1
|
Sariyar S, Sountoulidis A, Hansen JN, Marco Salas S, Mardamshina M, Martinez Casals A, Ballllosera Navarro F, Andrusivova Z, Li X, Czarnewski P, Lundeberg J, Linnarsson S, Nilsson M, Sundström E, Samakovlis C, Lundberg E, Ayoglu B. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat Commun 2024; 15:9381. [PMID: 39477961 PMCID: PMC11525936 DOI: 10.1038/s41467-024-53752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.
Collapse
Affiliation(s)
- Sanem Sariyar
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Niklas Hansen
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariya Mardamshina
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Frederic Ballllosera Navarro
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Emma Lundberg
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Burcu Ayoglu
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
2
|
Gu L, Li A, He C, Xiao R, Liao J, Xu L, Mu J, Wang X, Yang M, Jiang J, Bai Y, Jin X, Xiao M, Zhang X, Tan T, Xiao Y, Lin J, Li Y, Guo S. Profibrotic role of the SOX9-MMP10-ECM biosynthesis axis in the tracheal fibrosis after injury and repair. Genes Dis 2024; 11:101040. [PMID: 38993791 PMCID: PMC11237849 DOI: 10.1016/j.gendis.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2024] Open
Abstract
Fibroblast activation and extracellular matrix (ECM) deposition play an important role in the tracheal abnormal repair process and fibrosis. As a transcription factor, SOX9 is involved in fibroblast activation and ECM deposition. However, the mechanism of how SOX9 regulates fibrosis after tracheal injury remains unclear. We investigated the role of SOX9 in TGF-β1-induced fibroblast activation and ECM deposition in rat tracheal fibroblast (RTF) cells. SOX9 overexpression adenovirus (Ad-SOX9) and siRNA were transfected into RTF cells. We found that SOX9 expression was up-regulated in RTF cells treated with TGF-β1. SOX9 overexpression activated fibroblasts and promoted ECM deposition. Silencing SOX9 inhibited cell proliferation, migration, and ECM deposition, induced G2 arrest, and increased apoptosis in RTF cells. RNA-seq and chromatin immunoprecipitation sequencing (ChIP-seq) assays identified MMP10, a matrix metalloproteinase involved in ECM deposition, as a direct target of SOX9, which promotes ECM degradation by increasing MMP10 expression through the Wnt/β-catenin signaling pathway. Furthermore, in vivo, SOX9 knockdown ameliorated granulation proliferation and tracheal fibrosis, as manifested by reduced tracheal stenosis. In conclusion, our findings indicate that SOX9 can drive fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/β-catenin signaling pathway. The SOX9-MMP10-ECM biosynthesis axis plays an important role in tracheal injury and repair. Targeting SOX9 and its downstream target MMP10 may represent a promising therapeutic approach for tracheal fibrosis.
Collapse
Affiliation(s)
- Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anmao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chunyan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhao Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingjin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinyue Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingxing Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Meiling Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tairong Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Lin
- Department of Infection Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Acosta-Plasencia M, Castellano JJ, Díaz T, He Y, Marrades RM, Navarro A. Discovering genes and microRNAs involved in human lung development unveils IGFBP3/miR-34a dynamics and their relevance for alveolar differentiation. Stem Cell Res Ther 2024; 15:263. [PMID: 39183355 PMCID: PMC11346212 DOI: 10.1186/s13287-024-03883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND During pseudoglandular stage of the human lung development the primitive bronchial buds are initially conformed by simple tubules lined by endoderm-derived epithelium surrounded by mesenchyme, which will progressively branch into airways and start to form distal epithelial saculles. For first time alveolar type II (AT2) pneumocytes appears. This study aims to characterize the genes and microRNAs involved in this differentiation process and decipher its role in the starting alveolar differentiation. METHODS Gene and microRNA profiling was performed in human embryonic lungs from 7 to 12 post conception weeks (pcw). Protein expression location of candidate genes were analyzed by immunofluorescense in embryonic lung tissue sections. mRNA/miRNA target pairs were identified using computational approaches and their expression was studied in purified epithelial/mesenchymal cell populations and in isolated tips and stalks from the bronchial tree. Additionally, silencing experiments in human embryonic lung mesenchymal cells and in human embryonic tip-derived lung organoids were performed, as well as organoid differentiation studies. AT2 cell markers were studied by qRT-PCR and by immunofluorescence. The TGFB-β phosphorylated pathways was analyzed with membrane protein arrays. Lung explants were cultured in air/liquid interface with/without peptides. RESULTS We identified 88 differentially expressed genes, including IGFBP3. Although IGFBP3 mRNA was detected in both epithelial and mesenchymal populations, the protein was restricted to the epithelium, indicating post-transcriptional regulation preventing IGFBP3 protein expression in the mesenchyme. MicroRNA profiling identified miR-34a as an IGFBP3 regulator. miR-34a was up-regulated in mesenchymal cells, and its silencing in human embryonic lung mesenchymal cells increased IGFBP3 levels. Additionally, IGFBP3 expression showed a marked downregulation from 7 to 12 pcw, suggesting its involvement in the differentiation process. The differentiation of human tip-derived lung embryonic organoids showed a drastic reduction in IGFBP3, supported by the scRNAseq data. IGFBP3 silencing in organoids activated an alveolar-like differentiation process characterized by stem cell markers downregulation and upregulation of AT2 markers. This process was mediated by TGFβ signalling inhibition and BMP pathway activation. CONCLUSIONS The IGFBP3/miR-34a axis restricts IGFBP3 expression in the embryonic undifferentiated lung epithelium, and the progressive downregulation of IGFBP3 during the pseudoglandular stage is required for alveolar differentiation.
Collapse
Affiliation(s)
- Melissa Acosta-Plasencia
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
| | - Joan J Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Tania Díaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
| | - Yangyi He
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Ramón M Marrades
- Thoracic Oncology Unit, Hospital Clínic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036, Barcelona, Spain
- Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, Department of Surgery and Medical Specializations, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), c. Casanova 143, 08036, Barcelona, Spain.
- Thoracic Oncology Unit, Hospital Clínic, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Gerner-Mauro KN, Ellis LV, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular, and cellular adaptations for unidirectional airflow in the chicken lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608866. [PMID: 39229219 PMCID: PMC11370416 DOI: 10.1101/2024.08.20.608866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular, and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches are eliminated via proximal-short and distal-long fusions, forming parabronchi. Neoform termini extend radially through parabronchial smooth muscle to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9 low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2, and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
|
5
|
Li F, Tan Z, Chen H, Gao Y, Xia J, Huang T, Liang L, Zhang J, Zhang X, Shi X, Chen Q, Shu Q, Yu L. Integrative analysis of bulk and single-cell RNA sequencing reveals the gene expression profile and the critical signaling pathways of type II CPAM. Cell Biosci 2024; 14:94. [PMID: 39026356 PMCID: PMC11264590 DOI: 10.1186/s13578-024-01276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUD Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets. METHODS RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations. RESULTS A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition. CONCLUSIONS In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zheng Tan
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Xia
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ting Huang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Liang Liang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jian Zhang
- Department of Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xianghong Zhang
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xucong Shi
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Chen
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China.
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Quach H, Farrell S, Wu MJM, Kanagarajah K, Leung JWH, Xu X, Kallurkar P, Turinsky AL, Bear CE, Ratjen F, Kalish B, Goyal S, Moraes TJ, Wong AP. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat Commun 2024; 15:5898. [PMID: 39003323 PMCID: PMC11246468 DOI: 10.1038/s41467-024-50281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.
Collapse
Affiliation(s)
- Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Spencer Farrell
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Ming Jia Michael Wu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kayshani Kanagarajah
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Wai-Hin Leung
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoqiao Xu
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prajkta Kallurkar
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Kalish
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Banavar SP, Fowler EW, Nelson CM. Biophysics of morphogenesis in the vertebrate lung. Curr Top Dev Biol 2024; 160:65-86. [PMID: 38937031 DOI: 10.1016/bs.ctdb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Morphogenesis is a physical process that sculpts the final functional forms of tissues and organs. Remarkably, the lungs of terrestrial vertebrates vary dramatically in form across species, despite providing the same function of transporting oxygen and carbon dioxide. These divergent forms arise from distinct physical processes through which the epithelium of the embryonic lung responds to the mechanical properties of its surrounding mesenchymal microenvironment. Here we compare the physical processes that guide folding of the lung epithelium in mammals, birds, and reptiles, and suggest a conceptual framework that reconciles how conserved molecular signaling generates divergent mechanical forces across these species.
Collapse
Affiliation(s)
- Samhita P Banavar
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Eric W Fowler
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
8
|
Zhao X, Xiao H, Li X, Zhu L, Peng Y, Chen H, Chen L, Xu D, Wang H. Multi-organ developmental toxicity and its characteristics in fetal mice induced by dexamethasone at different doses, stages, and courses during pregnancy. Arch Toxicol 2024; 98:1891-1908. [PMID: 38522057 DOI: 10.1007/s00204-024-03707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
9
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Chang L, Chen Q, Wang B, Liu J, Zhang M, Zhu W, Jiang J. Single cell RNA analysis uncovers the cell differentiation and functionalization for air breathing of frog lung. Commun Biol 2024; 7:665. [PMID: 38816547 PMCID: PMC11139932 DOI: 10.1038/s42003-024-06369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The evolution and development of vertebrate lungs have been widely studied due to their significance in terrestrial adaptation. Amphibians possess the most primitive lungs among tetrapods, underscoring their evolutionary importance in bridging the transition from aquatic to terrestrial life. However, the intricate process of cell differentiation during amphibian lung development remains poorly understood. Using single-cell RNA sequencing, we identify 13 cell types in the developing lungs of a land-dwelling frog (Microhyla fissipes). We elucidate the differentiation trajectories and mechanisms of mesenchymal cells, identifying five cell fates and their respective driver genes. Using temporal dynamics analyses, we reveal the gene expression switches of epithelial cells, which facilitate air breathing during metamorphosis. Furthermore, by integrating the published data from another amphibian and two terrestrial mammals, we illuminate both conserved and divergent cellular repertoires during the evolution of tetrapod lungs. These findings uncover the frog lung cell differentiation trajectories and functionalization for breathing in air and provide valuable insights into the cell-type evolution of vertebrate lungs.
Collapse
Affiliation(s)
- Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhou H, Zhang Q, Liu C, Fan J, Huang W, Li N, Yang M, Wang H, Xie W, Kong H. NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis. Int J Mol Med 2024; 53:25. [PMID: 38240085 PMCID: PMC10836498 DOI: 10.3892/ijmm.2024.5349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenyang Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiahao Fan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
van Soldt BJ, Metscher BD, Richardson MK, Cardoso WV. Sox9 is associated with two distinct patterning events during snake lung morphogenesis. Dev Biol 2024; 506:7-19. [PMID: 37995917 PMCID: PMC10872300 DOI: 10.1016/j.ydbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
The evolutionary forces that allowed species adaptation to different terrestrial environments and led to great diversity in body shape and size required acquisition of innovative strategies of pattern formation during organogenesis. An extreme example is the formation of highly elongated viscera in snakes. What developmental patterning strategies allowed to overcome the space constraints of the snake's body to meet physiological demands? Here we show that the corn snake uses a Sox2-Sox9 developmental tool kit common to other species to generate and shape the lung in two phases. Initially Sox9 was found at low levels at the tip of the primary lung bud during outgrowth and elongation of the bronchial bud, without driving branching programs characteristic of mammalian lungs. Later, Sox9 induction is recapitulated in the formation of an extensive network of radial septae emerging along the elongated bronchial bud that generates the respiratory region. We propose that altogether these represent key patterning events for formation of both the respiratory faveolar and non-respiratory posterior compartments of the snake's lung.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, and Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, 1030, Austria
| | | | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, and Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Shiraishi K, Morley MP, Jones DL, Zhao G, Weiner AI, Basil MC, Cantu E, Ferguson LT, Oyster M, Babu A, Ying Y, Zhou S, Li S, Vaughan AE, Morrisey EE. Airway epithelial cell identity and plasticity are constrained by Sox2 during lung homeostasis, tissue regeneration, and in human disease. NPJ Regen Med 2024; 9:2. [PMID: 38182591 PMCID: PMC10770358 DOI: 10.1038/s41536-023-00344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Maintenance of the cellular boundary between airway and alveolar compartments during homeostasis and after injury is essential to prohibit pathological plasticity which can reduce respiratory function. Lung injury and disease can induce either functional alveolar epithelial regeneration or dysplastic formation of keratinized epithelium which does not efficiently contribute to gas exchange. Here we show that Sox2 preserves airway cell identity and prevents fate changes into either functional alveolar tissue or pathological keratinization following lung injury. Loss of Sox2 in airway epithelium leads to a loss of airway epithelial identity with a commensurate gain in alveolar and basal cell identity, in part due to activation of Wnt signaling in secretory cells and increased Trp63 expression in intrapulmonary basal-like progenitors. In idiopathic pulmonary fibrosis, loss of SOX2 expression correlates with increased WNT signaling activity in dysplastic keratinized epithelium. SOX2-deficient dysplastic epithelial cells are also observed in COVID-19 damaged lungs. Thus, Sox2 provides a molecular barrier that suppresses airway epithelial plasticity to prevent acquisition of alveolar or basal cell identity after injury and help guide proper epithelial fate and regeneration.
Collapse
Affiliation(s)
- Kazushige Shiraishi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gan Zhao
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron I Weiner
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laura T Ferguson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michele Oyster
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Zhang K, Aung T, Yao E, Chuang PT. Lung patterning: Is a distal-to-proximal gradient of cell allocation and fate decision a general paradigm?: A gradient of distal-to-proximal distribution and differentiation of tip progenitors produces distinct compartments in the lung. Bioessays 2024; 46:e2300083. [PMID: 38010492 DOI: 10.1002/bies.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
van Horik C, Zuidweg MJP, Boerema-de Munck A, Buscop-van Kempen M, Brosens E, Vahrmeijer AL, von der Thüsen JH, Wijnen RMH, Rottier RJ, Tummers WSFJ, Schnater JM. Selection of potential targets for stratifying congenital pulmonary airway malformation patients with molecular imaging: is MUC1 the one? Eur Respir Rev 2023; 32:230217. [PMID: 38123235 PMCID: PMC10754420 DOI: 10.1183/16000617.0217-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
Currently there is a global lack of consensus about the best treatment for asymptomatic congenital pulmonary airway malformation (CPAM) patients. The somatic KRAS mutations commonly found in adult lung cancer combined with mucinous proliferations are sometimes found in CPAM. For this risk of developing malignancy, 70% of paediatric surgeons perform a resection for asymptomatic CPAM. In order to stratify these patients into high- and low-risk groups for developing malignancy, a minimally invasive diagnostic method is needed, for example targeted molecular imaging. A prerequisite for this technique is a cell membrane bound target. The aim of this study was to review the literature to identify potential targets for molecular imaging in CPAM patients and perform a first step to validate these findings.A systematic search was conducted to identify possible targets in CPAM and adenocarcinoma in situ (AIS) patients. The most interesting targets were evaluated with immunofluorescent staining in adjacent lung tissue, KRAS+ CPAM tissue and KRAS- CPAM tissue.In 185 included studies, 143 possible targets were described, of which 20 targets were upregulated and membrane-bound. Six of them were also upregulated in lung AIS tissue (CEACAM5, E-cadherin, EGFR, ERBB2, ITGA2 and MUC1) and as such of possible interest. Validating studies showed that MUC1 is a potential interesting target.This study provides an extensive overview of all known potential targets in CPAM that might identify those patients at risk for malignancy and conducted the first step towards validation, identifying MUC1 as the most promising target.
Collapse
Affiliation(s)
- Cathy van Horik
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Both authors contributed equally
| | - Marius J P Zuidweg
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Both authors contributed equally
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - René M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Both authors contributed equally
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Both authors contributed equally
| |
Collapse
|
16
|
Guo S, Dong Y, Wang C, Jiang Y, Xiang R, Fan LL, Luo H, Liu L. Integrative analysis reveals the recurrent genetic etiologies in idiopathic pulmonary fibrosis. QJM 2023; 116:983-992. [PMID: 37688571 DOI: 10.1093/qjmed/hcad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is increasingly recognized as a chronic, progressive and fatal lung disease with an unknown etiology. Current studies focus on revealing the genetic factors in the risk of IPF, making the integrative analysis of genetic variations and transcriptomic alterations of substantial value. AIM This study aimed to improve the understanding of the molecular basis of IPF through an integrative analysis of whole-exome sequencing (WES), bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) data. METHODS WES is a powerful tool for studying the genetic basis of IPF, allowing for the identification of genetic variants that may be associated with the development of the disease. RNA-seq data provide a comprehensive view of the transcriptional changes in IPF patients, while scRNA-seq data offer a more granule view of cell-type-specific alterations. RESULTS In this study, we identified a comprehensive mutational landscape of recurrent genomic and transcriptomic variations, including single-nucleotide polymorphisms, CNVs and differentially expressed genes, in IPF populations, which may play a significant role in the development and progression of IPF. CONCLUSIONS Our study provided valuable insights into the genetic and transcriptomic variations associated with IPF, revealing changes in gene expression that may contribute to disease development and progression. These findings highlight the importance of an integrative approach to understanding the molecular mechanisms underlying IPF and may pave the way for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- S Guo
- From the Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Y Dong
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - C Wang
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Y Jiang
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| | - R Xiang
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - L-L Fan
- From the Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - H Luo
- From the Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
| | - L Liu
- From the Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Bonasoni MP, Comitini G, Pati M, Bizzarri V, Barbieri V, Marinelli M, Caraffi SG, Zuntini R, Pollazzon M, Palicelli A, Garavelli L. Prenatal Array-CGH Detection of 3q26.32q26.33 Interstitial Deletion Encompassing the SOX2 Gene: Ultrasound, Pathological, and Cytogenetic Findings. Fetal Pediatr Pathol 2023; 42:979-989. [PMID: 37747279 DOI: 10.1080/15513815.2023.2261043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Background: SOX2 disorders are associated with anophthalmia-esophageal-genital syndrome or microphthalmia, syndromic 3 (MCOPS3- # 206900). Case Report: We describe a third fetal case with a de novo 3q26.32q26.33 deletion extending for 4.31 Mb, detected in a 15-week fetus. After legal interruption of pregnancy, at autopsy, the fetus presented bilateral microphthalmia, right cleft lip and palate, bilateral cerebral ventriculomegaly and dilated third ventricle, microcystic left lung, and intestinal malrotation. Histologically, the left lung showed congenital pulmonary airway malformation (CPAM) type 2. Retinal dysplasia was found in both eyes. Discussion/Conclusion: The human SOX2 gene (OMIM #184429) is located on chromosome 3 at position q26.3-27 and encodes a transcription factor involved in the development of the central and peripheral nervous systems, retina, and lung. In our case, the combination of cerebral, retinal, and pulmonary anomalies, not previously described, are consistent with SOX2 haploinsufficiency due to chromosomal deletion.
Collapse
Affiliation(s)
| | - Giuseppina Comitini
- Department of Obstetrics & Gynaecology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariangela Pati
- Department of Obstetrics & Gynaecology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Veronica Bizzarri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Veronica Barbieri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Marinelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
18
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
19
|
Cardoso dos Santos LM, Avila Y, Schvartz D, Rougemont AL, Bochaton-Piallat ML, Ruchonnet-Metrailler I. Laser microdissection, proteomics, and multiplex immunohistochemistry: a bumpy ride into the study of paraffin-embedded fetal and pediatric lung tissues. Front Med (Lausanne) 2023; 10:1191205. [PMID: 37706027 PMCID: PMC10495683 DOI: 10.3389/fmed.2023.1191205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/15/2023] Open
Abstract
Background Knowledge about lung development or lung disease is mainly derived from data extrapolated from mouse models. This has obvious drawbacks in developmental diseases, particularly due to species differences. Our objective is to describe the development of complementary analysis methods that will allow a better understanding of the molecular mechanisms involved in the pathogenesis of rare congenital diseases. Methods Paraffin-embedded human pediatric and fetal lung samples were laser microdissected to enrich different lung regions, namely, bronchioli or alveoli. These samples were analyzed by data-independent acquisition-based quantitative proteomics, and the lung structures were subsequently compared. To confirm the proteomic data, we employed an optimized Sequential ImmunoPeroxidase Labeling and Erasing (SIMPLE) staining for specific proteins of interest. Results By quantitative proteomics, we identified typical pulmonary proteins from being differentially expressed in different regions. While the receptor for advanced glycation end products (RAGE) and the surfactant protein C (SFTPC) were downregulated, tubulin beta 4B (TUBB4B) was upregulated in bronchioli, compared to alveoli. In fetal tissues, CD31 was downregulated in fetal bronchioli compared to canaliculi. Moreover, we confirmed their presence using SIMPLE staining. Some expected proteins did not show up in the proteomic data, such as SOX-9, which was only detected by means of immunohistochemistry in the SIMPLE analysis. Conclusion Our data underline the robustness and applicability of this type of experimental approach, especially for rare paraffin-embedded tissue samples. It also strengthens the importance of these methods for future studies, particularly when considering developmental lung diseases, such as congenital lung anomalies.
Collapse
Affiliation(s)
- Luis M. Cardoso dos Santos
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Pediatric Pulmonary Unit, Department of Pediatrics, Gynecology, and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - Yannick Avila
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Pediatric Pulmonary Unit, Department of Pediatrics, Gynecology, and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - Domitille Schvartz
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Bioinformatic Support Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Isabelle Ruchonnet-Metrailler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Pediatric Pulmonary Unit, Department of Pediatrics, Gynecology, and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
21
|
Bush D, Juliano C, Bowler S, Tiozzo C. Development and Disorders of the Airway in Bronchopulmonary Dysplasia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1127. [PMID: 37508624 PMCID: PMC10378517 DOI: 10.3390/children10071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a disorder characterized by arrested lung development, is a frequent cause of morbidity and mortality in premature infants. Parenchymal lung changes in BPD are relatively well-characterized and highly studied; however, there has been less emphasis placed on the role that airways disease plays in the pathophysiology of BPD. In preterm infants born between 22 and 32 weeks gestation, the conducting airways are fully formed but still immature and therefore susceptible to injury and further disruption of development. The arrest of maturation results in more compliant airways that are more susceptible to deformation and damage. Consequently, neonates with BPD are prone to developing airway pathology, particularly for patients who require intubation and positive-pressure ventilation. Airway pathology, which can be divided into large and small airways disease, results in increased respiratory morbidity in neonates with chronic lung disease of prematurity.
Collapse
Affiliation(s)
- Douglas Bush
- Division of Pediatric Pulmonology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Courtney Juliano
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Selina Bowler
- Department of Pediatrics, New York University Langone-Long Island, Mineola, NY 11501, USA
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
22
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
23
|
Rosado-Olivieri EA, Razooky B, Le Pen J, De Santis R, Barrows D, Sabry Z, Hoffmann HH, Park J, Carroll TS, Poirier JT, Rice CM, Brivanlou AH. Organotypic human lung bud microarrays identify BMP-dependent SARS-CoV-2 infection in lung cells. Stem Cell Reports 2023; 18:1107-1122. [PMID: 37084725 PMCID: PMC10116630 DOI: 10.1016/j.stemcr.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Although lung disease is the primary clinical outcome in COVID-19 patients, how SARS-CoV-2 induces lung pathology remains elusive. Here we describe a high-throughput platform to generate self-organizing and commensurate human lung buds derived from hESCs cultured on micropatterned substrates. Lung buds resemble human fetal lungs and display proximodistal patterning of alveolar and airway tissue directed by KGF. These lung buds are susceptible to infection by SARS-CoV-2 and endemic coronaviruses and can be used to track cell type-specific cytopathic effects in hundreds of lung buds in parallel. Transcriptomic comparisons of infected lung buds and postmortem tissue of COVID-19 patients identified an induction of BMP signaling pathway. BMP activity renders lung cells more susceptible to SARS-CoV-2 infection and its pharmacological inhibition impairs infection by this virus. These data highlight the rapid and scalable access to disease-relevant tissue using lung buds that recapitulate key features of human lung morphogenesis and viral infection biology.
Collapse
Affiliation(s)
- E A Rosado-Olivieri
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA
| | - B Razooky
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - J Le Pen
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - R De Santis
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA
| | - D Barrows
- Bioinformatics Resource Center, the Rockefeller University, New York, NY, USA
| | - Z Sabry
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA
| | - H-H Hoffmann
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - J Park
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - T S Carroll
- Bioinformatics Resource Center, the Rockefeller University, New York, NY, USA
| | - J T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - C M Rice
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA.
| | - A H Brivanlou
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA.
| |
Collapse
|
24
|
Bhattacharya S, Cherry C, Deutsch G, Glass IA, Mariani TJ, Alam DA, Danopoulos S. A Trisomy 21 Lung Cell Atlas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534839. [PMID: 37066313 PMCID: PMC10103948 DOI: 10.1101/2023.03.30.534839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated in utero. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Our results demonstrate differences in the proportion of cell populations and detail changes in gene expression at the time of initiation of histopathological abnormalities. Notably, we identify shifts in the distribution of alveolar epithelial progenitors, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell atlas of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.
Collapse
|
25
|
Goodwin K, Nelson CM. Analysis of Cre lines for targeting embryonic airway smooth muscle. Dev Biol 2023; 496:63-72. [PMID: 36706974 PMCID: PMC10041960 DOI: 10.1016/j.ydbio.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
During development of the embryonic mouse lung, the pulmonary mesenchyme differentiates into smooth muscle that wraps around the airway epithelium. Inhibiting smooth muscle differentiation leads to cystic airways, while enhancing it stunts epithelial branching. These findings support a conceptual model wherein the differentiation of smooth muscle sculpts the growing epithelium into branches at precise positions and with stereotyped morphologies. Unfortunately, most approaches to manipulate the differentiation of airway smooth muscle rely on pharmacological or physical perturbations that are conducted ex vivo. Here, we explored the use of diphtheria toxin-based genetic ablation strategies to eliminate airway smooth muscle in the embryonic mouse lung. Surprisingly, neither airway smooth muscle wrapping nor epithelial branching were affected in embryos in which the expression of diphtheria toxin or its receptor were driven by several different smooth muscle-specific Cre lines. Close examination of spatial patterns of Cre activity in the embryonic lung revealed that none of these commonly used Cre lines target embryonic airway smooth muscle robustly or specifically. Our findings demonstrate the need for airway smooth muscle-specific Cre lines that are active in the embryonic lung, and serve as a resource for researchers contemplating the use of these commonly used Cre lines for studying embryonic airway smooth muscle.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
26
|
Danopoulos S, Belgacemi R, Hein RFC, Miller AJ, Deutsch GH, Glass I, Spence JR, Al Alam D. FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells. Am J Physiol Lung Cell Mol Physiol 2023; 324:L433-L444. [PMID: 36791060 PMCID: PMC10027085 DOI: 10.1152/ajplung.00316.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human. Therefore, we aimed to determine the role of FGF18 in human lung branching morphogenesis. Human fetal lung explants within the pseudoglandular stage of development were treated with recombinant human FGF18 in air-liquid interface culture. Explants were analyzed grossly to assess differences in branching pattern, as well as at the cellular and molecular levels. FGF18 treatment promoted branching in explant cultures and demonstrated increased epithelial proliferation as well as maintenance of the double positive SOX2/SOX9 distal bud progenitor cells, confirming its role in human lung branching morphogenesis. In addition, FGF18 treated explants displayed increased expression of SOX9, FN1, and COL2A1 within the mesenchyme, all factors that are important to chondrocyte differentiation. In humans, cartilaginous airways extend deep into the lung up to the 12th generation of branching whereas in mouse these are restricted to the trachea and main bronchi. Therefore, our data suggest that FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
| | - Renee F C Hein
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alyssa J Miller
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, United States
| | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States
| | - Jason R Spence
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| |
Collapse
|
27
|
Chen P, Gu M, Wan S, Jiang X, Zhang F, Li Y, Zhou Q, Lu Y, Li L, Wang X. Gestational Diabetes Mellitus Impedes Fetal Lung Development Through Exosome-Dependent Crosstalk Between Trophoblasts and Lung Epithelial Cells. Int J Nanomedicine 2023; 18:641-657. [PMID: 36789391 PMCID: PMC9922507 DOI: 10.2147/ijn.s396194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background Fetal lung underdevelopment (FLUD) is associated with neonatal and childhood severe respiratory diseases, among which gestational diabetes mellitus (GDM) play crucial roles as revealed by recent prevalence studies, yet mechanism underlying GDM-induced FLUD, especially the role of trophoblasts, is not all known. Methods From the perspective of trophoblast-derived exosomes, we established in vitro, ex vivo, in vivo and GDM trophoblast models. Utilizing placenta-derived exosomes (NUB-exos and GDMUB-exos) isolated from normal and GDM umbilical cord blood plasma and trophoblast-derived exosomes (NC-exos and HG-exos) isolated from HTR8/SVneo trophoblasts medium with/without high glucose treatment, we examined their effects on fetal lung development and biological functions. Results We found that, compared with the NUB-exos group, the exosome concentration increased in GDMUB-exos group, and the content of exosomes also changed evidenced by 61 dysregulated miRNAs. After applying these exosomes to A549 alveolar type II epithelial cells, the proliferation and biological functions were suppressed while the proportion of apoptotic cells was increased as compared to the control. In ex vivo studies, we found that GDMUB-exos showed significant suppression on the growth of the fetal lung explants, where the number of terminal buds and the area of explant surface decreased and shrank. Besides, the expression of Fgf10, Vegfa, Flt-1, Kdr and surfactant proteins A, B, C, and D was downregulated in GDMUB-exos group, whilst Sox9 was upregulated. For in vivo studies, we found significant suppression of fetal lung development in GDMUB-exos group. Importantly, we found consistent alterations when we used NC-exos and HG-exos, suggesting a dominant role of trophoblasts in placenta-derived exosome-induced FLUD. Conclusion In conclusion, GDM can adversely affect trophoblasts and alter exosome contents, causing crosstalk disorder between trophoblasts and fetal lung epithelial cells and finally leading to FLUD. Findings of this study will shine insight into the theoretical explanation for the pathogenesis of FLUD.
Collapse
Affiliation(s)
- Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yuchen Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China,Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People’s Republic of China,Correspondence: Lei Li; Xietong Wang, Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China, Tel +8615168889200; +8615168888928, Email ;
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China,Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People’s Republic of China,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, People’s Republic of China
| |
Collapse
|
28
|
Gajjala PR, Singh P, Odayar V, Ediga HH, McCormack FX, Madala SK. Wilms Tumor 1-Driven Fibroblast Activation and Subpleural Thickening in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:2850. [PMID: 36769178 PMCID: PMC9918078 DOI: 10.3390/ijms24032850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is often fatal due to the formation of irreversible scar tissue in the distal areas of the lung. Although the pathological and radiological features of IPF lungs are well defined, the lack of insight into the fibrogenic role of fibroblasts that accumulate in distinct anatomical regions of the lungs is a critical knowledge gap. Fibrotic lesions have been shown to originate in the subpleural areas and extend into the lung parenchyma through processes of dysregulated fibroproliferation, migration, fibroblast-to-myofibroblast transformation, and extracellular matrix production. Identifying the molecular targets underlying subpleural thickening at the early and late stages of fibrosis could facilitate the development of new therapies to attenuate fibroblast activation and improve the survival of patients with IPF. Here, we discuss the key cellular and molecular events that contribute to (myo)fibroblast activation and subpleural thickening in IPF. In particular, we highlight the transcriptional programs involved in mesothelial to mesenchymal transformation and fibroblast dysfunction that can be targeted to alter the course of the progressive expansion of fibrotic lesions in the distal areas of IPF lungs.
Collapse
Affiliation(s)
| | | | | | | | | | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA
| |
Collapse
|
29
|
Yu F, Liu F, Liang X, Duan L, Li Q, Pan G, Ma C, Liu M, Li M, Wang P, Zhao X. iPSC-Derived Airway Epithelial Cells: Progress, Promise, and Challenges. Stem Cells 2023; 41:1-10. [PMID: 36190736 DOI: 10.1093/stmcls/sxac074] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview of recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Furthermore, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics can be used for clinical treatment.
Collapse
Affiliation(s)
- Fenggang Yu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Fei Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Xiaohua Liang
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Linwei Duan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Qiongqiong Li
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Ge Pan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Chengyao Ma
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Minmin Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Mingyue Li
- Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Peng Wang
- Guangxi Yinfeng Stem Cell Engineering Technology Co., Ltd., Yufeng, Liuzhou, Guangxi Province, People's Republic of China
| | - Xuening Zhao
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
30
|
Ko HS, Laiman V, Tsao PN, Chen CM, Chuang HC. Alteration in branching morphogenesis via YAP/TAZ in fibroblasts of fetal lungs in an LPS-induced inflammation model. Mol Med 2023; 29:16. [PMID: 36717779 PMCID: PMC9887856 DOI: 10.1186/s10020-023-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chorioamnionitis is a common cause of preterm birth and leads to serious complications in newborns. The objective of this study was to investigate the role of the Hippo signaling pathway in lung branching morphogenesis under a lipopolysaccharide (LPS)-induced inflammation model. MATERIALS AND METHODS IMR-90 cells and ex vivo fetal lungs were treated with 0, 10, 30, or 50 μg/ml LPS for 24 and 72 h. Supernatant levels of lactate dehydrogenase (LDH), interleukin (IL)-6, IL-8, Chemokine (C-X-C motif) ligand 1(CXCL1), branching and the surface area ratio, Yes-associated protein (YAP), transcription coactivator with PDZ-binding motif (TAZ), fibroblast growth factor 10 (FGF10), fibroblast growth factor receptor II (FGFR2), SRY-box transcription factor 2 (SOX2), SOX9, and sirtuin 1 (SIRT1) levels were examined. Differentially expressed genes in fetal lungs after LPS treatment were identified by RNA-sequencing. RESULTS LPS at 50 μg/ml increased IL-6 and IL-8 in IMR-90 cells and increased IL-6, CXCL1 and LDH in fetal lungs. The branching ratio significantly increased by LPS at 30 μg/ml compared to the control but the increased level had decreased by 50 μg/ml LPS exposure. Exposure to 50 μg/ml LPS increased phosphorylated (p)-YAP, p-YAP/YAP, and p-TAZ/TAZ in IMR-90 cells, whereas 50 μg/ml LPS decreased FGF10 and SOX2. Consistently, p-YAP/YAP and p-TAZ/TAZ were increased in fibronectin+ cells of fetal lungs. Moreover, results of RNA-sequencing in fetal lungs showed that SMAD, FGF, IκB phosphorylation, tissue remodeling and homeostasis was involved in branching morphogenesis following exposure to 50 μg/ml LPS. The p-SIRT1/SIRT1 ratio increased in IMR-90 cells by LPS treatment. CONCLUSIONS This study showed that regulation of the Hippo pathway in fibroblasts of fetal lungs was involved in branching morphogenesis under an inflammatory disease such as chorioamnionitis.
Collapse
Affiliation(s)
- Hung-Shuo Ko
- grid.412896.00000 0000 9337 0481School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- grid.412896.00000 0000 9337 0481International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.8570.a0000 0001 2152 4506Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Po-Nien Tsao
- grid.412094.a0000 0004 0572 7815Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Ming Chen
- grid.412897.10000 0004 0639 0994Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031 Taiwan ,grid.412896.00000 0000 9337 0481Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan ,grid.412896.00000 0000 9337 0481Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.7445.20000 0001 2113 8111National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
31
|
Ikonomou L, Yampolskaya M, Mehta P. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:49-70. [PMID: 37195526 PMCID: PMC10351616 DOI: 10.1007/978-3-031-26625-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity. Furthermore, pluripotent stem cell-derived and ex vivo expanded respiratory progenitors offer novel, tractable, high-fidelity systems that allow for mechanistic studies of cell fate decisions and developmental processes. As our understanding of embryonic progenitor biology deepens, we move closer to the goal of in vitro lung organogenesis and resulting applications in developmental biology and medicine.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
32
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
33
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
34
|
Congenital lung malformations: Dysregulated lung developmental processes and altered signaling pathways. Semin Pediatr Surg 2022; 31:151228. [PMID: 36442455 DOI: 10.1016/j.sempedsurg.2022.151228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Congenital lung malformations comprise a diverse group of anomalies including congenital pulmonary airway malformation (CPAM, previously known as congenital cystic adenomatoid malformation or CCAM), bronchopulmonary sequestration (BPS), congenital lobar emphysema (CLE), bronchogenic cysts, and hybrid lesions. Little is known about the signaling pathways that underlie the pathophysiology of these lesions and the processes that may promote their malignant transformation. In the last decade, the use of transgenic/knockout animal models and the implementation of next generation sequencing on surgical lung specimens have increased our knowledge on the pathophysiology of these lesions. Herein, we provide an overview of normal lung development in humans and rodents, and we discuss the current state of knowledge on the pathophysiology and molecular pathways that are altered in each congenital lung malformation.
Collapse
|
35
|
Sun D, Llora Batlle O, van den Ameele J, Thomas JC, He P, Lim K, Tang W, Xu C, Meyer KB, Teichmann SA, Marioni JC, Jackson SP, Brand AH, Rawlins EL. SOX9 maintains human foetal lung tip progenitor state by enhancing WNT and RTK signalling. EMBO J 2022; 41:e111338. [PMID: 36121125 PMCID: PMC9627674 DOI: 10.15252/embj.2022111338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.
Collapse
Affiliation(s)
- Dawei Sun
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Oriol Llora Batlle
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jelle van den Ameele
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Present address:
Department of Clinical Neurosciences and MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - John C Thomas
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Peng He
- Wellcome Sanger InstituteCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Walfred Tang
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Chufan Xu
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Department of Anaesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | | | - Sarah A Teichmann
- Wellcome Sanger InstituteCambridgeUK
- Department of Physics/Cavendish LaboratoryUniversity of CambridgeCambridgeUK
| | - John C Marioni
- Wellcome Sanger InstituteCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Stephen P Jackson
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Andrea H Brand
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
36
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
37
|
Eenjes E, Tibboel D, Wijnen RMH, Schnater JM, Rottier RJ. SOX2 and SOX21 in Lung Epithelial Differentiation and Repair. Int J Mol Sci 2022; 23:13064. [PMID: 36361852 PMCID: PMC9657681 DOI: 10.3390/ijms232113064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
The lung originates from the ventral foregut and develops into an intricate branched structure of airways, alveoli, vessels and support tissue. As the lung develops, cells become specified and differentiate into the various cell lineages. This process is controlled by specific transcription factors, such as the SRY-related HMG-box genes SOX2 and SOX21, that are activated or repressed through intrinsic and extrinsic signals. Disturbances in any of these processes during the development of the lung may lead to various pediatric lung disorders, such as Congenital Diaphragmatic Hernia (CDH), Congenital Pulmonary Airway Malformation (CPAM) and Broncho-Pulmonary Dysplasia (BPD). Changes in the composition of the airways and the alveoli may result in reduced respiratory function and eventually lead to chronic lung disorders. In this concise review, we describe different intrinsic and extrinsic cellular processes required for proper differentiation of the epithelium during development and regeneration, and the influence of the microenvironment on this process with special focus on SOX2 and SOX21.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Rene M. H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Johannes Marco Schnater
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
38
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
39
|
Ievlev V, Jensen-Cody CC, Lynch TJ, Pai AC, Park S, Shahin W, Wang K, Parekh KR, Engelhardt JF. Sox9 and Lef1 Regulate the Fate and Behavior of Airway Glandular Progenitors in Response to Injury. Stem Cells 2022; 40:778-790. [PMID: 35639980 PMCID: PMC9406614 DOI: 10.1093/stmcls/sxac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Albert C Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Soo Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Khalaj K, Antounians L, Lopes Figueira R, Post M, Zani A. Autophagy is Impaired in Fetal Hypoplastic Lungs and Rescued by Administration of Amniotic Fluid Stem Cell Extracellular Vesicles. Am J Respir Crit Care Med 2022; 206:476-487. [PMID: 35671495 DOI: 10.1164/rccm.202109-2168oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by reduced branching morphogenesis, which is responsible for poor clinical outcomes. Administration of amniotic fluid stem cell extracellular vesicles (AFSC-EVs) rescues branching morphogenesis in rodent fetal models of pulmonary hypoplasia. Herein, we hypothesized that AFSC-EVs exert their regenerative potential by affecting autophagy, a process required for normal lung development. OBJECTIVES To evaluate autophagy in hypoplastic lungs throughout gestation and establish whether AFSC-EV administration improves branching morphogenesis through autophagy-mediated mechanisms. METHODS EVs were isolated from c-kit+ AFSC conditioned medium by ultracentrifugation and characterized by size, morphology, and EV marker expression. Branching morphogenesis was inhibited in rat fetuses by nitrofen administration to dams and in human fetal lung explants by blocking RAC1 activity with NSC23766. Expression of autophagy activators (BECN1 and ATG5) and adaptor (SQSTM1) was analyzed in vitro (rat and human fetal lung explants) and in vivo (rat fetal lungs). Mechanistic studies on rat fetal primary lung epithelial cells were conducted using inhibitors for microRNA-17 and -20a contained in the AFSC-EV cargo and known to regulate autophagy. MEASUREMENTS AND MAIN RESULTS Rat and human models of fetal pulmonary hypoplasia showed reduced autophagy at different developmental stages. AFSC-EV administration restored autophagy levels in both pulmonary hypoplasia models by transferring miR-17~92 cluster members contained in the EV cargo. CONCLUSIONS AFSC-EV treatment rescues branching morphogenesis partly by restoring autophagy through miRNA cargo transfer. This study enhances our understanding of pulmonary hypoplasia pathogenesis and creates new opportunities for fetal therapeutic intervention in CDH babies. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Collapse
Affiliation(s)
- Kasra Khalaj
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lina Antounians
- The Hospital for Sick Children, 7979, Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.,The Hospital for Sick Children, 7979, Division of General and Thoracic Surgery, Toronto, Ontario, Canada
| | - Rebeca Lopes Figueira
- The Hospital for Sick Children, Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.,The Hospital for Sick Children, Division of General and Thoracic Surgery, Toronto, Ontario, Canada
| | - Martin Post
- Hospital for Sick Children, Lung Biology, Toronto, Ontario, Canada
| | - Augusto Zani
- The Hospital for Sick Children, 7979, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada.,The Hospital for Sick Children, 7979, Division of General and Thoracic Surgery, Toronto, Ontario, Canada.,The Hospital for Sick Children, 7979, Department of Surgery, Toronto, Ontario, Canada;
| |
Collapse
|
42
|
Dai H, Zhu M, Li W, Si G, Xing Y. Activation of PI3K/p110α in the Lung Mesenchyme Affects Branching Morphogenesis and Club Cell Differentiation. Front Cell Dev Biol 2022; 10:880206. [PMID: 35676931 PMCID: PMC9168599 DOI: 10.3389/fcell.2022.880206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial–mesenchymal interaction is required for normal growth, morphogenetic patterning, and cellular differentiation in developing lungs. Various signaling pathways have been defined in establishing the patterning of this branched organ. The phosphoinositide-3-kinase (PI3K) signaling plays an important role in disease pathogenesis but remains largely uncharacterized in embryonic development. In this study, we activated a specific catalytic subunit of PI3K catalytic enzymes, Class IA p110α (p110α), in the embryonic lung mesenchyme using the Dermo1-Cre mouse. Activation of p110α promoted branching morphogenesis and blocked club cell differentiation in both proximal and distal airways. Mechanistically, the LIM homeodomain gene Islet-1 (Isl1), fibroblast growth factor 10 (Fgf10), and SRY (sex-determining region Y)-box9 (Sox9) were found to be downstream targets of p110α. The significantly increased expressions of Isl1, Fgf10, and Sox9 resulted in the stimulation of branching in mutant lungs. Activation of p110α-mediated signaling also increased the expression of phosphatase and tensin homolog deleted on chromosome 10 (Pten) and hairy/enhancer of split 1 (Hes1), which in turn blocked club cell differentiation. Thus, the signaling pathway by which PI3K/p110α-regulated epithelial–mesenchymal interactions may entail Isl1–Fgf10–Sox9 and Pten–Hes1 networks, which consequently regulate branching morphogenesis and club cell differentiation, respectively.
Collapse
|
43
|
Liao CC, Chiu CJ, Yang YH, Chiang BL. Neonatal lung-derived SSEA-1 + cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 2022; 25:104262. [PMID: 35521516 PMCID: PMC9062680 DOI: 10.1016/j.isci.2022.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications. Pulmonary SSEA-1+ cells are abundant in neonatal and scarce in adult stages The stem/progenitor activity of pulmonary SSEA-1+ cells is enhanced in neonatal stage Neonatal pulmonary SSEA-1+ cells developed into airway- and alveolar-like organoids FGF7 regulates alveolar epithelium development of neonatal pulmonary SSEA-1+ cells
Collapse
Affiliation(s)
- Chien-Chia Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
44
|
Hedgehog Signaling Pathway Orchestrates Human Lung Branching Morphogenesis. Int J Mol Sci 2022; 23:ijms23095265. [PMID: 35563656 PMCID: PMC9100880 DOI: 10.3390/ijms23095265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an essential role in mouse lung development. We hypothesize that the HH pathway is necessary for branching during human lung development and is impaired in pulmonary hypoplasia. Single-cell, bulk RNA-sequencing data, and human fetal lung tissues were analyzed to determine the spatiotemporal localization of HH pathway actors. Distal human lung segments were cultured in an air-liquid interface and treated with an SHH inhibitor (5E1) to determine the effect of HH inhibition on human lung branching, epithelial-mesenchymal markers, and associated signaling pathways in vitro. Our results showed an early and regulated expression of HH pathway components during human lung development. Inhibiting HH signaling caused a reduction in branching during development and dysregulated epithelial (SOX2, SOX9) and mesenchymal (ACTA2) progenitor markers. FGF and Wnt pathways were also disrupted upon HH inhibition. Finally, we demonstrated that HH signaling elements were downregulated in lung tissues of patients with a congenital diaphragmatic hernia (CDH). In this study, we show for the first time that HH signaling inhibition alters important genes and proteins required for proper branching of the human developing lung. Understanding the role of the HH pathway on human lung development could lead to the identification of novel therapeutic targets for childhood pulmonary diseases.
Collapse
|
45
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
46
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
47
|
Goodwin K, Jaslove JM, Tao H, Zhu M, Hopyan S, Nelson CM. Patterning the embryonic pulmonary mesenchyme. iScience 2022; 25:103838. [PMID: 35252804 PMCID: PMC8889149 DOI: 10.1016/j.isci.2022.103838] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Smooth muscle guides the morphogenesis of several epithelia during organogenesis, including the mammalian airways. However, it remains unclear how airway smooth muscle differentiation is spatiotemporally patterned and whether it originates from transcriptionally distinct mesenchymal progenitors. Using single-cell RNA-sequencing of embryonic mouse lungs, we show that the pulmonary mesenchyme contains a continuum of cell identities, but no transcriptionally distinct progenitors. Transcriptional variability correlates with spatially distinct sub-epithelial and sub-mesothelial mesenchymal compartments that are regulated by Wnt signaling. Live-imaging and tension-sensors reveal compartment-specific migratory behaviors and cortical forces and show that sub-epithelial mesenchyme contributes to airway smooth muscle. Reconstructing differentiation trajectories reveals early activation of cytoskeletal and Wnt signaling genes. Consistently, Wnt activation induces the earliest stages of smooth muscle differentiation and local accumulation of mesenchymal F-actin, which influences epithelial morphology. Our single-cell approach uncovers the principles of pulmonary mesenchymal patterning and identifies a morphogenetically active mesenchymal layer that sculpts the airway epithelium. The embryonic lung mesenchyme is organized into spatially distinct compartments Migratory behaviors and cortical forces differ between compartments Diffusion analysis recapitulates airway smooth muscle differentiation The early stages of smooth muscle differentiation influence airway branching
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Corresponding author
| |
Collapse
|
48
|
Tran E, Shi T, Li X, Chowdhury AY, Jiang D, Liu Y, Wang H, Yan C, Wallace WD, Lu R, Ryan AL, Marconett CN, Zhou B, Borok Z, Offringa IA. Development of human alveolar epithelial cell models to study distal lung biology and disease. iScience 2022; 25:103780. [PMID: 35169685 PMCID: PMC8829779 DOI: 10.1016/j.isci.2022.103780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.
Collapse
Affiliation(s)
- Evelyn Tran
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Tuo Shi
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Xiuwen Li
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Translational Genomics, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Adnan Y. Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Yixin Liu
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Hongjun Wang
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Chunli Yan
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - William D. Wallace
- Department of Pathology, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Beiyun Zhou
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Zea Borok
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ite A. Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
49
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 244] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
50
|
Jaslove JM, Goodwin K, Sundarakrishnan A, Spurlin JW, Mao S, Košmrlj A, Nelson CM. Transmural pressure signals through retinoic acid to regulate lung branching. Development 2022; 149:274047. [PMID: 35051272 PMCID: PMC8917413 DOI: 10.1242/dev.199726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Collapse
Affiliation(s)
- Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - James W. Spurlin
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA,Princeton Institute for the Science & Technology of Materials, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Author for correspondence ()
| |
Collapse
|