1
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Folci M, Ramponi G, Arcari I, Zumbo A, Brunetta E. Eosinophils as Major Player in Type 2 Inflammation: Autoimmunity and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:197-219. [PMID: 34031864 DOI: 10.1007/5584_2021_640] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Eosinophils are a subset of differentiated granulocytes which circulate in peripheral blood and home in several body tissues. Along with their traditional relevance in helminth immunity and allergy, eosinophils have been progressively attributed important roles in a number of homeostatic and pathologic situations. This review aims at summarizing available evidence about eosinophils functions in homeostasis, infections, allergic and autoimmune disorders, and solid and hematological cancers.Their structural and biological features have been described, along with their physiological behavior. This includes their chemokines, cytokines, granular contents, and extracellular traps. Besides, pathogenic- and eosinophilic-mediated disorders have also been addressed, with the aim of highlighting their role in Th2-driven inflammation. In allergy, eosinophils are implicated in the pathogenesis of atopic dermatitis, allergic rhinitis, and asthma. They are also fundamentally involved in autoimmune disorders such as eosinophilic esophagitis, eosinophilic gastroenteritis, acute and chronic eosinophilic pneumonia, and eosinophilic granulomatosis with polyangiitis. In infections, eosinophils are involved in protection not only from parasites but also from fungi, viruses, and bacteria. In solid cancers, local eosinophilic infiltration is variably associated with an improved or worsened prognosis, depending on the histotype. In hematologic neoplasms, eosinophilia can be the consequence of a dysregulated cytokine production or the result of mutations affecting the myeloid lineage.Recent experimental evidence was thoroughly reviewed, with findings which elicit a complex role for eosinophils, in a tight balance between host defense and tissue damage. Eventually, emerging evidence about eosinophils in COVID-19 infection was also discussed.
Collapse
Affiliation(s)
- Marco Folci
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| | - Giacomo Ramponi
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Ivan Arcari
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Aurora Zumbo
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Enrico Brunetta
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
3
|
Pincus AB, Fryer AD, Jacoby DB. Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neurosci Lett 2021; 751:135795. [PMID: 33667601 DOI: 10.1016/j.neulet.2021.135795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Neural changes underly hyperresponsiveness in asthma and other airway diseases. Afferent sensory nerves, nerves within the brainstem, and efferent parasympathetic nerves all contribute to airway hyperresponsiveness. Inflammation plays a critical role in these nerve changes. Chronic inflammation and pre-natal exposures lead to increased airway innervation and structural changes. Acute inflammation leads to shifts in neurotransmitter expression of afferent nerves and dysfunction of M2 muscarinic receptors on efferent nerve endings. Eosinophils and macrophages drive these changes through release of inflammatory mediators. Novel tools, including optogenetics, two photon microscopy, and optical clearing and whole mount microscopy, allow for improved studies of the structure and function of airway nerves and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Alexandra B Pincus
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.
| | - Allison D Fryer
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| | - David B Jacoby
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| |
Collapse
|
4
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Kistemaker LEM, Prakash YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019; 34:283-298. [PMID: 31165683 PMCID: PMC6863372 DOI: 10.1152/physiol.00050.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Airway nerves represent a mechanistically and therapeutically important aspect that requires better highlighting in the context of diseases such as asthma. Altered structure and function (plasticity) of afferent and efferent airway innervation can contribute to airway diseases. We describe established anatomy, current understanding of how plasticity occurs, and contributions of plasticity to asthma, focusing on target-derived growth factors (neurotrophins). Perspectives toward novel treatment strategies and future research are provided.
Collapse
Affiliation(s)
- L E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen , Groningen , The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
6
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
7
|
Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, Fryer AD, Costello RW, Jacoby DB. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med 2018; 10:eaar8477. [PMID: 30185653 PMCID: PMC6592848 DOI: 10.1126/scitranslmed.aar8477] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Gregory D Scott
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Drake MG, Lebold KM, Roth-Carter QR, Pincus AB, Blum ED, Proskocil BJ, Jacoby DB, Fryer AD, Nie Z. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol 2018; 104:61-67. [PMID: 29633324 DOI: 10.1002/jlb.3mr1117-426r] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Airway eosinophils are increased in asthma and are especially abundant around airway nerves. Nerves control bronchoconstiction and in asthma, airway hyperreactivity (where airways contract excessively to inhaled stimuli) develops when eosinophils alter both parasympathetic and sensory nerve function. Eosinophils release major basic protein, which is an antagonist of inhibitory M2 muscarinic receptors on parasympathetic nerves. Loss of M2 receptor inhibition potentiates parasympathetic nerve-mediated bronchoconstriction. Eosinophils also increase sensory nerve responsiveness by lowering neurons' activation threshold, stimulating nerve growth, and altering neuropeptide expression. Since sensory nerves activate parasympathetic nerves via a central neuronal reflex, eosinophils' effects on both sensory and parasympathetic nerves potentiate bronchoconstriction. This review explores recent insights into mechanisms and effects of eosinophil and airway nerve interactions in asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Quinn R Roth-Carter
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Alexandra B Pincus
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
|
10
|
Wicher SA, Lawson KL, Jacoby DB, Fryer AD, Drake MG. Ozone-induced eosinophil recruitment to airways is altered by antigen sensitization and tumor necrosis factor- α blockade. Physiol Rep 2017; 5:e13538. [PMID: 29242307 PMCID: PMC5742702 DOI: 10.14814/phy2.13538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023] Open
Abstract
Ozone is an atmospheric pollutant that causes lung inflammation and airway hyperresponsiveness. Ozone's effects occur in two distinct phases that are mediated by different populations of eosinophils. In the acute phase 1 day after exposure, mature airway-resident eosinophils alter parasympathetic nerve function that results in airway hyperresponsiveness. At this time point, the severity of hyperresponsiveness correlates with the number of eosinophils in close proximity to airway nerves, but not with eosinophils in bronchoalveolar lavage. Three days later, newly divided eosinophils are recruited to airways by a tumor necrosis factor-α-dependent mechanism. These new eosinophils paradoxically attenuate ozone-induced airway hyperresponsiveness. Ozone's effects on airway tissue eosinophils and nerve-associated eosinophils 3 days after exposure are unknown. Thus, we tested ozone's effects on eosinophils in airway subepithelium and around airway nerves 1 and 3 days after ozone in nonsensitized and ovalbumin-sensitized guinea pigs with or without the tumor necrosis factor-α antagonist, etanercept, and compared changes in eosinophils with ozone-induced airway hyperresponsiveness. More eosinophils were present in small, noncartilaginous airways and along small airway nerves compared to large cartilaginous airways in all treatment groups. The number of airway and nerve-associated eosinophils were unaffected 1 day after ozone exposure, whereas significantly fewer airway eosinophils were present 3 days later. Airway and nerve-associated eosinophils were also decreased in small airways 3 days after ozone in sensitized animals. These changes were blocked by etanercept. Airway eosinophils, but not nerve-associated or bronchoalveolar lavage eosinophils correlated with airway hyperresponsiveness 3 days after ozone. Our findings indicate ozone causes persistent alterations in airway eosinophils and reinforce the importance of characterizing eosinophils' effects within distinct airway compartments.
Collapse
Affiliation(s)
- Sarah A Wicher
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, Oregon
| | - Katy L Lawson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Allison D Fryer
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, Oregon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Wicher SA, Jacoby DB, Fryer AD. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs. Am J Physiol Lung Cell Mol Physiol 2017; 312:L969-L982. [PMID: 28258108 PMCID: PMC5495948 DOI: 10.1152/ajplung.00530.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals.
Collapse
Affiliation(s)
- Sarah A Wicher
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
12
|
Airway Vagal Neuroplasticity Associated with Respiratory Viral Infections. Lung 2015; 194:25-9. [PMID: 26678280 DOI: 10.1007/s00408-015-9832-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 01/19/2023]
Abstract
Respiratory virus infections leads to coughing, sneezing, and increases in reflex parasympathetic bronchoconstriction and secretions. These responses to viral infection are exclusively or largely secondary to changes in the function of the nervous system. For many with underlying airway pathologies such as asthma and COPD, this neuroplasticity can lead to disease exacerbations and hospitalization. Relatively little is understood about the cellular and molecular mechanisms that underlie the changes in neuronal control of the respiratory tract during viral infection, but the evidence supports the idea that changes occur in the physiology of both the sensory and autonomic innervation. Virus infection can lead to acute increases in the activity of sensory nerves as well as to genetic changes causing alterations in sensory nerve phenotype. In addition, respiratory viral infections are associated with changes in the control of neurotransmitter release from cholinergic nerve endings terminating at the level of the airway smooth muscle.
Collapse
|
13
|
McAlexander MA, Gavett SH, Kollarik M, Undem BJ. Vagotomy reverses established allergen-induced airway hyperreactivity to methacholine in the mouse. Respir Physiol Neurobiol 2015; 212-214:20-4. [PMID: 25842220 DOI: 10.1016/j.resp.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
We evaluated the role of vagal reflexes in a mouse model of allergen-induced airway hyperreactivity. Mice were actively sensitized to ovalbumin then exposed to the allergen via inhalation. Prior to ovalbumin inhalation, mice also received intratracheally-instilled particulate matter in order to boost the allergic response. In control mice, methacholine (i.v.) caused a dose-dependent increase in respiratory tract resistance (RT) that only modestly decreased if the vagi were severed bilaterally just prior to the methacholine challenge. Sensitized and challenged mice, however, manifested an airway reactivity increase that was abolished by severing the vagi prior to methacholine challenge. In an innervated ex vivo mouse lung model, methacholine selectively evoked action potential discharge in a subset of distension-sensitive A-fibers. These data support the hypothesis that the major component of the increased airway reactivity in inflamed mice is due to a vagal reflex initiated by activation of afferent fibers, even in response to a direct (i.e., smooth muscle)-acting muscarinic agonist.
Collapse
Affiliation(s)
| | - Stephen H Gavett
- EPHD, NHEERL, United States Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Marian Kollarik
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Bradley J Undem
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
14
|
Nie Z, Jacoby DB, Fryer AD. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am J Respir Cell Mol Biol 2014; 51:251-61. [PMID: 24605871 PMCID: PMC4148040 DOI: 10.1165/rcmb.2013-0452oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is a substantial risk factor for developing asthma, but the molecular mechanisms underlying this relationship are unclear. We tested the role of insulin in airway responsiveness to nerve stimulation using rats genetically prone or resistant to diet-induced obesity. Airway response to vagus nerve stimulation and airway M2 and M3 muscarinic receptor function were measured in obese-prone and -resistant rats with high or low circulating insulin. The effects of insulin on nerve-mediated human airway smooth muscle contraction and human M2 muscarinic receptor function were tested in vitro. Our data show that increased vagally mediated bronchoconstriction in obesity is associated with hyperinsulinemia and loss of inhibitory M2 muscarinic receptor function on parasympathetic nerves. Obesity did not induce airway inflammation or increase airway wall thickness. Smooth muscle contraction to acetylcholine was not increased, indicating that hyperresponsiveness is mediated at the level of airway nerves. Reducing serum insulin with streptozotocin protected neuronal M2 receptor function and prevented airway hyperresponsiveness to vagus nerve stimulation in obese rats. Replacing insulin restored dysfunction of neuronal M2 receptors and airway hyperresponsiveness to vagus nerve stimulation in streptozotocin-treated obese rats. Treatment with insulin caused loss of M2 receptor function, resulting in airway hyperresponsiveness to vagus nerve stimulation in obese-resistant rats, and inhibited human neuronal M2 receptor function in vitro. This study shows that it is not obesity per se but hyperinsulinemia accompanying obesity that potentiates vagally induced bronchoconstriction by inhibiting neuronal M2 muscarinic receptors and increasing acetylcholine release from airway parasympathetic nerves.
Collapse
Affiliation(s)
- Zhenying Nie
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | | | | |
Collapse
|
15
|
Undem BJ, Taylor-Clark T. Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol 2014; 133:1521-34. [PMID: 24433703 DOI: 10.1016/j.jaci.2013.11.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Persons with allergies present with symptoms that often are the result of alterations in the nervous system. Neuronally based symptoms depend on the organ in which the allergic reaction occurs but can include red itchy eyes, sneezing, nasal congestion, rhinorrhea, coughing, bronchoconstriction, airway mucus secretion, dysphagia, altered gastrointestinal motility, and itchy swollen skin. These symptoms occur because mediators released during an allergic reaction can interact with sensory nerves, change processing in the central nervous system, and alter transmission in sympathetic, parasympathetic, and enteric autonomic nerves. In addition, evidence supports the idea that in some subjects this neuromodulation is, for reasons poorly understood, upregulated such that the same degree of nerve stimulus causes a larger effect than seen in healthy subjects. There are distinctions in the mechanisms and nerve types involved in allergen-induced neuromodulation among different organ systems, but general principles have emerged. The products of activated mast cells, other inflammatory cells, and resident cells can overtly stimulate nerve endings, cause long-lasting changes in neuronal excitability, increase synaptic efficacy, and also change gene expression in nerves, resulting in phenotypically altered neurons. A better understanding of these processes might lead to novel therapeutic strategies aimed at limiting the suffering of those with allergies.
Collapse
Affiliation(s)
- Bradley J Undem
- Division of Allergy & Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, Md.
| | - Thomas Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
16
|
Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol (1985) 2013; 114:834-43. [PMID: 23305987 DOI: 10.1152/japplphysiol.00950.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma.
Collapse
Affiliation(s)
- Diana C Doeing
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
17
|
Abstract
Eosinophils are leukocytes resident in mucosal tissues. During T-helper 2 (Th2)-type inflammation, eosinophils are recruited from bone marrow and blood to the sites of immune response. While eosinophils have been considered end-stage cells involved in host protection against parasite infection and immunopathology in hypersensitivity disease, recent studies changed this perspective. Eosinophils are now considered multifunctional leukocytes involved in tissue homeostasis, modulation of adaptive immune responses, and innate immunity to certain microbes. Eosinophils are capable of producing immunoregulatory cytokines and are actively involved in regulation of Th2-type immune responses. However, such new information does not preclude earlier observations showing that eosinophils, in particular human eosinophils, are also effector cells with proinflammatory and destructive capabilities. Eosinophils with activation phenotypes are observed in biological specimens from patients with disease, and deposition of eosinophil products is readily seen in the affected tissues from these patients. Therefore, it would be reasonable to consider the eosinophil a multifaceted leukocyte that contributes to various physiological and pathological processes depending on their location and activation status. This review summarizes the emerging concept of the multifaceted immunobiology of eosinophils and discusses the roles of eosinophils in health and disease and the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Moulton BC, Fryer AD. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. Br J Pharmacol 2011; 163:44-52. [PMID: 21198547 DOI: 10.1111/j.1476-5381.2010.01190.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In the lungs, parasympathetic nerves provide the dominant control of airway smooth muscle with release of acetylcholine onto M3 muscarinic receptors. Treatment of airway disease with anticholinergic drugs that block muscarinic receptors began over 2000 years ago. Pharmacologic data all indicated that antimuscarinic drugs should be highly effective in asthma but clinical results were mixed. Thus, with the discovery of effective β-adrenergic receptor agonists the use of muscarinic antagonists declined. Lack of effectiveness of muscarinic antagonists is due to a variety of factors including unwanted side effects (ranging from dry mouth to coma) and the discovery of additional muscarinic receptor subtypes in the lungs with sometimes competing effects. Perhaps the most important problem is ineffective dosing due to poorly understood differences between routes of administration and no effective way of testing whether antagonists block receptors stimulated physiologically by acetylcholine. Newer muscarinic receptor antagonists are being developed that address the problems of side effects and receptor selectivity that appear to be quite promising in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Bart C Moulton
- Division Pulmonary and Critical Care Medicine, Oregon Health Sciences University, Portland, 97239, USA.
| | | |
Collapse
|
19
|
Effect of Nanodisperse Ferrite Cobalt (CoFe2O4) Particles on Contractile Reactions in Guinea Pigs Airways. Bull Exp Biol Med 2010; 149:70-2. [DOI: 10.1007/s10517-010-0878-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Aceves SS, Ackerman SJ. Relationships between eosinophilic inflammation, tissue remodeling, and fibrosis in eosinophilic esophagitis. Immunol Allergy Clin North Am 2009; 29:197-211, xiii-xiv. [PMID: 19141355 DOI: 10.1016/j.iac.2008.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical and pathologic features of eosinophilic esophagitis (EE) include extensive tissue remodeling. Increasing evidence supports a key role for the eosinophil in multiple aspects of the esophageal remodeling and fibrosis seen in this allergic disease. This article reviews the clinical implications of esophageal remodeling and fibrosis in EE and discusses the possible pathogenic mechanisms inducing and regulating these responses. The focus is specifically on eosinophil and cytokine interactions with the esophageal epithelium, vascular endothelium, resident fibroblasts, and smooth muscle. Current and potential therapeutic interventions are discussed that may impact the development or resolution of chronic esophageal remodeling and fibrosis in EE.
Collapse
Affiliation(s)
- Seema S Aceves
- Division of Allergy and Immunology, Rady Children's Hospital, 3020 Children's Way, MC 5114, San Diego, CA 92123-6791, USA
| | | |
Collapse
|
21
|
Verbout NG, Jacoby DB, Gleich GJ, Fryer AD. Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor. Am J Physiol Lung Cell Mol Physiol 2009; 297:L228-37. [PMID: 19447892 DOI: 10.1152/ajplung.90540.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although anticholinergic therapy inhibits bronchoconstriction in asthmatic patients and antigen-challenged animals, administration of atropine 1 h before antigen challenge significantly potentiates airway hyperreactivity and eosinophil activation measured 24 h later. This potentiation in airway hyperreactivity is related to increased eosinophil activation and is mediated at the level of the airway nerves. Since eosinophils produce nerve growth factor (NGF), which is known to play a role in antigen-induced airway hyperreactivity, we tested whether NGF mediates atropine-enhanced, antigen challenge-induced hyperreactivity. Antibody to NGF (Ab NGF) was administered to sensitized guinea pigs with and without atropine pretreatment (1 mg/kg iv) 1 h before challenge. At 24 h after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Electrical stimulation of both vagus nerves caused bronchoconstriction that was increased in challenged animals. Atropine pretreatment potentiated antigen challenge-induced hyperreactivity. Ab NGF did not affect eosinophils or inflammatory cells in any group, nor did it prevent hyperreactivity in challenged animals that were not pretreated with atropine. However, Ab NGF did prevent atropine-enhanced, antigen challenge-induced hyperreactivity and eosinophil activation (assessed by immunohistochemistry). This effect was specific to NGF, since animals given control IgG remained hyperreactive. These data suggest that anticholinergic therapy amplifies eosinophil interactions with airway nerves via NGF. Therefore, therapeutic strategies that target both eosinophil activation and NGF-mediated inflammatory processes in allergic asthma are likely to be beneficial.
Collapse
Affiliation(s)
- Norah G Verbout
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, 97239, USA
| | | | | | | |
Collapse
|
22
|
Saude EJ, Obiefuna IP, Somorjai RL, Ajamian F, Skappak C, Ahmad T, Dolenko BK, Sykes BD, Moqbel R, Adamko DJ. Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. Am J Respir Crit Care Med 2008; 179:25-34. [PMID: 18931331 DOI: 10.1164/rccm.200711-1716oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway obstruction in patients with asthma is associated with airway dysfunction and inflammation. Objective measurements including sputum analysis can guide therapy, but this is often not possible in typical clinical settings. Metabolomics is the study of molecules generated by metabolic pathways. We hypothesize that airway dysfunction and inflammation in an animal model of asthma would produce unique patterns of urine metabolites measured by multivariate statistical analysis of high-resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopy data. OBJECTIVES To develop a noninvasive means of monitoring asthma status by metabolomics and urine sampling. METHODS Five groups of guinea pigs were studied: control, control treated with dexamethasone, sensitized (ovalbumin, administered intraperitoneally), sensitized and challenged (ovalbumin, administered intraperitoneally, plus ovalbumin aerosol), and sensitized-challenged with dexamethasone. Airway hyperreactivity (AHR) to histamine (administered intravenously) and inflammation were measured. Multivariate statistical analysis of NMR spectra based on a library of known urine metabolites was performed by partial least-squares discriminant analysis. In addition, the raw NMR spectra exported as xy-trace data underwent linear discriminant analysis. MEASUREMENTS AND MAIN RESULTS Challenged guinea pigs developed AHR and increased inflammation compared with sensitized or control animals. Dexamethasone significantly improved AHR. Using concentration differences in metabolites, partial least-squares discriminant analysis could discriminate challenged animals with 90% accuracy. Using only three or four regions of the NMR spectra, linear discriminant analysis-based classification demonstrated 80-90% separation of the animal groups. CONCLUSIONS Urine metabolites correlate with airway dysfunction in an asthma model. Urine NMR analysis is a promising, noninvasive technique for monitoring asthma in humans.
Collapse
Affiliation(s)
- Erik J Saude
- Department of Pediatrics, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Durcan N, Costello RW, McLean WG, Blusztajn J, Madziar B, Fenech AG, Hall IP, Gleich GJ, McGarvey L, Walsh MT. Eosinophil-Mediated Cholinergic Nerve Remodeling. Am J Respir Cell Mol Biol 2006; 34:775-86. [PMID: 16456188 DOI: 10.1165/rcmb.2005-0196oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophils are observed to localize to cholinergic nerves in a variety of inflammatory conditions such as asthma, rhinitis, eosinophilic gastroenteritis, and inflammatory bowel disease, where they are also responsible for the induction of cell signaling. We hypothesized that a consequence of eosinophil localization to cholinergic nerves would involve a neural remodeling process. Eosinophil co-culture with cholinergic IMR32 cells led to increased expression of the M2 muscarinic receptor, with this induction being mediated via an adhesion-dependent release of eosinophil proteins, including major basic protein and nerve growth factor. Studies on the promoter sequence of the M2 receptor indicated that this induction was initiated at a transcription start site 145 kb upstream of the gene-coding region. This promoter site contains binding sites for a variety of transcription factors including SP1, AP1, and AP2. Eosinophils also induced the expression of several cholinergic genes involved in the synthesis, storage, and metabolism of acetylcholine, including the enzymes choline acetyltransferase, vesicular acetylcholine transferase, and acetylcholinesterase. The observed eosinophil-induced changes in enzyme content were associated with a reduction in intracellular neural acetylcholine but an increase in choline content, suggesting increased acetylcholine turnover and a reduction in acetylcholinesterase activity, in turn suggesting reduced catabolism of acetylcholine. Together these data suggest that eosinophil localization to cholinergic nerves induces neural remodeling, promoting a cholinergic phenotype.
Collapse
Affiliation(s)
- Niamh Durcan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mokry J, Mokra D, Antosova M, Bulikova J, Calkovska A, Nosalova G. Dexamethasone alleviates meconium-induced airway hyperresponsiveness and lung inflammation in rabbits. Pediatr Pulmonol 2006; 41:55-60. [PMID: 16229002 DOI: 10.1002/ppul.20330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of dexamethasone on in vitro airway reactivity associated with lung inflammation were investigated in rabbits with meconium aspiration. Oxygen-ventilated adult rabbits received an intratracheal bolus of 4 ml/kg body weight of saline (Sal, n = 4) or human meconium (25 mg/ml). Thirty minutes later, meconium-instilled animals intravenously received 0.5 mg/kg of dexamethasone (Dexa, n = 6), or were left without treatment (Meco, n = 5). The animals were ventilated for a further 5 hr and then sacrificed. The left lungs were lavaged with saline, and the white blood cell (WBC) count was estimated. Tracheal and right-lung tissue strips were placed into organ chambers with Krebs-Henseleit solution. Cumulative doses of histamine (10(-8)-10(-3) mol/l) and acetylcholine (10(-8)-10(-3) mol/l) were added to the chambers, and recordings of contractions were made after a 30-min loading phase with a tension of 4 grams, and another 30-min adaptation phase with a tension of 2 g. Tracheal smooth muscle in vitro reactivity to histamine was higher in the Meco than in the Sal group, and dexamethasone decreased the reactivity compared to the Meco group (P < 0.05). Lung tissue in vitro reactivity to histamine was slightly higher in the Meco than in the Sal group (P > 0.05), and dexamethasone decreased the reactivity compared to both the Meco and Sal groups (P < 0.05). No between-group differences were observed in tracheal or lung in vitro reactivity to acetylcholine (P > 0.05). In the Meco group, blood WBC (P > 0.05) and neutrophil (P < 0.05) counts were lower than in the Sal and Dexa groups. Lung neutrophils and eosinophils were higher in both the Meco and Dexa groups than in the Sal group (P < 0.01). Dexamethasone decreased neutrophils (P < 0.05) compared to the Meco group. Meconium-induced airway hyperreactivity to histamine and lung inflammation were alleviated by dexamethasone.
Collapse
Affiliation(s)
- Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
25
|
Fryer AD, Stein LH, Nie Z, Curtis DE, Evans CM, Hodgson ST, Jose PJ, Belmonte KE, Fitch E, Jacoby DB. Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J Clin Invest 2005; 116:228-36. [PMID: 16374515 PMCID: PMC1319219 DOI: 10.1172/jci25423] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 10/25/2005] [Indexed: 11/17/2022] Open
Abstract
Eosinophils cluster around airway nerves in patients with fatal asthma and in antigen-challenged animals. Activated eosinophils release major basic protein, which blocks inhibitory M2 muscarinic receptors (M2Rs) on nerves, increasing acetylcholine release and potentiating vagally mediated bronchoconstriction. We tested whether GW701897B, an antagonist of CCR3 (the receptor for eotaxin as well as a group of eosinophil active chemokines), affected vagal reactivity and M2R function in ovalbumin-challenged guinea pigs. Sensitized animals were treated with the CCR3 antagonist before inhaling ovalbumin. Antigen-challenged animals were hyperresponsive to vagal stimulation, but those that received the CCR3 antagonist were not. M2R function was lost in antigen-challenged animals, but not in those that received the CCR3 antagonist. Although the CCR3 antagonist did not decrease the number of eosinophils in lung tissues as assessed histologically, CCR3 antagonist prevented antigen-induced clustering of eosinophils along the nerves. Immunostaining revealed eotaxin in airway nerves and in cultured airway parasympathetic neurons from both guinea pigs and humans. Both IL-4 and IL-13 increased expression of eotaxin in cultured airway parasympathetic neurons as well as in human neuroblastoma cells. Thus, signaling via CCR3 mediates eosinophil recruitment to airway nerves and may be a prerequisite to blockade of inhibitory M2Rs by eosinophil major basic protein.
Collapse
Affiliation(s)
- Allison D Fryer
- Division of Pulmonary and Critical Care Medicine and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Agbonon A, Aklikokou K, Kwashie EG, Gbéassor M. [Anti-cholinergic effect of Pluchea ovalis (pers.) Dc. (asteraceae) root extract on isolated Wistar rat tracheae]. ANNALES PHARMACEUTIQUES FRANÇAISES 2004; 62:354-8. [PMID: 15314584 DOI: 10.1016/s0003-4509(04)94326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Ethanolic extract of Pluchea ovalis roots inhibit acetylcholine-induced bronchoconstriction observed in asthma. To understand the mechanism of P. ovalis root extract on airway smooth muscle contraction, we investigated the anti-cholinergic effect of the ethanolic extract on isolated isolated tracheae of the Wistar rat. For this purpose, three experimental conditions of incubation were used: idomethacin, indomethacin+propranolol or indomethacin+propranolo+ promethazine. The extract was applied in all three conditions at 0.25 mg/ml for 10 minutes prior to cumulative doses of acetylcholine (10(-8) to 5.10(-4) g/ml). The extract reduced acetylcholine-induced contraction and could have an antagonistic effect on muscarinic receptors of the rat trachea.
Collapse
Affiliation(s)
- A Agbonon
- Département de Physiologie/Pharmacologie, Centre de Recherche et de Formation sur les Plantes Médicinales (CERFOPLAM), Faculté des Sciences, Université de Lomé, Laboratoire JER 3006, B.P. 1515, Lomé Togo
| | | | | | | |
Collapse
|
27
|
Adamko D, Lacy P, Moqbel R. Eosinophil function in allergic inflammation: from bone marrow to tissue response. Curr Allergy Asthma Rep 2004; 4:149-58. [PMID: 14769265 DOI: 10.1007/s11882-004-0061-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of the eosinophil in the pathophysiology of allergy and asthma has been the focus of intense interest during the past two decades. Although the presence of eosinophils in humans with allergy and asthma is well established, the precise role of this cell in human and animal tissue response is still unclear. However, recent developments in research on many organ systems have provided novel insights into the possible underlying role of the eosinophil in both allergic and nonallergic inflammation. In this review, we examine the pathways associated with eosinophil recruitment and activation, and discuss these findings with reference to clinically defined categories.
Collapse
Affiliation(s)
- Darryl Adamko
- Department of Medicine, 550A HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | | | | |
Collapse
|
28
|
Lommatzsch M, Schloetcke K, Klotz J, Schuhbaeck K, Zingler D, Zingler C, Schulte-Herbrüggen O, Gill H, Schuff-Werner P, Virchow JC. Brain-derived neurotrophic factor in platelets and airflow limitation in asthma. Am J Respir Crit Care Med 2004; 171:115-20. [PMID: 15516533 DOI: 10.1164/rccm.200406-758oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key mediator of neuronal plasticity, contributes to airway obstruction and hyperresponsiveness in a model of allergic asthma. BDNF is stored in human platelets and circulates in human plasma, but the significance of BDNF in this compartment is poorly understood. We investigated the relationship between platelet and plasma BDNF levels and pulmonary function in a cohort of 26 adult patients with recently diagnosed allergic asthma. BDNF levels in serum, platelets, and plasma were significantly increased in participants with asthma, as compared with 26 age- and sex-matched control subjects. In steroid-naive patients, but not in patients using inhaled corticosteroids, enhanced platelet BDNF levels correlated with parameters of airway obstruction and airway hyperresponsiveness to histamine. Experiments with activated peripheral blood mononuclear cells revealed that corticosteroids such as fluticasone effectively suppress BDNF secretion. In conclusion, we demonstrate that enhanced platelet BDNF is associated with airflow limitation and airway hyperresponsiveness in asthma. In addition, we provide evidence that corticosteroids suppress BDNF production by activated immune cells.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Department of Pneumology and Institute of Clinical Chemistry and Pathobiochemistry, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fedin AN, Kryukova EN, Nekrasova EA. Interaction of histamine and glucocorticoids with neural structures of the respiratory tract. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2003; 33:289-94. [PMID: 12762597 DOI: 10.1023/a:1022111717241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of dexamethasone on the actions of histamine on isolated tissue and large bronchus preparations and the interactions of these substances with intramural neural structures were studied. Low histamine concentrations (10(-12)-10(-8) g/ml) decreased muscle responses induced by stimulation of preganglionic nerve fibers, while high concentrations (10(-7)-10(-4) g/ml) increased these responses. Dexamethasone at concentrations of 10(-7)-10(-6) g/ml decreased muscle responses, while concentrations of 10(-5)-10(-6) g/ml produced biphasic changes in responses. Dexamethasone decreased the effects of histamine at high concentrations. Atropine eliminated the effects of simultaneous application of histamine and dexamethasone on respiratory tract preparations; hexamethonium blocked the effects of substances associated with decreased responses and had virtually no effect on those potentiating responses. Novocaine eliminated the actions of histamine at low and high concentrations and the dilatory effect of dexamethasone. These experimental results led to the conclusion that changes in the responses of muscles from the rat respiratory tract induced by stimulation of preganglionic nerve fibers were modified by low concentrations of histamine and dexamethasone and that these modifications were associated with interactions of these substances with tracheobronchial receptors.
Collapse
Affiliation(s)
- A N Fedin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Torez Prospekt, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
30
|
Kingham PJ, McLean WG, Sawatzky DA, Walsh MT, Costello RW. Adhesion-dependent interactions between eosinophils and cholinergic nerves. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1229-38. [PMID: 12003778 DOI: 10.1152/ajplung.00278.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eosinophils adhere to airway cholinergic nerves and influence nerve cell function by releasing granule proteins onto inhibitory neuronal M(2) muscarinic receptors. This study investigated the mechanism of eosinophil degranulation by cholinergic nerves. Eosinophils were cocultured with IMR32 cholinergic nerve cells, and eosinophil peroxidase (EPO) or leukotriene C(4) (LTC(4)) release was measured. Coculture of eosinophils with nerves significantly increased EPO and LTC(4) release compared with eosinophils alone. IMR32 cells, like parasympathetic nerves, express the adhesion molecules vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 (ICAM-1). Inhibition of these adhesion molecules alone or in combination significantly inhibited eosinophil degranulation. IMR32 cells also significantly augmented the eosinophil degranulation produced by formyl-Met-Leu-Phe. Eosinophil adhesion to IMR32 cells resulted in an ICAM-1-mediated production of reactive oxygen species via a neuronal NADPH oxidase, inhibition of which significantly inhibited eosinophil degranulation. Additionally, eosinophil adhesion increased the release of ACh from IMR32 cells. These neuroinflammatory cell interactions may be relevant in a variety of inflammatory and neurological conditions.
Collapse
Affiliation(s)
- Paul J Kingham
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Sawatzky DA, Kingham PJ, Court E, Kumaravel B, Fryer AD, Jacoby DB, McLean WG, Costello RW. Eosinophil adhesion to cholinergic nerves via ICAM-1 and VCAM-1 and associated eosinophil degranulation. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1279-88. [PMID: 12003784 DOI: 10.1152/ajplung.00279.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo, eosinophils localize to airway cholinergic nerves in antigen-challenged animals, and inhibition of this localization prevents antigen-induced hyperreactivity. In this study, the mechanism of eosinophil localization to nerves was investigated by examining adhesion molecule expression by cholinergic nerves. Immunohistochemical and functional studies demonstrated that primary cultures of parasympathetic nerves express vascular cell adhesion molecule-1 (VCAM-1) and after cytokine pretreatment with tumor necrosis factor-alpha and interferon-gamma intercellular adhesion molecule-1 (ICAM-1). Eosinophils adhere to these parasympathetic neurones after cytokine pretreatment via a CD11/18-dependent pathway. Immunohistochemistry and Western blotting showed that a human cholinergic nerve cell line (IMR-32) expressed VCAM-1 and ICAM-1. Inhibitory experiments using monoclonal blocking antibodies to ICAM-1, VCAM-1, or CD11/18 and with the very late antigen-4 peptide inhibitor ZD-7349 showed that eosinophils adhered to IMR-32 cells via these adhesion molecules. The protein kinase C signaling pathway is involved in this process as a specific inhibitor-attenuated adhesion. Eosinophil adhesion to IMR-32 cells was associated with the release of eosinophil peroxidase and leukotriene C(4). Thus eosinophils adhere to cholinergic nerves via specific adhesion molecules, and this leads to eosinophil activation and degranulation; this may be part of the mechanism of eosinophil-induced vagal hyperreactivity.
Collapse
Affiliation(s)
- Deborah A Sawatzky
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The role of the eosinophil in the pathophysiology of allergy and asthma has been the focus of intense interest during the last two decades. While the presence of eosinophils in humans with allergy and asthma is well established, the precise role of this cell in humans and in animal models is less clear. However, recent developments in research on many organ systems have provided novel insights into the possible underlying role of the eosinophil in both allergic and nonallergic inflammation. This review examines the pathways associated with eosinophil recruitment and activation and discusses these findings, with reference to clinically defined categories.
Collapse
Affiliation(s)
- Darryl Adamko
- Department of Medicine, University of Alberta, 550A HMRC, Edmonton, AB T6G 2S2, Canada
| | | | | |
Collapse
|
33
|
Evans CM, Jacoby DB, Fryer AD. Effects of dexamethasone on antigen-induced airway eosinophilia and M(2) receptor dysfunction. Am J Respir Crit Care Med 2001; 163:1484-92. [PMID: 11371422 DOI: 10.1164/ajrccm.163.6.2007047] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In antigen-challenged guinea pigs, airway hyperreactivity is due to recruitment of eosinophils to the airway nerves and dysfunction of M(2) muscarinic receptors. M(2) receptor dysfunction is caused by eosinophil major basic protein, which is an allosteric antagonist at the receptor. Because glucocorticoids inhibit airway hyperreactivity in humans and in animal models of asthma, we tested whether dexamethasone treatment (6 microg. kg(-)(1). d(-)(1) for 3 d, intraperitoneal) before antigen challenge prevents M(2) receptor dysfunction and airway hyperreactivity. Guinea pigs were sensitized to ovalbumin via intraperitoneal injections, and were challenged with ovalbumin via inhalation. Twenty-four hours later, hyperreactivity and M(2) receptor function were tested. Antigen-challenged animals were hyperreactive to vagal stimulation, and demonstrated loss of M(2) receptor function. Dexamethasone pretreatment prevented hyperreactivity and M(2) receptor dysfunction in antigen-challenged guinea pigs. Antigen challenge resulted in recruitment of eosinophils to the airways and to the airway nerves. Dexamethasone prevented recruitment of eosinophils to the airway nerves but did not affect total eosinophil influx into the airways. These results demonstrate that dexamethasone prevents antigen-induced hyperreactivity by protecting neuronal M(2) muscarinic receptors from antagonism by eosinophil major basic protein, and this protective mechanism appears to be by specifically inhibiting eosinophil recruitment to the airway nerves.
Collapse
Affiliation(s)
- C M Evans
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Woisin FE, Herd CM, Douglas GJ, Raynor K, Spina D, Mitchell HW, Page CP. Relationship of airway responsiveness with airway morphometry in normal and immunized rabbits. Pulm Pharmacol Ther 2001; 14:75-83. [PMID: 11273787 DOI: 10.1006/pupt.2000.0265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway responses to chemical stimuli occur over a wide range of concentrations, with overlap between severe, moderate and mild asthmatic groups and with normal healthy individuals. Mathematical modelling has suggested that relative thickness of the airway wall may account for this range of responsiveness. We have investigated whether in vivo airway responsiveness varies as a function of airway wall thickness in terms of airway smooth muscle area in normal and immunized New Zealand White (NZW) rabbits. Airway responsiveness to inhaled methacholine (MCh) was determined in vivo under neuroleptanalgesia. Subsequently, ex vivo responsiveness to MCh (pD(2)=-log EC(50)) of isolated bronchi from the same animal was established. Smooth muscle area per mm basement membrane (SM/mmBM) was also measured morphometrically in the tested bronchi and the findings related to in vivo and ex vivo responsiveness. We found no relationship between airway responsiveness in vivo and pD(2)values in either immunized or control rabbits. In both control and immunized rabbits, no correlation was found between SM/mmBM and in vivo airway responsiveness. Only in immunized animals with a PCA titre >0, was there a significant correlation (=-0.5986, P<0.05) between SM/mmBM and pD(2). We conclude that airway smooth muscle area per se is not the sole contributor of airway responsiveness in vivo in normal rabbits.
Collapse
Affiliation(s)
- F E Woisin
- Sackler Institute of Pulmonary Pharmacology, Division of Pharmacology and Therapeutics and Department of Respiratory Medicine and Allergy, London, WA, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
On LS, Boonyongsunchai P, Webb S, Davies L, Calverley PM, Costello RW. Function of Pulmonary Neuronal M2Muscarinic Receptors in Stable Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2001; 163:1320-5. [PMID: 11371395 DOI: 10.1164/ajrccm.163.6.2002129] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anticholinergic drugs often cause a considerable degree of bronchodilation in patients with chronic obstructive pulmonary disease (COPD). Pulmonary neuronal M(2) muscarinic receptors function to limit the magnitude of vagally induced bronchoconstriction. We hypothesized that the effectiveness of anticholinergic agents in patients with COPD may reflect increased vagal reactivity due to dysfunction of M(2) muscarinic receptors. The function of M(2) receptors and the magnitude of vagally induced bronchoconstriction were assessed in subjects with normal lung function and in subjects with COPD. A nasal cold dry air challenge was used to induce a bronchoconstriction, measured as a change in airway resistance (Raw) at 5 Hz (R5) using impulse oscillometry. In subjects with COPD R5 rose from 0.68 +/- 0.06 to 0.74 +/- 0.07 kPa/L/s after the cold dry air challenge (p < 0.01) and in the control subjects R5 rose from 0.34 +/- 0.03 to 0.39 +/- 0.03 kPa/L/s (p < 0.01). The bronchoconstriction was inhibited by pretreatment with ipratropium bromide, indicating that it was vagally mediated. In both groups of subjects pretreatment with the selective M(2) muscarinic receptor agonist pilocarpine (5 mg/ml) prevented the cold air-induced bronchoconstriction, indicating normal function of M(2) receptors. These studies indicate that M(2) muscarinic receptors are functional in subjects with stable COPD.
Collapse
Affiliation(s)
- L S On
- Department of Medicine, University Hospital Aintree, University of Liverpool, Liverpool L9 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Jacoby DB, Yost BL, Kumaravel B, Chan-Li Y, Xiao HQ, Kawashima K, Fryer AD. Glucocorticoid treatment increases inhibitory m(2) muscarinic receptor expression and function in the airways. Am J Respir Cell Mol Biol 2001; 24:485-91. [PMID: 11306443 DOI: 10.1165/ajrcmb.24.4.4379] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
M(2) muscarinic receptors on parasympathetic nerve endings inhibit acetylcholine release in the airways. In this study, the effects of dexamethasone on M(2) receptors in vivo and in primary cultures of airway parasympathetic neurons were tested. Treating guinea pigs with dexamethasone (0.1 mg/kg, daily for 2 d) substantially increased inhibitory M(2) muscarinic receptor function, decreasing airway responsiveness to electrical stimulation of the vagi. At the same time, dexamethasone decreased the response to acetylcholine but not to methacholine, suggesting that cholinesterase activity was increased. When both cholinesterase and M(2) receptors were blocked (using physostigmine and gallamine, respectively) vagally induced bronchoconstriction was increased to control values. In primary cultures of airway parasympathetic neurons, dexamethasone significantly decreased the release of acetylcholine in response to electrical stimulation. Blocking inhibitory M(2) receptors using atropine (10(-5) M) increased acetylcholine release. After the M(2) receptors were blocked there was no difference in acetylcholine release between control and dexamethasone-treated cultures. M(2) receptor gene expression was increased by more than fivefold in dexamethasone-treated cultures. Immunostaining of dexamethasone-treated neurons demonstrated more intense staining. Thus, decreased vagally mediated reflex bronchoconstriction after glucocorticoid treatment may be the result on increased M(2) receptor expression and function as well as increased degradation of acetylcholine by cholinesterase.
Collapse
Affiliation(s)
- D B Jacoby
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Golkar L, Yarkony KA, Fryer AD. Inhibition of neuronal M(2) muscarinic receptor function in the lungs by extracellular nitric oxide. Br J Pharmacol 2000; 131:312-8. [PMID: 10991925 PMCID: PMC1572309 DOI: 10.1038/sj.bjp.0703542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Revised: 05/29/2000] [Accepted: 06/16/2000] [Indexed: 11/08/2022] Open
Abstract
1. These experiments were carried out to test whether neuronal M(2) muscarinic receptor function in the lungs is affected by nitric oxide (NO) and whether the source of the NO is epithelial or neuronal. 2. In pathogen free, anaesthetized guinea-pigs, the muscarinic agonist pilocarpine inhibited vagally induced bronchoconstriction demonstrating functional neuronal M(2) muscarinic receptors. In the presence of the NO donor, 3-morpholino-sydnonimine (SIN-1), pilocarpine no longer inhibited vagally induced bronchoconstriction. In contrast, inhibiting endogenous NO with N(G)-monomethyl-L-arginine methyl ester (L-NMMA) did not affect the ability of pilocarpine to decrease vagally induced bronchoconstriction. 3. In isolated tracheas, pilocarpine inhibited contractions induced by electrical field stimulation demonstrating that neuronal M(2) muscarinic receptors function in vitro. As in the anaesthetized guinea-pigs, SIN-1 shifted the pilocarpine dose response curve to the right, demonstrating decreased neuronal M(2) receptor function. However, in vitro, L-NMMA shifted the pilocarpine dose response curve to the left, demonstrating that endogenous NO was inhibiting the ability of the M(2) receptors to decrease acetylcholine (ACh) release. 4. Both haemoglobin (Hb), which scavenges NO, and epithelial removal also shifted the pilocarpine dose response curve to the left, demonstrating that the NO inhibiting neuronal M(2) receptor function was extracellular and probably of epithelial origin. 5. In conclusion, extracellular NO appears to inhibit the ability of the M(2) receptors to decrease ACh release from the parasympathetic nerves in the lungs in vivo and in vitro in pathogen free guinea-pigs. However, while the neuronal M(2) receptors will respond to NO (from SIN-1) in vivo, there does not appear to be an endogenous source of NO since L-NMMA had no effect in vivo.
Collapse
Affiliation(s)
- Laleh Golkar
- Johns Hopkins University School of Public Health, 615 N Wolfe Street, Baltimore, Maryland, MD 21209, U.S.A
| | - Kathryn A Yarkony
- Johns Hopkins University School of Public Health, 615 N Wolfe Street, Baltimore, Maryland, MD 21209, U.S.A
| | - Allison D Fryer
- Johns Hopkins University School of Public Health, 615 N Wolfe Street, Baltimore, Maryland, MD 21209, U.S.A
| |
Collapse
|
38
|
Evans CM, Belmonte KE, Costello RW, Jacoby DB, Gleich GJ, Fryer AD. Substance P-induced airway hyperreactivity is mediated by neuronal M(2) receptor dysfunction. Am J Physiol Lung Cell Mol Physiol 2000; 279:L477-86. [PMID: 10956622 DOI: 10.1152/ajplung.2000.279.3.l477] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal muscarinic (M(2)) receptors inhibit release of acetylcholine from the vagus nerves. Hyperreactivity in antigen-challenged guinea pigs is due to blockade of these M(2) autoreceptors by eosinophil major basic protein (MBP) increasing the release of acetylcholine. In vivo, substance P-induced hyperactivity is vagally mediated. Because substance P induces eosinophil degranulation, we tested whether substance P-induced hyperreactivity is mediated by release of MBP and neuronal M(2) receptor dysfunction. Pathogen-free guinea pigs were anesthetized and ventilated. Thirty minutes after intravenous administration of [Sar(9),Met(O(2))(11)]- substance P, guinea pigs were hyperreactive to vagal stimulation and M(2) receptors were dysfunctional. The depletion of inflammatory cells with cyclophosphamide or the administration of an MBP antibody or a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) all prevented substance P-induced M(2) dysfunction and hyperreactivity. Intravenous heparin acutely reversed M(2) receptor dysfunction and hyperreactivity. Thus substance P releases MBP from eosinophils resident in the lungs by stimulating NK(1) receptors. Substance P-induced hyperreactivity is mediated by blockade of inhibitory neuronal M(2) receptors by MBP, resulting in increased release of acetylcholine.
Collapse
Affiliation(s)
- C M Evans
- Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
39
|
Jacoby DB, Yost BL, Elwood T, Fryer AD. Effects of neurokinin receptor antagonists in virus-infected airways. Am J Physiol Lung Cell Mol Physiol 2000; 279:L59-65. [PMID: 10893203 DOI: 10.1152/ajplung.2000.279.1.l59] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) and a NK(2) receptor antagonist (SR-48968) on airway responsiveness and on the function of neuronal M(2) muscarinic receptors, which normally inhibit vagal acetylcholine release, in guinea pigs infected with parainfluenza virus. Antagonists were given 1 h before infection and daily thereafter. Four days later, bronchoconstriction induced by either intravenous histamine (which is partly vagally mediated) or electrical stimulation of the vagus nerves was increased by viral infection compared with control. In addition, the ability of the muscarinic agonist pilocarpine to inhibit vagally induced bronchoconstriction was lost in virus-infected animals, demonstrating loss of neuronal M(2) receptor function. Macrophage influx into the lungs was inhibited by pretreatment with both antagonists. However, only the NK(1) receptor antagonist prevented M(2) receptor dysfunction and inhibited hyperresponsiveness (measured as an increase in either vagally induced or histamine-induced bronchoconstriction). Thus virus-induced M(2) receptor dysfunction and hyperresponsiveness are prevented by a NK(1) receptor antagonist, but not by a NK(2) receptor antagonist, whereas both antagonists had similar anti-inflammatory effects.
Collapse
Affiliation(s)
- D B Jacoby
- Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
40
|
Adamko DJ, Yost BL, Gleich GJ, Fryer AD, Jacoby DB. Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, m(2) muscarinic receptor dysfunction, and antiviral effects. J Exp Med 1999; 190:1465-78. [PMID: 10562321 PMCID: PMC2195693 DOI: 10.1084/jem.190.10.1465] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1999] [Accepted: 09/10/1999] [Indexed: 11/23/2022] Open
Abstract
Asthma exacerbations, many of which are virus induced, are associated with airway eosinophilia. This may reflect altered inflammatory response to viruses in atopic individuals. Inhibitory M(2) muscarinic receptors (M(2)Rs) on the airway parasympathetic nerves limit acetylcholine release. Both viral infection and inhalational antigen challenge cause M(2)R dysfunction, leading to airway hyperresponsiveness. In antigen-challenged, but not virus-infected guinea pigs, M(2)R dysfunction is due to blockade of the receptors by the endogenous antagonist eosinophil major basic protein (MBP). We hypothesized that sensitization to a nonviral antigen before viral infection alters the inflammatory response to viral infection, so that M(2)R dysfunction and hyperreactivity are eosinophil mediated. Guinea pigs were sensitized to ovalbumin intraperitoneally, and 3 wk later were infected with parainfluenza. In sensitized, but not in nonsensitized animals, virus-induced hyperresponsiveness and M(2)R dysfunction were blocked by depletion of eosinophils with antibody to interleukin (IL)-5 or treatment with antibody to MBP. An additional and unexpected finding was that sensitization to ovalbumin caused a marked (80%) reduction in the viral content of the lungs. This was reversed by the antibody to IL-5, implicating a role for eosinophils in viral immunity.
Collapse
Affiliation(s)
- Darryl J. Adamko
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Bethany L. Yost
- Department of Environmental Health Sciences, School of Hygiene and Public Health
| | - Gerald J. Gleich
- Department of Immunology and the Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Allison D. Fryer
- Department of Environmental Health Sciences, School of Hygiene and Public Health
| | - David B. Jacoby
- Department of Environmental Health Sciences, School of Hygiene and Public Health
- Department of Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|