1
|
Selich A, Fleischauer J, Roepke T, Weisskoeppel L, Galla M, von Kaisenberg C, Maus UA, Schambach A, Rothe M. Inflammation-inducible promoters to overexpress immune inhibitory factors by MSCs. Stem Cell Res Ther 2023; 14:270. [PMID: 37742038 PMCID: PMC10518110 DOI: 10.1186/s13287-023-03501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are excessively investigated in the context of inflammation-driven diseases, but the clinical results are often moderate. MSCs are naturally activated by inflammatory signals, which lead to the secretion of immune inhibitory factors in inflamed tissues. Many work groups try to improve the therapeutic outcome of MSCs by genetic modification and the constitutive overexpression of immune modulatory transgenes. However, the ectopic secretion of immune inhibitory transgenes increases the chances of infections, and constitutive transgene expression is not necessary for chronic diseases undergoing different inflammatory stages. METHODS We designed and tested inflammation-induced promoters to control transgene expression from integrating lentiviral vectors in human umbilical cord MSCs. Therefore, we investigated different combinations of general transcription factor elements to achieve a minimal promoter with low basal activity. The best candidates were combined with interferon-induced GAS or ISRE DNA motifs. The constructs with the highest transgene expression upon addition of pro-inflammatory cytokines were compared to vectorized promoters from inflammation-induced genes (CD317, CXCL9, CXCL10, CXCL11 and IDO1). Finally, we investigated IL10 as a potential immune inhibitory transgene by transcriptome analyses, ELISA and in an acute lung injury mouse model. RESULTS The synthetic promoters achieved a high and specific transgene expression upon IFN-γ addition. However, the CXCL11 promoter showed synergistic activity upon IFN-γ, TNF-α and IL1-β treatment and surpassed the transgene expression height of all tested promoters in the study. We observed in transcriptome analyses that IL10 has no effect on MSCs and in ELISA that IL10 is only secreted by our genetically modified and activated CXCL11-IL10-MSCs. Finally, transplanted CXCL11-IL10-MSCs increased CD19+ and CD4+ lymphoid cells, and decreased CD11b+ Ly6g myeloid cells in an ALI mouse model. CONCLUSION These results provide new insights into MSC inflammatory activation and the subsequent translation into a tool for a tailored expression of transgenes in inflammatory microenvironments. The newly developed promoter elements are potentially interesting for other inflamed tissues, and can be combined with other elements or used in other cell types.
Collapse
Affiliation(s)
- Anton Selich
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | - Jenni Fleischauer
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | - Tina Roepke
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Luisa Weisskoeppel
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | - Melanie Galla
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | | | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site BREATH, Hannover, Germany
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany.
| |
Collapse
|
2
|
Woods PS, Kimmig LM, Sun KA, Meliton AY, Shamaa OR, Tian Y, Cetin-Atalay R, Sharp WW, Hamanaka RB, Mutlu GM. HIF-1α induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury. eLife 2022; 11:e77457. [PMID: 35822617 PMCID: PMC9323005 DOI: 10.7554/elife.77457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolism is a critical regulator of macrophage effector function. Tissue-resident alveolar macrophages (TR-AMs) inhabit a unique niche marked by high oxygen and low glucose. We have recently shown that in contrast to bone marrow-derived macrophages (BMDMs), TR-AMs do not utilize glycolysis and instead predominantly rely on mitochondrial function for their effector response. It is not known how changes in local oxygen concentration that occur during conditions such as acute respiratory distress syndrome (ARDS) might affect TR-AM metabolism and function; however, ARDS is associated with progressive loss of TR-AMs, which correlates with the severity of disease and mortality. Here, we demonstrate that hypoxia robustly stabilizes HIF-1α in TR-AMs to promote a glycolytic phenotype. Hypoxia altered TR-AM metabolite signatures, cytokine production, and decreased their sensitivity to the inhibition of mitochondrial function. By contrast, hypoxia had minimal effects on BMDM metabolism. The effects of hypoxia on TR-AMs were mimicked by FG-4592, a HIF-1α stabilizer. Treatment with FG-4592 decreased TR-AM death and attenuated acute lung injury in mice. These findings reveal the importance of microenvironment in determining macrophage metabolic phenotype and highlight the therapeutic potential in targeting cellular metabolism to improve outcomes in diseases characterized by acute inflammation.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Lucas M Kimmig
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Willard W Sharp
- Department of Medicine, Section of Emergency Medicine, The University of ChicagoChicagoUnited States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of ChicagoChicagoUnited States
| |
Collapse
|
3
|
Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol 2022; 15:896-907. [PMID: 35856089 PMCID: PMC9385480 DOI: 10.1038/s41385-022-00528-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.
Collapse
|
4
|
McQuattie-Pimentel AC, Ren Z, Joshi N, Watanabe S, Stoeger T, Chi M, Lu Z, Sichizya L, Aillon RP, Chen CI, Soberanes S, Chen Z, Reyfman PA, Walter JM, Anekalla KR, Davis JM, Helmin KA, Runyan CE, Abdala-Valencia H, Nam K, Meliton AY, Winter DR, Morimoto RI, Mutlu GM, Bharat A, Perlman H, Gottardi CJ, Ridge KM, Chandel NS, Sznajder JI, Balch WE, Singer BD, Misharin AV, Budinger GS. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J Clin Invest 2021; 131:140299. [PMID: 33586677 PMCID: PMC7919859 DOI: 10.1172/jci140299] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.
Collapse
Affiliation(s)
| | - Ziyou Ren
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nikita Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Satoshi Watanabe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Monica Chi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ziyan Lu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lango Sichizya
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raul Piseaux Aillon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ching-I Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Saul Soberanes
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zhangying Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul A. Reyfman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - James M. Walter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kishore R. Anekalla
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer M. Davis
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathryn A. Helmin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Constance E. Runyan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hiam Abdala-Valencia
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kiwon Nam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angelo Y. Meliton
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Deborah R. Winter
- Department of Medicine, Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - Richard I. Morimoto
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, USA
| | - Gökhan M. Mutlu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Northwestern University, Chicago, Illinois, USA
| | - Harris Perlman
- Department of Medicine, Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karen M. Ridge
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Navdeep S. Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacob I. Sznajder
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - William E. Balch
- The Scripps Research Institute Department of Chemical Physiology, La Jolla, California, USA
| | - Benjamin D. Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, USA
| | - Alexander V. Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Macrophage Subpopulation Dynamics Shift following Intravenous Infusion of Mesenchymal Stromal Cells. Mol Ther 2020; 28:2007-2022. [PMID: 32531238 DOI: 10.1016/j.ymthe.2020.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Intravenous infusion of mesenchymal stromal cells (MSCs) is thought to be a viable treatment for numerous disorders. Although the intrinsic immunosuppressive ability of MSCs has been credited for this therapeutic effect, their exact impact on endogenous tissue-resident cells following delivery has not been clearly characterized. Moreover, multiple studies have reported pulmonary sequestration of MSCs upon intravenous delivery. Despite substantial efforts to improve MSC homing, it remains unclear whether MSC migration to the site of injury is necessary to achieve a therapeutic effect. Using a murine excisional wound healing model, we offer an explanation of how sequestered MSCs improve healing through their systemic impact on macrophage subpopulations. We demonstrate that infusion of MSCs leads to pulmonary entrapment followed by rapid clearance, but also significantly accelerates wound closure. Using single-cell RNA sequencing of the wound, we show that following MSC delivery, innate immune cells, particularly macrophages, exhibit distinctive transcriptional changes. We identify the appearance of a pro-angiogenic CD9+ macrophage subpopulation, whose induction is mediated by several proteins secreted by MSCs, including COL6A1, PRG4, and TGFB3. Our findings suggest that MSCs do not need to act locally to induce broad changes in the immune system and ultimately treat disease.
Collapse
|
6
|
Woods PS, Kimmig LM, Meliton AY, Sun KA, Tian Y, O’Leary EM, Gökalp GA, Hamanaka RB, Mutlu GM. Tissue-Resident Alveolar Macrophages Do Not Rely on Glycolysis for LPS-induced Inflammation. Am J Respir Cell Mol Biol 2020; 62:243-255. [PMID: 31469581 PMCID: PMC6993551 DOI: 10.1165/rcmb.2019-0244oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
Macrophage effector function is dynamic in nature and largely dependent on not only the type of immunological challenge but also the tissue-specific environment and developmental origin of a given macrophage population. Recent research has highlighted the importance of glycolytic metabolism in the regulation of effector function as a common feature associated with macrophage activation. Yet, most research has used macrophage cell lines and bone marrow-derived macrophages, which do not account for the diversity of macrophage populations and the role of tissue specificity in macrophage immunometabolism. Tissue-resident alveolar macrophages (TR-AMs) reside in an environment characterized by remarkably low glucose concentrations, making glycolysis-linked immunometabolism an inefficient and unlikely means of immune activation. In this study, we show that TR-AMs rely on oxidative phosphorylation to meet their energy demands and maintain extremely low levels of glycolysis under steady-state conditions. Unlike bone marrow-derived macrophages, TR-AMs did not experience enhanced glycolysis in response to LPS, and glycolytic inhibition had no effect on their proinflammatory cytokine production. Hypoxia-inducible factor 1α stabilization promoted glycolysis in TR-AMs and shifted energy production away from oxidative metabolism at baseline, but it was not sufficient for TR-AMs to mount further increases in glycolysis or enhance immune function in response to LPS. Importantly, we confirmed these findings in an in vivo influenza model in which infiltrating macrophages had significantly higher glycolytic and proinflammatory gene expression than TR-AMs. These findings demonstrate that glycolysis is dispensable for macrophage effector function in TR-AM and highlight the importance of macrophage tissue origin (tissue resident vs. recruited) in immunometabolism.
Collapse
Affiliation(s)
- Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Lucas M. Kimmig
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Erin M. O’Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Gizem A. Gökalp
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
7
|
Yu YRA, Malakhau Y, Yu CHA, Phelan SLJ, Cumming RI, Kan MJ, Mao L, Rajagopal S, Piantadosi CA, Gunn MD. Nonclassical Monocytes Sense Hypoxia, Regulate Pulmonary Vascular Remodeling, and Promote Pulmonary Hypertension. THE JOURNAL OF IMMUNOLOGY 2020; 204:1474-1485. [PMID: 31996456 DOI: 10.4049/jimmunol.1900239] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022]
Abstract
An increasing body of evidence suggests that bone marrow-derived myeloid cells play a critical role in the pathophysiology of pulmonary hypertension (PH). However, the true requirement for myeloid cells in PH development has not been demonstrated, and a specific disease-promoting myeloid cell population has not been identified. Using bone marrow chimeras, lineage labeling, and proliferation studies, we determined that, in murine hypoxia-induced PH, Ly6Clo nonclassical monocytes are recruited to small pulmonary arteries and differentiate into pulmonary interstitial macrophages. Accumulation of these nonclassical monocyte-derived pulmonary interstitial macrophages around pulmonary vasculature is associated with increased muscularization of small pulmonary arteries and disease severity. To determine if the sensing of hypoxia by nonclassical monocytes contributes to the development of PH, mice lacking expression of hypoxia-inducible factor-1α in the Ly6Clo monocyte lineage were exposed to hypoxia. In these mice, vascular remodeling and PH severity were significantly reduced. Transcriptome analyses suggest that the Ly6Clo monocyte lineage regulates PH through complement, phagocytosis, Ag presentation, and chemokine/cytokine pathways. Consistent with these murine findings, relative to controls, lungs from pulmonary arterial hypertension patients displayed a significant increase in the frequency of nonclassical monocytes. Taken together, these findings show that, in response to hypoxia, nonclassical monocytes in the lung sense hypoxia, infiltrate small pulmonary arteries, and promote vascular remodeling and development of PH. Our results demonstrate that myeloid cells, specifically cells of the nonclassical monocyte lineage, play a direct role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710;
| | - Yuryi Malakhau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Chen-Hsin A Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Stefan-Laural J Phelan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - R Ian Cumming
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Matthew J Kan
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94115; and
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Claude A Piantadosi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Michael D Gunn
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
8
|
Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol 2019; 10:1345. [PMID: 31736777 PMCID: PMC6831728 DOI: 10.3389/fphys.2019.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Despite great advances in mechanical ventilation and surfactant administration for the newborn infant with life-threatening respiratory failure no specific therapies are currently established to tackle major pro-inflammatory pathways. The susceptibility of the newborn infant with neonatal acute respiratory distress syndrome (NARDS) to exogenous surfactant is linked with a suppression of most of the immunologic responses by the innate immune system, however, additional corticosteroids applied in any severe pediatric lung disease with inflammatory background do not reduce morbidity or mortality and may even cause harm. Thus, the neonatal piglet model of acute lung injury serves as an excellent model to study respiratory failure and is the preferred animal model for reasons of availability, body size, similarities of porcine and human lung, robustness, and costs. In addition, similarities to the human toll-like receptor 4, the existence of intraalveolar macrophages, the sensitivity to lipopolysaccharide, and the production of nitric oxide make the piglet indispensable in anti-inflammatory research. Here we present the physiologic and immunologic data of newborn piglets from three trials involving acute lung injury secondary to repeated airway lavage (and others), mechanical ventilation, and a specific anti-inflammatory intervention via the intratracheal route using surfactant as a carrier substance. The physiologic data from many organ systems of the newborn piglet—but with preference on the lung—are presented here differentiating between baseline data from the uninjured piglet, the impact of acute lung injury on various parameters (24 h), and the follow up data after 72 h of mechanical ventilation. Data from the control group and the intervention groups are listed separately or combined. A systematic review of the newborn piglet meconium aspiration model and the repeated airway lavage model is finally presented. While many studies assessed lung injury scores, leukocyte infiltration, and protein/cytokine concentrations in bronchoalveolar fluid, a systematic approach to tackle major upstream pro-inflammatory pathways of the innate immune system is still in the fledgling stages. For the sake of newborn infants with life-threatening NARDS the newborn piglet model still is an unsettled promise offering many options to conquer neonatal physiology/immunology and to establish potent treatment modalities.
Collapse
Affiliation(s)
- Dietmar Spengler
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Nele Rintz
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Martin F Krause
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
10
|
Bohmwald K, Espinoza JA, Pulgar RA, Jara EL, Kalergis AM. Functional Impairment of Mononuclear Phagocyte System by the Human Respiratory Syncytial Virus. Front Immunol 2017; 8:1643. [PMID: 29230219 PMCID: PMC5712212 DOI: 10.3389/fimmu.2017.01643] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022] Open
Abstract
The mononuclear phagocyte system (MPS) comprises of monocytes, macrophages (MΦ), and dendritic cells (DCs). MPS is part of the first line of immune defense against a wide range of pathogens, including viruses, such as the human respiratory syncytial virus (hRSV). The hRSV is an enveloped virus that belongs to the Pneumoviridae family, Orthopneumovirus genus. This virus is the main etiological agent causing severe acute lower respiratory tract infection, especially in infants, children and the elderly. Human RSV can cause bronchiolitis and pneumonia and it has also been implicated in the development of recurrent wheezing and asthma. Monocytes, MΦ, and DCs significantly contribute to acute inflammation during hRSV-induced bronchiolitis and asthma exacerbation. Furthermore, these cells seem to be an important component for the association between hRSV and reactive airway disease. After hRSV infection, the first cells encountered by the virus are respiratory epithelial cells, alveolar macrophages (AMs), DCs, and monocytes in the airways. Because AMs constitute the predominant cell population at the alveolar space in healthy subjects, these cells work as major innate sentinels for the recognition of pathogens. Although adaptive immunity is crucial for viral clearance, AMs are required for the early immune response against hRSV, promoting viral clearance and controlling immunopathology. Furthermore, exposure to hRSV may affect the phagocytic and microbicidal capacity of monocytes and MΦs against other infectious agents. Finally, different studies have addressed the roles of different DC subsets during infection by hRSV. In this review article, we discuss the role of the lung MPS during hRSV infection and their involvement in the development of bronchiolitis.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raúl A Pulgar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Evelyn L Jara
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Sorio C, Montresor A, Bolomini-Vittori M, Caldrer S, Rossi B, Dusi S, Angiari S, Johansson JE, Vezzalini M, Leal T, Calcaterra E, Assael BM, Melotti P, Laudanna C. Mutations of Cystic Fibrosis Transmembrane Conductance Regulator Gene Cause a Monocyte-Selective Adhesion Deficiency. Am J Respir Crit Care Med 2017; 193:1123-33. [PMID: 26694899 DOI: 10.1164/rccm.201510-1922oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Cystic fibrosis (CF) is a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Persistent lung inflammation, characterized by increasing polymorphonuclear leukocyte recruitment, is a major cause of the decline in respiratory function in patients with CF and is a leading cause of morbidity and mortality. CFTR is expressed in various cell types, including leukocytes, but its involvement in the regulation of leukocyte recruitment is unknown. OBJECTIVES We evaluated whether CF leukocytes might present with alterations in cell adhesion and migration, a key process governing innate and acquired immune responses. METHODS We used ex vivo adhesion and chemotaxis assays, flow cytometry, immunofluorescence, and GTPase activity assays in this study. MEASUREMENTS AND MAIN RESULTS We found that chemoattractant-induced activation of β1 and β2 integrins and of chemotaxis is defective in mononuclear cells isolated from patients with CF. In contrast, polymorphonuclear leukocyte adhesion and chemotaxis were normal. The functionality of β1 and β2 integrins was restored by treatment of CF monocytes with the CFTR-correcting drugs VRT325 and VX809. Moreover, treatment of healthy monocytes with the CFTR inhibitor CFTR(inh)-172 blocked integrin activation by chemoattractants. In a murine model of lung inflammation, we found that integrin-independent migration of CF monocytes into the lung parenchyma was normal, whereas, in contrast, integrin-dependent transmigration into the alveolar space was impaired. Finally, signal transduction analysis showed that, in CF monocytes, chemoattractant-triggered activation of RhoA and CDC42 Rho small GTPases (controlling integrin activation and chemotaxis, respectively) was strongly deficient. CONCLUSIONS Altogether, these data highlight the critical regulatory role of CFTR in integrin activation by chemoattractants in monocytes and identify CF as a new, cell type-selective leukocyte adhesion deficiency disease, providing new insights into CF pathogenesis.
Collapse
Affiliation(s)
- Claudio Sorio
- 1 Division of General Pathology, Department of Medicine, and.,2 Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | | | - Matteo Bolomini-Vittori
- 1 Division of General Pathology, Department of Medicine, and.,2 Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine, Verona, Italy.,3 Department of Tumor Immunology (278), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sara Caldrer
- 1 Division of General Pathology, Department of Medicine, and.,2 Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | - Barbara Rossi
- 1 Division of General Pathology, Department of Medicine, and
| | - Silvia Dusi
- 1 Division of General Pathology, Department of Medicine, and
| | - Stefano Angiari
- 1 Division of General Pathology, Department of Medicine, and
| | - Jan E Johansson
- 1 Division of General Pathology, Department of Medicine, and.,2 Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | - Marzia Vezzalini
- 1 Division of General Pathology, Department of Medicine, and.,2 Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | - Teresinha Leal
- 4 Faculté de Pharmacie et des Sciences Biomédicales, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; and
| | - Elisa Calcaterra
- 1 Division of General Pathology, Department of Medicine, and.,2 Cystic Fibrosis Translational Research Laboratory "Daniele Lissandrini," Department of Medicine, University of Verona School of Medicine, Verona, Italy
| | - Baroukh M Assael
- 5 Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Paola Melotti
- 5 Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Carlo Laudanna
- 1 Division of General Pathology, Department of Medicine, and
| |
Collapse
|
12
|
Herseth JI, Volden V, Bolling AK. Particulate matter-mediated release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) in vitro: Limited importance of endotoxin and organic content. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:105-119. [PMID: 28071984 DOI: 10.1080/15287394.2016.1257399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse health effects, but it is still relatively unknown which role PM sources and physicochemical properties play in the observed effects. It was postulated that PM in vitro induces release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) and that endotoxin and organic compounds present in the PM regulate this release. A contact coculture of THP-1 human leukemia monocytes and A549 human adenocarcinoma alveolar pneumocytes was exposed to PM from Traffic, Wood, Diesel, and Quartz (10-40 µg/cm2) for 12-64 h to determine release of PTX3 and VEGF. The role of endotoxin and the organic fraction in the mediator release was assessed using polymyxin B sulfate and organic extracts, respectively. Finally, antagonists were used to investigate whether the early proinflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α affected the PTX3 and VEGF release. All PM samples induced a time-dependent release of both PTX3 and VEGF. Traffic mediated the greatest release of PTX3, whereas Wood and Diesel were more potent inducers of VEGF. The endotoxin content did not markedly affect release of either mediator, while the organic fraction exerted no significant effect on VEGF release and limited influence on PTX3 release. In addition, the IL-1 and TNF-α agonists affected PTX3 release more strongly than VEGF release. In conclusion, the current data show a limited impact of endotoxin and organic compounds on PTX3 and VEGF release. Further, the observed differences in response patterns may point toward differential regulation of PM-mediated release of PTX3 and VEGF.
Collapse
Affiliation(s)
- J I Herseth
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - V Volden
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - A K Bolling
- b Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
13
|
Sayers BC, Germolec DR, Walker NJ, Shipkowski KA, Stout MD, Cesta MF, Roycroft JH, White KL, Baker GL, Dill JA, Smith MJ. Respiratory toxicity and immunotoxicity evaluations of microparticle and nanoparticle C60 fullerene aggregates in mice and rats following nose-only inhalation for 13 weeks. Nanotoxicology 2016; 10:1458-1468. [PMID: 27618498 DOI: 10.1080/17435390.2016.1235737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
C60 fullerene (C60), or buckminsterfullerene, is a spherical arrangement of 60 carbon atoms, having a diameter of approximately 1 nm, and is produced naturally as a by-product of combustion. Due to its small size, C60 has attracted much attention for use in a variety of applications; however, insufficient information is available regarding its toxicological effects. The effects on respiratory toxicity and immunotoxicity of C60 aggregates (50 nm [nano-C60] and 1 μm [micro-C60] diameter) were examined in B6C3F1/N mice and Wistar Han rats after nose-only inhalation for 13 weeks. Exposure concentrations were selected to allow for data evaluations using both mass-based and particle surface area-based exposure metrics. Nano-C60 exposure levels selected were 0.5 and 2 mg/m3 (0.033 and 0.112 m2/m3), while micro-C60 exposures were 2, 15 and 30 mg/m3 (0.011, 0.084 and 0.167 m2/m3). There were no systemic effects on innate, cell-mediated, or humoral immune function. Pulmonary inflammatory responses (histiocytic infiltration, macrophage pigmentation, chronic inflammation) were concentration-dependent and corresponded to increases in monocyte chemoattractant protein (MCP)-1 (rats) and macrophage inflammatory protein (MIP)-1α (mice) in bronchoalveolar lavage (BAL) fluid. Lung overload may have contributed to the pulmonary inflammatory responses observed following nano-C60 exposure at 2 mg/m3 and micro-C60 exposure at 30 mg/m3. Phenotype shifts in cells recovered from the BAL were also observed in all C60-exposed rats, regardless of the level of exposure. Overall, more severe pulmonary effects were observed for nano-C60 than for micro-C60 for mass-based exposure comparisons. However, for surface-area-based exposures, more severe pulmonary effects were observed for micro-C60 than for nano-C60, highlighting the importance of dosimetry when evaluating toxicity between nano- and microparticles.
Collapse
Affiliation(s)
- Brian C Sayers
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Dori R Germolec
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Nigel J Walker
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Kelly A Shipkowski
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Matthew D Stout
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Mark F Cesta
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Joseph H Roycroft
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Kimber L White
- b Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA , USA
| | | | - Jeffrey A Dill
- c Battelle Toxicology Northwest , Richland , WA , USA , and
| | - Matthew J Smith
- b Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA , USA.,d Richard Bland College of William & Mary , Petersburg , VA , USA
| |
Collapse
|
14
|
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants with a wide spectrum of disease severity. Besides environmental and genetic factors, it is thought that the innate immune system plays a pivotal role. The aim of this study was to investigate the expression of immune receptors on monocytes and the in vitro responsiveness from infants with severe RSV infections. METHODS Peripheral blood mononuclear cells (PBMCs) from infants with RSV infections were isolated. Classical, intermediate and nonclassical monocytes were immunophenotyped for the expression of CD14, CD16, human leukocyte antigen (HLA)-ABC and HLA-DR. PBMCs were stimulated with lipopolysaccharide to determine the secretion of tumor necrosis factor and interleukin (IL)-10 with enzyme-linked immunosorbent assay. RESULTS During RSV infection, intermediate monocytes are increased in the peripheral blood, whereas classical and nonclassical monocytes are reduced. The expression of CD14 and HLA-ABC is increased on monocytes, whereas the expression of HLA-DR is suppressed. Low HLA-DR expression is correlated with increased disease severity. PBMCs from infants with severe RSV infections show an impaired IL-10 response in vitro. CONCLUSIONS Phenotyping subpopulations of monocytes combined with in vitro responsiveness reveals significant differences between nonsevere and severe RSV infections. Reduced HLA-DR expression and impaired IL-10 production in vitro during severe RSV infections indicate that an imbalanced innate immune response may play an important role in disease severity.
Collapse
|
15
|
Affiliation(s)
- Ricardo Gonçalves
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais Belo Horizonte Brazil
| | - David M. Mosser
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland College Park Maryland
| |
Collapse
|
16
|
Hackstein H, Lippitsch A, Krug P, Schevtschenko I, Kranz S, Hecker M, Dietert K, Gruber AD, Bein G, Brendel C, Baal N. Prospectively defined murine mesenchymal stem cells inhibit Klebsiella pneumoniae-induced acute lung injury and improve pneumonia survival. Respir Res 2015; 16:123. [PMID: 26438075 PMCID: PMC4594670 DOI: 10.1186/s12931-015-0288-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background Numerous studies have described the immunosuppressive capacity of mesenchymal stem cells (MSC) but these studies use mixtures of heterogeneous progenitor cells for in vitro expansion. Recently, multipotent MSC have been prospectively identified in murine bone marrow (BM) on the basis of PDFGRa+ SCA1+ CD45− TER119− (PαS) expression but the immunomodulatory capacity of these MSC is unknown. Methods We isolated PαS MSC by high-purity FACS sorting of murine BM and after in vitro expansion we analyzed the in vivo immunomodulatory activity during acute pneumonia. PαS MSC (1 × 106) were applied intratracheally 4 h after acute respiratory Klebsiella pneumoniae induced infection. Results PαS MSC treatment resulted in significantly reduced alveolitis and protein leakage in comparison to mock-treated controls. PαS MSC-treated mice exhibited significantly reduced alveolar TNF-α and IL-12p70 expression, while IL-10 expression was unaffected. Dissection of respiratory dendritic cell (DC) subsets by multiparameter flow cytometry revealed significantly reduced lung DC infiltration and significantly reduced CD86 costimulatory expression on lung CD103+ DC in PαS MSC-treated mice. In the post-acute phase of pneumonia, PαS MSC-treated animals exhibited significantly reduced respiratory IL-17+ CD4+ T cells and IFN-γ+ CD4+ T cells. Moreover, PαS MSC treatment significantly improved overall pneumonia survival and did not increase bacterial load. Conclusion In this study we demonstrated for the first time the feasibility and in vivo immunomodulatory capacity of prospectively defined MSC in pneumonia. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0288-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Anne Lippitsch
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Philipp Krug
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Inna Schevtschenko
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Sabine Kranz
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Matthias Hecker
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163, Berlin, Germany.
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163, Berlin, Germany.
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen und Marburg, Marburg, Germany.
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| |
Collapse
|
17
|
Arutyunyan I, Elchaninov A, Fatkhudinov T, Makarov A, Kananykhina E, Usman N, Bolshakova G, Glinkina V, Goldshtein D, Sukhikh G. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4469-80. [PMID: 26191137 PMCID: PMC4503009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023]
Abstract
Allogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action. The study was focused upon survival of umbilical cord-derived allogeneic multipotent stromal cells in different rat models of tissue regeneration induced by partial hepatectomy or by critical limb ischemia. The observations were carried out by means of vital labeling of the cells with PKH26 prior to injection, in combination with differential immunostaining of host macrophages with anti-CD68 antibody. According to the results, allogeneic multipotent stromal cells are specifically eliminated by host immune system; the efficacy can reach 100%. Massive clearance of transplanted cells by host macrophages is accompanied by appropriation of the label by the latter, and this is a pronounced case of misleading presentation of exogenous label by host cells. The study emphasizes the role of macrophages in host response and also the need of additional criteria for correct data interpretation.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
| | - Andrey Elchaninov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Evgeniya Kananykhina
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
| | - Natalia Usman
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Galina Bolshakova
- Scientific Research Institute of Human Morphology3 Tsurupa Street, Moscow 117418, Russia
| | - Valeria Glinkina
- Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation1 Ostrovitianov Street, Moscow 117997, Russia
| | - Dmitry Goldshtein
- Research Centre of Medical Genetics1 Moskvorechie Street, Moscow 115478, Russia
| | - Gennady Sukhikh
- Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of The Russian Federation4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
18
|
Abstract
BACKGROUND Transplants cause ischemia-reperfusion (IR) injury that can affect distant organs. Liver is particularly sensitive to IR injury. The present randomized experimental study was designed to investigate a possible protective effect of sevoflurane against liver inflammatory response to lung IR in a lung upper lobe left autotransplant model. METHODS Two groups (sevoflurane and control) of eight swines each were submitted to upper lobe left lung autotransplant. Hypnotic maintenance was performed with sevoflurane 3% or propofol 8 to 10 mg/kg per hr until pneumonectomy was done; then propofol was used for all animals. Blood and liver samples were taken in four different moments: prepneumonectomy, prereperfusion, 10 min postreperfusion and 30 min postreperfusion to measure levels of interleukin (IL)-1β, IL-10, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, nuclear factor (NF)-κB, C-reactive protein, ferritin and caspase 3. Non-parametric test was used to find statistical meaning. RESULTS Lung IR markedly increased the expression of TNF-α, IL-1β, MCP-1, NF-κB and caspase activity in control livers compared with basal levels, whereas liver IL-10 expression decreased 10 and 30 min post-reperfusion. Sevoflurane significantly decreased TNF-α, IL-1β, MCP-1, NF-κB liver expression and caspase 3 activity. Sevoflurane also reverted the lung IR-induced decrease in IL-10 expression. CONCLUSIONS The present results indicate that lung IR caused hepatic injury. Sevoflurane attenuated liver injury in a model of upper lobe left lung autotransplant in pigs.
Collapse
|
19
|
Ding P, Wu H, Fang L, Wu M, Liu R. Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques. Am J Respir Cell Mol Biol 2014; 51:1-10. [PMID: 24678629 DOI: 10.1165/rcmb.2013-0390te] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During infection, recruited phagocytes transmigrate across the epithelium to remove the pathogens deposited on the airway surface. However, it is difficult to directly observe cellular behaviors (e.g., transmigration) in single-cell layer cultures or in live animals. Combining a three-dimensional (3D) cell coculture model mimicking airway infection with time-lapse confocal imaging as a four-dimensional technique allowed us to image the behaviors of macrophages in 3D over time. The airway infection model was moved to a glass-bottomed dish for live-cell imaging by confocal laser scanning microscopy. Using time-lapse confocal imaging, we recorded macrophages transmigrating across the polyethylene terephthalate (PET) membrane of the inserts through the 5-μm pores in the PET membrane. Macrophages on the apical side of the insert exhibited essentially three types of movements, one of which was transmigrating across the epithelial cell monolayer and arriving at the surface of monolayer. We found that adding Staphylococcus aureus to the model increased the transmigration index but not the transmigration time of the macrophages. Only in the presence of S. aureus were the macrophages able to transmigrate across the epithelial cell monolayer. Apical-to-basal transmigration of macrophages was visualized dynamically. We also imaged the macrophages phagocytizing S. aureus deposited on the surface of the monolayer in the airway infection model. This work provides a useful tool to study the cellular behaviors of immune cells spatially and temporally during infection.
Collapse
|
20
|
Preuß S, Scheiermann J, Stadelmann S, Omam FD, Winoto-Morbach S, Lex D, von Bismarck P, Adam-Klages S, Knerlich-Lukoschus F, Wesch D, Held-Feindt J, Uhlig S, Schütze S, Krause MF. 18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulm Pharmacol Ther 2014; 28:25-34. [DOI: 10.1016/j.pupt.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/16/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
|
21
|
A comparative study of PKH67, DiI, and BrdU labeling techniques for tracing rat mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2014; 50:656-63. [PMID: 24737277 DOI: 10.1007/s11626-014-9750-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
Mesenchymal stem cells (MSCs) have generated a great deal of promise as a potential source of cells for cell-based therapies. Various labeling techniques have been developed to trace MSC survival, migration, and behavior in vitro or in vivo. In the present study, we labeled MSCs derived from rat bone marrow (rMSCs) with florescent membrane dyes PKH67 and DiI, and with nuclear labeling using 5 μM BrdU and 10 μM BrdU. The cells were then cultured for 6 d or passaged (1-3 passages). The viability of rMSCs, efficacy of fluorescent expression, and transfer of the dyes were assessed. Intense fluorescence in rMSCs was found immediately after membrane labeling (99.3 ± 1.6% PKH67+ and 98.4 ± 1.7% DiI+) or after 2 d when tracing of nuclei was applied (91.2 ± 4.6% 10 μM BrdU+ and 77.6 ± 4.6% 5 μM BrdU+), which remained high for 6 d. Viability of labeled cells was 91 ± 3.8% PKH67+, 90 ± 1.5% DiI+, 91 ± 0.8% 5 μM BrdU+, and 76.9 ± 0.9% 10 μM BrdU+. The number of labeled rMSCs gradually decreased during the passages, with almost no BrdU+ nuclei left at final passage 3. Direct cocultures of labeled rMSCs (PKH67+ or DiI+) with unlabeled rMSCs revealed almost no dye transfer from donor to unlabeled recipient cells. Our results confirm that labeling of rMSCs with PKH67 or DiI represents a non-toxic, highly stable, and efficient method suitable for steady tracing of cells, while BrdU tracing is more appropriate for temporary labeling due to decreasing signal over time.
Collapse
|
22
|
Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 2014; 11:16. [PMID: 24708749 PMCID: PMC4113196 DOI: 10.1186/1743-8977-11-16] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/11/2014] [Indexed: 11/29/2022] Open
Abstract
Background A standard short-term inhalation study (STIS) was applied for hazard assessment of 13 metal oxide nanomaterials and micron-scale zinc oxide. Methods Rats were exposed to test material aerosols (ranging from 0.5 to 50 mg/m3) for five consecutive days with 14- or 21-day post-exposure observation. Bronchoalveolar lavage fluid (BALF) and histopathological sections of the entire respiratory tract were examined. Pulmonary deposition and clearance and test material translocation into extra-pulmonary organs were assessed. Results Inhaled nanomaterials were found in the lung, in alveolar macrophages, and in the draining lymph nodes. Polyacrylate-coated silica was also found in the spleen, and both zinc oxides elicited olfactory epithelium necrosis. None of the other nanomaterials was recorded in extra-pulmonary organs. Eight nanomaterials did not elicit pulmonary effects, and their no observed adverse effect concentrations (NOAECs) were at least 10 mg/m3. Five materials (coated nano-TiO2, both ZnO, both CeO2) evoked concentration-dependent transient pulmonary inflammation. Most effects were at least partially reversible during the post-exposure period. Based on the NOAECs that were derived from quantitative parameters, with BALF polymorphonuclear (PMN) neutrophil counts and total protein concentration being most sensitive, or from the severity of histopathological findings, the materials were ranked by increasing toxic potency into 3 grades: lower toxic potency: BaSO4; SiO2.acrylate (by local NOAEC); SiO2.PEG; SiO2.phosphate; SiO2.amino; nano-ZrO2; ZrO2.TODA; ZrO2.acrylate; medium toxic potency: SiO2.naked; higher toxic potency: coated nano-TiO2; nano-CeO2; Al-doped nano-CeO2; micron-scale ZnO; coated nano-ZnO (and SiO2.acrylate by systemic no observed effect concentration (NOEC)). Conclusion The STIS revealed the type of effects of 13 nanomaterials, and micron-scale ZnO, information on their toxic potency, and the location and reversibility of effects. Assessment of lung burden and material translocation provided preliminary biokinetic information. Based upon the study results, the STIS protocol was re-assessed and preliminary suggestions regarding the grouping of nanomaterials for safety assessment were spelled out.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056 Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Crane MJ, Daley JM, van Houtte O, Brancato SK, Henry WL, Albina JE. The monocyte to macrophage transition in the murine sterile wound. PLoS One 2014; 9:e86660. [PMID: 24466192 PMCID: PMC3899284 DOI: 10.1371/journal.pone.0086660] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022] Open
Abstract
The origin of wound repair macrophages is incompletely defined and was examined here in sterile wounds using the subcutaneous polyvinyl alcohol sponge implantation model in mice. Phenotypic analysis identified F4/80+Ly6ChiCD64+MerTK– monocytes and F4/80+Ly6ClowCD64+MerTK+ macrophages in the wound. Circulating monocytes were the precursors of inflammatory Ly6Chi wound monocytes. Ly6ClowMerTK+ macrophages appeared later, expressed CD206, CD11c, and MHC class II, produced cytokines consistent with repair function, and lacked a gene expression profile compatible with mesenchymal transition or fibroblastic transdifferentiation. Data also demonstrated that Ly6Chi wound cells were precursors of Ly6Clow macrophages, although monocytes did not undergo rapid maturation but rather persisted in the wound as Ly6ChiMerTK– cells. MerTK-deficient mice were examined to determine whether MerTK-dependent signals from apoptotic cells regulated the maturation of wound macrophages. MerTK-deficient mice had day 14 cell compositions that resembled more immature wounds, with a smaller proportion of F4/80+ cells and higher frequencies of Ly6G+ neutrophils and Ly6Chi monocytes. The cytokine profile and number of apoptotic cells in day 14 wounds of MerTK-deficient mice was unaffected despite the alterations in cell composition. Overall, these studies identified a differentiation pathway in response to sterile inflammation in which monocytes recruited from the circulation acquire proinflammatory function, persist in the wound, and mature into repair macrophages.
Collapse
Affiliation(s)
- Meredith J. Crane
- Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Jean M. Daley
- Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
| | - Olivier van Houtte
- Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
| | - Samielle K. Brancato
- Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
| | - William L. Henry
- Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
| | - Jorge E. Albina
- Department of Surgery, Rhode Island Hospital and The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
24
|
Tymen SD, Rojas IG, Zhou X, Fang ZJ, Zhao Y, Marucha PT. Restraint stress alters neutrophil and macrophage phenotypes during wound healing. Brain Behav Immun 2013; 28:207-17. [PMID: 22884902 PMCID: PMC3878450 DOI: 10.1016/j.bbi.2012.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 01/06/2023] Open
Abstract
Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting.
Collapse
Affiliation(s)
- Stéphanie D. Tymen
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Isolde G. Rojas
- Department of Oral Surgery and Laboratory of Oral Biology and Pathology, College of Dentistry, University of Concepción, Concepción, Chile
| | - Xiaofeng Zhou
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zong Juan Fang
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip T. Marucha
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Lung microenvironment contributes to the resistance of alveolar macrophages to develop tolerance to endotoxin*. Crit Care Med 2013; 40:2987-96. [PMID: 22878679 DOI: 10.1097/ccm.0b013e31825b8d57] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Endotoxin tolerance corresponds to reprogramming of mononuclear phagocytes after iterative encounters with toll-like receptor agonists aimed to dampen the inflammatory response. We investigated why this phenomenon cannot be observed with murine alveolar macrophages. DESIGN Animal study. SETTING Research institution laboratory. SUBJECTS rag2-/-, rag2γc-/-, cd3ε-/-, µ-/-, il-15-/-, Jα18-/-, ifnγr-/-, il-18r-/-, and wild-type mice. INTERVENTIONS Alveolar macrophages were harvested from untreated mice or after injection of endotoxin. Alveolar macrophages were activated in vitro with endotoxin (lipopolysaccharide), and tumor necrosis factor production was monitored. MEASUREMENTS AND MAIN RESULTS In contrast to monocytes or peritoneal macrophages, alveolar macrophages did not display endotoxin tolerance in an ex vivo model after injection of endotoxin. An in vivo systemic inhibition of granulocyte-macrophage colony-stimulating factor or interferon-γ allowed the induction of alveolar macrophage endotoxin tolerance, which was also observed in interferon-γ receptor-deficient mice. Using mice missing different leukocyte subsets and adoptive cell transfers, we demonstrated the involvement of B lymphocytes in interferon-γ production within the lung microenvironment and in the prevention of alveolar macrophage endotoxin tolerance. Furthermore, we demonstrated the importance of interleukin-18 in preventing alveolar macrophage endotoxin tolerance through studies of interleukin-18 messenger RNA expression in il-18r-/- mice and injection of interleukin-18 in rag2-/- and µ-/- mice. CONCLUSIONS Our results support the conclusion that at homeostasis in the lungs, constitutive expression of granulocyte-macrophage colony-stimulating factor, interleukin-18, interferon-γ and possibly interleukin-15, and a cross-talk between B lymphocytes and alveolar macrophages create a microenvironment specific to the lungs that prevents alveolar macrophages from becoming tolerant to endotoxin.
Collapse
|
26
|
Preuß S, Omam FD, Scheiermann J, Stadelmann S, Winoto-Morbach S, von Bismarck P, Adam-Klages S, Knerlich-Lukoschus F, Lex D, Wesch D, Held-Feindt J, Uhlig S, Schütze S, Krause MF. Topical application of phosphatidyl-inositol-3,5-bisphosphate for acute lung injury in neonatal swine. J Cell Mol Med 2012; 16:2813-26. [PMID: 22882773 PMCID: PMC4118249 DOI: 10.1111/j.1582-4934.2012.01618.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022] Open
Abstract
Hypoxemic respiratory failure of the neonatal organism involves increased acid sphingomyelinase (aSMase) activity and production of ceramide, a second messenger of a pro-inflammatory pathway that promotes increased vascular permeability, surfactant alterations and alveolar epithelial apoptosis. We comparatively assessed the benefits of topical aSMase inhibition by either imipramine (Imi) or phosphatidylinositol-3,5-bisphosphate (PIP2) when administered into the airways together with surfactant (S) for fortification. In this translational study, a triple-hit acute lung injury model was used that entails repeated airway lavage, injurious ventilation and tracheal lipopolysaccharide instillation in newborn piglets subject to mechanical ventilation for 72 hrs. After randomization, we administered an air bolus (control), S, S+Imi, or S+PIP2. Only in the latter two groups we observed significantly improved oxygenation and ventilation, dynamic compliance and pulmonary oedema. S+Imi caused systemic aSMase suppression and ceramide reduction, whereas the S+PIP2 effect remained compartmentalized in the airways because of the molecule's bulky structure. The surfactant surface tensions improved by S+Imi and S+PIP2 interventions, but only to a minor extent by S alone. S+PIP2 inhibited the migration of monocyte-derived macrophages and granulocytes into airways by the reduction of CD14/CD18 expression on cell membranes and the expression of epidermal growth factors (amphiregulin and TGF-β1) and interleukin-6 as pro-fibrotic factors. Finally we observed reduced alveolar epithelial apoptosis, which was most apparent in S+PIP2 lungs. Exogenous surfactant "fortified" by PIP2, a naturally occurring surfactant component, improves lung function by topical suppression of aSMase, providing a potential treatment concept for neonates with hypoxemic respiratory failure.
Collapse
Affiliation(s)
- Stefanie Preuß
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Friede D Omam
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Julia Scheiermann
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Sabrina Stadelmann
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Supandi Winoto-Morbach
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | - Philipp von Bismarck
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Sabine Adam-Klages
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | | | - Dennis Lex
- Universitätsklinikum, RWTH Aachen, Institute of Pharmacology and ToxicologyAachen, Germany
| | - Daniela Wesch
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | - Janka Held-Feindt
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of NeurosurgeryKiel, Germany
| | - Stefan Uhlig
- Universitätsklinikum, RWTH Aachen, Institute of Pharmacology and ToxicologyAachen, Germany
| | - Stefan Schütze
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | - Martin F Krause
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| |
Collapse
|
27
|
Hackstein H, Wachtendorf A, Kranz S, Lohmeyer J, Bein G, Baal N. Heterogeneity of respiratory dendritic cell subsets and lymphocyte populations in inbred mouse strains. Respir Res 2012; 13:94. [PMID: 23066782 PMCID: PMC3493345 DOI: 10.1186/1465-9921-13-94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 08/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inbred mouse strains are used in different models of respiratory diseases but the variation of critical respiratory leukocyte subpopulations across different strains is unknown. METHODS By using multiparameter flow cytometry we have quantitated respiratory leukocyte subsets including dendritic cells subpopulations, macrophages, classical T and B cells, natural killer cells, γδTCR+ T cells and lineage-negative leukocytes in the five most common inbred mouse strains BALB/c, C57BL/6, DBA/2, 129SV and C3H. To minimize confounding environmental factors, age-matched animals were received from the same provider and were housed under identical specific-pathogen-free conditions. RESULTS Results revealed significant strain differences with respect to respiratory neutrophils (p=0.005; up to 1.4 fold differences versus C57BL/6 mice), eosinophils (p=0.029; up to 2.7 fold), certain dendritic cell subsets (p≤0.0003; up to 3.4 fold), T (p<0.001; up to 1.6 fold) and B lymphocyte subsets (p=0.005; up to 0.4 fold), γδ T lymphocytes (p=0.003; up to 1.6 fold), natural killer cells (p<0.0001; up to 0.6 fold) and lineage-negative innate leukocytes (p≤0.007; up to 3.6 fold). In contrast, total respiratory leukocytes, macrophages, total dendritic cells and bronchoalveolar lavage leukocytes did not differ significantly. Stimulation of respiratory leukocytes via Toll-like receptor 4 and 9 as well as CD3/CD28 revealed significant strain differences of TNF-α and IL-10 production. CONCLUSION Our study demonstrates significant strain heterogeneity of respiratory leukocyte subsets that may impact respiratory immunity in different disease models. Additionally, the results may help identification of optimal strains for purification of rare respiratory leukocyte subsets for ex vivo analyses.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Member of the German Center for Lung Research, Langhansstr 7, D-35390, Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Hackstein H, Hagel N, Knoche A, Kranz S, Lohmeyer J, von Wulffen W, Kershaw O, Gruber AD, Bein G, Baal N. Skin TLR7 triggering promotes accumulation of respiratory dendritic cells and natural killer cells. PLoS One 2012; 7:e43320. [PMID: 22927956 PMCID: PMC3425551 DOI: 10.1371/journal.pone.0043320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/19/2012] [Indexed: 01/08/2023] Open
Abstract
The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11bhi DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Member of the German Center for Lung Research, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Al-Roubaie S, Hughes JH, Filla MB, Lansford R, Lehoux S, Jones EA. Time-lapse microscopy of macrophages during embryonic vascular development. Dev Dyn 2012; 241:1423-31. [DOI: 10.1002/dvdy.23835] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/10/2022] Open
|
30
|
Bozinovski S, Seow HJ, Crack PJ, Anderson GP, Vlahos R. Glutathione peroxidase-1 primes pro-inflammatory cytokine production after LPS challenge in vivo. PLoS One 2012; 7:e33172. [PMID: 22412999 PMCID: PMC3295802 DOI: 10.1371/journal.pone.0033172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species produced during the innate immune response to LPS are important agents of anti-pathogen defence but may also cause oxidative lung damage. Glutathione peroxidase-1 (gpx-1) is an anti-oxidant enzyme that may protect lungs from such damage. We assessed the in vivo importance of gpx-1 in LPS-induced lung inflammation. Male wild-type (WT) or gpx-1 deficient (gpx-1−/−) mice were treated intranasally with PBS or 10 µg LPS and killed 3 and 24 h post LPS. Lungs were lavaged with PBS and then harvested for inflammatory marker expression. LPS caused an intense neutrophilia in WT BALF evident 3 and 24 h post challenge that was reduced in gpx-1−/− mice. In addition, LPS-treated gpx-1−/− mice had significantly fewer macrophages than LPS-treated WT mice. To understand the basis for this paradoxical reduction we assessed inflammatory cytokines and proteases at protein and transcript levels. MMP-9 expression and net gelatinase activity in BALF of gpx-1−/− mice treated with LPS for 3 and 24 h was no different to that found in LPS-treated WT mice. BALF from LPS-treated gpx-1−/− mice (3 h) had less TNF-α, MIP-2 and GM-CSF protein than LPS-treated WT mice. In contrast, LPS-induced increases in TNF-α, MIP-2 and GM-CSF mRNA expression in WT mice were similar to those observed in gpx-1−/− mice. These attenuated protein levels were unexpectedly not mirrored by reduced mRNA transcripts but were associated with increased 20S proteasome expression. Thus, these data suggest that gpx-1 primes pro-inflammatory cytokine production after LPS challenge in vivo.
Collapse
Affiliation(s)
- Steven Bozinovski
- Department of Pharmacology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
31
|
Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry. Infect Immun 2012; 80:1467-78. [PMID: 22252872 DOI: 10.1128/iai.06332-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G(2)/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo.
Collapse
|
32
|
Tighe RM, Li Z, Potts EN, Frush S, Liu N, Gunn MD, Foster WM, Noble PW, Hollingsworth JW. Ozone inhalation promotes CX3CR1-dependent maturation of resident lung macrophages that limit oxidative stress and inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4800-8. [PMID: 21930959 PMCID: PMC3197861 DOI: 10.4049/jimmunol.1101312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhalation of ambient ozone alters populations of lung macrophages. However, the impact of altered lung macrophage populations on the pathobiology of ozone is poorly understood. We hypothesized that subpopulations of macrophages modulate the response to ozone. We exposed C57BL/6 mice to ozone (2 ppm × 3 h) or filtered air. At 24 h after exposure, the lungs were harvested and digested and the cells underwent flow cytometry. Analysis revealed a novel macrophage subset present in ozone-exposed mice, which were distinct from resident alveolar macrophages and identified by enhanced Gr-1(+) expression [Gr-1 macrophages (Gr-1 Macs)]. Further analysis showed that Gr-1(+) Macs exhibited high expression of MARCO, CX3CR1, and NAD(P)H:quinone oxioreductase 1. Gr-1(+) Macs were present in the absence of CCR2, suggesting that they were not derived from a CCR2-dependent circulating intermediate. Using PKH26-PCL to label resident phagocytic cells, we demonstrated that Gr-1 Macs were derived from resident lung cells. This new subset was diminished in the absence of CX3CR1. Interestingly, CX3CR1-null mice exhibited enhanced responses to ozone, including increased airway hyperresponsiveness, exacerbated neutrophil influx, accumulation of 8-isoprostanes and protein carbonyls, and increased expression of cytokines (CXCL2, IL-1β, IL-6, CCL2, and TNF-α). Our results identify a novel subset of lung macrophages, which are derived from a resident intermediate, are dependent upon CX3CR1, and appear to protect the host from the biological response to ozone.
Collapse
Affiliation(s)
- Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Panoskaltsis-Mortari A, Griese M, Madtes DK, Belperio JA, Haddad IY, Folz RJ, Cooke KR. An official American Thoracic Society research statement: noninfectious lung injury after hematopoietic stem cell transplantation: idiopathic pneumonia syndrome. Am J Respir Crit Care Med 2011; 183:1262-79. [PMID: 21531955 DOI: 10.1164/rccm.2007-413st] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Acute lung dysfunction of noninfectious etiology, known as idiopathic pneumonia syndrome (IPS), is a severe complication following hematopoietic stem cell transplantation (HSCT). Several mouse models have been recently developed to determine the underlying causes of IPS. A cohesive interpretation of experimental data and their relationship to the findings of clinical research studies in humans is needed to better understand the basis for current and future clinical trials for the prevention/treatment of IPS. OBJECTIVES Our goal was to perform a comprehensive review of the preclinical (i.e., murine models) and clinical research on IPS. METHODS An ATS committee performed PubMed and OVID searches for published, peer-reviewed articles using the keywords "idiopathic pneumonia syndrome" or "lung injury" or "pulmonary complications" AND "bone marrow transplant" or "hematopoietic stem cell transplant." No specific inclusion or exclusion criteria were determined a priori for this review. MEASUREMENTS AND MAIN RESULTS Experimental models that reproduce the various patterns of lung injury observed after HSCT have identified that both soluble and cellular inflammatory mediators contribute to the inflammation engendered during the development of IPS. To date, 10 preclinical murine models of the IPS spectrum have been established using various donor and host strain combinations used to study graft-versus-host disease (GVHD). This, as well as the demonstrated T cell dependency of IPS development in these models, supports the concept that the lung is a target of immune-mediated attack after HSCT. The most developed therapeutic strategy for IPS involves blocking TNF signaling with etanercept, which is currently being evaluated in clinical trials. CONCLUSIONS IPS remains a frequently fatal complication that limits the broader use of allogeneic HSCT as a successful treatment modality. Faced with the clinical syndrome of IPS, one can categorize the disease entity with the appropriate tools, although cases of unclassifiable IPS will remain. Significant research efforts have resulted in a paradigm shift away from identifying noninfectious lung injury after HSCT solely as an idiopathic clinical syndrome and toward understanding IPS as a process involving aspects of both the adaptive and the innate immune response. Importantly, new laboratory insights are currently being translated to the clinic and will likely prove important to the development of future strategies to prevent or treat this serious disorder.
Collapse
|
34
|
Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol Immunol 2011; 48:1468-76. [DOI: 10.1016/j.molimm.2011.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
|
35
|
Gibbings S, Elkins ND, Fitzgerald H, Tiao J, Weyman ME, Shibao G, Fini MA, Wright RM. Xanthine oxidoreductase promotes the inflammatory state of mononuclear phagocytes through effects on chemokine expression, peroxisome proliferator-activated receptor-{gamma} sumoylation, and HIF-1{alpha}. J Biol Chem 2010; 286:961-75. [PMID: 21059659 DOI: 10.1074/jbc.m110.150847] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protective effects of pharmacological inhibitors of xanthine oxidoreductase (XOR) have implicated XOR in many inflammatory diseases. Nonetheless, the role played by XOR during inflammation is poorly understood. We previously observed that inhibition of XOR within the inflammatory mononuclear phagocytes (MNP) prevented neutrophil recruitment during adoptive transfer demonstrating the role of XOR in MNP-mediated neutrophil recruitment. To further explore the role of XOR in the inflammatory state of MNP, we studied MNP isolated from inflammatory lungs combined with analyses of MNP cell lines. We demonstrated that XOR activity was increased in inflammatory MNP following insufflation of Th-1 cytokines in vivo and that activity was specifically increased by MNP differentiation. Inhibition of XOR reduced levels of CINC-1 secreted by MNP. Expression of peroxisome proliferator-activated receptor γ (PPARγ) in purified rat lung MNP and MNP cell lines reflected both the presence of PPARγ isoforms and PPARγ SUMOylation, and XOR inhibitors increased levels of SUMO-PPARγ in MNP cell lines. Both ectopic overexpression of XOR cDNA and uric acid supplementation reduced SUMO-PPARγ in MNP cells. Levels of the M2 markers CD36, CD206, and arginase-1 were modulated by uric acid and oxonic acid, whereas siRNA to SUMO-1 or PIAS-1 also reduced arginase-1 in RAW264.7 cells. We also observed that HIF-1α was increased by XOR inhibitors in inflammatory MNP and in MNP cell lines. These data demonstrate that XOR promotes the inflammatory state of MNP through effects on chemokine expression, PPARγ SUMOylation, and HIF-1α and suggest that strategies for inhibiting XOR may be valuable in modulating lung inflammatory disorders.
Collapse
Affiliation(s)
- Sophie Gibbings
- Division of Pulmonary Sciences, Division of Pulmonary Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
OBJECTIVE This study was designed to determine whether lung contusion induces an increased pulmonary recruitment of monocytes as a source of alveolar macrophages and which mediators are involved. SETTING AND DESIGN Prospective animal study. SUBJECTS AND INTERVENTIONS Male Sprague-Dawley rats were subjected to chest trauma by a single blast wave. MEASUREMENTS Chemokine concentrations in bronchoalveolar lavage fluids and supernatants of alveolar macrophages, chemokine and chemokine receptor mRNA expressions in monocytes, pulmonary interstitial macrophages, and alveolar macrophages isolated after trauma or sham procedure were evaluated. Immigration of monocytes was determined by staining alveolar macrophages with the fluorescent marker PKH26 before chest trauma. Chemotaxis of naïve monocytes in response to bronchoalveolar lavage or supernatants from alveolar macrophages isolated after trauma or sham procedure and the migratory response of monocytes isolated after trauma/sham to recombinant chemokines were measured. MAIN RESULTS Chemokine levels in bronchoalveolar lavage and alveolar macrophage supernatants and the percentage of monocytes migrated to the lungs were increased after chest trauma. Lung contusion enhanced the mRNA expression for CCR2 in monocytes and interstitial macrophages and for monocyte chemotactic protein-1 in alveolar macrophages. Migration of naïve monocytes vs. bronchoalveolar lavage or alveolar macrophage supernatants from traumatized animals was increased when compared with samples from shams. Monocytes isolated 2 hrs after trauma showed a reduced migration to CINC-1 or monocyte chemotactic protein-1 compared with sham. CONCLUSIONS Alveolar macrophages seem to contribute to increased chemokine concentrations in alveoli of animals subjected to blunt chest trauma. Mediators released by alveolar macrophage are potent stimuli for monocyte migration. Monocytes alter their chemokine receptor expression and are recruited to the lungs.
Collapse
|
37
|
Mikulski Z, Zasłona Z, Cakarova L, Hartmann P, Wilhelm J, Tecott LH, Lohmeyer J, Kummer W. Serotonin activates murine alveolar macrophages through 5-HT2Creceptors. Am J Physiol Lung Cell Mol Physiol 2010; 299:L272-80. [DOI: 10.1152/ajplung.00032.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), known as neuromodulator, regulates immune responses and inflammatory cascades. The expression and function of 5-HT receptors on alveolar macrophages (AM), which are the major fraction of pulmonary immune cells, remain elusive. Therefore, we determined the expression of 5-HT type 2 receptors and investigated the effects evoked by stimulation with 5-HT in AM compared with alveolar epithelial cells (AEC). Quantitative PCR (qPCR) analysis revealed expression of the receptors 5-HT2Aand 5-HT2Bin AEC and of 5-HT2Cin AM. In AM, 5-HT (10−5M) induced a rise in intracellular calcium concentration ([Ca2+]i) that was initiated by release of Ca2+from intracellular stores and depended on extracellular Ca2+in a sustained phase. This 5-HT-induced increase in [Ca2+]iwas not observed in AM treated with the 5-HT2C-selective inhibitor RS-102221 and in AM derived from 5-HT2C-deficient mice. AM stimulated with 5-HT (10−5M) showed increased expression of CCL2 (MCP-1) mRNA as assayed by qPCR at 4 h and augmented production of CCL2 protein as determined by dot-blot assay and ELISA at 24 h. Notably, in 5-HT2C-deficient AM, CCL2 production was not induced by 5-HT treatment. Moreover, transcriptional responses to 5-HT exposure assayed by microarray experiments were only observed in AM from wild-type animals and not in AM derived from 5-HT2C-deficient mice. Taken together, these data demonstrate the presence of functional 5-HT2Creceptors on AM and suggest a role of 5-HT as novel modulator of AM function. These effects are exclusively driven by the 5-HT2Creceptor, thereby providing the potential for selective intervention.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Wilhelm
- Department of Pathology, Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Giessen, Germany; and
| | - Laurence H. Tecott
- Department of Psychiatry, University of California, San Francisco, California
| | | | | |
Collapse
|
38
|
Lines JL, Hoskins S, Hollifield M, Cauley LS, Garvy BA. The migration of T cells in response to influenza virus is altered in neonatal mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:2980-8. [PMID: 20656925 DOI: 10.4049/jimmunol.0903075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Influenza virus is a significant cause of mortality and morbidity in children; however, little is known about the T cell response in infant lungs. Neonatal mice are highly vulnerable to influenza and only control very low doses of virus. We compared the T cell response to influenza virus infection between mice infected as adults or at 2 d old and observed defective migration into the lungs of the neonatal mice. In the adult mice, the numbers of T cells in the lung interstitia peaked at 10 d postinfection, whereas neonatal T cell infiltration, activation, and expression of TNF-alpha was delayed until 2 wk postinfection. Although T cell numbers ultimately reached adult levels in the interstitia, they were not detected in the alveoli of neonatal lungs. Instead, the alveoli contained eosinophils and neutrophils. This altered infiltrate was consistent with reduced or delayed expression of type 1 cytokines in the neonatal lung and differential chemokine expression. In influenza-infected neonates, CXCL2, CCL5, and CCL3 were expressed at adult levels, whereas the chemokines CXCL1, CXCL9, and CCL2 remained at baseline levels, and CCL11 was highly elevated. Intranasal administration of CCL2, IFN-gamma, or CXCL9 was unable to draw the neonatal T cells into the airways. Together, these data suggest that the T cell response to influenza virus is qualitatively different in neonatal mice and may contribute to an increased morbidity.
Collapse
Affiliation(s)
- J Louise Lines
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
39
|
Horvat JC, Starkey MR, Kim RY, Beagley KW, Preston JA, Gibson PG, Foster PS, Hansbro PM. Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease. THE JOURNAL OF IMMUNOLOGY 2010; 184:4159-69. [PMID: 20228193 DOI: 10.4049/jimmunol.0902287] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutrophilic asthma is a prevalent, yet recently described phenotype of asthma. It is characterized by neutrophilic rather than eosinophilic airway inflammation and airways hyperresponsiveness (AHR) and may have an infectious origin. Chlamydial respiratory infections are associated with asthma, but how these Th1-inducing bacteria influence Th2-mediated asthma remains unknown. The effects of chlamydial infection on the development of asthma were investigated using a BALB/c mouse model of OVA-induced allergic airways disease (AAD). The effects of current and resolved Chlamydia muridarum infection during OVA sensitization on AAD were assessed and compared with uninfected and nonsensitized controls. Current, but not resolved, infection attenuated hallmark features of AAD: pulmonary eosinophil influx, T cell production of IL-5, mucus-secreting cell hyperplasia, and AHR. Current infection also induced robust OVA-driven neutrophilic inflammation and IFN-gamma release from T cells. The phenotype of suppressed but persistent Th2 responses in association with enhanced neutrophilia is reminiscent of neutrophilic asthma. This phenotype was also characterized by increased pulmonary IL-12 and IL-17 expression and activation of APCs, as well as by reduced thymus- and activation-regulated chemokine. Inhibition of pulmonary neutrophil influx during infection blocked OVA-induced neutrophilic inflammation and T cell IFN-gamma production and reversed the suppressive effects on mucus-secreting cell hyperplasia and AHR during AAD. These changes correlated with decreased IL-12 and IL-17 expression, increased thymus- and activation-regulated chemokine and altered APC activation. Blocking IFN-gamma and IL-17 during OVA challenge had no effect. Thus, active chlamydial respiratory infection during sensitization enhances subsequent neutrophilic inflammation and Th1/Th17 responses during allergen exposure and may have a role in the pathogenesis of neutrophilic asthma.
Collapse
Affiliation(s)
- Jay C Horvat
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vlahos R, Bozinovski S, Chan SPJ, Ivanov S, Lindén A, Hamilton JA, Anderson GP. Neutralizing granulocyte/macrophage colony-stimulating factor inhibits cigarette smoke-induced lung inflammation. Am J Respir Crit Care Med 2010; 182:34-40. [PMID: 20203243 DOI: 10.1164/rccm.200912-1794oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Cigarette smoke is the major cause of chronic obstructive pulmonary disease (COPD), and there is currently no satisfactory therapy to treat people with COPD. We have previously shown that granulocyte/macrophage colony-stimulating factor (GM-CSF) regulates lung innate immunity to LPS through Akt/Erk activation of nuclear factor-kappaB and activator protein (AP)-1. OBJECTIVES The aim of this study was to determine whether neutralization of GM-CSF can inhibit cigarette smoke-induced lung inflammation in vivo. METHODS Male BALB/c mice were exposed to cigarette smoke generated from 9 cigarettes per day for 4 days. Mice were treated intranasally with 100 microg 22E9 (anti-GM-CSF mAb) and isotype control antibody on Days 2 and 4, 1 hour before cigarette smoke or sham exposure. On the fifth day mice were killed, and the lungs were lavaged with PBS and then harvested for genomic and proteomic analysis. MEASUREMENTS AND MAIN RESULTS Cigarette smoke-exposed mice treated with anti-GM-CSF mAb had significantly less BALF macrophages and neutrophils, whole lung TNF-alpha, macrophage inflammatory protein (MIP)-2, and matrix metalloproteinase (MMP)-12 mRNA expression and lost less weight compared with smoke-exposed mice treated with isotype control. In contrast, smoke-induced increases in MMP-9 and net gelatinase activity were unaffected by treatment with anti-GM-CSF. In addition, neutralization of GM-CSF did not affect the phagocytic function of alveolar macrophages. CONCLUSIONS GM-CSF is a key mediator in smoke-induced airways inflammation, and its neutralization may have therapeutic implications in diseases such as COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- Department of Pharmacology, The University of Melbourne, VIC 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Curry JM, Hanke ML, Piper MG, Bailey MT, Bringardner BD, Sheridan JF, Marsh CB. Social disruption induces lung inflammation. Brain Behav Immun 2010; 24:394-402. [PMID: 19903521 PMCID: PMC2826531 DOI: 10.1016/j.bbi.2009.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/30/2009] [Accepted: 10/31/2009] [Indexed: 01/11/2023] Open
Abstract
Social disruption (SDR) is a well-characterized mouse stressor that causes changes in immune cell reactivity in response to inflammatory stimuli. In this study, we found that SDR in the absence of an immune challenge induced pulmonary inflammation and increased pulmonary myeloperoxidase activity. The percentage of neutrophils within the lungs increased 2-fold after social disruption. Monocyte accumulation in the lungs was also significantly increased. In addition, SDR increased the percentage of neutrophils that expressed CD11b, indicating that more neutrophils were in an activated state. In the lungs, we observed an increased level of the inflammatory cytokine, IL-1beta, as well as higher levels of KC/CXCL1, MIP-2/CXCL2, and MCP-1/CCL2, which are chemokines responsible for neutrophil and monocyte recruitment. Furthermore, social disruption led to increased lung expression of the adhesion molecules P-selectin, E-selectin, and ICAM-1, which localize and recruit immune cells. These data support previous findings of an inflammatory environment induced by SDR. We demonstrate that this effect also occurs in the pulmonary milieu and in the absence of an inflammatory stimulus.
Collapse
Affiliation(s)
- Jennifer M. Curry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA,The Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA
| | - Mark L. Hanke
- The Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA,Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,The Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Melissa G. Piper
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael T. Bailey
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,The Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John F. Sheridan
- The Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA,Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,The Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA,The Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA,Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,Address correspondence to: Clay B. Marsh, 260 Meiling Hall, 370 West 9th Ave., Columbus, OH 43210, PH: 614-293-9309, FAX: 614-292-4499,
| |
Collapse
|
42
|
Wilson AA, Murphy GJ, Hamakawa H, Kwok LW, Srinivasan S, Hovav AH, Mulligan RC, Amar S, Suki B, Kotton DN. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J Clin Invest 2009; 120:379-89. [PMID: 20038801 DOI: 10.1172/jci36666] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/28/2009] [Indexed: 11/17/2022] Open
Abstract
Directed gene transfer into specific cell lineages in vivo is an attractive approach for both modulating gene expression and correcting inherited mutations such as emphysema caused by human alpha1 antitrypsin (hAAT) deficiency. However, somatic tissues are mainly comprised of heterogeneous, differentiated cell lineages that can be short lived and difficult to specifically transfect. Here, we describe an intratracheally instilled lentiviral system able to deliver genes selectively to as many as 70% of alveolar macrophages (AMs) in the mouse lung. Following a single in vivo lentiviral transduction, genetically tagged AMs persisted in lung alveoli and expressed transferred genes for the lifetime of the adult mouse. A prolonged macrophage lifespan, rather than precursor cell proliferation, accounted for the surprisingly sustained presence of transduced AMs. We utilized this long-lived population to achieve localized secretion of therapeutic levels of hAAT protein in lung epithelial lining fluid. In an established mouse model of emphysema, lentivirally delivered hAAT ameliorated the progression of emphysema, as evidenced by attenuation of increased lung compliance and alveolar size. After 24 weeks of sustained gene expression, no humoral or cellular immune responses to hAAT protein were detected. Our results challenge the dogma that AMs are short lived and suggest that these differentiated cells may be a possible target cell population for in vivo gene therapy applications, including the sustained correction of hAAT deficiency.
Collapse
Affiliation(s)
- Andrew A Wilson
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Herseth JI, Refsnes M, Låg M, Schwarze PE. Role of IL-1β and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures. Toxicol In Vitro 2009; 23:1342-53. [DOI: 10.1016/j.tiv.2009.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 06/18/2009] [Accepted: 06/30/2009] [Indexed: 01/02/2023]
|
44
|
Tario JD, Gray BD, Wallace SS, Muirhead KA, Ohlsson-Wilhelm BM, Wallace PK. Novel Lipophilic Tracking Dyes for Monitoring Cell Proliferation. Immunol Invest 2009; 36:861-85. [DOI: 10.1080/08820130701712933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 2009; 119:1899-909. [PMID: 19509469 PMCID: PMC2701860 DOI: 10.1172/jci36731] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 04/10/2009] [Indexed: 01/12/2023] Open
Abstract
Microbial colonization of mucosal surfaces may be an initial event in the progression to disease, and it is often a transient process. For the extracellular pathogen Streptococcus pneumoniae studied in a mouse model, nasopharyngeal carriage is eliminated over a period of weeks and requires cellular rather than humoral immunity. Here, we demonstrate that primary infection led to TLR2-dependent recruitment of monocyte/macrophages into the upper airway lumen, where they engulfed pneumococci. Pharmacologic depletion of luminal monocyte/macrophages by intranasal instillation of liposomal clodronate diminished pneumococcal clearance. Efficient clearance of colonization required TLR2 signaling to generate a population of pneumococcal-specific IL-17-expressing CD4+ T cells. Depletion of either IL-17A or CD4+ T cells was sufficient to block the recruitment of monocyte/macrophages that allowed for effective late pneumococcal clearance. In contrast with naive mice, previously colonized mice showed enhanced early clearance that correlated with a more robust influx of luminal neutrophils. As for primary colonization, these cellular responses required Th17 immunity. Our findings demonstrate that monocyte/macrophages and neutrophils recruited to the mucosal surface are key effectors in clearing primary and secondary bacterial colonization, respectively.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | |
Collapse
|
46
|
Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K. IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A 2009; 106:8032-7. [PMID: 19380717 PMCID: PMC2683100 DOI: 10.1073/pnas.0810420106] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain, a highly debilitating pain condition that commonly occurs after nerve damage, is a reflection of the aberrant excitability of dorsal horn neurons. This pathologically altered neurotransmission requires a communication with spinal microglia activated by nerve injury. However, how normal resting microglia become activated remains unknown. Here we show that in naive animals spinal microglia express a receptor for the cytokine IFN-gamma (IFN-gammaR) in a cell-type-specific manner and that stimulating this receptor converts microglia into activated cells and produces a long-lasting pain hypersensitivity evoked by innocuous stimuli (tactile allodynia, a hallmark symptom of neuropathic pain). Conversely, ablating IFN-gammaR severely impairs nerve injury-evoked microglia activation and tactile allodynia without affecting microglia in the contralateral dorsal horn or basal pain sensitivity. We also find that IFN-gamma-stimulated spinal microglia show up-regulation of Lyn tyrosine kinase and purinergic P2X(4) receptor, crucial events for neuropathic pain, and genetic approaches provide evidence linking these events to IFN-gammaR-dependent microglial and behavioral alterations. These results suggest that IFN-gammaR is a key element in the molecular machinery through which resting spinal microglia transform into an activated state that drives neuropathic pain.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Junko Kitano
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hiroshi Shimoyama
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
47
|
Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. ACTA ACUST UNITED AC 2009; Chapter 14:14.1.1-14.1.14. [PMID: 19016445 DOI: 10.1002/0471142735.im1401s83] [Citation(s) in RCA: 978] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Macrophages are mononuclear phagocytes that are widely distributed throughout the body. These cells can contribute to development and homeostasis and participate in innate and adaptive immune responses. The physiology of macrophages can vary tremendously depending on the environment in which they reside and the local stimuli to which they are exposed. Macrophages are prodigious secretory cells, and in that role can promote and regulate immune responses and contribute to autoimmune pathologies. Macrophages are highly phagocytic, and in this capacity have long been considered to be essential immune effector cells. The important roles of macrophages in maintaining homeostasis and in contributing to tissue remodeling and wound healing is sometimes overlooked because of their vital role in host defense.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | | | | |
Collapse
|
48
|
Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 2009; 113:5588-98. [PMID: 19182206 DOI: 10.1182/blood-2008-08-170837] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell surface-associated proteolysis plays a crucial role in the migration of mononuclear phagocytes to sites of inflammation. The glycolytic enzyme enolase-1 (ENO-1) binds plasminogen at the cell surface, enhancing local plasmin production. This study addressed the role played by ENO-1 in lipopolysaccharide (LPS)-driven chemokine-directed monocyte migration and matrix invasion in vitro, as well as recruitment of monocytes to the alveolar compartment in vivo. LPS rapidly up-regulated ENO-1 cell-surface expression on human blood monocytes and U937 cells due to protein translocation from cytosolic pools, which increased plasmin generation, enhanced monocyte migration through epithelial monolayers, and promoted matrix degradation. These effects were abrogated by antibodies directed against the plasminogen binding site of ENO-1. Overexpression of ENO-1 in U937 cells increased their migratory and matrix-penetrating capacity, which was suppressed by overexpression of a truncated ENO-1 variant lacking the plasminogen binding site (ENO-1DeltaPLG). In vivo, intratracheal LPS application in mice promoted alveolar recruitment of monocytic cells that overexpressed ENO-1, but not of cells overexpressing ENO-1DeltaPLG. Consistent with these data, pneumonia-patients exhibited increased ENO-1 cell-surface expression on blood monocytes and intense ENO-1 staining of mononuclear cells in the alveolar space. These data suggest an important mechanism of inflammatory cell invasion mediated by increased cell-surface expression of ENO-1.
Collapse
|
49
|
Zasłona Z, Wilhelm J, Cakarova L, Marsh LM, Seeger W, Lohmeyer J, von Wulffen W. Transcriptome profiling of primary murine monocytes, lung macrophages and lung dendritic cells reveals a distinct expression of genes involved in cell trafficking. Respir Res 2009; 10:2. [PMID: 19149869 PMCID: PMC2639356 DOI: 10.1186/1465-9921-10-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 01/16/2009] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral blood monocytes (PBMo) originate from the bone marrow, circulate in the blood and emigrate into various organs where they differentiate into tissue resident cellular phenotypes of the mononuclear phagocyte system, including macrophages (Mϕ) and dendritic cells (DC). Like in other organs, this emigration and differentiation process is essential to replenish the mononuclear phagocyte pool in the lung under both inflammatory and non-inflammatory steady-state conditions. While many studies have addressed inflammation-driven monocyte trafficking to the lung, the emigration and pulmonary differentiation of PBMo under non-inflammatory conditions is much less understood. Methods In order to assess the transcriptional profile of circulating and lung resident mononuclear phagocyte phenotypes, PBMo, lung Mϕ and lung DC from naïve mice were flow-sorted to high purity, and their gene expression was compared by DNA microarrays on a genome-wide scale. Differential regulation of selected genes was validated by quantitative PCR and on protein level by flow cytometry. Results Differentially-expressed genes related to cell traffic were selected and grouped into the clusters (i) matrix metallopeptidases, (ii) chemokines/chemokine receptors, and (iii) integrins. Expression profiles of clustered genes were further assessed at the mRNA and protein levels in subsets of circulating PBMo (GR1- vs GR1+) and lung resident macrophages (alveolar vs interstitial Mϕ). Our data identify differentially activated genetic programs in circulating monocytes and their lung descendents. Lung DC activate an extremely diverse set of gene families but largely preserve a mobile cell profile with high expression levels of integrin and chemokine/chemokine receptors. In contrast, interstitial and even more pronounced alveolar Mϕ, stepwise downregulate gene expression of these traffic relevant communication molecules, but strongly upregulate a distinct set of matrix metallopetidases potentially involved in tissue invasion and remodeling. Conclusion Our data provide new insight in the changes of the genetic profiles of PBMo and their lung descendents, namely DC and Mϕ under non-inflammatory, steady-state conditions. These findings will help to better understand the complex relations within the mononuclear phagocyte pool of the lung.
Collapse
Affiliation(s)
- Zbigniew Zasłona
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Giessen Lung Center, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Winkler AR, Nocka KH, Sulahian TH, Kobzik L, Williams CMM. In vitro modeling of human alveolar macrophage smoke exposure: enhanced inflammation and impaired function. Exp Lung Res 2009; 34:599-629. [PMID: 19005923 DOI: 10.1080/01902140802366261] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pulmonary macrophages (MØs) are essential for clearance of inhaled particles, innate immunity, and lung tissue maintenance. However, the products of activated MØs have also been implicated in inflammation and tissue destruction, including in chronic obstructive pulmonary disease (COPD). Primary human alveolar macrophages (AMs) are available in limited numbers via bronchoalveolar lavage (BAL) or sputum induction, and BAL macrophages are not commonly available to all researchers. A readily available, plentiful, but representative surrogate for AMs would advance understanding of the contribution of macrophages to lung pathophysiology. Herein the authors describe a method for the in vitro derivation of AM-like cells using primary human peripheral blood monocytes differentiated in suspension with granulocyte-macrophage colony-stimulating factor (GM-CSF). The method produces a cell population with a consistent and stable phenotype. Flow cytometry reveals that GM-CSF-derived macrophages (GM-MØs) express lineage markers, immunoglobulin gamma (Fc gamma) receptors, adhesion molecules, antigen presentation coreceptors, and scavenger receptors akin to AMs. Functionally, cigarette smoke activates extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinase, enhances interleukin 8 (IL8) production from GM-MØs and inhibits phagocytosis, phenotypes previously described for smokers' AMs. Global transcriptional profiling revealed significant overlap in regulated genes between smokers' AMs and GM-MØs treated with cigarette smoke preparations in vitro.
Collapse
|