1
|
Li FW, Zhou N, Li JJ, Zhang YJ, Zhao X. Protective effects of bioactive components targeting β2-adrenergic receptors and muscarinic-3 acetylcholine receptor in Zhisou San on ovalbumin-induced allergic asthma. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1358-1373. [PMID: 38874436 DOI: 10.1080/10286020.2024.2365442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
One promising approach to overcome drug resistance in asthma treatments involves dual-target therapy, specifically targeting the β2 adrenergic receptor (β2-AR) and muscarinic-3 acetylcholine receptor (M3R). This study investigated the anti-asthma effects and dual-target mechanisms of glycyrrhizic acid, hesperidin, and platycodin D (GHP) from Zhisou San. GHP administration effectively attenuated OVA-induced inflammatory infiltration and overproduction of mucus in asthmatic mice. Additionally, GHP treatment significantly suppressed M3R and promoted β2-AR activation, resulting in the relaxation of tracheal smooth muscle. These findings concluded that GHP mitigated asthma by targeting β2-AR and M3R to ameliorate airway inflammation and modulate airway smooth muscle relaxation.
Collapse
Affiliation(s)
- Feng-Wu Li
- Chemical Drug Department, Xi'an Food and Drug Inspection Institute, Xi'an 710172, China
| | - Na Zhou
- Chemical Drug Department, Xi'an Food and Drug Inspection Institute, Xi'an 710172, China
| | - Jing-Jing Li
- Chemical Drug Department, Xi'an Food and Drug Inspection Institute, Xi'an 710172, China
| | - Ya-Jun Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Yang W, He L. The protective effect of hederagenin on renal fibrosis by targeting muscarinic acetylcholine receptor. Bioengineered 2022; 13:8689-8698. [PMID: 35322725 PMCID: PMC9161953 DOI: 10.1080/21655979.2022.2054596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hederagenin (HE) plays a protective role by inhibiting cell proliferation and ameliorating fibrosis. The current therapy for Chronic kidney disease (CKD) often result in the risks of side effects. The present study aimed to explore whether it can protect against renal fibrosis and unveil the underlying mechanism. Transforming growth factor (TGF)-β was used to induce the fibroblasts NRK-49 F for the simulation of renal fibrosis. The cell viability and expression of fibrosis-related proteins in TGF-β-treated NRK-49 F cells was, respectively, measured by Cell Counting Kit-8 (CCK-8) and western blot. After predicting the target genes of HE, M3 receptor was measured in NRK-49 F cells treated with TGF-β alone or in combination with HE. Then, M3 receptor was silenced in TGF-β-treated NRK-49 F cells for the detection of its role in proliferation and fibrosis. Muscarinic acetylcholine receptor M3 (M3 receptor) agonist pilocarpine was further added to determine the role of M3 receptor involved. HE inhibited the proliferation and fibrosis of TGF-β-treated NRK-49 F cells. M3 receptor was predicted to be a target of HE. Moreover, interference of M3 receptor improved the proliferation and fibrosis of TGF-β-treated NRK-49 F cells. Further addition of pilocarpine reversed the inhibitory effect of HE on proliferation and fibrosis of TGF-β-treated NRK-49 F cells. HE protects against renal fibrosis in NRK-49 F cells by targeting Muscarinic acetylcholine receptor, which will provide theoretical basis for the clinical use of HE for kidney-related disease treatment.
Collapse
Affiliation(s)
- Wei Yang
- Nephrology Department, Shanxi Traditional Chinese Medicine Institute, Shanxi, China
| | - Lijuan He
- Acupuncture and Moxibustion Department, Xi 'An TCM Hospital of Encephalopathy, Xi'an City, China
| |
Collapse
|
3
|
Wu X, Bos IST, Conlon TM, Ansari M, Verschut V, van der Koog L, Verkleij LA, D’Ambrosi A, Matveyenko A, Schiller HB, Königshoff M, Schmidt M, Kistemaker LEM, Yildirim AÖ, Gosens R. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. SCIENCE ADVANCES 2022; 8:eabj9949. [PMID: 35319981 PMCID: PMC8942365 DOI: 10.1126/sciadv.abj9949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 05/05/2023]
Abstract
Currently, there is no pharmacological treatment targeting defective tissue repair in chronic disease. Here, we used a transcriptomics-guided drug target discovery strategy using gene signatures of smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke, identifying druggable targets expressed in alveolar epithelial progenitors, of which we screened the function in lung organoids. We found several drug targets with regenerative potential, of which EP and IP prostanoid receptor ligands had the most profound therapeutic potential in restoring cigarette smoke-induced defects in alveolar epithelial progenitors in vitro and in vivo. Mechanistically, we found, using single-cell RNA sequencing analysis, that circadian clock and cell cycle/apoptosis signaling pathways were differentially expressed in alveolar epithelial progenitor cells in patients with COPD and in a relevant model of COPD, which was prevented by prostaglandin E2 or prostacyclin mimetics. We conclude that specific targeting of EP and IP receptors offers therapeutic potential for injury to repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - I. Sophie T. Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas M. Conlon
- Institute of Lung Biology and Disease (ILBD)/Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Meshal Ansari
- Institute of Lung Biology and Disease (ILBD)/Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vicky Verschut
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Aquilo BV, Groningen, Netherlands
| | - Luke van der Koog
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars A. Verkleij
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Angela D’Ambrosi
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Herbert B. Schiller
- Institute of Lung Biology and Disease (ILBD)/Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Martina Schmidt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Loes E. M. Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Aquilo BV, Groningen, Netherlands
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (ILBD)/Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Xu F, Hou T, Shen A, Jin H, Xiao Y, Yu W, Li X, Wang J, Liu Y, Liang X. Mechanism deconvolution of Qing Fei Pai Du decoction for treatment of Coronavirus Disease 2019 (COVID-19) by label-free integrative pharmacology assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114488. [PMID: 34358653 PMCID: PMC8329432 DOI: 10.1016/j.jep.2021.114488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has a long history in the prevention and treatment of pandemics. The TCM formula Lung Cleansing and Detoxifying Decoction (LCDD), also known as Qing Fei Pai Du Decoction, has been demonstrated effective against Coronavirus Disease 2019 (COVID-19). AIM OF THE STUDY This work aimed to elucidate the active ingredients, targets and pathway mechanism of LCDD related to suppression of inflammatory, immunity regulation and relaxation of airway smooth muscle for the treatment of COVID-19. MATERIALS AND METHODS Mining chemical ingredients reported in LCDD, 144 compounds covering all herbs were selected and screened against inflammatory-, immunity- and respiratory-related GPCRs including GPR35, H1, CB2, B2, M3 and β2-adrenoceptor receptor using a label-free integrative pharmacology method. Further, all active compounds were detected using liquid chromatography-tandem mass spectrometry, and an herb-compound-target network based on potency and content of compounds was constructed to elucidate the multi-target and synergistic effect. RESULTS Thirteen compounds were identified as GPR35 agonists, including licochalcone B, isoliquiritigenin, etc. Licochalcone B, isoliquiritigenin and alisol A exhibited bradykinin receptor B2 antagonism activities. Atractyline and shogaol showed as a cannabinoid receptor CB2 agonist and a histamine receptor H1 antagonist, respectively. Tectorigenin and aristofone acted as muscarinic receptor M3 antagonists, while synephrine, ephedrine and pseudoephedrine were β2-adrenoceptor agonists. Pathway deconvolution assays suggested activation of GPR35 triggered PI3K, MEK, JNK pathways and EGFR transactivation, and the activation of β2-adrenoceptor mediated MEK and Ca2+. The herb-compound-target network analysis found that some compounds such as licochalcone B acted on multiple targets, and multiple components interacted with the same target such as GPR35, reflecting the synergistic mechanism of Chinese medicine. At the same time, some low-abundance compounds displayed high target activity, meaning its important role in LCDD for anti-COVID-19. CONCLUSIONS This study elucidates the active ingredients, targets and pathways of LCDD. This is useful for elucidating multitarget synergistic action for its clinical therapeutic efficacy.
Collapse
Affiliation(s)
- Fangfang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Aijin Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hongli Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yuansheng Xiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Wenyi Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xiaonong Li
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
5
|
Infection-Associated Mechanisms of Neuro-Inflammation and Neuro-Immune Crosstalk in Chronic Respiratory Diseases. Int J Mol Sci 2021; 22:ijms22115699. [PMID: 34071807 PMCID: PMC8197882 DOI: 10.3390/ijms22115699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive airway diseases are characterized by airflow obstruction and airflow limitation as well as chronic airway inflammation. Especially bronchial asthma and chronic obstructive pulmonary disease (COPD) cause considerable morbidity and mortality worldwide, can be difficult to treat, and ultimately lack cures. While there are substantial knowledge gaps with respect to disease pathophysiology, our awareness of the role of neurological and neuro-immunological processes in the development of symptoms, the progression, and the outcome of these chronic obstructive respiratory diseases, is growing. Likewise, the role of pathogenic and colonizing microorganisms of the respiratory tract in the development and manifestation of asthma and COPD is increasingly appreciated. However, their role remains poorly understood with respect to the underlying mechanisms. Common bacteria and viruses causing respiratory infections and exacerbations of chronic obstructive respiratory diseases have also been implicated to affect the local neuro-immune crosstalk. In this review, we provide an overview of previously described neuro-immune interactions in asthma, COPD, and respiratory infections that support the hypothesis of a neuro-immunological component in the interplay between chronic obstructive respiratory diseases, respiratory infections, and respiratory microbial colonization.
Collapse
|
6
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
7
|
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26:298-321. [PMID: 33506971 DOI: 10.1111/resp.14007] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.
Collapse
Affiliation(s)
- Peter Lange
- Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Zakaria Mohamed Lahmar
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arnaud Bourdin
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
8
|
New aspects of neuroinflammation and neuroimmune crosstalk in the airways. J Allergy Clin Immunol 2019; 142:1415-1422. [PMID: 30409249 DOI: 10.1016/j.jaci.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/23/2022]
Abstract
Neuroimmune interaction has long been discussed in the pathogenesis of allergic airway diseases, such as allergic asthma. Mediators released during inflammation can alter the function of both sensory and parasympathetic neurons innervating the airways. Evidence has been provided that the inflammatory response can be altered by various mediators that are released by sensory and parasympathetic neurons and vice versa. Our aim is to demonstrate recent developments in the reciprocal neuroimmune interaction and to include, if available, data from in vivo and clinical studies.
Collapse
|
9
|
Blake KJ, Jiang XR, Chiu IM. Neuronal Regulation of Immunity in the Skin and Lungs. Trends Neurosci 2019; 42:537-551. [PMID: 31213389 DOI: 10.1016/j.tins.2019.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
The nervous and immune systems are classically studied as two separate entities. However, their interactions are crucial for maintaining barrier functions at tissues constantly exposed to the external environment. We focus here on the role of neuronal signaling in regulating the immune system at two major barriers: the skin and respiratory tract. Barrier tissues are heavily innervated by sensory and autonomic nerves, and are densely populated by resident immune cells, allowing rapid, coordinated responses to noxious stimuli, as well as to bacterial and fungal pathogens. Neural release of neurotransmitters and neuropeptides allows fast communication with immune cells and their recruitment. In addition to maintaining homeostasis and fighting infections, neuroimmune interactions are also implicated in several chronic inflammatory conditions such as atopic dermatitis (AD), chronic obstructive pulmonary disease (COPD), and asthma.
Collapse
Affiliation(s)
- Kimbria J Blake
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xin Ru Jiang
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Yamada M, Ichinose M. The Cholinergic Pathways in Inflammation: A Potential Pharmacotherapeutic Target for COPD. Front Pharmacol 2018; 9:1426. [PMID: 30559673 PMCID: PMC6287026 DOI: 10.3389/fphar.2018.01426] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
In COPD, the activity of the cholinergic system is increased, which is one of the reasons for the airflow limitation caused by the contraction of airway smooth muscles. Therefore, blocking the contractive actions with anticholinergics is a useful therapeutic intervention to reduce the airflow limitation. In addition to the effects of bronchoconstriction and mucus secretion, accumulating evidence from animal models of COPD suggest acetylcholine has a role in inflammation. Experiments using muscarinic M3-receptor deficient mice or M3 selective antagonists revealed that M3-receptors on parenchymal cells, but not on hematopoietic cells, are involved in the pro-inflammatory effect of acetylcholine. Recently, combinations of long-acting β2 adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) have become available for COPD treatment. These dual long-acting bronchodilators may have synergistic anti-inflammatory effects because stimulation of β2 adrenergic receptors induces inhibitory effects in inflammatory cells via a different signaling pathway from that by antagonizing M3-receptor, though these anti-inflammatory effects have not been clearly demonstrated in COPD patients. In contrast to the pro-inflammatory effects by ACh via muscarinic receptors, it has been demonstrated that the cholinergic anti-inflammatory pathway, which involves the parasympathetic nervous systems, regulates excessive inflammatory responses to protect organs during tissue injury and infection. Stimulation of acetylcholine via the α7 nicotinic acetylcholine receptor (α7nAChR) exerts inhibitory effects on leukocytes including macrophages and type 2 innate lymphoid cells. Although it remains unclear whether the inhibitory effects of acetylcholine via α7nAChR in inflammatory cells can regulate inflammation in COPD, neuroimmune interactions including the cholinergic anti-inflammatory pathway might serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 2018; 67:460-466. [PMID: 29605098 DOI: 10.1016/j.alit.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Inhaled bronchodilator treatment with a long acting muscarinic antagonist (LAMA) reduces symptoms and the risk of exacerbations in COPD and asthma. However, increasing evidence from cell culture and animal studies suggests that anti-muscarinic drugs could also possess anti-inflammatory effects. Recent studies have revealed that acetylcholine (ACh) can be synthesized and released from both neuronal and non-neuronal cells, and the released ACh can potentiate airway inflammation and remodeling in airway diseases. However, these anti-inflammatory effects of anti-muscarinic drugs have not yet been confirmed in COPD and asthma patients. This review will focus on recent findings about the possible involvement of ACh in airway inflammation and remodeling, and the anti-inflammatory effect of anti-muscarinic drugs in airway diseases. Clarifying the acetylcholine-mediated inflammation could provide insights into the mechanisms of airway diseases, which could lead to future therapeutic strategies for inhibiting the disease progression and exacerbations.
Collapse
|
12
|
Hsiao YH, Tseng CM, Su KC, Chen WC, Wu MT, Wu YC, Chang SC, Lee YC, Kou YR, Perng DW. Glycopyrronium bromide inhibits lung inflammation and small airway remodeling induced by subchronic cigarette smoke exposure in mice. Respir Physiol Neurobiol 2018; 249:16-22. [DOI: 10.1016/j.resp.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 02/02/2023]
|
13
|
Microarray analysis of lung long non-coding RNAs in cigarette smoke-exposed mouse model. Oncotarget 2017; 8:115647-115656. [PMID: 29383188 PMCID: PMC5777800 DOI: 10.18632/oncotarget.23362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Several studies have demonstrated the function of long non‑coding RNAs (lncRNAs) in various biological processes, yet their role underlying the susceptibility to cigarette smoke (CS)-induced airway inflammation remains limited. In the present study, we aimed to profile the expression of lncRNAs and mRNAs in CS-exposed mice. C57BL/6 mice were assigned into a single cigarette-smoking machine with or without CS exposure for 4 weeks, followed by lung tissue harvest and RNA isolation. Microarray analysis identified 108 lncRNAs and 119 mRNAs with differential expression levels in CS-exposed mouse lung tissue compared with those in control mice. The expression patterns of several lncRNAs were further confirmed by qRT-PCR. GO and pathway analyses showed that the altered mRNAs were mainly related to the processes of immune response, defense response and cell chemotaxis, cytokine-cytokine receptor interaction and chemokine signaling pathway. Moreover, a single lncRNA may co-expressed with several mRNAs, and so was the mRNA. Our findings uncovered the expression profile of lncRNAs and mRNAs in the lungs of CS-exposed mice, which may offer new insights into pathogenesis of CS-associated airway inflammatory disorders.
Collapse
|
14
|
Toumpanakis D, Loverdos K, Tzouda V, Vassilakopoulou V, Litsiou E, Magkou C, Karavana V, Pieper M, Vassilakopoulos T. Tiotropium bromide exerts anti-inflammatory effects during resistive breathing, an experimental model of severe airway obstruction. Int J Chron Obstruct Pulmon Dis 2017; 12:2207-2220. [PMID: 28814849 PMCID: PMC5546183 DOI: 10.2147/copd.s137587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Resistive breathing (RB), a hallmark of obstructive airway diseases, is characterized by strenuous contractions of the inspiratory muscles that impose increased mechanical stress on the lung. RB is shown to induce pulmonary inflammation in previous healthy animals. Tiotropium bromide, an anticholinergic bronchodilator, is also shown to exert anti-inflammatory effects. The effect of tiotropium on RB-induced pulmonary inflammation is unknown. Methods Adult rats were anesthetized, tracheostomized and breathed spontaneously through a two-way non-rebreathing valve. Resistances were connected to the inspiratory and/or expiratory port, to produce inspiratory resistive breathing (IRB) of 40% or 50% Pi/Pi,max (40% and 50% IRB), expiratory resistive breathing (ERB) of 60% Pe/Pe,max (60% ERB) or combined resistive breathing (CRB) of both 40% Pi/Pi,max and 60% Pe/Pe,max (40%/60% CRB). Tiotropium aerosol was inhaled prior to RB. After 6 h of RB, mechanical parameters of the respiratory system were measured and bronchoalveolar lavage (BAL) was performed. IL-1β and IL-6 protein levels were measured in lung tissue. Lung injury was estimated histologically. Results In all, 40% and 50% IRB increased macrophage and neutrophil counts in BAL and raised IL-1β and IL-6 lung levels, tissue elasticity, BAL total protein levels and lung injury score. Tiotropium attenuated BAL neutrophil number, IL-1β, IL-6 levels and lung injury score increase at both 40% and 50% IRB. The increase in macrophage count and protein in BAL was only reversed at 40% IRB, while tissue elasticity was not affected. In all, 60% ERB raised BAL neutrophil count and total protein and reduced macrophage count. IL-1β and IL-6 levels and lung injury score were increased. Tiotropium attenuated these alterations, except for the decrease in macrophage count and the increase in total protein level. In all, 40%/60% CRB increased macrophage and neutrophil count in BAL, IL-1β and IL-6 levels, tissue elasticity, total protein in BAL and histological injury score. Tiotropium attenuated the aforementioned alterations. Conclusion Tiotropium inhalation attenuates RB-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| | - Konstantinos Loverdos
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| | - Vassiliki Tzouda
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| | - Vyronia Vassilakopoulou
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| | - Eleni Litsiou
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| | - Christina Magkou
- Department of Pathology, Evangelismos General Hospital, Athens, Greece
| | - Vassiliki Karavana
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| | - Michael Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG Div. Research Germany, Biberach, Germany
| | - Theodoros Vassilakopoulos
- First Critical Care Department, Pulmonary Unit, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital.,George P. Livanos and Marianthi Simou Laboratories, Thorax Foundation
| |
Collapse
|
15
|
Cornide-Petronio ME, Bujaldon E, Mendes-Braz M, Avalos de León CG, Jiménez-Castro MB, Álvarez-Mercado AI, Gracia-Sancho J, Rodés J, Peralta C. The impact of cortisol in steatotic and non-steatotic liver surgery. J Cell Mol Med 2017; 21:2344-2358. [PMID: 28374452 PMCID: PMC5618669 DOI: 10.1111/jcmm.13156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
The intent of this study was to examine the effects of regulating cortisol levels on damage and regeneration in livers with and without steatosis subjected to partial hepatectomy under ischaemia–reperfusion. Ultimately, we found that lean animals undergoing liver resection displayed no changes in cortisol, whereas cortisol levels in plasma, liver and adipose tissue were elevated in obese animals undergoing such surgery. Such elevations were attributed to enzymatic upregulation, ensuring cortisol production, and downregulation of enzymes controlling cortisol clearance. In the absence of steatosis, exogenous cortisol administration boosted circulating cortisol, while inducing clearance of hepatic cortisol, thus maintaining low cortisol levels and preventing related hepatocellular harm. In the presence of steatosis, cortisol administration was marked by a substantial rise in intrahepatic availability, thereby exacerbating tissue damage and regenerative failure. The injurious effects of cortisol were linked to high hepatic acethylcholine levels. Upon administering an α7 nicotinic acethylcholine receptor antagonist, no changes in terms of tissue damage or regenerative lapse were apparent in steatotic livers. However, exposure to an M3 muscarinic acetylcholine receptor antagonist protected livers against damage, enhancing parenchymal regeneration and survival rate. These outcomes for the first time provide new mechanistic insight into surgically altered steatotic livers, underscoring the compelling therapeutic potential of cortisol–acetylcholine–M3 muscarinic receptors.
Collapse
Affiliation(s)
| | - Esther Bujaldon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mariana Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Ana I Álvarez-Mercado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Juan Rodés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| |
Collapse
|
16
|
Carmona-Rivera C, Purmalek MM, Moore E, Waldman M, Walter PJ, Garraffo HM, Phillips KA, Preston KL, Graf J, Kaplan MJ, Grayson PC. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI Insight 2017; 2:e89780. [PMID: 28194438 DOI: 10.1172/jci.insight.89780] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study's objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and
| | - Monica M Purmalek
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and
| | - Erica Moore
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and
| | - Meryl Waldman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - H Martin Garraffo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Karran A Phillips
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, Maryland, USA
| | - Kenzie L Preston
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, Maryland, USA
| | - Jonathan Graf
- Division of Rheumatology, UCSF, San Francisco, California, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and
| | - Peter C Grayson
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and
| |
Collapse
|
17
|
McGarvey L, Morice AH, Smith JA, Birring SS, Chuecos F, Seoane B, Jarreta D. Effect of aclidinium bromide on cough and sputum symptoms in moderate-to-severe COPD in three phase III trials. BMJ Open Respir Res 2016; 3:e000148. [PMID: 28074135 PMCID: PMC5174811 DOI: 10.1136/bmjresp-2016-000148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cough and sputum are troublesome symptoms in chronic obstructive pulmonary disease (COPD) and are associated with adverse outcomes. The efficacy of aclidinium bromide 400 µg twice daily in patients with stable COPD has been established in two phase III studies (ACCORD COPD I and ATTAIN) and a phase IIIb active-comparator study. This analysis evaluated cough-related symptoms across these studies. METHOD Patients were randomised to placebo, aclidinium 200 µg or 400 µg twice daily in ACCORD (12 weeks) and ATTAIN (24 weeks), or to placebo, aclidinium 400 µg twice daily or tiotropium 18 µg once daily (6-week active-comparator study). Analysed end points included changes from baseline in Evaluating Respiratory Symptoms (E-RS; formerly known as EXAcerbations of Chronic pulmonary disease Tool), total and cough/sputum scores and frequency/severity of morning and night-time cough and sputum symptoms. RESULTS Data for 1792 patients were evaluated. E-RS cough/sputum domain scores were significantly reduced with aclidinium 400 µg versus placebo in ATTAIN (-0.7 vs -0.3, respectively; p<0.01) and the active-comparator study (-0.6 vs -0.2, respectively; p<0.01). In the active-comparator study, significantly greater improvements were observed with aclidinium versus placebo for severity of morning cough (-0.19 vs -0.02; p<0.01) and phlegm (-0.19 vs -0.02; p<0.05). In ACCORD, aclidinium reduced night-time cough frequency (-0.36 vs 0.1 for placebo; p<0.001) and severity (-0.24 vs -0.1 for placebo; p<0.05), and frequency of night-time sputum production (-0.37 vs 0.05 for placebo; p<0.001). CONCLUSIONS Aclidinium 400 µg twice daily improves cough and sputum expectoration versus placebo in stable COPD. TRIAL REGISTRATION NUMBERS NCT00891462; NCT01001494; NCT01462929.
Collapse
Affiliation(s)
- Lorcan McGarvey
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Alyn H Morice
- Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK
| | - Jaclyn A Smith
- Centre for Respiratory Medicine and Allergy, University of Manchester, University Hospital of South Manchester, Manchester, UK
| | - Surinder S Birring
- Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | | | | | | |
Collapse
|
18
|
Martínez-Jaimes MD, García-Lorenzana M, Muñoz-Ortega MH, Quintanar-Stephano A, Ávila-Blanco ME, García-Agueda CE, Ventura-Juárez J. Modulation of innate immune response by the vagus nerve in experimental hepatic amebiasis in rats. Exp Parasitol 2016; 169:90-101. [PMID: 27466057 DOI: 10.1016/j.exppara.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
The parasympathetic nervous system has a crucial role in immunomodulation of the vagus nerve, its structure provides a pathogen detection system, and a negative feedback to the immune system after the pathogenic agent has been eliminated. Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, considered the third leading cause of death in the world. The rats are used as a natural resistance model to amoebic liver infection. The aim of this study is to analyze the interaction of Entamoeba histolytica with neutrophils, macrophages, and NK cells in livers of intact and vagotomized rats. Six groups were studied (n = 4): Intact (I), Intact + amoeba (IA), Sham (S), Sham + amoeba (SA), Vagotomized (V) and Vagotomized + amoeba (VA). Animals were sacrificed at 8 h post-inoculation of E. histolytica. Then, livers were obtained and fixed in 4% paraformaldehyde. Tissue liver slides were stained with H-E, PAS and Masson. The best development time for E. histolytica infection was at 8 h. Amoeba was identified with a monoclonal anti-220 kDa E. histolytica lectin. Neutrophils (N) were identified with rabbit anti-human neutrophil myeloperoxidase, macrophages (Mɸ) with anti-CD68 antibody and NK cells (NK) with anti-NK. Stomachs weight and liver glycogen were higher in V. Collagen increased in VA, whereas vascular and neutrophilic areas were decreased. There were fewer N, Mɸ, NK around the amoeba in the following order IA > SA > VA (p < 0.05 between IA and VA). In conclusion, these results suggest that the absence of parasympathetic innervation affects the participation of neutrophils, macrophages and NK cells in the innate immune response, apparently by parasympathetic inhibition on the cellular functions and probably for participation in sympathetic activity.
Collapse
Affiliation(s)
| | - Mario García-Lorenzana
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Mexico.
| | - Martin H Muñoz-Ortega
- Laboratorio de Morfología, Departamento de Morfología, Centro de ciencias básicas, Universidad Autónoma de Aguascalientes, Mexico
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Mexico
| | - Manuel E Ávila-Blanco
- Laboratorio de Morfología, Departamento de Morfología, Centro de ciencias básicas, Universidad Autónoma de Aguascalientes, Mexico
| | - Carlos E García-Agueda
- Unidad de Investigación en Gerontología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico
| | - Javier Ventura-Juárez
- Laboratorio de Morfología, Departamento de Morfología, Centro de ciencias básicas, Universidad Autónoma de Aguascalientes, Mexico
| |
Collapse
|
19
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
20
|
Chang AB, Marsh RL, Smith-Vaughan HC, Hoffman LR. Emerging drugs for bronchiectasis: an update. Expert Opin Emerg Drugs 2015; 20:277-97. [DOI: 10.1517/14728214.2015.1021683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|