1
|
Sánchez-Sanz A, Coronado-Albi MJ, Muñoz-Viana R, García-Merino A, Sánchez-López AJ. Neuroprotective and Anti-Inflammatory Effects of Dimethyl Fumarate, Monomethyl Fumarate, and Cannabidiol in Neurons and Microglia. Int J Mol Sci 2024; 25:13082. [PMID: 39684792 DOI: 10.3390/ijms252313082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Dimethyl fumarate (DMF) is an immunomodulatory treatment for multiple sclerosis (MS) that can cross the blood-brain barrier, presenting neuroprotective potential. Its mechanism of action is not fully understood, and there is a need to characterize whether DMF or its bioactive metabolite monomethyl fumarate (MMF) exerts neuroprotective properties. Moreover, the combination of adjuvant agents such as cannabidiol (CBD) could be relevant to enhance neuroprotection. The aim of this study was to compare the neuroprotective and immunomodulatory effects of DMF, MMF, and CBD in neurons and microglia in vitro. We found that DMF and CBD, but not MMF, activated the Nrf2 antioxidant pathway in neurons. Similarly, only DMF and CBD, but not MMF, prevented the LPS-induced activation of the inflammatory pathway NF-kB in microglia. Additionally, the three drugs inhibited the production of nitric oxide in microglia and protected neurons against apoptosis. Transcriptomically, DMF modulated a greater number of inflammatory and Nrf2-related genes compared to MMF and CBD in both neurons and microglia. Our results show that DMF and MMF, despite being structurally related, present differences in their mechanisms of action that could be relevant for the achievement of neuroprotection in MS patients. Additionally, CBD shows potential as a neuroprotective agent.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
| | - María José Coronado-Albi
- Confocal Microscopy Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
| | - Rafael Muñoz-Viana
- Bioinformatics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), 08028 Barcelona, Spain
| | - Antonio J Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), 08028 Barcelona, Spain
- Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
| |
Collapse
|
2
|
Tufail A, Akkad S, Noble AR, Fascione MA, Signoret N. New insight into a simple high-yielding method for the production of fully folded and functional recombinant human CCL5. Sci Rep 2024; 14:24188. [PMID: 39406925 PMCID: PMC11480376 DOI: 10.1038/s41598-024-75327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Chemokines are proteins important for a range of biological processes from cell-directed migration (chemotaxis) to cell activation and differentiation. Chemokine C-C ligand 5 (CCL5) is an important pro-inflammatory chemokine attracting immune cells towards inflammatory sites through interaction with its receptors CCR1/3/5. Recombinant production of large quantities of CCL5 in Escherichia coli is challenging due to formation of inclusion bodies which necessitates refolding, often leading to low recovery of biologically active protein. To combat this, we have developed a method for CCL5 production that utilises the purification of SUMO tagged CCL5 from E. coli SHuffle cells avoiding the need to reform disulfide bonds through inclusion body purification and yields high quantities of CCL5 (~ 25 mg/L). We demonstrated that the CCL5 produced was fully functional by assessing well-established cellular changes triggered by CCL5 binding to CCR5, including receptor phosphorylation and internalisation, intracellular signalling leading to calcium flux, as well as cell migration. Overall, we demonstrate that the use of solubility tags, SHuffle cells and low pH dialysis constitutes an approach that increases purification yields of active CCL5 with low endotoxin contamination for biological studies.
Collapse
Affiliation(s)
- Afzaal Tufail
- Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Saeed Akkad
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Amanda R Noble
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | |
Collapse
|
3
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
4
|
Hall TJ, McHugo GP, Mullen MP, Ward JA, Killick KE, Browne JA, Gordon SV, MacHugh DE. Integrative and comparative genomic analyses of mammalian macrophage responses to intracellular mycobacterial pathogens. Tuberculosis (Edinb) 2024; 147:102453. [PMID: 38071177 DOI: 10.1016/j.tube.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 06/14/2024]
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.
Collapse
Affiliation(s)
- Thomas J Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Michael P Mullen
- Bioscience Research Institute, Technological University of the Shannon, Athlone, Westmeath, N37 HD68, Ireland
| | - James A Ward
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Cardona F, Pérez-Tur J. Special Issue "Molecular and Genetic Aspects of SARS-CoV-2 Infection and COVID-19 Disease". Int J Mol Sci 2024; 25:4670. [PMID: 38731889 PMCID: PMC11083453 DOI: 10.3390/ijms25094670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
We are pleased to present the first and second editions of this Special Issue, titled "Molecular and Genetic Aspects of SARS-CoV-2 Infection and COVID-19 Disease", of the International Journal of Molecular Sciences [...].
Collapse
Affiliation(s)
- Fernando Cardona
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Jaume Roig 11, 46010 València, Spain
- CIBERNED, ISCIII, 46010 València, Spain
| | - Jordi Pérez-Tur
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Jaume Roig 11, 46010 València, Spain
- CIBERNED, ISCIII, 46010 València, Spain
| |
Collapse
|
6
|
Wei S, Xu T, Sang N, Yue H, Chen Y, Jiang T, Jiang T, Yin D. Mixed Metal Components in PM 2.5 Contribute to Chemokine Receptor CCR5-Mediated Neuroinflammation and Neuropathological Changes in the Mouse Olfactory Bulb. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4914-4925. [PMID: 38436231 DOI: 10.1021/acs.est.3c08506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aβ deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Postdoctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Sensory Neuro-Ethology Team, 59 Bd Pinel, Bron 69500, France
| | - Tingwang Jiang
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| |
Collapse
|
7
|
Cao X, Lai SWT, Chen S, Wang S, Feng M. Targeting tumor-associated macrophages for cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:61-108. [PMID: 35636930 DOI: 10.1016/bs.ircmb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant immune components in the tumor microenvironment and play a plethora of roles in regulating tumorigenesis. Therefore, the therapeutic targeting of TAMs has emerged as a new paradigm for immunotherapy of cancer. Herein, the review summarizes the origin, polarization, and function of TAMs in the progression of malignant diseases. The understanding of such knowledge leads to several distinct therapeutic strategies to manipulate TAMs to battle cancer, which include those to reduce TAM abundance, such as depleting TAMs or inhibiting their recruitment and differentiation, and those to harness or boost the anti-tumor activities of TAMs such as blocking phagocytosis checkpoints, inducing antibody-dependent cellular phagocytosis, and reprogramming TAM polarization. In addition, modulation of TAMs may reshape the tumor microenvironment and therefore synergize with other cancer therapeutics. Therefore, the rational combination of TAM-targeting therapeutics with conventional therapies including radiotherapy, chemotherapy, and other immunotherapies is also reviewed. Overall, targeting TAMs presents itself as a promising strategy to add to the growing repertoire of treatment approaches in the fight against cancer, and it is hopeful that these approaches currently being pioneered will serve to vastly improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| | - Seigmund W T Lai
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sadira Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| |
Collapse
|
8
|
Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, Wigdahl B. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol 2022; 12:816515. [PMID: 35126374 PMCID: PMC8811197 DOI: 10.3389/fimmu.2021.816515] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Globally, human immunodeficiency virus type 1 (HIV-1) infection is a major health burden for which successful therapeutic options are still being investigated. Challenges facing current drugs that are part of the established life-long antiretroviral therapy (ART) include toxicity, development of drug resistant HIV-1 strains, the cost of treatment, and the inability to eradicate the provirus from infected cells. For these reasons, novel anti-HIV-1 therapeutics that can prevent or eliminate disease progression including the onset of the acquired immunodeficiency syndrome (AIDS) are needed. While development of HIV-1 vaccination has also been challenging, recent advancements demonstrate that infection of HIV-1-susceptible cells can be prevented in individuals living with HIV-1, by targeting C-C chemokine receptor type 5 (CCR5). CCR5 serves many functions in the human immune response and is a co-receptor utilized by HIV-1 for entry into immune cells. Therapeutics targeting CCR5 generally involve gene editing techniques including CRISPR, CCR5 blockade using antibodies or antagonists, or combinations of both. Here we review the efficacy of these approaches and discuss the potential of their use in the clinic as novel ART-independent therapies for HIV-1 infection.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore Gurrola
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mackenzie Collins
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Brian Wigdahl,
| |
Collapse
|
9
|
Ahmed D, Humphrey A, Roy D, Sheridan ME, Versey Z, Jaworski A, Edwards A, Donner J, Abizaid A, Willmore W, Kumar A, Golshani A, Cassol E. HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow-Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. THE JOURNAL OF IMMUNOLOGY 2021; 207:2813-2827. [PMID: 34740958 DOI: 10.4049/jimmunol.2001282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is an important regulator of glucose metabolism and inflammatory cytokine production in innate immune responses. Viruses modulate HIF-1α to support viral replication and the survival of infected cells, but it is unclear if this transcription factor also plays an important role in regulating antiviral immune responses. In this study, we found that short and long dsRNA differentially engage TLR3, inducing distinct levels of proinflammatory cytokine production (TNF-α and IL-6) in bone marrow-derived macrophages from C57BL/6 mice. These responses are associated with differential accumulation of HIF-1α, which augments NF-κB activation. Unlike TLR4 responses, increased HIF-1α following TLR3 engagement is not associated with significant alterations in glycolytic activity and was more pronounced in low glucose conditions. We also show that the mechanisms supporting HIF-1α stabilization may differ following stimulation with short versus long dsRNA and that pyruvate kinase M2 and mitochondrial reactive oxygen species play a central role in these processes. Collectively, this work suggests that HIF-1α may fine-tune proinflammatory cytokine production during early antiviral immune responses, particularly when there is limited glucose availability or under other conditions of stress. Our findings also suggest we may be able to regulate the magnitude of proinflammatory cytokine production during antiviral responses by targeting proteins or molecules that contribute to HIF-1α stabilization.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allan Humphrey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Apoptosis Research Centre, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alex Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - James Donner
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - William Willmore
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada;
| |
Collapse
|
10
|
Molecular Pathogenesis and Immune Evasion of Vesicular Stomatitis New Jersey Virus Inferred from Genes Expression Changes in Infected Porcine Macrophages. Pathogens 2021; 10:pathogens10091134. [PMID: 34578166 PMCID: PMC8469936 DOI: 10.3390/pathogens10091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms associated with the pathogenesis of vesicular stomatitis virus (VSV) in livestock remain poorly understood. Several studies have highlighted the relevant role of macrophages in controlling the systemic dissemination of VSV during infection in different animal models, including mice, cattle, and pigs. To gain more insight into the molecular mechanisms used by VSV to impair the immune response in macrophages, we used microarrays to determine the transcriptomic changes produced by VSV infection in primary cultures of porcine macrophages. The results indicated that VSV infection induced the massive expression of multiple anorexic, pyrogenic, proinflammatory, and immunosuppressive genes. Overall, the interferon (IFN) response appeared to be suppressed, leading to the absence of stimulation of interferon-stimulated genes (ISG). Interestingly, VSV infection promoted the expression of several genes known to downregulate the expression of IFNβ. This represents an alternate mechanism for VSV control of the IFN response, beyond the recognized mechanisms mediated by the matrix protein. Although there was no significant differential gene expression in macrophages infected with a highly virulent epidemic strain compared to a less virulent endemic strain, the endemic strain consistently induced higher expression of all upregulated cytokines and chemokines. Collectively, this study provides novel insights into VSV molecular pathogenesis and immune evasion that warrant further investigation.
Collapse
|
11
|
Nouailles G, Wyler E, Pennitz P, Postmus D, Vladimirova D, Kazmierski J, Pott F, Dietert K, Muelleder M, Farztdinov V, Obermayer B, Wienhold SM, Andreotti S, Hoefler T, Sawitzki B, Drosten C, Sander LE, Suttorp N, Ralser M, Beule D, Gruber AD, Goffinet C, Landthaler M, Trimpert J, Witzenrath M. Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19. Nat Commun 2021; 12:4869. [PMID: 34381043 PMCID: PMC8357947 DOI: 10.1038/s41467-021-25030-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies.
Collapse
Affiliation(s)
- Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany
| | - Dylan Postmus
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | | | - Julia Kazmierski
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Fabian Pott
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Kristina Dietert
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Michael Muelleder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Vadim Farztdinov
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Sandra-Maria Wienhold
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany
| | - Sandro Andreotti
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Thomas Hoefler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Leif E Sander
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Norbert Suttorp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Christine Goffinet
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany.
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany.
- German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
12
|
Li J, Kim SY, Lainez NM, Coss D, Nair MG. Macrophage-Regulatory T Cell Interactions Promote Type 2 Immune Homeostasis Through Resistin-Like Molecule α. Front Immunol 2021; 12:710406. [PMID: 34349768 PMCID: PMC8327085 DOI: 10.3389/fimmu.2021.710406] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
RELMα is a small, secreted protein expressed by type 2 cytokine-activated “M2” macrophages in helminth infection and allergy. At steady state and in response to type 2 cytokines, RELMα is highly expressed by peritoneal macrophages, however, its function in the serosal cavity is unclear. In this study, we generated RELMα TdTomato (Td) reporter/knockout (RαTd) mice and investigated RELMα function in IL-4 complex (IL-4c)-induced peritoneal inflammation. We first validated the RELMαTd/Td transgenic mice and showed that IL-4c injection led to the significant expansion of large peritoneal macrophages that expressed Td but not RELMα protein, while RELMα+/+ mice expressed RELMα and not Td. Functionally, RELMαTd/Td mice had increased IL-4 induced peritoneal macrophage responses and splenomegaly compared to RELMα+/+ mice. Gene expression analysis indicated that RELMαTd/Td peritoneal macrophages were more proliferative and activated than RELMα+/+ macrophages, with increased genes associated with T cell responses, growth factor and cytokine signaling, but decreased genes associated with differentiation and maintenance of myeloid cells. We tested the hypothesis that RαTd/Td macrophages drive aberrant T cell activation using peritoneal macrophage and T cell co-culture. There were no differences in CD4+ T cell effector responses when co-cultured with RELMα+/+ or RELMαTd/Td macrophages, however, RELMαTd/Td macrophages were impaired in their ability to sustain proliferation of FoxP3+ regulatory T cells (Treg). Supportive of the in vitro results, immunofluorescent staining of the spleens revealed significantly decreased FoxP3+ cells in the RELMαTd/Td spleens compared to RELMα+/+ spleens. Taken together, these studies identify a new RELMα regulatory pathway whereby RELMα-expressing macrophages directly sustain Treg proliferation to limit type 2 inflammatory responses.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
Cantalupo S, Lasorsa VA, Russo R, Andolfo I, D’Alterio G, Rosato BE, Frisso G, Abete P, Cassese GM, Servillo G, Gentile I, Piscopo C, Della Monica M, Fiorentino G, Russo G, Cerino P, Buonerba C, Pierri B, Zollo M, Iolascon A, Capasso M. Regulatory Noncoding and Predicted Pathogenic Coding Variants of CCR5 Predispose to Severe COVID-19. Int J Mol Sci 2021; 22:5372. [PMID: 34065289 PMCID: PMC8161088 DOI: 10.3390/ijms22105372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) found locus 3p21.31 associated with severe COVID-19. CCR5 resides at the same locus and, given its known biological role in other infection diseases, we investigated if common noncoding and rare coding variants, affecting CCR5, can predispose to severe COVID-19. We combined single nucleotide polymorphisms (SNPs) that met the suggestive significance level (P ≤ 1 × 10-5) at the 3p21.31 locus in public GWAS datasets (6406 COVID-19 hospitalized patients and 902,088 controls) with gene expression data from 208 lung tissues, Hi-C, and Chip-seq data. Through whole exome sequencing (WES), we explored rare coding variants in 147 severe COVID-19 patients. We identified three SNPs (rs9845542, rs12639314, and rs35951367) associated with severe COVID-19 whose risk alleles correlated with low CCR5 expression in lung tissues. The rs35951367 resided in a CTFC binding site that interacts with CCR5 gene in lung tissues and was confirmed to be associated with severe COVID-19 in two independent datasets. We also identified a rare coding variant (rs34418657) associated with the risk of developing severe COVID-19. Our results suggest a biological role of CCR5 in the progression of COVID-19 as common and rare genetic variants can increase the risk of developing severe COVID-19 by affecting the functions of CCR5.
Collapse
Affiliation(s)
- Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Vito Alessandro Lasorsa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | | | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Pasquale Abete
- COVID Hospital, P.O.S. Anna e SS. Madonna della Neve di Boscotrecase, Ospedali Riuniti Area Vesuviana, 80042 Boscotrecase, Italy; (P.A.); (G.M.C.)
| | - Gian Marco Cassese
- COVID Hospital, P.O.S. Anna e SS. Madonna della Neve di Boscotrecase, Ospedali Riuniti Area Vesuviana, 80042 Boscotrecase, Italy; (P.A.); (G.M.C.)
| | - Giuseppe Servillo
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, A.O.R.N. ‘Antonio Cardarelli’, 80131 Napoli, Italy; (C.P.); (M.D.M.)
| | - Matteo Della Monica
- Medical and Laboratory Genetics Unit, A.O.R.N. ‘Antonio Cardarelli’, 80131 Napoli, Italy; (C.P.); (M.D.M.)
| | | | - Giuseppe Russo
- Unità di Radiologia, Casa di Cura Villa dei Fiori, 80011 Acerra, Italy;
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (P.C.); (C.B.); (B.P.)
| | - Carlo Buonerba
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (P.C.); (C.B.); (B.P.)
| | - Biancamaria Pierri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (P.C.); (C.B.); (B.P.)
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università di Salerno, 84081 Baronissi, Italy
| | - Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Napoli, Italy; (S.C.); (V.A.L.); (R.R.); (I.A.); (B.E.R.); (G.F.); (M.Z.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| |
Collapse
|
14
|
Yosten GLC. AJP-Regulatory, Integrative and Comparative Physiology: Looking Toward the Future. Am J Physiol Regul Integr Comp Physiol 2020; 319:R82-R86. [DOI: 10.1152/ajpregu.00104.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Norton SE, Leman JKH, Khong T, Spencer A, Fazekas de St Groth B, McGuire HM, Kemp RA. Brick plots: an intuitive platform for visualizing multiparametric immunophenotyped cell clusters. BMC Bioinformatics 2020; 21:145. [PMID: 32293253 PMCID: PMC7158154 DOI: 10.1186/s12859-020-3469-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The advent of mass cytometry has dramatically increased the parameter limit for immunological analysis. New approaches to analysing high parameter cytometry data have been developed to ease analysis of these complex datasets. Many of these methods assign cells into population clusters based on protein expression similarity. RESULTS Here we introduce an additional method, termed Brick plots, to visualize these cluster phenotypes in a simplified and intuitive manner. The Brick plot method generates a two-dimensional barcode that displays the phenotype of each cluster in relation to the entire dataset. We show that Brick plots can be used to visualize complex mass cytometry data, both from fundamental research and clinical trials, as well as flow cytometry data. CONCLUSION Brick plots represent a new approach to visualize complex immunological data in an intuitive manner.
Collapse
Affiliation(s)
- Samuel E Norton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Julia K H Leman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, VIC, Australia
- Malignant Hematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, VIC, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, VIC, Australia
- Malignant Hematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, VIC, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, Australia
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, Australia.
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia.
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Tavares LP, Garcia CC, Gonçalves APF, Kraemer LR, Melo EM, Oliveira FMS, Freitas CS, Lopes GAO, Reis DC, Cassali GD, Machado AM, Mantovani A, Locati M, Teixeira MM, Russo RC. ACKR2 contributes to pulmonary dysfunction by shaping CCL5:CCR5-dependent recruitment of lymphocytes during influenza A infection in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L655-L670. [DOI: 10.1152/ajplung.00134.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation triggered by influenza A virus (IAV) infection is important for viral clearance, induction of adaptive responses, and return to lung homeostasis. However, an exaggerated immune response, characterized by the overproduction of chemokines, can lead to intense lung injury, contributing to mortality. Chemokine scavenger receptors, such as ACKR2, control the levels of CC chemokines influencing the immune responses. Among the chemokine targets of ACKR2, CCL5 is important to recruit and activate lymphocytes. We investigated the role of ACKR2 during IAV infection in mice. Pulmonary ACKR2 expression was increased acutely after IAV infection preceding the virus-induced lung dysfunction. ACKR2-knockout (ACKR2−/−) mice were protected from IAV, presenting decreased viral burden and lung dysfunction. Mechanistically, the absence of ACKR2 resulted in augmented airway CCL5 levels, secreted by mononuclear and plasma cells in the lung parenchyma. The higher chemokine gradient led to an augmented recruitment of T and B lymphocytes, formation of inducible bronchus-associated lymphoid tissue and production of IgA in the airways of ACKR2−/− mice post-IAV. CCL5 neutralization in ACKR2−/− mice prevented lymphocyte recruitment and increased bronchoalveolar lavage fluid protein levels and pulmonary dysfunction. Finally, CCR5−/− mice presented increased disease severity during IAV infection, displaying increased neutrophils, pulmonary injury and dysfunction, and accentuated lethality. Collectively, our data showed that ACKR2 dampens CCL5 levels and the consequent recruitment of CCR5+ T helper 1 (Th1), T regulatory cells (Tregs), and B lymphocytes during IAV infection, decreasing pathogen control and promoting lung dysfunction in wild type mice. Therefore, ACKR2 is detrimental and CCR5 is protective during IAV infection coordinating innate and adaptive immune responses in mice.
Collapse
Affiliation(s)
- Luciana P. Tavares
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C. Garcia
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula F. Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Lucas R. Kraemer
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza M. Melo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício M. S. Oliveira
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila S. Freitas
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel A. O. Lopes
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego C. Reis
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni D. Cassali
- Departamento de Patologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mauro M. Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C. Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Samson WK. Looking Back on Seven Years of Regulatory, Integrative and Comparative Physiology. Am J Physiol Regul Integr Comp Physiol 2020; 318:R565-R566. [PMID: 32048873 DOI: 10.1152/ajpregu.00017.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
Shaheen ZR, Stafford JD, Voss MG, Oleson BJ, Stancill JS, Corbett JA. The location of sensing determines the pancreatic β-cell response to the viral mimetic dsRNA. J Biol Chem 2020; 295:2385-2397. [PMID: 31915247 DOI: 10.1074/jbc.ra119.010267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
Viral infection is an environmental trigger that has been suggested to initiate pancreatic β-cell damage, leading to the development of autoimmune diabetes. Viruses potently activate the immune system and can damage β cells by either directly infecting them or stimulating the production of secondary effector molecules (such as proinflammatory cytokines) during bystander activation. However, how and where β cells recognize viruses is unclear, and the antiviral responses that are initiated following virus recognition are incompletely understood. In this study, we show that the β-cell response to dsRNA, a viral replication intermediate known to activate antiviral responses, is determined by the cellular location of sensing (intracellular versus extracellular) and differs from the cellular response to cytokine treatment. Using biochemical and immunological methods, we show that β cells selectively respond to intracellular dsRNA by expressing type I interferons (IFNs) and inducing apoptosis, but that they do not respond to extracellular dsRNA. These responses differ from the activities of cytokines on β cells, which are mediated by inducible nitric oxide synthase expression and β-cell production of nitric oxide. These findings provide evidence that the antiviral activities of type I IFN production and apoptosis are elicited in β cells via the recognition of intracellular viral replication intermediates and that β cells lack the capacity to respond to extracellular viral intermediates known to activate innate immune responses.
Collapse
Affiliation(s)
- Zachary R Shaheen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joshua D Stafford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael G Voss
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
19
|
Transcriptomic Analysis Reveals Priming of The Host Antiviral Interferon Signaling Pathway by Bronchobini ® Resulting in Balanced Immune Response to Rhinovirus Infection in Mouse Lung Tissue Slices. Int J Mol Sci 2019; 20:ijms20092242. [PMID: 31067687 PMCID: PMC6540047 DOI: 10.3390/ijms20092242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Rhinovirus (RV) is the predominant virus causing respiratory tract infections. Bronchobini® is a low dose multi component, multi target preparation used to treat inflammatory respiratory diseases such as the common cold, described to ease severity of symptoms such as cough and viscous mucus production. The aim of the study was to assess the efficacy of Bronchobini® in RV infection and to elucidate its mode of action. Therefore, Bronchobini®’s ingredients (BRO) were assessed in an ex vivo model of RV infection using mouse precision-cut lung slices, an organotypic tissue capable to reflect the host immune response to RV infection. Cytokine profiles were assessed using enzyme-linked immunosorbent assay (ELISA) and mesoscale discovery (MSD). Gene expression analysis was performed using Affymetrix microarrays and ingenuity pathway analysis. BRO treatment resulted in the significant suppression of RV-induced antiviral and pro-inflammatory cytokine release. Transcriptome analysis revealed a multifactorial mode of action of BRO, with a strong inhibition of the RV-induced pro-inflammatory and antiviral host response mediated by nuclear factor kappa B (NFkB) and interferon signaling pathways. Interestingly, this was due to priming of these pathways in the absence of virus. Overall, BRO exerted its beneficial anti-inflammatory effect by priming the antiviral host response resulting in a reduced inflammatory response to RV infection, thereby balancing an otherwise excessive inflammatory response.
Collapse
|