1
|
Sun L, Yang N, Chen B, Bei Y, Kang Z, Zhang C, Zhang N, Xu P, Yang W, Wei J, Ke J, Sun W, Li X, Shen P. A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy. Acta Pharm Sin B 2023; 13:3027-3042. [PMID: 37521858 PMCID: PMC10372914 DOI: 10.1016/j.apsb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Currently the main treatment of acute myeloid leukemia (AML) is chemotherapy combining hematopoietic stem cell transplantation. However, the unbearable side effect of chemotherapy and the high risk of life-threatening infections and disease relapse following hematopoietic stem cell transplantation restrict its application in clinical practice. Thus, there is an urgent need to develop alternative therapeutic tactics with significant efficacy and attenuated adverse effects. Here, we revealed that umbilical cord-derived mesenchymal stem cells (UC-MSC) efficiently induced AML cell differentiation by shuttling the neutrophil elastase (NE)-packaged extracellular vesicles (EVs) into AML cells. Interestingly, the generation and release of NE-packaged EVs could be dramatically increased by vitamin D receptor (VDR) activation in UC-MSC. Chemical activation of VDR by using its agonist 1α,25-dihydroxyvitamin D3 efficiently enhanced the pro-differentiation capacity of UC-MSC and then alleviated malignant burden in AML mouse model. Based on these discoveries, to evade the risk of hypercalcemia, we synthetized and identified sw-22, a novel non-steroidal VDR agonist, which exerted a synergistic pro-differentiation function with UC-MSC on mitigating the progress of AML. Collectively, our findings provided a non-gene editing MSC-based therapeutic regimen to overcome the differentiation blockade in AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Nanfei Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Bing Chen
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Yuncheng Bei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Zisheng Kang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Peipei Xu
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Wei Yang
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Jiangqiong Ke
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
2
|
Zhao YP, Long Y. Pulmonary toxicity in driver gene positive non-small cell lung cancer therapy. Curr Med Res Opin 2022; 38:1369-1378. [PMID: 35656938 DOI: 10.1080/03007995.2022.2085964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular targeted therapy significantly improved the therapeutic efficacy in non-small cell lung cancer (NSCLC) patients with driver gene mutations but also with new toxicity profiles. Although most patients treated with these drugs developed relatively controllable toxicity, significant pulmonary toxicity events, including interstitial lung disease, occurred in a small proportion of patients and can lead to discontinuation or even be life-threatening. Pulmonary toxicity associated with these anti-tumor drugs is a problem that cannot be ignored in clinical practice. The prompt diagnosis of drug-related lung injury and the consequent differential diagnosis with other forms of pulmonary disease are critical in the management of pulmonary toxicity. Current knowledge of the pathophysiology and management of pulmonary toxicity associated with these targeted drugs is limited, and participants should be able to identify and respond to the development of drug-induced pulmonary toxicity. This review offers information about the potential pathogenesis, risk factors and management for the development of these events based on the available literature. This review focused on pulmonary toxicities in driver gene-positive NSCLC therapy by describing the related adverse events to promote the awareness and management of this important toxicity related to antitumor-targeted therapy.
Collapse
Affiliation(s)
- Yi-Pu Zhao
- Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yong Long
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Sano M, Maejima Y, Nakagama S, Shiheido-Watanabe Y, Tamura N, Hirao K, Isobe M, Sasano T. Neutrophil extracellular traps-mediated Beclin-1 suppression aggravates atherosclerosis by inhibiting macrophage autophagy. Front Cell Dev Biol 2022; 10:876147. [PMID: 35923856 PMCID: PMC9340257 DOI: 10.3389/fcell.2022.876147] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence suggests that neutrophil extracellular traps (NETs) critically contribute to the development of atherosclerosis. However, the detailed mechanism of how NETs promote atherogenesis remains unknown. In this study, we explored the role of NETs for promoting atherosclerosis by modulating the activity of autophagy in macrophages. NETs were effectively induced by a nicotine administration to the HL-60 cell-derived neutrophil-like cells. Treatment with NETs markedly suppressed both autophagosome formation and autophagosome–lysosome fusion in 7-ketocholesterol-treated macrophages, which are accompanied by the enhancement of inflammasome activity. NETs upregulate epidermal growth factor receptor (EGFR) activity, which enhances Beclin-1 phosphorylation of the tyrosine residues of Beclin-1 by EGFR, inhibits the PI3 kinase activity of the Beclin1–Vps34 complex, and suppresses autophagosome formation in macrophages. Furthermore, NET-induced activation of EGFR allows Rubicon to increase its expression, thereby suppressing autophagosome-lysosome fusion. In vivo experiments revealed that the suppression of NET formation by ablating peptidyl arginine deiminase-4 in neutrophil leukocytes resulted in the attenuation of atherosclerotic plaques in a nicotine-administered HFD-fed ApoE−/−mice. Taken together, these results suggest that NET-mediated EGFR–Beclin-1 signaling in the macrophages promotes atherogenesis by autophagy inhibition-mediated inflammasome activation.
Collapse
Affiliation(s)
- Masataka Sano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Professional Development, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Yasuhiro Maejima,
| | - Shun Nakagama
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuka Shiheido-Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Natsuko Tamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenzo Hirao
- Department of Cardiovascular Medicine, AOI Universal Hospital, Kawasaki, Japan
| | | | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
AXL cooperates with EGFR to mediate neutrophil elastase-induced migration of prostate cancer cells. iScience 2021; 24:103270. [PMID: 34761189 PMCID: PMC8567381 DOI: 10.1016/j.isci.2021.103270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Neutrophil elastase (NE) promotes multiple stages of tumorigenesis. However, little is known regarding the molecular mechanisms underlying its stimulatory role. This study shows that NE triggers dose-dependent ERK signaling and cell migration in a panel of prostate cell lines representing the spectrum of prostate cell malignancy. All cell lines tested internalize NE; however, NE endocytosis is not required for ERK activation. Instead, NE acts extracellularly by stimulating the release of amphiregulin to initiate EGFR-dependent signaling. Inhibiting amphiregulin's biological activity with neutralizing antibodies, as well as gene silencing of amphiregulin or EGFR, attenuates NE-induced migration in normal and benign prostatic cells. Alternatively, in prostate cancer cells, knockdown of receptor tyrosine kinase AXL, but not EGFR, impairs both basal and NE-stimulated migration. When prostate cells progress to malignancy, the switch from EGFR-to AXL-dependence in NE-mediated migration implies the potential combined application of EGFR and AXL targeted therapy in prostate cancer treatment.
Collapse
|
5
|
Nakayama I, Higa-Nakamine S, Uehara A, Sugahara K, Kakinohana M, Yamamoto H. Regulation of epidermal growth factor receptor expression and morphology of lung epithelial cells by interleukin-1β. J Biochem 2021; 168:113-123. [PMID: 32016419 DOI: 10.1093/jb/mvaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidences suggested that the overactivation of epidermal growth factor receptor (EGFR) was involved in the development of adult respiratory distress syndrome and pulmonary fibrosis. Elucidation of the mechanisms that regulate EGFR residence on the plasma membrane during inflammatory lung conditions is important for identifying potential therapies. We have demonstrated that flagellin phosphorylated EGFR at Ser1047 and induced transient EGFR internalization. In this study, we examined the molecular pathway and effect of interleukin 1 beta (IL-1β) on EGFR in alveolar epithelial cells. Treatment of A549 cells with IL-1β induced the activation of p38 mitogen-activated protein kinase (MAP kinase) and MAP kinase-activated protein kinase-2 (MAPKAPK-2), as well as EGFR phosphorylation at serine 1047. Both MAPKAPK-2 activation and EGFR phosphorylation were inhibited by SB203580, a p38 MAP kinase inhibitor. In addition, MK2a inhibitor (a MAPKAPK-2 inhibitor) suppressed EGFR phosphorylation. Assessment of the biotinylation of cell surface proteins indicated that IL-1β induced EGFR internalization. Furthermore, long-term treatment of A549 cells with IL-1β caused morphological changes and loss of cell-cell contact. Moreover, IL-1β augmented the effect of transforming growth factor beta 1 on the epithelial-mesenchymal transition. These results suggested that IL-1β regulates EGFR functions and induces morphological changes of alveolar epithelial cells.
Collapse
Affiliation(s)
- Izumi Nakayama
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.,Intensive Care Unit, Department of Internal Medicine, Okinawa Chubu Hospital, Okinawa 904-2293, Japan
| | - Sayomi Higa-Nakamine
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Ayako Uehara
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kazuhiro Sugahara
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Manabu Kakinohana
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
6
|
Qi L, Wang Y, Wang H, Deng J. Adenovirus 7 Induces Interlukin-6 Expression in Human Airway Epithelial Cells via p38/NF-κB Signaling Pathway. Front Immunol 2020; 11:551413. [PMID: 33072092 PMCID: PMC7538593 DOI: 10.3389/fimmu.2020.551413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023] Open
Abstract
Human Adenovirus (AdV) infection is very common and usually has a significant impact on children. AdV-induced inflammation is believed to be one of the main causes of severe symptoms. However, an inflammatory response profile in the airway in AdV-infected children is still lacking, and the mechanism underlying AdV-induced inflammation in the airway is also poorly understood. In the current study, we determined the expression of a panel of inflammation cytokines in the airway samples from AdV 7 infected children and further investigated the molecular mechanism underlying AdV 7-induced cytokine expression. Our results showed that eight out of 13 tested inflammatory cytokines were significantly increased in nasal washes of AdV 7-infected children comparing to healthy control, with IL-6 showing the highest enhancement. AdV 7 infection of bronchial epithelial cell line and primary airway epithelial cells confirmed that AdV 7 increased IL-6 mRNA and protein expression in an infection dose-dependent manner. Promoter analysis revealed that AdV 7 infection transactivated IL-6 promoter and a NF-κB binding site in IL-6 promoter was involved in the transactivation. Further analysis showed that upon AdV 7 infection, NF-κB p65 was phosphorylated and translocated into nucleus and bound onto IL-6 promoter. Signaling pathway analysis revealed that p38/NF-κB pathway was involved in AdV 7 infection induced IL-6 elevation. Taken together, our study shows that AdV 7 infection triggers the expression of a range of inflammatory cytokines including IL-6 in the airway of infected children, and AdV 7 enhances IL-6 expression by transactivating IL-6 promoter via p38/NF-κB signaling pathway. Findings of our current study have provided more information toward a better understanding of AdV-induced airway inflammation, which might also benefit the development of intervention strategies.
Collapse
Affiliation(s)
- Lifeng Qi
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Infectious Disease, Shenzhen Children's Hospital, Shenzhen, China
| | - Yajuan Wang
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Jikui Deng
- Department of Infectious Disease, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
7
|
McElvaney OF, Murphy MP, Reeves EP, McElvaney NG. Anti-cytokines as a Strategy in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:203-213. [PMID: 32503090 DOI: 10.15326/jcopdf.7.3.2019.0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For many years, the lung disease associated with alpha-1 antitrypsin (AAT) deficiency (AATD) was perceived as being secondary to an imbalance between this serine protease inhibitor and the target protease, neutrophil elastase (NE). More recently, a greater understanding of the pathways leading to lung inflammation has shed light on new potential attributes and presented AATD as an inflammatory condition in which proteases and neutrophils still play a major role, but in which pro-inflammatory cytokines, either induced by the actions of NE or by other pro-inflammatory processes normally modulated by AAT, are involved. In this review, we will look at the various cytokines centrally involved in AATD lung disease, and how a greater understanding of their contribution may help development of targeted therapies.
Collapse
Affiliation(s)
- Oisín F McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Mark P Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Yamaoka T, Arata S, Homma M, Homma T, Kusumoto S, Ando K, Manabe R, Kishino Y, Ohba M, Tsurutani J, Takimoto M, Ohmori T, Sagara H. Blockade of EGFR Activation Promotes TNF-Induced Lung Epithelial Cell Apoptosis and Pulmonary Injury. Int J Mol Sci 2019; 20:ijms20164021. [PMID: 31426531 PMCID: PMC6720446 DOI: 10.3390/ijms20164021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
Abstract
Pneumonitis is the leading cause of death associated with the use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) against non-small cell lung cancer (NSCLC). However, the risk factors and the mechanism underlying this toxicity have not been elucidated. Tumor necrosis factor (TNF) has been reported to transactivate EGFR in pulmonary epithelial cells. Hence, we aimed to test the hypothesis that EGFR tyrosine kinase activity regulates TNF-mediated bronchial epithelial cell survival, and that inhibition of EGFR activity increases TNF-induced lung epithelial cell apoptosis. We used surfactant protein C (SPC)-TNF transgenic (tg) mice which overexpress TNF in the lungs. In this model, gefitinib, an EGFR-TKI, enhanced lung epithelial cell apoptosis and lymphocytic inflammation, indicating that EGFR tyrosine kinase prevents TNF-induced lung injury. Furthermore, IL-17A was significantly upregulated by gefitinib in SPC-TNF tg mice and p38MAPK activation was observed, indicative of a pathway involved in lung epithelial cell apoptosis. Moreover, in lung epithelial cells, BEAS-2B, TNF stimulated EGFR transactivation via the TNF-α-converting enzyme in a manner that requires heparin binding (HB)-EGF and transforming growth factor (TGF)-α. These novel findings have significant implications in understanding the role of EGFR in maintaining human bronchial epithelial cell homeostasis and in NSCLC treatment.
Collapse
Affiliation(s)
- Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan.
| | - Satoru Arata
- Department of Biochemistry, Faculty of Arts and Sciences, Showa University, 4562 Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan
| | - Mayumi Homma
- Department of Pathology & Laboratory Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Tetsuya Homma
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Sojiro Kusumoto
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Koichi Ando
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Ryou Manabe
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Motoi Ohba
- Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masafumi Takimoto
- Department of Pathology & Laboratory Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Tohru Ohmori
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hironori Sagara
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| |
Collapse
|
9
|
Domon H, Nagai K, Maekawa T, Oda M, Yonezawa D, Takeda W, Hiyoshi T, Tamura H, Yamaguchi M, Kawabata S, Terao Y. Neutrophil Elastase Subverts the Immune Response by Cleaving Toll-Like Receptors and Cytokines in Pneumococcal Pneumonia. Front Immunol 2018; 9:732. [PMID: 29922273 PMCID: PMC5996908 DOI: 10.3389/fimmu.2018.00732] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Excessive activation of neutrophils results in the release of neutrophil elastase (NE), which leads to lung injury in severe pneumonia. Previously, we demonstrated a novel immune subversion mechanism involving microbial exploitation of this NE ability, which eventually promotes disruption of the pulmonary epithelial barrier. In the present study, we investigated the effect of NE on host innate immune response. THP-1-derived macrophages were stimulated with heat-killed Streptococcus pneumoniae or lipopolysaccharide in the presence or absence of NE followed by analysis of toll-like receptor (TLR) and cytokine expression. Additionally, the biological significance of NE was confirmed in an in vivo mouse intratracheal infection model. NE downregulated the gene transcription of multiple cytokines in THP-1-derived macrophages through the cleavage of TLRs and myeloid differentiation factor 2. Additionally, NE cleaved inflammatory cytokines and chemokines. In a mouse model of intratracheal pneumococcal challenge, administration of an NE inhibitor significantly increased proinflammatory cytokine levels in bronchoalveolar lavage fluid, enhanced bacterial clearance, and improved survival rates. Our work indicates that NE subverts the innate immune response and that inhibition of this enzyme may constitute a novel therapeutic option for the treatment of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daisuke Yonezawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Wataru Takeda
- Faculty of Dentistry, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
10
|
Phosphorylation of epidermal growth factor receptor at serine 1047 in cultured lung alveolar epithelial cells by bradykinin B2 receptor stimulation. Pulm Pharmacol Ther 2018; 48:53-61. [DOI: 10.1016/j.pupt.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/04/2017] [Accepted: 09/08/2017] [Indexed: 11/23/2022]
|
11
|
KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J Cyst Fibros 2017; 17:484-491. [PMID: 29292092 DOI: 10.1016/j.jcf.2017.12.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic Pseudomonas aeruginosa (Pa) airways infection, exuberant local inflammation, and progressive lung function loss are hallmarks of cystic fibrosis (CF). KB001-A is an anti-PcrV PEGylated monoclonal antibody fragment to the Type III secretion system of Pa. This 16-week study evaluated KB001-A associated effect on time-to-need for antibiotics for worsening respiratory signs and symptoms, as well as safety, and treatment-associated changes in symptom scores, inflammatory markers, and spirometry. METHODS This was a randomized, double-blind, placebo-controlled, repeat-dose study in CF subjects with Pa. Intravenous 10mg/kg KB001-A or placebo infusions were administered at baseline and weeks 2, 4, 8, and 16, with a 4-week follow-up. Sputum inflammatory markers were assessed in a sub-study. Time-to-need for antibiotics was compared between groups by Kaplan Meier analysis and Cox proportional hazards modeling adjusting for randomization strata. RESULTS Of 182 subjects, 169 received at least one infusion of KB001-A (n=83) or placebo (n=86). KB001-A was generally safe and well-tolerated as compared to placebo, with no significant emergent adverse effects other than one serious adverse event of elevated hepatic enzymes of unclear etiology. Time to need for antibiotics did not differ between groups (HR: 1.00; 95% CI: 0.69, 1.45, p=0.995). A 3.2 increase in ppFEV1 from placebo favoring KB001-A was observed at week 16 (95% CI: 1.12, 5.30, p=0.003). Mean changes from baseline in log10 sputum neutrophil elastase (NE) had a non-significant decrease (-0.27, 95% CI: -0.58,0.04, p=0.084) while IL-8 concentrations at week 16 were significantly lower (-0.27, 95% CI: -0.55,0.00, p=0.048) among KB001-A subjects (n=16) relative to placebo (n=13). CONCLUSIONS KB001-A was safe and well-tolerated and associated with a modest FEV1 benefit and reduction in select sputum inflammatory markers (IL-8). KB001-A was not associated with an increased time to need for antibiotics. The lack of efficacy seen with KB001-A may be due, in part, to the low levels of the type III secretion proteins previously reported in sputum of CF patients chronically infected with Pa.
Collapse
|
12
|
McMahon F, Banville N, Bergin DA, Smedman C, Paulie S, Reeves E, Kavanagh K. Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins. Inflammation 2016; 39:425-433. [PMID: 26433579 DOI: 10.1007/s10753-015-0264-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rosacea is a chronic inflammatory condition that predominantly affects the skin of the face. Sera from rosacea patients display elevated reactivity to proteins from a bacterium (Bacillus oleronius) originally isolated from a Demodex mite from a rosacea patient suggesting a possible role for bacteria in the induction and persistence of this condition. This work investigated the ability of B. oleronius proteins to activate neutrophils and demonstrated activation via the IP3 pathway. Activated neutrophils displayed increased levels of IP1 production, F-actin formation, chemotaxis, and production of the pro-inflammatory cytokines IL-1β and IL-6 following stimulation by pure and crude B. oleronius protein preparations (2 μg/ml), respectively. In addition, neutrophils exposed to pure and crude B. oleronius proteins (2 μg/ml) demonstrated increased release of internally stored calcium (Ca(2+)), a hallmark of the IP3 pathway of neutrophil activation. Neutrophils play a significant role in the inflammation associated with rosacea, and this work demonstrates how B. oleronius proteins can induce neutrophil recruitment and activation.
Collapse
Affiliation(s)
- Fred McMahon
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Nessa Banville
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - David A Bergin
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | - Emer Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
13
|
Ge S, Li T, Yao Q, Yan H, Huiyun Z, Zheng Y, Zhang B, He S. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism. Cell Biol Toxicol 2016; 32:529-542. [PMID: 27423452 DOI: 10.1007/s10565-016-9353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023]
Abstract
Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH2, and PAR-2 agonist peptide tc-LIGRLO-NH2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH2-induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH2, an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH2-induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.
Collapse
Affiliation(s)
- Shuqing Ge
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
- Department of Dentistry, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 121001, China
| | - Tao Li
- Department of Infectious Diseases, Shantou University Medical College, Shantou, 515031, China
| | - Qijian Yao
- Department of Infectious Diseases, Shantou University Medical College, Shantou, 515031, China
| | - Hongling Yan
- Clinical Research Centre, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhang Huiyun
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yanshan Zheng
- Department of Infectious Diseases, Shantou University Medical College, Shantou, 515031, China
| | - Bin Zhang
- Department of Dentistry, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 121001, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
14
|
Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis. Sci Rep 2016; 6:38013. [PMID: 27892542 PMCID: PMC5125098 DOI: 10.1038/srep38013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury.
Collapse
|
15
|
Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol Sin 2016; 37:1178-89. [PMID: 27498777 DOI: 10.1038/aps.2016.68] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. METHODS A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. RESULTS In rotenone-treated BV2 cells, MK-4 (0.5-20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5-20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5-20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5-20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5-20 μmol/L). CONCLUSION Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation.
Collapse
|
16
|
Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L, Steinfort D. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. Br J Pharmacol 2016; 173:635-48. [PMID: 26013585 PMCID: PMC4742298 DOI: 10.1111/bph.13198] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/25/2022] Open
Abstract
Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.
Collapse
Affiliation(s)
- Steven Bozinovski
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Ross Vlahos
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Desiree Anthony
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Jonathan McQualter
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Gary Anderson
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Louis Irving
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| |
Collapse
|
17
|
Roflumilast n-oxide associated with PGE2 prevents the neutrophil elastase-induced production of chemokines by epithelial cells. Int Immunopharmacol 2015; 30:1-8. [PMID: 26610096 DOI: 10.1016/j.intimp.2015.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
Neutrophil chemotaxis is involved in the lung inflammatory process in conditions such as chronic obstructive pulmonary disease (COPD). Neutrophil elastase (NE), one of the main proteases produced by neutrophils, has an important role in the inflammatory process via the release of chemokines from airway epithelial cells. It was recently shown that roflumilast N-oxide has therapeutic potential in COPD. The aim of the present study was to investigate roflumilast N-oxide's effect on NE-induced chemokine production and signaling pathways in A549 epithelial cells. A549 cells were incubated with NE for 30min, washed with PBS and then cultured for 2h (for measurement of mRNA expression) and 24h (for chemokine release) or for 5 to 30min (for protein phosphorylation assays). Prior to the addition of NE, cells were also pre-incubated with prostaglandin E2 (PGE2), alone and in combination with roflumilast N-oxide. Addition of NE was associated with elevated chemokine production by A549 cells and induction of the p38α pathway. In contrast when combined with PGE2, the roflumilast N-oxide had an additive effect on the inhibition of NE-induced chemokine release and p38α and other kinases activation. In conclusion, we demonstrated that NE is able to increase the release of chemokines from epithelial cells via the activation of p38α MAP-kinase and that roflumilast N-oxide when combined with PGE2 lowers NE-induced kinase activation and chemokine production.
Collapse
|
18
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
19
|
Nishi H, Maeda N, Izumi S, Higa-Nakamine S, Toku S, Kakinohana M, Sugahara K, Yamamoto H. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells. Eur J Pharmacol 2015; 748:133-42. [DOI: 10.1016/j.ejphar.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
|
20
|
Li LF, Lai YT, Chang CH, Lin MC, Liu YY, Kao KC, Tsai YH. Neutrophil elastase inhibitor reduces ventilation-induced lung injury via nuclear factor-κB and NF-κB repressing factor in mice. Exp Biol Med (Maywood) 2014; 239:1045-1057. [PMID: 24728725 DOI: 10.1177/1535370214529393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mechanical ventilation used in patients with acute lung injury can damage pulmonary epithelial cells through production of inflammatory cytokines, oxygen radicals, and neutrophil infiltration, termed ventilator-induced lung injury. Neutrophil elastase, nuclear factor-κB (NF-κB), and NF-κB repressing factor (NRF) have previously been shown to participate in the regulation of macrophage inflammatory protein-2 (MIP-2) during airway inflammation. However, the mechanisms regulating interactions among mechanical ventilation, neutrophil influx, and NF-κB/NRF remain unclear. Thus, we hypothesized that neutrophil elastase inhibitor attenuated ventilation-induced neutrophil recruitment and MIP-2 production through inhibition of the NF-κB/NRF pathway. Male C57BL/6 mice were exposed to low-tidal-volume (6 mL/kg) or high-tidal-volume (30 mL/kg) mechanical ventilation using room air with or without 2 µg/g NF-κB inhibitor SN50 or 6 µg/g NRF short interfering RNA or 100 µg/g neutrophil elastase inhibitor administration. Nonventilated mice served as a control group. Evan blue dye, lung wet-to-dry weight ratio, free radicals, myeloperoxidase, histopathologic grading of lung tissue, inflammatory cytokines, Western blot of NF-κB and NRF, and gene expression of NRF were measured to establish the extent of lung injury. Neutrophil elastase inhibitor ameliorated high-tidal-volume ventilation-induced lung injury, neutrophil influx, production of MIP-2 and malondialdehyde, activation of NF-κB and NRF, apoptotic epithelial cell death, and disruption of bronchial microstructure in mice. Mechanical stretch-augmented acute lung injury was also attenuated through pharmacological inhibition of NF-κB activity by SN50 and NRF expression by NRF short interfering RNA. Our data suggest that neutrophil elastase inhibitor attenuates high-tidal-volume mechanical ventilation-induced neutrophil influx, oxidative stress, and production of MIP-2, at least partly, through inhibition of NF-κB/NRF pathway. Understanding the protective effects of neutrophil elastase inhibitor associated with the reduction of MIP-2 allow clarification of the pathophysiological mechanisms regulating severe lung inflammation and development of possible therapeutic strategies involved in acute lung injury.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Ting Lai
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan Graduate Institute of Clinical Medical Sciences and Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Hao Chang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei 112, Taiwan Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Kuo-Chin Kao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ying-Huang Tsai
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
21
|
Yamamoto H, Higa-Nakamine S, Noguchi N, Maeda N, Kondo Y, Toku S, Kukita I, Sugahara K. Desensitization by different strategies of epidermal growth factor receptor and ErbB4. J Pharmacol Sci 2014; 124:287-93. [PMID: 24553453 DOI: 10.1254/jphs.13r11cp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Four transmembrane tyrosine kinases constitute the ErbB protein family: epidermal growth factor receptor (EGFR) or ErbB1, ErbB2, ErbB3, and ErbB4. In general, the structure and mechanism of the activation of these members are similar. However, significant differences in homologous desensitization are known between EGFR and ErbB4. Desensitization of ligand-occupied EGFR occurs by endocytosis, while that of ErbB4 occurs by selective cleavage at the cell surface. Because ErbB4 is abundantly expressed in neurons from fetal to adult brains, elucidation of the desensitization mechanism is important to understand neuronal development and synaptic functions. Recently, it has become clear that heterologous desensitization of EGFR and ErbB4 are induced by endocytosis and cleavage, respectively, similar to homologous desensitization. It has been reported that heterologous desensitization of EGFR is induced by serine phosphorylation of EGFR via the p38 mitogen-activated protein kinase (p38 MAP kinase) pathway in various cell lines, including alveolar epithelial cells. In contrast, the protein kinase C pathway is involved in ErbB4 cleavage. In this review, we will describe recent advances in the desensitization mechanisms of EGFR and ErbB4, mainly in alveolar epithelial cells and hypothalamic neurons, respectively.
Collapse
Affiliation(s)
- Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shen Y, Wang D, Wang X. Role of CCR2 and IL-8 in acute lung injury: a new mechanism and therapeutic target. Expert Rev Respir Med 2014; 5:107-14. [DOI: 10.1586/ers.10.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Campbell RM, Anderson BD, Brooks NA, Brooks HB, Chan EM, De Dios A, Gilmour R, Graff JR, Jambrina E, Mader M, McCann D, Na S, Parsons SH, Pratt SE, Shih C, Stancato LF, Starling JJ, Tate C, Velasco JA, Wang Y, Ye XS. Characterization of LY2228820 dimesylate, a potent and selective inhibitor of p38 MAPK with antitumor activity. Mol Cancer Ther 2013; 13:364-74. [PMID: 24356814 DOI: 10.1158/1535-7163.mct-13-0513] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p38α mitogen-activated protein kinase (MAPK) is activated in cancer cells in response to environmental factors, oncogenic stress, radiation, and chemotherapy. p38α MAPK phosphorylates a number of substrates, including MAPKAP-K2 (MK2), and regulates the production of cytokines in the tumor microenvironment, such as TNF-α, interleukin-1β (IL-1β), IL-6, and CXCL8 (IL-8). p38α MAPK is highly expressed in human cancers and may play a role in tumor growth, invasion, metastasis, and drug resistance. LY2228820 dimesylate (hereafter LY2228820), a trisubstituted imidazole derivative, is a potent and selective, ATP-competitive inhibitor of the α- and β-isoforms of p38 MAPK in vitro (IC(50) = 5.3 and 3.2 nmol/L, respectively). In cell-based assays, LY2228820 potently and selectively inhibited phosphorylation of MK2 (Thr334) in anisomycin-stimulated HeLa cells (at 9.8 nmol/L by Western blot analysis) and anisomycin-induced mouse RAW264.7 macrophages (IC(50) = 35.3 nmol/L) with no changes in phosphorylation of p38α MAPK, JNK, ERK1/2, c-Jun, ATF2, or c-Myc ≤ 10 μmol/L. LY2228820 also reduced TNF-α secretion by lipopolysaccharide/IFN-γ-stimulated macrophages (IC(50) = 6.3 nmol/L). In mice transplanted with B16-F10 melanoma, tumor phospho-MK2 (p-MK2) was inhibited by LY2228820 in a dose-dependent manner [threshold effective dose (TED)(70) = 11.2 mg/kg]. Significant target inhibition (>40% reduction in p-MK2) was maintained for 4 to 8 hours following a single 10 mg/kg oral dose. LY2228820 produced significant tumor growth delay in multiple in vivo cancer models (melanoma, non-small cell lung cancer, ovarian, glioma, myeloma, breast). In summary, LY2228820 is a p38 MAPK inhibitor, which has been optimized for potency, selectivity, drug-like properties (such as oral bioavailability), and efficacy in animal models of human cancer.
Collapse
Affiliation(s)
- Robert M Campbell
- Corresponding Author: Robert M. Campbell, Eli Lilly and Company, Lilly Corporate Center, dc0424, Indianapolis, IN 46285.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barichello T, Simões LR, Valvassori SS, Generoso JS, Aveline PEDV, Dominguini D, Elias SG, Vilela MC, Quevedo J, Teixeira AL. Klebsiella pneumoniae meningitis induces memory impairment and increases pro-inflammatory host response in the central nervous system of Wistar rats. J Med Microbiol 2013; 63:111-117. [PMID: 24105840 DOI: 10.1099/jmm.0.063289-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae meningitis has recently become an increasingly common cause of central nervous system infection. The invasion of bacteria within the subarachnoid space stimulates the release of pro-inflammatory cytokines and chemokines, triggering a host immune response. The aim of the present study was to evaluate memory and pro-inflammatory mediators at different times in the brains of adult Wistar rats with K. pneumoniae meningitis. The animals were sacrificed at 6, 12, 24, 48 and 96 h after meningitis induction. The hippocampus, frontal cortex and cerebrospinal fluid were isolated to determine the cytokine, chemokine and brain-derived neurotrophic factor (BDNF) levels. In the first 6 and 24 h following meningitis induction, there was a significant increase of the TNF-α, IL-1β, IL-6, cytokine-induced neutrophil chemoattractant-1 and BDNF levels in the central nervous system. Ten days after meningitis induction, cognitive memory was evaluated using an open-field task and step-down inhibitory avoidance task. In the control group, significant differences in behaviour were observed between the training and testing sessions for both tasks, demonstrating habituation and aversive memory. However, the meningitis group did not exhibit any difference between the training and testing sessions in either task, demonstrating memory impairment. As a result of these observations, we believe that the meningitis model may be a good research tool to study the biological mechanisms involved in the pathophysiology of this illness, while recognizing that animal models should be interpreted with caution before extrapolation to the clinic.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lutiana R Simões
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Eduardo D V Aveline
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samuel G Elias
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Marcia C Vilela
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Antonio Lucio Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
25
|
Li M, Tian Y, Wu S, Yu H, Li Y. LPS stimulates MUC5AC expression in human biliary epithelial cells: whether there exists a possible pathway of PKC/NADPH/ROS? Mol Cell Biochem 2013; 385:87-93. [PMID: 24065389 DOI: 10.1007/s11010-013-1817-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/13/2013] [Indexed: 01/22/2023]
Abstract
Previous studies have shown that lipopolysaccharide (LPS) can upregulate MUC5AC in airway epithelial cells. However, the relationship and mechanism between bacterial infection and altered mucus secretion in the biliary tract remains unclear. Human biliary epithelial cells were induced by LPS, H2O2 production in the cell supernatants were detected by specific kit and expression of MUC5AC were detected by real-time PCR, Western blot, and immunohistochemistry. H2O2 production increased in a dose-dependent manner, LPS upregulate MUC5AC expression in both mRNA and protein level while specific inhibitors can reduce this high expression. Reactive oxygen species participates in the process of LPS by upregulating MUC5AC secretion. Moreover, PKC and NADPH oxidase regulate MUC5AC production in LPS-challenged human biliary epithelial cells.
Collapse
Affiliation(s)
- Min Li
- Biliary & Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Smith ME, Bozinovski S, Malmhäll C, Sjöstrand M, Glader P, Venge P, Hiemstra PS, Anderson GP, Lindén A, Qvarfordt I. Increase in net activity of serine proteinases but not gelatinases after local endotoxin exposure in the peripheral airways of healthy subjects. PLoS One 2013; 8:e75032. [PMID: 24086430 PMCID: PMC3781029 DOI: 10.1371/journal.pone.0075032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/08/2013] [Indexed: 01/06/2023] Open
Abstract
We tested the hypothesis that activation of the innate immune response induces an imbalance in the proteolytic homeostasis in the peripheral airways of healthy subjects, towards excess serine or gelatinase proteinase activity. During bronchoscopy, 18 healthy human subjects underwent intra-bronchial exposure to endotoxin and contra-lateral exposure to vehicle. Bronchoalveolar lavage (BAL) samples were harvested 24 or 48 hours (h) later. We quantified archetype proteinases, anti-proteinases, inflammatory BAL cells, and, importantly, total plus net proteinase activities using functional substrate assays. As expected, endotoxin exposure increased the concentrations of polymorphonuclear leukocytes (PMN's) and macrophages, of proteinases and the anti-proteinases tissue inhibitor of metalloproteinase-1, α-1-antitrypsin and, to a lesser extent, secretory leukoproteinase inhibitor, at both time points. Notably, at these time points, endotoxin exposure substantially increased the quantitative NE/SLPI ratio and the net serine proteinase activity corresponding to neutrophil elastase (NE). Endotoxin exposure also increased the total gelatinase activity corresponding to matrix metalloproteinase (MMP)-9; an activity dominating over that of MMP-2. However, endotoxin exposure had no impact on net gelatinolytic activity at 24 or 48 h after exposure. Thus, local activation of the innate immune response induces an imbalance towards increased net serine proteinase activity in the proteolytic homeostasis of the peripheral airways in healthy subjects. Hypothetically, this serine proteinase activity can contribute to tissue remodelling and hypersecretion via NE from PMN's, if it is triggered repeatedly, as might be the case in chronic inflammatory airway disorders.
Collapse
Affiliation(s)
- Margaretha E. Smith
- Lung Immunology Group, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Steven Bozinovski
- Lung Disease Research Group, Departments of Medicine and Pharmacology, the University of Melbourne, Parkville, Australia
| | - Carina Malmhäll
- Lung Immunology Group, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Margareta Sjöstrand
- Lung Immunology Group, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Glader
- Lung Immunology Group, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Venge
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gary P. Anderson
- Lung Disease Research Group, Departments of Medicine and Pharmacology, the University of Melbourne, Parkville, Australia
| | - Anders Lindén
- Lung Immunology Group, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Unit for Lung & Airway Research, Institute of Environmental Medicine, Karolinska Institutet and Lung Allergy Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Qvarfordt
- Lung Immunology Group, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Gao F, Chen D, Hu Q, Wang G. Rotenone directly induces BV2 cell activation via the p38 MAPK pathway. PLoS One 2013; 8:e72046. [PMID: 23977201 PMCID: PMC3748029 DOI: 10.1371/journal.pone.0072046] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/06/2013] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Although its pathogenesis is still unclear, increasing evidence suggests that mitochondrial dysfunction induced by environmental toxins, such as mitochondrial complex I inhibitors, plays a significant role in the disease process. The microglia in PD brains are highly activated, and inflammation is also an essential element in PD pathogenesis. However, the means by which these toxins activate microglia is still unclear. In the present study, we found that rotenone, a mitochondrial complex I inhibitor, could directly activate microglia via the nuclear factor kappa B (NF-κB) signaling pathway, thereby inducing significantly increased expression of inflammatory cytokines. We further observed that rotenone induced caspase-1 activation and mature IL-1β release, both of which are strictly dependent on p38 mitogen-activated protein kinase (MAPK). The activation of p38 is associated with the presence of reactive oxygen species (ROS) produced by rotenone. Removal of these ROS abrogated the activation of the microglia. Therefore, our data suggest that the environmental toxin rotenone can directly activate microglia through the p38 MAPK pathway.
Collapse
Affiliation(s)
- Feng Gao
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, China
- * E-mail: (FG); (GH)
| | - Dong Chen
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China
- * E-mail: (FG); (GH)
| |
Collapse
|
28
|
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells. PLoS One 2013; 8:e72981. [PMID: 23977375 PMCID: PMC3745379 DOI: 10.1371/journal.pone.0072981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/18/2013] [Indexed: 01/14/2023] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.
Collapse
|
29
|
Vaguliene N, Zemaitis M, Lavinskiene S, Miliauskas S, Sakalauskas R. Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease. BMC Immunol 2013; 14:36. [PMID: 23919722 PMCID: PMC3750549 DOI: 10.1186/1471-2172-14-36] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022] Open
Abstract
Background Recent investigations suggest that neutrophils play an important role in the immune response to lung cancer as well as chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the amount of neutrophils and markers of their activity in lung cancer and COPD and in coexistence of these two diseases. Methods In total, 267 persons were included in the study: 139 patients with lung cancer, 55 patients with lung cancer and COPD, 40 patients with COPD, and 33 healthy subjects. Peripheral blood and BAL fluid samples were obtained for cell count analysis and determination of NE, MPO levels and ROS production. NE and MPO levels in the serum and BAL fluid were determined by ELISA. ROS production was analyzed by flow cytometer. Results The percentage, cell count of neutrophils and neutrophil to lymphocyte ratio in the peripheral blood were significantly higher in lung cancer patients with or without COPD compared to COPD patients or healthy individuals (P < 0.05). The percentage and cell count of neutrophils in BAL fluid were significantly lower in patients with lung cancer with or without COPD than in patients with COPD (P < 0.05). However, BAL fluid and serum levels of both NE and MPO were significantly higher in patients with lung cancer than COPD patients or healthy individuals (P < 0.05). Neutrophils produced higher amounts of ROS in patients with lung cancer with or without COPD compared with COPD patients or healthy individuals (P < 0.05). Conclusions The results from this study demonstrate higher degree of local and systemic neutrophilic inflammation in patients with lung cancer (with or without COPD) than in patients with COPD.
Collapse
Affiliation(s)
- Neringa Vaguliene
- Department of Pulmonology and Immunology, Medical Academy, Hospital of Lithuanian University of Health Sciences, Eiveniu 2, Kaunas LT-50028, Lithuania.
| | | | | | | | | |
Collapse
|
30
|
Gras D, Chanez P, Vachier I, Petit A, Bourdin A. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther 2013; 140:290-305. [PMID: 23880290 DOI: 10.1016/j.pharmthera.2013.07.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence of a critical role played by the bronchial epithelium in airway homeostasis is opening new therapeutic avenues. Its unique situation at the interface with the environment suggests that the subtle regulation orchestrated by the epithelium between tolerance and specific immune response might be impaired in asthma. Airway mucus is acting as a physical and a biological fluid between the environment and the epithelium, synergistically moved by the cilia. In asthma, excessive mucus production is a hallmark of airway remodeling. Since many years we tried to therapeutically target mucus hypersecretion, but actually this option is still not achieved. The present review discusses the dynamic processes regulating airway mucus production. Airway inflammation is central in current asthma management. Understanding of how the airway epithelium influences the TH2 paradigm in response to deleterious agents is improving. The multiple receptors expressed by the airway epithelium are the transducers of the biological signals induced by various invasive agents to develop the most adapted response. Airway remodeling is observed in severe chronic airway diseases and may result from ongoing disturbance of signal transduction and epithelial renewal. Chronic airway diseases such as asthma will require assessment of these epithelial abnormalities to identify phenotypic characteristics associated with predicting a clinical benefit for epithelial-directed therapies.
Collapse
Affiliation(s)
- Delphine Gras
- UMR INSERM U1067 CNRS 7333, Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
31
|
Bozinovski S, Anthony D, Anderson GP, Irving LB, Levy BD, Vlahos R. Treating neutrophilic inflammation in COPD by targeting ALX/FPR2 resolution pathways. Pharmacol Ther 2013; 140:280-9. [PMID: 23880288 DOI: 10.1016/j.pharmthera.2013.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Neutrophilic inflammation persists in COPD despite best current therapies and it is particularly resistant to inhaled glucocorticosteroids. Persistent neutrophil activation not only contributes to matrix breakdown, but can maintain inflammation through the release of endogenous damage associated molecule patterns (DAMPs). Inhibiting excessive neutrophilic inflammation is challenging as many pathogen recognition receptors can initiate migration and the targeting of downstream signaling molecules may compromise essential host defense mechanisms. Here, we discuss new strategies to combat this inflammation in COPD by focusing on the anti-inflammatory role of ALX/FPR2 receptors. ALX/FPR2 is a promiscuous G-protein coupled receptor (GPCR) responding to lipid and peptide agonists that can either switch on acute inflammation or promote resolution of inflammation. We highlight this receptor as an emerging target in the pathogenesis of COPD because known ALX/FPR2 endogenous agonists are enriched in COPD. Serum Amyloid A (SAA) has recently been discovered to be abundantly expressed in COPD and is a potent ALX/FPR2 agonist that unlike almost all other inflammatory chemoattractants, is induced by glucocorticosteroids. SAA not only initiates lung inflammation via ALX/FPR2 but can allosterically modify this receptor so that it no longer transduces pro-resolving signals from endogenous lipoxins that would otherwise promote tissue healing. We propose that there is an imbalance in endogenous and microbial ALX/FPR2 receptor agonists in the inflamed COPD lung environment that oppose protective anti-inflammatory and pro-resolution pathways. These insights open the possibility of targeting ALX/FPR2 receptors using synthetic agonists to resolve persistent neutrophilic inflammation without compromising essential host defense mechanisms.
Collapse
Affiliation(s)
- Steven Bozinovski
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Øvrevik J, Holme JA, Låg M, Schwarze PE, Refsnes M. Differential chemokine induction by 1-nitropyrene and 1-aminopyrene in bronchial epithelial cells: importance of the TACE/TGF-α/EGFR-pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:235-239. [PMID: 23348104 DOI: 10.1016/j.etap.2012.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 06/01/2023]
Abstract
1-nitropyrene (1-NP), a common PAH in diesel exhaust, and its amine metabolite 1-aminopyrene (1-AP) induce distinctly different chemokine-responses in bronchial epithelial cells (BEAS-2B) characterized by increases in CXCL8 and CCL5, respectively. Tumor necrosis factor-α converting enzyme (TACE), which cleaves membrane-bound transforming growth factor (TGF)-α, activating the epidermal growth factor receptor (EGFR), may regulate pro-inflammatory responses induced by a variety of endogenous and exogenous agents. The present results suggest that CXCL8, but not CCL5 responses in 1-NP- or 1-AP-exposed cells required TACE/TGF-α/EGFR-signaling. The findings strengthen the notion that TACE/TGF-α/EGFR-signaling is central in epithelial CXCL8-regulation upon exposure to multiple airborne pollutants.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | | | | | | | | |
Collapse
|
33
|
Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med 2013; 107:524-33. [PMID: 23433769 DOI: 10.1016/j.rmed.2012.12.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED Neutrophil elastase (NE) activity is increased in bronchiectasis and may play a role in this condition. We wished to determine the effect of AZD9668, a selective oral inhibitor of NE. Efficacy and safety of AZD9668 60 mg twice daily over 4 weeks were evaluated in a randomised, double-blind, placebo-controlled, parallel-group, Phase II, signal-searching study in patients with bronchiectasis. Outcome measures included: waking and post-waking sputum neutrophil counts; lung function tests; 24-h sputum weight; BronkoTest(®) diary card data; St George's Respiratory Questionnaire for COPD patients (SGRQ-C); sputum NE activity; inflammatory biomarker levels; desmosine levels; adverse events, safety haematology and biochemistry. AZD9668 levels in plasma and sputum were measured to confirm exposure. Thirty-eight patients were randomised: 16 to placebo and 22 to AZD9668. There was no change in sputum neutrophils with AZD9668. Forced expiratory volume in 1 s improved by 100 mL in the AZD9668 group compared with placebo (p = 0.006). Significant changes (defined a priori as p < 0.1) in favour of AZD9668 were also seen in slow vital capacity, plasma interleukin-8, and post-waking sputum interleukin-6 and Regulated on Activation, Normal T-cell Expressed and Secreted levels. Non-significant changes in favour of AZD9668 were seen in other lung function tests, sputum weight and the SGRQ-C. AZD9668 was well tolerated. In this small signal-searching study, 4 weeks' treatment with AZD9668 improved lung function in patients with bronchiectasis and there were trends for reductions in sputum inflammatory biomarkers. Larger studies of longer duration would be needed to confirm the potential benefits of this agent in bronchiectasis. REGISTRATION NCT00769119.
Collapse
|
34
|
Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:685142. [PMID: 23509760 PMCID: PMC3586454 DOI: 10.1155/2013/685142] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 01/17/2023]
Abstract
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers.
Collapse
|
35
|
Zhang H, Yang H, Ma W, Zhang Z, He S. Modulation of PAR expression and tryptic enzyme induced IL-4 production in mast cells by IL-29. Cytokine 2013; 61:469-77. [PMID: 23218741 DOI: 10.1016/j.cyto.2012.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 09/17/2012] [Accepted: 10/31/2012] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-29 is a relatively newly discovered cytokine, which has been shown to be actively involved in the pathogenesis of allergic inflammation. However, little is known of the effects of IL-29 on protease activated receptor (PAR) expression and potential mechanisms of cytokine production in mast cells. In the present study, we examined potential influence of IL-29 on PAR expression and cytokine production in P815 and bone marrow derived mast cells (BMMCs) by using flow cytometry analysis, quantitative real time PCR, and ELISA techniques. The results showed that IL-29 downregulated the expression of PAR-1 by up to 56.2%, but had little influence on the expression of PAR-2, PAR-3 and PAR-4. IL-29 also induced downregulation of expression of PAR-1 mRNA. However, when mast cells were pre-incubated with IL-29, thrombin-, trypsin- and tryptase-induced expression of PAR-2, PAR-3 and PAR-4 was upregulated, respectively. IL-29 provoked approximately up to 1.9-fold increase in IL-4 release when mast cells was challenged with IL-29. Administration of IL-29 blocking antibody, AG490 or LY294002 abolished IL-29-induced IL-4 release from P815 cells. It was found that IL-29 diminished trypsin- and tryptase-induced IL-4 release from P815 cells following 16 h incubation. In conclusion, IL-29 can regulate expression of PARs and tryptase- and trypsin-induced IL-4 production in mast cells, through which participates in the mast cell related inflammation.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pathophysiology, Hainan Medical College, Haikou, Hainan 571101, China
| | | | | | | | | |
Collapse
|
36
|
Salvador LA, Taori K, Biggs JS, Jakoncic J, Ostrov DA, Paul VJ, Luesch H. Potent elastase inhibitors from cyanobacteria: structural basis and mechanisms mediating cytoprotective and anti-inflammatory effects in bronchial epithelial cells. J Med Chem 2013; 56:1276-90. [PMID: 23350733 DOI: 10.1021/jm3017305] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. Structure-activity relationship (SAR) studies and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment, and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation, and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B, and IL8. Compound 1 exhibited activity comparable to the clinically approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays.
Collapse
Affiliation(s)
- Lilibeth A Salvador
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Proteases are enzymes that have the capacity to hydrolyze peptide bonds and degrade other proteins. Proteases can promote inflammation by regulating expression and activity of different pro-inflammatory cytokines, chemokines and other immune components in the lung compartment. They are categorized in three major subcategories: serine proteases, metalloproteases and cysteine proteases especially in case of lung diseases. Neutrophil-derived serine proteases (NSPs), metalloproteases and some mast cell-derived proteases are mainly focused here. Their modes of actions are different in different diseases for e.g. NE induces the release of IL-8 from lung epithelial cells through a MyD88/IRAK/TRAF-6-dependent pathway and also through EGFR MAPK pathway. NSPs contribute to immune regulation during inflammation through the cleavage and activation of specific cellular receptors. MMPs can also influence the progression of various inflammatory processes and there are many non-matrix substrates for MMPs, such as chemokines, growth factors and receptors. During lung inflammation interplay between NE and MMP is an important significant phenomenon. They have been evaluated as therapeutic targets in several inflammatory lung diseases. Here we review the role of proteases in various lung inflammatory diseases with emphasis on their mode of action and contribution to immune regulation during inflammation.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba Canada
| |
Collapse
|
38
|
Phosphorylation of epidermal growth factor receptor at serine 1047 by MAP kinase-activated protein kinase-2 in cultured lung epithelial cells treated with flagellin. Arch Biochem Biophys 2013; 529:75-85. [DOI: 10.1016/j.abb.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 11/23/2022]
|
39
|
Kondo Y, Higa-Nakamine S, Noguchi N, Maeda N, Toku S, Isohama Y, Sugahara K, Kukita I, Yamamoto H. Induction of epithelial-mesenchymal transition by flagellin in cultured lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1057-69. [DOI: 10.1152/ajplung.00096.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and activates host inflammatory responses, mainly through activation of the NF-κB pathway. Although pulmonary fibrosis occurs in some cases of lung infection by flagellated bacteria, the pathological roles of TLR5 stimulation in pulmonary fibrosis have yet to be elucidated. In the present study, we first confirmed that flagellin activated the NF-κB pathway in cultured A549 alveolar epithelial cells. Next, we examined the types of genes whose expression was modulated by flagellin in the cells. Microarray analysis of gene expression indicated that flagellin induced a change in gene expression that had a similar trend to transforming growth factor-β1 (TGF-β1), a key factor in the induction of epithelial-mesenchymal transition (EMT). Biochemical analysis revealed that TGF-β1 and flagellin increased the level of fibronectin protein, while they reduced the level of E-cadherin protein after 30 h of treatment. Interestingly, simultaneous treatment with TGF-β1 and flagellin significantly augmented these EMT-related changes. Flagellin strongly activated p38 MAP kinase, and the activation was sustained for longer than 30 h. SB203580, an inhibitor of p38 MAP kinase, inhibited the upregulation of fibronectin by both flagellin and TGF-β1. Simultaneous treatment with TGF-β1 and flagellin augmented the activation of p38 MAP kinase by TGF-β1 or flagellin alone. These results strongly suggest that flagellin cooperates with TGF-β1 in the induction of EMT in alveolar epithelial cells.
Collapse
Affiliation(s)
- Yutaka Kondo
- Departments of 1Biochemistry,
- Emergency Medicine, and
| | | | - Nobuhiro Noguchi
- Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; and
| | | | | | - Yoichiro Isohama
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Sugahara
- Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; and
| | | | | |
Collapse
|
40
|
Ross D, Brown T, Harper R, Pamarthi M, Nixon J, Bromirski J, Li CM, Ghali R, Xie H, Medvedeff G, Li H, Scuderi P, Arora V, Hunt J, Barnett T. Production and characterization of a novel human recombinant alpha-1-antitrypsin in PER.C6 cells. J Biotechnol 2012; 162:262-73. [PMID: 23036927 DOI: 10.1016/j.jbiotec.2012.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/04/2012] [Accepted: 09/21/2012] [Indexed: 12/30/2022]
Abstract
Alpha-1-antitrypsin (A1PI) is a proteinase inhibitor of the serpin superfamily and circulates in plasma at about 1-2 g/L. A1PI deficiency in humans often results in organ damage, particularly to the lungs and liver. Current augmentation therapies rely entirely on A1PI isolated from human plasma, thus prompting an evaluation of alternate sources. We have co-expressed recombinant A1PI and α-2,3-sialyltransferase in the human cell line, PER.C6. The requirement for sialyltransferase overexpression in PER.C6 and the essential contribution of sialic acid glycan capping on pdA1PI and recA1PI to prevent rapid A1PI plasma elimination is shown. Using assays to predict high levels of A1PI production and sialylation, stably transfected PER.C6 cells were screened through two rounds of cell cloning to ensure monoclonality. Fed-batch culturing was used to evaluate recA1PI production and cell line characteristics, identifying subclones expressing over 2.5 g/L recA1PI. Cell stability was assessed over 50 generations, verifying subclone stability during continuous culture. Finally, data are presented showing that recA1PI and pdA1PI are equivalent in their ability to block elastase activity in functional cell-based assays and their pharmacokinetic properties. These data show that recombinant human A1PI recovered from PER.C6 cells offers a reliable source of functionally active A1PI for augmentation therapies and, potentially, other diseases.
Collapse
Affiliation(s)
- David Ross
- Research and Pre-Clinical Development, Grifols, Inc., 85 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu L, Chen L, Wang Y, Yang H, Chen Y, Xu X, Zhou H, Jiang F, Li T, Wang J. A potential role for macrophages in maintaining lipopolysaccharide-induced subacute airway inflammation in rats. Exp Ther Med 2012; 4:983-986. [PMID: 23226760 PMCID: PMC3494132 DOI: 10.3892/etm.2012.726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/03/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial infection is a key factor in airway inflammation. The present study describes the time-dependent changes in the leukocyte counts and cytokine levels of the bronchoalveolar lavage fluid (BALF) following subacute airway inflammation induced by lipopolysaccharide (LPS), a major component of the outer membranes of Gram-negative bacteria. LPS (200 μg/rat) or saline was intratracheally administered to rats which were sacrificed 2, 4 or 7 days after LPS treatment. Airway inflammation was evaluated using hematoxylin and eosin staining, cell counts and proinflammatory cytokine levels in the BALF. Rat airways obtained from the LPS group exhibited marked airway wall thickening and infiltration of inflammatory cells compared with the control group, as well as elevated cell counts (neutrophils, macrophages, lymphocytes) and proinflammatory cytokine levels [(tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cytokine-induced neutrophil chemoattractant (CINC)-1)] in the BALF, which peaked on day 2 and subsequently decreased until the experimental endpoint. Notably, IL-1β levels induced by LPS changed in a similar manner to macrophage cell counts, but not neutrophil and lymphocyte counts. Moreover, TNF-α and CINC-1 levels did not decrease as rapidly as neutrophil counts after peaking. These findings suggest that macrophages may play a significant role in maintaining subacute inflammatory responses induced by LPS in rat airways.
Collapse
Affiliation(s)
- Lin Liu
- Department of Respiratory Medicine, 363 Hospital, Chengdu, Sichuan, 610041
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Park YS, Guang W, Blanchard TG, Chul Kim K, Lillehoj EP. Suppression of IL-8 production in gastric epithelial cells by MUC1 mucin and peroxisome proliferator-associated receptor-γ. Am J Physiol Gastrointest Liver Physiol 2012; 303:G765-74. [PMID: 22766852 PMCID: PMC3468531 DOI: 10.1152/ajpgi.00023.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MUC1 is a membrane-tethered mucin expressed on the apical surface of epithelial cells. Our previous report (Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. J Biol Chem 285: 20547-20557, 2010) demonstrated that expression of MUC1 in AGS gastric epithelial cells limits Helicobacter pylori infection and reduces bacterial-driven IL-8 production. In this study, we identified the peroxisome proliferator-associated receptor-γ (PPARγ) upstream of MUC1 in the anti-inflammatory pathway suppressing H. pylori- and phorbol 12-myristate 13-acetate (PMA)-stimulated IL-8 production. Treatment of AGS cells with H. pylori or PMA increased IL-8 levels in cell culture supernatants compared with cells treated with the respective vehicle controls. Prior small interfering (si)RNA-induced MUC1 silencing further increased H. pylori- and PMA-stimulated IL-8 levels compared with a negative control siRNA. MUC1-expressing AGS cells pretreated with the PPARγ agonist troglitazone (TGN) had reduced H. pylori- and PMA-stimulated IL-8 levels compared with cells treated with H. pylori or PMA alone. However, following MUC1 siRNA knockdown, no differences in IL-8 levels were seen between TGN/H. pylori and H. pylori-only cells or between TGN/PMA and PMA-only cells. Finally, TGN-treated AGS cells had increased Muc1 promoter activity, as measured using a Muc1-luciferase reporter gene, and greater MUC1 protein levels by Western blot analysis, compared with vehicle controls. These results support the hypothesis that PPARγ stimulates MUC1 expression by AGS cells, thereby attenuating H. pylori- and PMA-induced IL-8 production.
Collapse
Affiliation(s)
- Yong Sung Park
- 1Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Wei Guang
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas G. Blanchard
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - K. Chul Kim
- 1Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Erik P. Lillehoj
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Dil N, Banerjee AG. Knockdown of aberrantly expressed nuclear localized decorin attenuates tumour angiogenesis related mediators in oral cancer progression model in vitro. HEAD & NECK ONCOLOGY 2012; 4:11. [PMID: 22507529 PMCID: PMC3370992 DOI: 10.1186/1758-3284-4-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023]
Abstract
Background Oral cancer accounts for roughly 3% of cancer cases in the world with about 350,000 newly reported cases annually and a 5-year survival rate of only 50%. Majority of oral cancers are squamous cell carcinomas that originate in the oral mucosal epithelial linings. We have previously shown that in human malignant squamous cells carcinoma (SCC-25) as well as in dysplastic oral keratinocytes (DOK), a small leucine-rich multifunctional proteoglycan decorin is aberrantly expressed and localized in the nucleus where it interacts with nuclear epidermal growth factor receptor (EGFR). Post-transcriptional silencing of nuclear decorin significantly reduced IL-8 and IL8-dependent migration and invasion in these dysplastic and malignant oral epithelia. The objective of this study was to further examine the effects of nuclear decorin silencing on angiogenesis and angiogenesis related mediators in this oral cancer progression cell line model. Methods We have used multiplex PCR, western blotting, and in vitro endothelial tube formation assay to study angiogenesis and related pathways in nuclear decorin silenced (stable knockdown) DOK and SCC-25 cells. Results Nuclear decorin knockdown resulted in significant down regulation of IL-8 expression, however IL-10, and TGF-β expression was not affected in either DOK or SCC25 cells as measured by multiplex RT PCR. IL-8 receptor CXCR 1 and 2 expression was slightly lower in nuclear decorin silenced cells indicating a contributing mechanism in previously shown reduced IL-8 mediated migration and invasion phenotype in these cells. IL-8 is known to induce Matrix metalloproteinase 9 (MMP9) which not only plays a role in tumour migration and invasion but also induces angiogenic switch. We found MMP9 to be significantly reduced in nuclear decorin silenced dysplastic and malignant oral epithelia. Other potent angiogenic mediators, VEGF189 and ANG-1 were either significantly reduced or completely abrogated in these cells. Angiogenesis as measured by endothelial tube-like formations of HUVEC cells was reduced by almost 50 percent when HUVECs were incubated in the presence of conditioned medium form nuclear decorin silenced dysplastic and malignant cell lines as compared to respective controls. Conclusions Together these results indicate that aberrantly expressed nuclear localized decorin strongly influences angiogenic potential of dysplastic and malignant oral epithelial cells.
Collapse
Affiliation(s)
- Nyla Dil
- Departments of Medical Microbiology and Infectious Diseases, Winnipeg, MB, Canada.
| | | |
Collapse
|
44
|
Jiang DP, Li Q, Yang J, Perelman JM, Kolosov VP, Zhou XD. Scutellarin Attenuates Human-Neutrophil-Elastase-Induced Mucus Production by Inhibiting the PKC-ERK Signaling Pathway in Vitro and in Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:1193-206. [PMID: 22083990 DOI: 10.1142/s0192415x11009494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate the influence of scutellarin on mucus production induced by human neutrophil elastase (HNE) and the possible in vitro and in vivo mechanisms. To this purpose, cells were incubated with saline, scutellarin or gefitinib for 60 min and exposed to 0.1 μM HNE for 24 h. After being pretreated respectively with saline, scutellarin or gefitinib, rats were challenged intratracheally with HNE by means of nebulization for 30 days. The expression of mucin (MUC) 5AC, protein kinase C (PKC), and extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by ELISA, RT-PCR or Western blotting. The results showed that scutellarin inhibited MUC5AC mRNA and protein expressions induced by HNE in a concentration-dependent manner in vitro. In the in vivo model, scutellarin significantly attenuated MUC5AC mRNA expression and goblet cell hyperplasia in rats treated with HNE for 30 days, as well as decreased the phosporylation of PKC and ERK1/2 compared to the HNE control group. Therefore, our study showed that scutellarin could prevent mucus hypersecretion by inhibiting the PKC-ERK signaling pathway. Inhalation scutellarin may be valuable in the treatment of chronic inflammatory lung disease.
Collapse
Affiliation(s)
- De-Peng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Qi Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jie Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk 675000, Russia
| | - Victor P. Kolosov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveschensk 675000, Russia
| | - Xiang-Dong Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
45
|
Kyo Y, Kato K, Park YS, Gajghate S, Gajhate S, Umehara T, Lillehoj EP, Suzaki H, Kim KC. Antiinflammatory role of MUC1 mucin during infection with nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol 2012; 46:149-56. [PMID: 22298528 DOI: 10.1165/rcmb.2011-0142oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MUC1 (or Muc1 in nonhuman species) is a membrane-tethered mucin expressed on the apical surface of mucosal epithelia (including those of the airways) that suppresses Toll-like receptor (TLR) signaling. We sought to determine whether the anti-inflammatory effect of MUC1 is operative during infection with nontypeable Haemophilus influenzae (NTHi), and if so, which TLR pathway was affected. Our results showed that: (1) a lysate of NTHi increased the early release of IL-8 and later production of MUC1 protein by A549 cells in dose-dependent and time-dependent manners, compared with vehicle control; (2) both effects were attenuated after transfection of the cells with a TLR2-targeting small interfering (si) RNA, compared with a control siRNA; (3) the NTHi-induced release of IL-8 was suppressed by an overexpression of MUC1, and was enhanced by the knockdown of MUC1; (4) the TNF-α released after treatment with NTHi was sufficient to up-regulate MUC1, which was completely inhibited by pretreatment with a soluble TNF-α receptor; and (5) primary murine tracheal surface epithelial (MTSE) cells from Muc1 knockout mice exhibited an increased in vitro production of NTHi-stimulated keratinocyte chemoattractant compared with MTSE cells from Muc1-expressing animals. These results suggest a hypothetical feedback loop model whereby NTHi activates TLRs (mainly TLR2) in airway epithelial cells, leading to the increased production of TNF-α and IL-8, which subsequently up-regulate the expression of MUC1, resulting in suppressed TLR signaling and decreased production of IL-8. This report is the first, to the best of our knowledge, demonstrating that the inflammatory response in airway epithelial cells during infection with NTHi is controlled by MUC1 mucin, mainly through the suppression of TLR2 signaling.
Collapse
Affiliation(s)
- Yoshiyuki Kyo
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dunlevy FK, Martin SL, de Courcey F, Elborn JS, Ennis M. Anti-inflammatory effects of DX-890, a human neutrophil elastase inhibitor. J Cyst Fibros 2012; 11:300-4. [PMID: 22418019 DOI: 10.1016/j.jcf.2012.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/08/2012] [Accepted: 02/18/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Neutrophil elastase (NE)-mediated inflammation contributes to lung damage in cystic fibrosis (CF). We investigated if DX-890, a small-protein NE inhibitor, could reduce neutrophil trans-epithelial migration and reduce activity released from neutrophils and NE-induced cytokine expression in airway epithelial cells. METHODS Activated blood neutrophils (CF and healthy) treated ±DX-890 were assayed for NE activity. Transmigration of calcein-labeled neutrophils was studied using a 16HBE14o(-) epithelial monolayer. IL-8 release from primary nasal epithelial monolayers (CF and healthy) was measured after treatment ±DX-890 and NE or CF sputum. RESULTS DX-890 reduced NE activity from neutrophils (CF and healthy) and reduced neutrophil transmigration. DX-890 pre-treatment reduced IL-8 release from epithelial cells of healthy or CF subjects after stimulation with NE and CF sputum sol. All improvements with DX-890 were statistically significant (p<0.05). CONCLUSIONS DX-890 reduces NE-mediated transmigration and inflammation. NE inhibition could be useful in managing neutrophilic airway inflammation in CF.
Collapse
Affiliation(s)
- Fiona K Dunlevy
- Centre for Infection and Immunity, Queens University Belfast, Belfast BT9 7BL, UK
| | | | | | | | | |
Collapse
|
47
|
Vlahos R, Wark PAB, Anderson GP, Bozinovski S. Glucocorticosteroids differentially regulate MMP-9 and neutrophil elastase in COPD. PLoS One 2012; 7:e33277. [PMID: 22413009 PMCID: PMC3296684 DOI: 10.1371/journal.pone.0033277] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/13/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is currently the fifth leading cause of death worldwide. Neutrophilic inflammation is prominent, worsened during infective exacerbations and is refractory to glucocorticosteroids (GCs). Deregulated neutrophilic inflammation can cause excessive matrix degradation through proteinase release. Gelatinase and azurophilic granules within neutrophils are a major source of matrix metalloproteinase (MMP)-9 and neutrophil elastase (NE), respectively, which are elevated in COPD. METHODS Secreted MMP-9 and NE activity in BALF were stratified according to GOLD severity stages. The regulation of secreted NE and MMP-9 in isolated blood neutrophils was investigated using a pharmacological approach. In vivo release of MMP-9 and NE in mice exposed to cigarette smoke (CS) and/or the TLR agonist lipopolysaccharide (LPS) in the presence of dexamethasone (Dex) was investigated. RESULTS Neutrophil activation as assessed by NE release was increased in severe COPD (36-fold, GOLD II vs. IV). MMP-9 levels (8-fold) and activity (21-fold) were also elevated in severe COPD, and this activity was strongly associated with BALF neutrophils (r = 0.92, p<0.001), but not macrophages (r = 0.48, p = 0.13). In vitro, release of NE and MMP-9 from fMLP stimulated blood neutrophils was insensitive to Dex and attenuated by the PI3K inhibitor, wortmannin. In vivo, GC resistant neutrophil activation (NE release) was only seen in mice exposed to CS and LPS. In addition, GC refractory MMP-9 expression was only associated with neutrophil activation. CONCLUSIONS As neutrophils become activated with increasing COPD severity, they become an important source of NE and MMP-9 activity, which secrete proteinases independently of TIMPs. Furthermore, as NE and MMP-9 release was resistant to GC, targeting of the PI3K pathway may offer an alternative pathway to combating this proteinase imbalance in severe COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- Department of Pharmacology, The University of Melbourne, Victoria, Australia
| | - Peter A. B. Wark
- Respiratory Medicine HMRI, John Hunter Hospital, Newcastle, NSW, Australia
| | - Gary P. Anderson
- Department of Pharmacology, The University of Melbourne, Victoria, Australia
| | - Steven Bozinovski
- Department of Pharmacology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
48
|
O’Reilly N, Bergin D, Reeves E, McElvaney N, Kavanagh K. Demodex-associated bacterial proteins induce neutrophil activation. Br J Dermatol 2012; 166:753-60. [DOI: 10.1111/j.1365-2133.2011.10746.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Cheng WY, Currier J, Bromberg PA, Silbajoris R, Simmons SO, Samet JM. Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:267-74. [PMID: 21997482 PMCID: PMC3279454 DOI: 10.1289/ehp.1104055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/13/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Toxicological studies have correlated inflammatory effects of diesel exhaust particles (DEP) with its organic constituents, such as the organic electrophile 1,2-naphthoquinone (1,2-NQ). OBJECTIVE To elucidate the mechanisms involved in 1,2-NQ-induced inflammatory responses, we examined the role of oxidant stress in 1,2-NQ-induced expression of inflammatory and adaptive genes in a human airway epithelial cell line. METHODS We measured cytosolic redox status and hydrogen peroxide (H2O2) in living cells using the genetically encoded green fluorescent protein (GFP)-based fluorescent indicators roGFP2 and HyPer, respectively. Expression of interleukin-8 (IL-8), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HO-1) mRNA was measured in BEAS-2B cells exposed to 1,2-NQ for 1-4 hr. Catalase overexpression and metabolic inhibitors were used to determine the role of redox changes and H2O2 in 1,2-NQ-induced gene expression. RESULTS Cells expressing roGFP2 and HyPer showed a rapid loss of redox potential and an increase in H2O2 of mitochondrial origin following exposure to 1,2-NQ. Overexpression of catalase diminished the H2O2-dependent signal but not the 1,2-NQ-induced loss of reducing potential. Catalase overexpression and inhibitors of mitochondrial respiration diminished elevations in IL-8 and COX-2 induced by exposure to 1,2-NQ, but potentiated HO-1 mRNA levels in BEAS cells. CONCLUSION These data show that 1,2-NQ exposure induces mitochondrial production of H2O2 that mediates the expression of inflammatory genes, but not the concurrent loss of reducing redox potential in BEAS cells. 1,2-NQ exposure also causes marked expression of HO-1 that appears to be enhanced by suppression of H2O2. These findings shed light into the oxidant-dependent events that underlie cellular responses to environmental electrophiles.
Collapse
Affiliation(s)
- Wan-Yun Cheng
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kato K, Lillehoj EP, Park YS, Umehara T, Hoffman NE, Madesh M, Kim KC. Membrane-tethered MUC1 mucin is phosphorylated by epidermal growth factor receptor in airway epithelial cells and associates with TLR5 to inhibit recruitment of MyD88. THE JOURNAL OF IMMUNOLOGY 2012; 188:2014-22. [PMID: 22250084 DOI: 10.4049/jimmunol.1102405] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counterregulates airway inflammation by suppressing TLR signaling. In this article, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in HEK293 cells dramatically reduced Pseudomonas aeruginosa-stimulated IL-8 expression and decreased the activation of NF-κB and MAPK compared with cells not expressing MUC1. However, overexpression of MUC1 in HEK293 cells did not affect NF-κB or MAPK activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88 compared with controls. The MUC1 cytoplasmic tail associated with TLR5 in all cells tested, including HEK293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of epidermal growth factor receptor tyrosine kinase with TGF-α induced phosphorylation of the MUC1 cytoplasmic tail at the Y46EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence colocalization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following P. aeruginosa infection. In conclusion, epidermal growth factor receptor tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Physiology, Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|