological processes between COVID-19 and pulmonary arterial hypertension by integrating Omics data. Pulm Circ 2023; 13:e12191. [PMID: 36721384 PMCID: PMC9880519 DOI: 10.1002/pul2.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to the current pandemic. Many factors, including age and comorbidities, influence the severity and mortality of COVID-19. SARS-CoV-2 infection can cause pulmonary vascular dysfunction. The COVID-19 case-fatality rate in patients with pulmonary arterial hypertension (PAH) is higher in comparison with the general population. In this study, we aimed to identify pathobiological processes common to COVID-19 and PAH by utilizing the human protein-protein interactome and whole-genome transcription data from peripheral blood mononuclear cells (PBMCs) and from lung tissue. We found that there are significantly more interactions between SARS-CoV-2 targets and PAH disease proteins than expected by chance, suggesting that the PAH disease module is in the neighborhood of SARS-CoV-2 targets in the human interactome. In addition, SARS-CoV-2 infection-induced changes in gene expression significantly overlap with PAH-induced gene expression changes in both tissues, indicating SARS-CoV-2 and PAH may share common transcriptional regulators. We identified many upregulated genes and downregulated genes common to COVID-19 and PAH. Interestingly, we observed different co-regulation patterns and dysfunctional signaling pathways in PBMCs versus lung tissue. Endophenotype enrichment analysis revealed that genes regulating fibrosis, inflammation, hypoxia, oxidative stress, immune response, and thromboembolism are significantly enriched in the COVID-19-PAH co-expression modules. We examined the network proximity of the targets of repositioned drugs for COVID-19 to the co-expression modules in PBMCs and lung tissue, and identified 42 drugs that can be potentially used for COVID-19 patients with PAH as a comorbidity. The uncovered common pathobiological pathways are crucial for discovering therapeutic targets and designing tailored treatments for COVID-19 patients who also have PAH.
Collapse
Affiliation(s)
- Rui‐Sheng Wang
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
12
|
Wang C, Xu Z, Qiu X, Wei Y, Peralta AA, Yazdi MD, Jin T, Li W, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Sparrow D, Amarasiriwardena C, Wright RO, Baccarelli AA, Schwartz JD. Epigenome-wide DNA methylation in leukocytes and toenail metals: The normative aging study. ENVIRONMENTAL RESEARCH 2023; 217:114797. [PMID: 36379232 PMCID: PMC9825663 DOI: 10.1016/j.envres.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenyuan Li
- School of Public Health and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chitra Amarasiriwardena
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
13
|
Tan R, You Q, Yu D, Xiao C, Adu-Amankwaah J, Cui J, Zhang T. Novel hub genes associated with pulmonary artery remodeling in pulmonary hypertension. Front Cardiovasc Med 2022; 9:945854. [PMID: 36531719 PMCID: PMC9748075 DOI: 10.3389/fcvm.2022.945854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease with complex pathogenesis. According to etiology, PH is divided into five major groups in clinical classification. However, pulmonary artery (PA) remodeling is their common feature, in addition to bone morphogenetic protein receptor type 2; it is elusive whether there are other novel common genes and similar underlying mechanisms. To identify novel common hub genes involved in PA remodeling at different PH groups, we analyzed mRNA-Seq data located in the general gene expression profile GSE130391 utilizing bioinformatics technology. This database contains PA samples from different PH groups of hospitalized patients with chronic thromboembolic pulmonary hypertension (CTEPH), idiopathic pulmonary artery hypertension (IPAH), and PA samples from organ donors without known pulmonary vascular diseases as control. We screened 22 hub genes that affect PA remodeling, most of which have not been reported in PH. We verified the top 10 common hub genes in hypoxia with Sugen-induced PAH rat models by qRT-PCR. The three upregulated candidate genes are WASF1, ARHGEF1 and RB1 and the seven downregulated candidate genes are IL1R1, RHOB, DAPK1, TNFAIP6, PKN1, PLOD2, and MYOF. WASF1, ARHGEF1, and RB1 were upregulated significantly in hypoxia with Sugen-induced PAH, while IL1R1, DAPK1, and TNFA1P6 were upregulated significantly in hypoxia with Sugen-induced PAH. The DEGs detected by mRNA-Seq in hospitalized patients with PH are different from those in animal models. This study will provide some novel target genes to further study PH mechanisms and treatment.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rubin Tan
| | - Qiang You
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongdong Yu
- Department of Tumor Radiotherapy, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chushu Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Brusca SB, Elinoff JM, Zou Y, Jang MK, Kong H, Demirkale CY, Sun J, Seifuddin F, Pirooznia M, Valantine HA, Tanba C, Chaturvedi A, Graninger GM, Harper B, Chen LY, Cole J, Kanwar M, Benza RL, Preston IR, Agbor-Enoh S, Solomon MA. Plasma Cell-Free DNA Predicts Survival and Maps Specific Sources of Injury in Pulmonary Arterial Hypertension. Circulation 2022; 146:1033-1045. [PMID: 36004627 PMCID: PMC9529801 DOI: 10.1161/circulationaha.121.056719] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a noninvasive marker of cellular injury. Its significance in pulmonary arterial hypertension (PAH) is unknown. METHODS Plasma cfDNA was measured in 2 PAH cohorts (A, n=48; B, n=161) and controls (n=48). Data were collected for REVEAL 2.0 (Registry to Evaluate Early and Long-Term PAH Disease Management) scores and outcome determinations. Patients were divided into the following REVEAL risk groups: low (≤6), medium (7-8), and high (≥9). Total cfDNA concentrations were compared among controls and PAH risk groups by 1-way analysis of variance. Log-rank tests compared survival between cfDNA tertiles and REVEAL risk groups. Areas under the receiver operating characteristic curve were estimated from logistic regression models. A sample subset from cohort B (n=96) and controls (n=16) underwent bisulfite sequencing followed by a deconvolution algorithm to map cell-specific cfDNA methylation patterns, with concentrations compared using t tests. RESULTS In cohort A, median (interquartile range) age was 62 years (47-71), with 75% female, and median (interquartile range) REVEAL 2.0 was 6 (4-9). In cohort B, median (interquartile range) age was 59 years (49-71), with 69% female, and median (interquartile range) REVEAL 2.0 was 7 (6-9). In both cohorts, cfDNA concentrations differed among patients with PAH of varying REVEAL risk and controls (analysis of variance P≤0.002) and were greater in the high-risk compared with the low-risk category (P≤0.002). In cohort B, death or lung transplant occurred in 14 of 54, 23 of 53, and 35 of 54 patients in the lowest, middle, and highest cfDNA tertiles, respectively. cfDNA levels stratified as tertiles (log-rank: P=0.0001) and REVEAL risk groups (log-rank: P<0.0001) each predicted transplant-free survival. The addition of cfDNA to REVEAL improved discrimination (area under the receiver operating characteristic curve, 0.72-0.78; P=0.02). Compared with controls, methylation analysis in patients with PAH revealed increased cfDNA originating from erythrocyte progenitors, neutrophils, monocytes, adipocytes, natural killer cells, vascular endothelium, and cardiac myocytes (Bonferroni adjusted P<0.05). cfDNA concentrations derived from erythrocyte progenitor cells, cardiac myocytes, and vascular endothelium were greater in patients with PAH with high-risk versus low-risk REVEAL scores (P≤0.02). CONCLUSIONS Circulating cfDNA is elevated in patients with PAH, correlates with disease severity, and predicts worse survival. Results from cfDNA methylation analyses in patients with PAH are consistent with prevailing paradigms of disease pathogenesis.
Collapse
Affiliation(s)
- Samuel B Brusca
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
- Department of Internal Medicine, Division of Cardiology, University of California, San Francisco, CA
| | - Jason M Elinoff
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Yvette Zou
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Moon Kyoo Jang
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, MD
| | - Hyesik Kong
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, MD
| | - Cumhur Y Demirkale
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Junfeng Sun
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Fayaz Seifuddin
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Mehdi Pirooznia
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Hannah A Valantine
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, MD
- Department of Internal Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Carl Tanba
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Tufts Medical Center, Boston, MA
| | - Abhishek Chaturvedi
- Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Grace M Graninger
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Bonnie Harper
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Li-Yuan Chen
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
| | - Justine Cole
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Manreet Kanwar
- Cardiovascular Institute at Allegheny Health Network, Pittsburgh, PA
| | - Raymond L Benza
- Departent of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ioana R Preston
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Tufts Medical Center, Boston, MA
| | - Sean Agbor-Enoh
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, MD
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael A Solomon
- Pulmonary Arterial Hypertension Section of the Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD
- Cardiology Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Wang J, Uddin MN, Wang R, Gong YH, Wu Y. Comprehensive analysis and validation of novel immune and vascular remodeling related genes signature associated with drug interactions in pulmonary arterial hypertension. Front Genet 2022; 13:922213. [PMID: 36147486 PMCID: PMC9486302 DOI: 10.3389/fgene.2022.922213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies revealed that the gene signatures are associated with the modulation and pathogenesis of pulmonary arterial hypertension (PAH). However, identifying critical transcriptional signatures in the blood of PAH patients remains lacking. Methods: The differentially expressed transcriptional signatures in the blood of PAH patients were identified by a meta-analysis from four microarray datasets. Then we investigated the enrichment of gene ontology and KEGG pathways and identified top hub genes. Besides, we investigated the correlation of crucial hub genes with immune infiltrations, hallmark gene sets, and blood vessel remodeling genes. Furthermore, we investigated the diagnostic efficacy of essential hub genes and their expression validation in an independent cohort of PAH, and we validate the expression level of hub genes in monocrotaline (MCT) induced PAH rats' model. Finally, we have identified the FDA-approved drugs that target the hub genes and their molecular docking. Results: We found 1,216 differentially expressed genes (DEGs), including 521 up-regulated and 695 down-regulated genes, in the blood of the PAH patients. The up-regulated DEGs are significantly associated with the enrichment of KEGG pathways mainly involved with immune regulation, cellular signaling, and metabolisms. We identified 13 master transcriptional regulators targeting the dysregulated genes in PAH. The STRING-based investigation identified the function of hub genes associated with multiple immune-related pathways in PAH. The expression levels of RPS27A, MAPK1, STAT1, RPS6, FBL, RPS3, RPS2, and GART are positively correlated with ssGSEA scores of various immune cells as positively correlated with the hallmark of oxidative stress. Besides, we found that these hub genes also regulate the vascular remodeling in PAH. Furthermore, the expression levels of identified hub genes showed good diagnostic efficacy in the blood of PAH, and we validated most of the hub genes are consistently dysregulated in an independent PAH cohort. Validation of hub genes expression level in the monocrotaline (MCT)-induced lung tissue of rats with PAH revealed that 5 screened hub genes (MAPK1, STAT1, TLR4, TLR2, GART) are significantly highly expressed in PAH rats, and 4 screened hub genes (RPS6, FBL, RPS3, and RPS2) are substantially lowly expressed in rats with PAH. Finally, we analyzed the interaction of hub proteins and FDA-approved drugs and revealed their molecular docking, and the results showed that MAPK1, TLR4, and GART interact with various drugs with appropriate binding affinity. Conclusion: The identified blood-derived key transcriptional signatures significantly correlate with immune infiltrations, hypoxia, glycolysis, and blood vessel remodeling genes. These findings may provide new insight into the diagnosis and treatment of PAH patients.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Rui Wang
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue-Hong Gong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
16
|
Wei R, Chen L, Li P, Lin C, Zeng Q. IL-13 alleviates idiopathic pulmonary hypertension by inhibiting the proliferation of pulmonary artery smooth muscle cells and regulating macrophage infiltration. Am J Transl Res 2022; 14:4573-4590. [PMID: 35958460 PMCID: PMC9360879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic pulmonary arterial hypertension (IPAH) is characterized by medial hypertrophy due to pulmonary artery smooth muscle cell (PASMC) hyperplasia. In the present study, we conducted bioinformatic analyses and cellular experiments to assess the involvement of the interleukin-13 (IL-13) in IPAH. METHODS The differentially expressed genes (DEGs) in IPAH and DEGs in IPAH caused by IL-13 treatment were screened using the GEO database. PPI networks were used to analyze the hub genes. Hypoxia-induced PASMCs were treated with IL-13 for in vitro assays. CCK8 and EdU staining were used to observe proliferation of PASMCs, and RT-qPCR was applied to detect the expression of hub genes. The conserved binding sites of microRNAs (miRNAs) in the 3'UTR of hub genes were investigated, and the regulatory relationships of the relevant miRNAs on their targets were verified by RT-qPCR and dual-luciferase assays. The GO and KEGG analyses were performed to study the downstream pathways. The effect of hub genes on immune cell infiltration in IPAH was investigated. RESULTS IL-13 altered gene expression in IPAH. IL-13 inhibited the proliferation and the expression of hub genes in PASMCs. The 3'UTR sites between HNRNPA2B1, HNRNPH1, SRSF1, HNRNPU and HNRNPA3 in the hub genes and candidate regulatory miRNAs were well conserved in humans. IL-13-mediated hub genes regulated multiple pathways and influenced immune cell infiltration. Hypoxia-induced PASMCs promoted the M2 polarization of macrophages, whereas IL-13-treated PASMCs skewed the macrophages toward M1 polarization. CONCLUSIONS IL-13-mediated alterations in hub genes inhibit PASMC proliferation and promote M1 macrophage infiltration in IPAH.
Collapse
Affiliation(s)
- Ruda Wei
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Liting Chen
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
- Department of Cardiovascular Medicine, Air force Medical Center, PLABeijing 100142, P. R. China
| | - Pengchuan Li
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Chaoyang Lin
- Department of Internal Medicine, Dachong Hospital of ZhongshanZhongshan 528476, Guangdong, P. R. China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan 250011, Shandong, P. R. China
| |
Collapse
|
17
|
Rhodes CJ, Sweatt AJ, Maron BA. Harnessing Big Data to Advance Treatment and Understanding of Pulmonary Hypertension. Circ Res 2022; 130:1423-1444. [PMID: 35482840 PMCID: PMC9070103 DOI: 10.1161/circresaha.121.319969] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pulmonary hypertension is a complex disease with multiple causes, corresponding to phenotypic heterogeneity and variable therapeutic responses. Advancing understanding of pulmonary hypertension pathogenesis is likely to hinge on integrated methods that leverage data from health records, imaging, novel molecular -omics profiling, and other modalities. In this review, we summarize key data sets generated thus far in the field and describe analytical methods that hold promise for deciphering the molecular mechanisms that underpin pulmonary vascular remodeling, including machine learning, network medicine, and functional genetics. We also detail how genetic and subphenotyping approaches enable earlier diagnosis, refined prognostication, and optimized treatment prediction. We propose strategies that identify functionally important molecular pathways, bolstered by findings across multi-omics platforms, which are well-positioned to individualize drug therapy selection and advance precision medicine in this highly morbid disease.
Collapse
Affiliation(s)
- Christopher J Rhodes
- Department of Medicine, National Heart and Lung Institute, Imperial College London, United Kingdom (C.J.R.)
| | - Andrew J Sweatt
- Department of Medicine, National Heart and Lung Institute, Imperial College London, United Kingdom (C.J.R.)
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (B.A.M.).,Division of Cardiology, VA Boston Healthcare System, West Roxbury, MA (B.A.M.)
| |
Collapse
|
18
|
Lu M, Chen LY, Gairhe S, Mazer AJ, Anderson SA, Nelson JN, Noguchi A, Siddique MAH, Dougherty EJ, Zou Y, Johnston KA, Yu ZX, Wang H, Wang S, Sun J, Solomon SB, Vanderpool RR, Solomon MA, Danner RL, Elinoff JM. Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model. Am J Physiol Lung Cell Mol Physiol 2022; 322:L315-L332. [PMID: 35043674 PMCID: PMC8858673 DOI: 10.1152/ajplung.00238.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.
Collapse
Affiliation(s)
- Mengyun Lu
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Li-Yuan Chen
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Salina Gairhe
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Adrien J. Mazer
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Stasia A. Anderson
- 2Animal MRI Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jasmine N.H. Nelson
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Audrey Noguchi
- 3Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Edward J. Dougherty
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yvette Zou
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Kathryn A. Johnston
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Zu-Xi Yu
- 4Pathology Core Facility, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, Maryland
| | - Honghui Wang
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Shuibang Wang
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B. Solomon
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Rebecca R. Vanderpool
- 6Department of Medicine and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - Michael A. Solomon
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland,5Cardiology Branch, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert L. Danner
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jason M. Elinoff
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Zou HX, Qiu BQ, Lai SQ, Zhou XL, Gong CW, Wang LJ, Yuan MM, He AD, Liu JC, Huang H. Iron Metabolism and Idiopathic Pulmonary Arterial Hypertension: New Insights from Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5669412. [PMID: 34722766 PMCID: PMC8556088 DOI: 10.1155/2021/5669412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare vascular disease with a poor prognosis, and the mechanism of its development remains unclear. Further molecular pathology studies may contribute to a comprehensive understanding of IPAH and provide new insights into diagnostic markers and potential therapeutic targets. Iron deficiency has been reported in 43-63% of patients with IPAH and is associated with reduced exercise capacity and higher mortality, suggesting that dysregulated iron metabolism may play an unrecognized role in influencing the development of IPAH. In this study, we explored the regulatory mechanisms of iron metabolism in IPAH by bioinformatic analysis. The molecular function of iron metabolism-related genes (IMRGs) is mainly enriched in active transmembrane transporter activity, and they mainly affect the biological process of response to oxidative stress. Ferroptosis and fluid shear stress and atherosclerosis pathways may be the critical pathways regulating iron metabolism in IPAH. We further identified 7 key genes (BCL2, GCLM, MSMO1, SLC7A11, SRXN1, TSPAN5, and TXNRD1) and 5 of the key genes (BCL2, MSMO1, SLC7A11, TSPAN5, and TXNRD1) as target genes may be regulated by 6 dysregulated miRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p, miR-26b-5p, miR-199a-5p, and miR-23b-3p) in IPAH. In addition, we predicted potential IPAH drugs-celastrol and cinnamaldehyde-that target iron metabolism based on our results. These results provide insights for further definition of the role of dysregulated iron metabolism in IPAH and contribute to a deeper understanding of the molecular mechanisms and potential therapeutic targets of IPAH.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Song-Qing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Liang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Cheng-Wu Gong
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li-Jun Wang
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - An-Di He
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huang Huang
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
20
|
Yao M, Zhang C, Gao C, Wang Q, Dai M, Yue R, Sun W, Liang W, Zheng Z. Exploration of the Shared Gene Signatures and Molecular Mechanisms Between Systemic Lupus Erythematosus and Pulmonary Arterial Hypertension: Evidence From Transcriptome Data. Front Immunol 2021; 12:658341. [PMID: 34335565 PMCID: PMC8320323 DOI: 10.3389/fimmu.2021.658341] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect multiple systems. Pulmonary arterial hypertension (PAH) has a close linkage with SLE. However, the inter-relational mechanisms between them are still unclear. This article aimed to explore the shared gene signatures and potential molecular mechanisms in SLE and PAH. Methods The microarray data of SLE and PAH in the Gene Expression Omnibus (GEO) database were downloaded. The Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify the co-expression modules related to SLE and PAH. The shared genes existing in the SLE and PAH were performed an enrichment analysis by ClueGO software, and their unique genes were also performed with biological processes analyses using the DAVID website. The results were validated in another cohort by differential gene analysis. Moreover, the common microRNAs (miRNAs) in SLE and PAH were obtained from the Human microRNA Disease Database (HMDD) and the target genes of whom were predicted through the miRTarbase. Finally, we constructed the common miRNAs–mRNAs network with the overlapped genes in target and shared genes. Results Using WGCNA, four modules and one module were identified as the significant modules with SLE and PAH, respectively. A ClueGO enrichment analysis of shared genes reported that highly activated type I IFN response was a common feature in the pathophysiology of SLE and PAH. The results of differential analysis in another cohort were extremely similar to them. We also proposed a disease road model for the possible mechanism of PAH secondary to SLE according to the shared and unique gene signatures in SLE and PAH. The miRNA–mRNA network showed that hsa-miR-146a might regulate the shared IFN-induced genes, which might play an important role in PAH secondary to SLE. Conclusion Our work firstly revealed the high IFN response in SLE patients might be a crucial susceptible factor for PAH and identified novel gene candidates that could be used as biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Menghui Yao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Congcong Gao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianqian Wang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Dai
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runzhi Yue
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Sun
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenfang Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Zheng
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Sweatt AJ, Reddy R, Rahaghi FN, Al-Naamani N. What's new in pulmonary hypertension clinical research: lessons from the best abstracts at the 2020 American Thoracic Society International Conference. Pulm Circ 2021; 11:20458940211040713. [PMID: 34471517 PMCID: PMC8404658 DOI: 10.1177/20458940211040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In this conference paper, we review the 2020 American Thoracic Society International Conference session titled, "What's New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts". This virtual mini-symposium took place on 21 October 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts, we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.
Collapse
Affiliation(s)
- Andrew J. Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Raju Reddy
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nadine Al-Naamani
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - on behalf of the American Thoracic Society Pulmonary Circulation Assembly Early Career Working Group
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Hao S, Jiang P, Xie L, Xiang G, Liu Z, Hu W, Wu Q, Jiang L, Xiao Y, Li S. Essential Genes and MiRNA-mRNA Network Contributing to the Pathogenesis of Idiopathic Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:627873. [PMID: 34026864 PMCID: PMC8133434 DOI: 10.3389/fcvm.2021.627873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Owing to its high fatality rate and narrow therapeutic options, identification of the pathogenic mechanisms of IPAH is becoming increasingly important. Methods: In our research, we utilized the robust rank aggregation (RRA) method to integrate four eligible pulmonary arterial hypertension (PAH) microarray datasets and identified the significant differentially expressed genes (DEGs) between IPAH and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to analyze their functions. The interaction network of protein-protein interaction (PPI) was constructed to explore the correlation between these DEGs. The functional modules and hub genes were further identified by the weighted gene coexpression network analysis (WGCNA). Moreover, a miRNA microarray dataset was involved and analyzed to filter differentially expressed miRNAs (DE-miRNAs). Potential target genes of screened DE-miRNAs were predicted and merged with DEGs to explore a miRNA-mRNA network in IPAH. Some hub genes were selected and validated by RT-PCR in lung tissues from the PAH animal model. Results: A total of 260 DEGs, consisting of 183 upregulated and 77 downregulated significant DEGs, were identified, and some of those genes were novel. Their molecular roles in the etiology of IPAH remained vague. The most crucial functional module involved in IPAH is mainly enriched in biological processes, including leukocyte migration, cell chemotaxis, and myeloid leukocyte migration. Construction and analysis of the PPI network showed that CXCL10, CXCL9, CCR1, CX3CR1, CX3CL1, CXCR2, CXCR1, PF4, CCL4L1, and ADORA3 were recognized as top 10 hub genes with high connectivity degrees. WGCNA further identified five main functional modules involved in the pathogenesis of IPAH. Twelve upregulated DE-miRNAs and nine downregulated DE-miRNAs were identified. Among them, four downregulated DEGs and eight upregulated DEGs were supposed to be negatively regulated by three upregulated DE-miRNAs and three downregulated DE-miRNAs, respectively. Conclusions: This study identifies some key and functional coexpression modules involved in IPAH, as well as a potential IPAH-related miRNA-mRNA regulated network. It provides deepening insights into the molecular mechanisms and provides vital clues in seeking novel therapeutic targets for IPAH.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Pan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Xie
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qinhan Wu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
23
|
Oldham WM, Hemnes AR, Aldred MA, Barnard J, Brittain EL, Chan SY, Cheng F, Cho MH, Desai AA, Garcia JGN, Geraci MW, Ghiassian SD, Hall KT, Horn EM, Jain M, Kelly RS, Leopold JA, Lindstrom S, Modena BD, Nichols WC, Rhodes CJ, Sun W, Sweatt AJ, Vanderpool RR, Wilkins MR, Wilmot B, Zamanian RT, Fessel JP, Aggarwal NR, Loscalzo J, Xiao L. NHLBI-CMREF Workshop Report on Pulmonary Vascular Disease Classification: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:2040-2052. [PMID: 33888254 PMCID: PMC8065203 DOI: 10.1016/j.jacc.2021.02.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The National Heart, Lung, and Blood Institute and the Cardiovascular Medical Research and Education Fund held a workshop on the application of pulmonary vascular disease omics data to the understanding, prevention, and treatment of pulmonary vascular disease. Experts in pulmonary vascular disease, omics, and data analytics met to identify knowledge gaps and formulate ideas for future research priorities in pulmonary vascular disease in line with National Heart, Lung, and Blood Institute Strategic Vision goals. The group identified opportunities to develop analytic approaches to multiomic datasets, to identify molecular pathways in pulmonary vascular disease pathobiology, and to link novel phenotypes to meaningful clinical outcomes. The committee suggested support for interdisciplinary research teams to develop and validate analytic methods, a national effort to coordinate biosamples and data, a consortium of preclinical investigators to expedite target evaluation and drug development, longitudinal assessment of molecular biomarkers in clinical trials, and a task force to develop a master clinical trials protocol for pulmonary vascular disease.
Collapse
Affiliation(s)
- William M Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Anna R Hemnes
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - John Barnard
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Evan L Brittain
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Feixiong Cheng
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael H Cho
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ankit A Desai
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Mark W Geraci
- Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Kathryn T Hall
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Evelyn M Horn
- Weill Cornell Medical Center, New York, New York, USA
| | - Mohit Jain
- University of California at San Diego, San Diego, California, USA
| | - Rachel S Kelly
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jane A Leopold
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - William C Nichols
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Andrew J Sweatt
- Stanford University School of Medicine, Stanford, California, USA
| | - Rebecca R Vanderpool
- Department of Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Beth Wilmot
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging and the School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Roham T Zamanian
- Stanford University School of Medicine, Stanford, California, USA
| | - Joshua P Fessel
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neil R Aggarwal
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Xiao
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
24
|
Lu X, Zhang J, Liu H, Ma W, Yu L, Tan X, Wang S, Ren F, Li X, Li X. Cannabidiol attenuates pulmonary arterial hypertension by improving vascular smooth muscle cells mitochondrial function. Theranostics 2021; 11:5267-5278. [PMID: 33859746 PMCID: PMC8039951 DOI: 10.7150/thno.55571] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is a chronic disease associated with enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and dysfunctional mitochondria, and the clinical therapeutic option for PAH is very limited. Recent studies showed that cannabidiol (CBD), a non-psychoactive constituent of cannabinoids, possessed antioxidant effect towards several cardiovascular diseases, whereas the mechanistic effect of CBD in PAH is unknown. Methods: In this study, the effects of CBD in PAH were determined by analyzing its preventive and therapeutic actions in PAH rodent models in vivo and PASMCs' proliferation test in vitro. Additionally, CBD's roles in mitochondrial function and oxidant stress were also assessed in PASMCs. Results: We found that CBD reversed the pathological changes observed in both Sugen-hypoxia and monocrotaline-induced PAH rodent models in a cannabinoid receptors-independent manner. Our results also demonstrated that CBD significantly inhibited the PASMCs' proliferation in PAH mice with less inflammation and reactive oxygen species levels. Moreover, CBD alleviated rodent PAH by recovering mitochondrial energy metabolism, normalizing the hypoxia-induced oxidant stress, reducing the lactate overaccumulation and abnormal glycolysis. Conclusions: Taken together, these findings confirm an important role for CBD in PAH pathobiology.
Collapse
|
25
|
Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension. Proc Natl Acad Sci U S A 2021; 118:2010206118. [PMID: 33836561 DOI: 10.1073/pnas.2010206118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferonopathies, interferon (IFN)-α/β therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1 -/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.
Collapse
|
26
|
van Uden D, Koudstaal T, van Hulst JAC, Bergen IM, Gootjes C, Morrell NW, van Loo G, von der Thüsen JH, van den Bosch TPP, Ghigna MR, Perros F, Montani D, Kool M, Boomars KA, Hendriks RW. Central Role of Dendritic Cells in Pulmonary Arterial Hypertension in Human and Mice. Int J Mol Sci 2021; 22:ijms22041756. [PMID: 33578743 PMCID: PMC7916474 DOI: 10.3390/ijms22041756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) is not fully understood, but evidence is accumulating that immune dysfunction plays a significant role. We previously reported that 31-week-old Tnfaip3DNGR1-KO mice develop pulmonary hypertension (PH) symptoms. These mice harbor a targeted deletion of the TNFα-induced protein-3 (Tnfaip3) gene, encoding the NF-κB regulatory protein A20, specifically in type I conventional dendritic cells (cDC1s). Here, we studied the involvement of dendritic cells (DCs) in PH in more detail. We found various immune cells, including DCs, in the hearts of Tnfaip3DNGR1-KO mice, particularly in the right ventricle (RV). Secondly, in young Tnfaip3DNGR1-KO mice, innate immune activation through airway exposure to toll-like receptor ligands essentially did not result in elevated RV pressures, although we did observe significant RV hypertrophy. Thirdly, PH symptoms in Tnfaip3DNGR1-KO mice were not enhanced by concomitant mutation of bone morphogenetic protein receptor type 2 (Bmpr2), which is the most affected gene in PAH patients. Finally, in human IPAH lung tissue we found co-localization of DCs and CD8+ T cells, representing the main cell type activated by cDC1s. Taken together, these findings support a unique role of cDC1s in PAH pathogenesis, independent of general immune activation or a mutation in the Bmpr2 gene.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Jennifer A. C. van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Ingrid M. Bergen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Chelsea Gootjes
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge & NIHR BioResource for Translational Research & Addenbrooke’s Hospital NHS Foundation Trust & Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium;
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jan H. von der Thüsen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands; (J.H.v.d.T.); (T.P.P.v.d.B.)
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands; (J.H.v.d.T.); (T.P.P.v.d.B.)
| | - Maria-Rosa Ghigna
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (M.-R.G.); (F.P.); (D.M.)
- INSERM UMR_S 999, Pulmonary Hypertension: Pathology and Novel Therapies, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
- Division of Pathology, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (M.-R.G.); (F.P.); (D.M.)
- INSERM UMR_S 999, Pulmonary Hypertension: Pathology and Novel Therapies, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (M.-R.G.); (F.P.); (D.M.)
- INSERM UMR_S 999, Pulmonary Hypertension: Pathology and Novel Therapies, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Karin A. Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
- Correspondence: (K.A.B.); (R.W.H.); Tel.: +316-50031911 (K.A.B.); +31-10-7043700 (R.W.H.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
- Correspondence: (K.A.B.); (R.W.H.); Tel.: +316-50031911 (K.A.B.); +31-10-7043700 (R.W.H.)
| |
Collapse
|
27
|
Romanoski CE, Qi X, Sangam S, Vanderpool RR, Stearman RS, Conklin A, Gonzalez-Garay M, Rischard F, Ayon RJ, Wang J, Simonson T, Babicheva A, Shi Y, Tang H, Makino A, Kanthi Y, Geraci MW, Garcia JGN, Yuan JXJ, Desai AA. Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes. Pulm Circ 2020; 10:2045894020968531. [PMID: 33343881 PMCID: PMC7727059 DOI: 10.1177/2045894020968531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Using RNAseq, we identified a 61 gene-based circulating transcriptomic profile most correlated with four indices of pulmonary arterial hypertension severity. In an independent dataset, 13/61 (21%) genes were differentially expressed in lung tissues of pulmonary arterial hypertension cases versus controls, highlighting potentially novel candidate genes involved in pulmonary arterial hypertension development.
Collapse
Affiliation(s)
- Casey E Romanoski
- Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Xinshuai Qi
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Shreya Sangam
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Rebecca R Vanderpool
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Austin Conklin
- Department of Cellular and Molecular Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Manuel Gonzalez-Garay
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Franz Rischard
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Ramon J Ayon
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jian Wang
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tatum Simonson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Yinan Shi
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Haiyang Tang
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute Bethesda, Maryland, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark W Geraci
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Joe G N Garcia
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jason X-J Yuan
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Ankit A Desai
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.,Department of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
28
|
Aldred MA. PHorecasting Heritable Pulmonary Arterial Hypertension: Are We Nearly There Yet? Am J Respir Crit Care Med 2020; 202:1500-1502. [PMID: 32835509 PMCID: PMC7706171 DOI: 10.1164/rccm.202007-2887ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
29
|
Hemnes A, Rothman AMK, Swift AJ, Zisman LS. Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020957234. [PMID: 33282185 PMCID: PMC7682212 DOI: 10.1177/2045894020957234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension is a complex disease resulting from the interplay of myriad biological and environmental processes that lead to remodeling of the pulmonary vasculature with consequent pulmonary hypertension. Despite currently available therapies, there remains significant morbidity and mortality in this disease. There is great interest in identifying and applying biomarkers to help diagnose patients with pulmonary arterial hypertension, inform prognosis, guide therapy, and serve as surrogate endpoints. An extensive literature on potential biomarker candidates is available, but barriers to the implementation of biomarkers for clinical use in pulmonary arterial hypertension are substantial. Various omic strategies have been undertaken to identify key pathways regulated in pulmonary arterial hypertension that could serve as biomarkers including genomic, transcriptomic, proteomic, and metabolomic approaches. Other biologically relevant components such as circulating cells, microRNAs, exosomes, and cell-free DNA have recently been gaining attention. Because of the size of the datasets generated by these omic approaches and their complexity, artificial intelligence methods are being increasingly applied to decipher their meaning. There is growing interest in imaging the lung with various modalities to understand and visualize processes in the lung that lead to pulmonary vascular remodeling including high resolution computed tomography, Xenon magnetic resonance imaging, and positron emission tomography. Such imaging modalities have the potential to demonstrate disease modification resulting from therapeutic interventions. Because right ventricular function is a major determinant of prognosis, imaging of the right ventricle with echocardiography or cardiac magnetic resonance imaging plays an important role in the evaluation of patients and may also be useful in clinical studies of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anna Hemnes
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Andrew J Swift
- University of Sheffield and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | |
Collapse
|
30
|
Rhodes CJ. The cancer hypothesis of pulmonary arterial hypertension: are polyamines the new Warburg? Eur Respir J 2020; 56:56/5/2002350. [DOI: 10.1183/13993003.02350-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/05/2022]
|
31
|
Rhodes CJ, Otero-Núñez P, Wharton J, Swietlik EM, Kariotis S, Harbaum L, Dunning MJ, Elinoff JM, Errington N, Thompson AAR, Iremonger J, Coghlan JG, Corris PA, Howard LS, Kiely DG, Church C, Pepke-Zaba J, Toshner M, Wort SJ, Desai AA, Humbert M, Nichols WC, Southgate L, Trégouët DA, Trembath RC, Prokopenko I, Gräf S, Morrell NW, Wang D, Lawrie A, Wilkins MR. Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. Am J Respir Crit Care Med 2020; 202:586-594. [PMID: 32352834 PMCID: PMC7427383 DOI: 10.1164/rccm.202003-0510oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023] Open
Abstract
Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.
Collapse
Affiliation(s)
- Christopher J Rhodes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sokratis Kariotis
- Sheffield Institute for Translational Neuroscience
- Department of Infection, Immunity & Cardiovascular Disease, and
| | - Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mark J Dunning
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, United Kingdom
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland
| | - Niamh Errington
- Sheffield Institute for Translational Neuroscience
- Department of Infection, Immunity & Cardiovascular Disease, and
| | | | - James Iremonger
- Department of Infection, Immunity & Cardiovascular Disease, and
| | | | - Paul A Corris
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David G Kiely
- Department of Infection, Immunity & Cardiovascular Disease, and
| | | | | | - Mark Toshner
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Royal Papworth Hospital, Cambridge, United Kingdom
| | - Stephen J Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - William C Nichols
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom
| | - David-Alexandre Trégouët
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, United Kingdom; and
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR BioResource for Translational Research, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dennis Wang
- Sheffield Institute for Translational Neuroscience
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, and
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Li Q, Meng L, Liu D. Screening and Identification of Therapeutic Targets for Pulmonary Arterial Hypertension Through Microarray Technology. Front Genet 2020; 11:782. [PMID: 32849793 PMCID: PMC7396553 DOI: 10.3389/fgene.2020.00782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by vascular cell proliferation; the pathogenesis of PAH has yet to be fully elucidated. Publicly available genetic data were downloaded from the Gene Expression Omnibus (GEO) database, and gene set enrichment analysis (GSEA) was used to determine significant differences in gene expression between tissues with PAH and healthy lung tissues. Differentially expressed genes (DEGs) were identified using the online tool, GEO2R, and functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Next, the construction and module analysis of the protein–protein interaction (PPI) network and verification of the expression level of hub genes was performed. Finally, prediction and enrichment analysis of microRNAs associated with the hub genes was carried out. A total of 110 DEGs were detected by screening PAH and healthy lung samples. The expression of nine genes [polo-like kinase 4 (PLK4), centromere protein U, kinesin family member 20B, structural maintenance of chromosome 2 (SMC2), abnormal spindle microtubule assembly, Fanconi Anemia complementation group I, kinesin family member 18A, spindle apparatus coiled-coil protein 1, and MIS18 binding protein 1] was elevated in PAH; this was statistically significant compared with their expression in healthy lung tissue, and they were identified as hub genes. GO and KEGG analysis showed that the variations in DEGs were abundant in DNA-templated transcription, sister chromatid cohesion, mitotic nuclear division, cell proliferation, and regulation of the actin cytoskeleton. In conclusion, this study has successfully identified hub genes and key pathways of PAH, with a total of 110 DEGs and nine hub genes related to PAH, especially the PLK4 and SMC2 genes, thus providing important clues for the in-depth understanding of the molecular mechanism of PAH and providing potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - LingBing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Departments of Cardiology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - DePing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Harbaum L, Rhodes CJ, Otero-Núñez P, Wharton J, Wilkins MR. The application of 'omics' to pulmonary arterial hypertension. Br J Pharmacol 2020; 178:108-120. [PMID: 32201940 DOI: 10.1111/bph.15056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide analyses of rare and common sequence variations have brought greater clarity to the genetic architecture of pulmonary arterial hypertension and implicated novel genes in disease development. Transcriptional signatures have been reported in whole lung tissue, pulmonary vascular cells and peripheral circulating cells. High-throughput platforms for plasma proteomics and metabolomics have identified novel biomarkers associated with clinical outcomes and provided molecular instruments for risk assessment. There are methodological challenges to integrating these datasets, coupled to statistical power limitations inherent to the study of a rare disease, but the expectation is that this approach will reveal novel druggable targets and biomarkers that will open the way to personalized medicine. Here, we review the current state-of-the-art and future promise of 'omics' in the field of translational medicine in pulmonary arterial hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
34
|
Ezenwa C, Soremekun OS, Nashiru O, Fatumo S. Identification of differentially expressed genes present in the whole blood of Pulmonary Arterial Hypertension patients and control patients: An integrated bioinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|