1
|
Rosario FJ, Urschitz J, Powell TL, Brown TL, Jansson T. Overexpression of the LAT1 in primary human trophoblast cells increases the uptake of essential amino acids and activates mTOR signaling. Clin Sci (Lond) 2023; 137:1651-1664. [PMID: 37861075 DOI: 10.1042/cs20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
The System L amino acid transporter, particularly the isoform Large Neutral Amino Acid Transporter Small Subunit 1 (LAT1) encoded by SLC7A5, is believed to mediate the transfer of essential amino acids in the human placenta. Placental System L amino acid transporter expression and activity is decreased in pregnancies complicated by IUGR and increased in fetal overgrowth. However, it remains unknown if changes in the expression of LAT1 are mechanistically linked to System L amino acid transport activity. Here, we combined overexpression approaches with protein analysis and functional studies in cultured primary human trophoblast (PHT) cells to test the hypothesis that SLC7A5 overexpression increases the uptake of essential amino acids and activates mTOR signaling in PHT cells. Overexpression of SLC7A5 resulted in a marked increase in protein expression of LAT1 in the PHT cells microvillous plasma membrane and System L amino acid transporter activity. Moreover, mTOR signaling was activated, and System A amino acid transporter activity increased following SLC7A5 overexpression, suggesting coordination of trophoblast amino transporter expression and activity to ensure balanced nutrient flux to the fetus. This is the first report showing that overexpression of LAT1 is sufficient to increase the uptake of essential amino acids in PHT cells, which activates mTOR, a master regulator of placental function. The decreased placental System L activity in human IUGR and the increased placental activity of this transporter system in some cases of fetal overgrowth may directly contribute to changes in fetal amino acid availability and altered fetal growth in these pregnancy complications.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, U.S.A
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, U.S.A
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, U.S.A
| | - Thomas L Brown
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH, U.S.A
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, U.S.A
| |
Collapse
|
2
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Reduction of In Vivo Placental Amino Acid Transport Precedes the Development of Intrauterine Growth Restriction in the Non-Human Primate. Nutrients 2021; 13:nu13082892. [PMID: 34445051 PMCID: PMC8401823 DOI: 10.3390/nu13082892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced placental amino acid transport (AAT). However, it remains to be established if changes in AAT contribute to restricted fetal growth. We hypothesized that reduced in vivo placental AAT precedes the development of IUGR in baboons with maternal nutrient restriction (MNR). Baboons were fed either a control (ad libitum) or MNR diet (70% of control diet) from gestational day (GD) 30. At GD 140, in vivo transplacental AA transport was measured by infusing nine (13)C- or (2)H-labeled essential amino acids (EAAs) as a bolus into the maternal circulation at cesarean section. A fetal vein-to-maternal artery mole percent excess ratio for each EAA was measured. Microvillous plasma membrane (MVM) system A and system L transport activity were determined. Fetal and placental weights were not significantly different between MNR and control. In vivo, the fetal vein-to-maternal artery mole percent excess ratio was significantly decreased for tryptophan in MNR. MVM system A and system L activity was markedly reduced in MNR. Reduction of in vivo placental amino acid transport precedes fetal growth restriction in the non-human primate, suggesting that reduced placental amino acid transfer may contribute to IUGR.
Collapse
|
4
|
Sex-dependent vulnerability of fetal nonhuman primate cardiac mitochondria to moderate maternal nutrient reduction. Clin Sci (Lond) 2021; 135:1103-1126. [PMID: 33899910 DOI: 10.1042/cs20201339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.
Collapse
|
5
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
6
|
Porter AC, Gumina DL, Armstrong M, Maclean KN, Reisdorph N, Galan HL, Stabler SP, Bailey BA, Hobbins JC, Hurt KJ. Maternal Amino Acid Profiles to Distinguish Constitutionally Small versus Growth-Restricted Fetuses Defined by Doppler Ultrasound: A Pilot Study. Am J Perinatol 2020; 37:1084-1093. [PMID: 32120425 DOI: 10.1055/s-0040-1701504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Fetuses measuring below the 10th percentile for gestational age may be either constitutionally small for gestational age (SGA) or have pathologic fetal growth restriction (FGR). FGR is associated with adverse outcomes; however, identification of low-risk SGA cases is difficult. We performed a pilot study evaluating maternal markers of pathologic FGR, hypothesizing there are distinct amino acid signatures that might be used for diagnosis and development of new interventions. STUDY DESIGN This was a cohort study of healthy women with sonographic fetal estimated fetal weight <5th percentile divided into two groups based upon umbilical artery (UmA) Doppler studies or uterine artery (UtA) Doppler studies. We collected maternal blood samples prior to delivery and used ion pair reverse phase liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry to assess 44 amino acids. RESULTS Among 14 women included, five had abnormal UmA, and three had abnormal UtA Doppler results. Those with abnormal UmA showed elevated ornithine. Those with abnormal UtA had lower dimethylglycine, isoleucine, methionine, phenylalanine, and 1-methylhistidine. CONCLUSION We found several amino acids that might identify pregnancies affected by pathologic FGR. These findings support the feasibility of future larger studies to identify maternal metabolic approaches to accurately stratify risk for small fetuses.
Collapse
Affiliation(s)
- Anne C Porter
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diane L Gumina
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth N Maclean
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Henry L Galan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sally P Stabler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Beth A Bailey
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John C Hobbins
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - K Joseph Hurt
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
Down-regulation of placental Cdc42 and Rac1 links mTORC2 inhibition to decreased trophoblast amino acid transport in human intrauterine growth restriction. Clin Sci (Lond) 2020; 134:53-70. [PMID: 31825077 DOI: 10.1042/cs20190794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk for perinatal complications and metabolic and cardiovascular disease later in life. The syncytiotrophoblast (ST) is the transporting epithelium of the human placenta, and decreased expression of amino acid transporter isoforms in the ST plasma membranes is believed to contribute to IUGR. Placental mechanistic target of rapamycin Complex 2 (mTORC2) signaling is inhibited in IUGR and regulates the trafficking of key amino acid transporter (AAT) isoforms to the ST plasma membrane; however, the molecular mechanisms are unknown. Cdc42 and Rac1 are Rho-GTPases that regulate actin-binding proteins, thereby modulating the structure and dynamics of the actin cytoskeleton. We hypothesized that inhibition of mTORC2 decreases AAT expression in the plasma membrane and amino acid uptake in primary human trophoblast (PHT) cells mediated by down-regulation of Cdc42 and Rac1. mTORC2, but not mTORC1, inhibition decreased the Cdc42 and Rac1 expression. Silencing of Cdc42 and Rac1 inhibited the activity of the System L and A transporters and markedly decreased the trafficking of LAT1 (System L isoform) and SNAT2 (System A isoform) to the plasma membrane. mTORC2 inhibition by silencing of rictor failed to decrease AAT following activation of Cdc42/Rac1. Placental Cdc42 and Rac1 protein expression was down-regulated in human IUGR and was positively correlated with placental mTORC2 signaling. In conclusion, mTORC2 regulates AAT trafficking in PHT cells by modulating Cdc42 and Rac1. Placental mTORC2 inhibition in human IUGR may contribute to decreased placental amino acid transfer and reduced fetal growth mediated by down-regulation of Cdc42 and Rac1.
Collapse
|
8
|
Chassen SS, Ferchaud-Roucher V, Palmer C, Li C, Jansson T, Nathanielsz PW, Powell TL. Placental fatty acid transport across late gestation in a baboon model of intrauterine growth restriction. J Physiol 2020; 598:2469-2489. [PMID: 32338384 PMCID: PMC7384518 DOI: 10.1113/jp279398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Intrauterine growth restriction (IUGR) is associated with perinatal morbidity and increased risk of lifelong disease, including neurodevelopmental impairment. Fatty acids (FA) are critical for normal brain development, although their transport across the placenta in IUGR pregnancies is poorly understood. The present study used a baboon model of IUGR (maternal nutrient restriction, MNR) to investigate placental expression of FA transport and binding proteins, and to determine gestational age-related changes in maternal and fetal plasma FA concentrations. We found MNR to be associated with increased placental expression of FA binding and transport proteins in late gestation, with fetal plasma FA concentrations that were similar to those of control animals. The present study is the first to report a profile of fetal and maternal plasma FA concentrations in a baboon model of growth restriction with data that suggest adaptation of placental transport to maintain delivery of critically needed FA. ABSTRACT Intrauterine growth restriction (IUGR) is associated with specific changes in placental transport of amino acids, folate and ions. However, little is known about placental fatty acid (FA) transport in IUGR. We hypothesized that placental FA transport proteins (FATP) and FA binding proteins (FABP) are up-regulated and fetal plasma FA concentrations are decreased at term in a baboon model of IUGR. Pregnant baboons were fed control or maternal nutrient restricted (MNR) diet (70% of control calories) from gestation day (GD) 30 (term 184 days). Plasma and placental samples were collected at GD120 (control n = 8, MNR n = 9), GD140 (control n = 6, MNR n = 7) and GD170 (control n = 6, MNR n = 6). Placentas were homogenized, and syncytiotrophoblast microvillous plasma membrane (MVM) and basal plasma membranes (BM) were isolated. Protein expression of FABP1, 3, 4 and 5 (homogenate) and FATP2, 4, and 6 (MVM, BM) was determined by Western blotting. FA content in maternal and umbilical vein plasma was measured by gas chromatography-mass spectrometry. Placental FABP1 and FABP5 expression was increased in MNR compared to controls at GD170, as was MVM FATP2 and FATP6 expression at GD140 and FATP2 expression at GD170. BM FATP4 and FATP6 expression was increased in MNR at GD140. Fetal plasma FA concentrations were similar in controls and MNR. These data suggest the adaptation of placental transport when aiming to maintain delivery of critically needed FAs for fetal growth and brain development.
Collapse
Affiliation(s)
- Stephanie S Chassen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Ferchaud-Roucher
- University of Nantes, CHU Nantes, INRA, UMR 1280 Physiology of Nutritional Adaptations, Nantes, France
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Theresa L Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Stremming J, Jansson T, Powell TL, Rozance PJ, Brown LD. Reduced Na + K + -ATPase activity may reduce amino acid uptake in intrauterine growth restricted fetal sheep muscle despite unchanged ex vivo amino acid transporter activity. J Physiol 2020; 598:1625-1639. [PMID: 31909825 DOI: 10.1113/jp278933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Fetuses with intrauterine growth restriction (IUGR) have reduced muscle mass that persists postnatally, which may contribute to their increased risk for adult onset metabolic diseases, such as diabetes and obesity. Amino acid transporter-mediated histidine uptake and system L amino acid transporter activity were similar in sarcolemmal membranes isolated from control and IUGR hindlimb skeletal muscle. Activity of Na+ K+ -ATPase, which is responsible for establishing the sodium gradient necessary for system A and N amino acid transporter function, was significantly reduced in IUGR skeletal muscle sarcolemma compared to control. ATP content was lower in IUGR skeletal muscle. Expression and phosphorylation of proteins in the mechanistic target of rapamycin pathway were similar in control and IUGR skeletal muscle homogenate. Our data suggest that lower Na+ K+ -ATPase activity, which reduces the driving force for active amino acid transport, and lower ATP availability contribute to reduced amino acid uptake and protein synthesis in IUGR fetal skeletal muscle. ABSTRACT Fetuses with intrauterine growth restriction (IUGR) have lower muscle mass that persists postnatally. Using a sheep model of placental insufficiency and IUGR, we have previously demonstrated lower net total uptake of amino acids by the fetal hindlimb and lower skeletal muscle protein synthesis rates. To investigate the mechanisms underlying these changes, we tested the hypothesis that ex vivo amino acid transporter and Na+ K+ -ATPase activity is reduced, and ex vivo ATP levels are lower in hindlimb skeletal muscle of the IUGR fetus. We developed a novel protocol to measure transporter-mediated histidine uptake, system L amino acid transporter activity and Na+ K+ -ATPase activity using sarcolemmal membranes isolated from hindlimb muscle of control (CON, n = 11-12) and IUGR (n = 12) late gestation fetal sheep. We also determined ATP content and the activity of insulin and mechanistic target of rapamycin (mTOR) signalling, which are involved in regulating cellular amino acid uptake and protein synthesis, by measuring the expression and phosphorylation of AKT, 4E-BP1, eIF2α, AMPKα, p70 S6 kinase and rpS6 in muscle homogenates. Transporter-mediated histidine uptake and system L activity were similar in control and IUGR sarcolemma, although ex vivo Na+ K+ -ATPase activity was lower by 64% (P = 0.019) in IUGR sarcolemma. ATP content was lower by 25% (P = 0.007) in IUGR muscle. Insulin, AMPK, and mTOR signalling activity was similar in control and IUGR muscle. We speculate that reduced muscle sarcolemmal Na+ K+ -ATPase activity and lower ATP content diminishes the sodium gradient in vivo, resulting in a reduced driving force for sodium-dependent transporters and subsequently lower muscle amino acid uptake.
Collapse
Affiliation(s)
- Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165373. [PMID: 30684642 PMCID: PMC6650384 DOI: 10.1016/j.bbadis.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023]
Abstract
The most common cause of intrauterine growth restriction (IUGR) in the developed world is placental insufficiency, a concept often used synonymously with reduced utero-placental and umbilical blood flows. However, placental insufficiency and IUGR are associated with complex, coordinated and highly regulated changes in placental signaling and nutrient transport including inhibition of insulin and mTOR signaling and down-regulation of specific amino acid transporters, Na+/K+-ATPase, the Na+/H+-exchanger, folate and lactate transporters. In contrast, placental glucose transport capacity is unaltered and Ca2+-ATPase activity and the expression of proteins involved in placental lipid transport are increased in IUGR. These findings are not entirely consistent with the traditional view that the placenta is dysfunctional in IUGR, but rather suggest that the placenta adapts to reduce fetal growth in response to an inability of the mother to allocate resources to the fetus. This new model has implications for the understanding of the mechanisms underpinning IUGR and for the development of intervention strategies.
Collapse
Affiliation(s)
- Stephanie Chassen
- Department of Pediatrics, Division of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
11
|
Blanco C, McGill-Vargas L, Li C, Winter L, Nathanielsz P. High Branched-Chain Amino Acid Concentrations Are Found in Preterm Baboons Receiving Intravenous Amino Acid Solutions and Mimic Alterations Found in Preterm Infants. JPEN J Parenter Enteral Nutr 2019; 43:1053-1064. [PMID: 30729556 PMCID: PMC7241650 DOI: 10.1002/jpen.1507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/10/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parenteral amino acid (AA) nutrition administration after premature birth is necessary to ensure adequate growth and neurodevelopment. However, optimizing safety and efficacy remains a major challenge. This study investigated the effects of intravenous AA administration on plasma AA profiles in premature baboons and infants. METHODS Premature baboons were delivered by cesarean section at 125 days (67% gestation) and chronically ventilated. At 24 hours of life, a parenteral AA protocol comparable to the early and high AA regimens used in premature infants was initiated. Serial plasma AA concentrations were obtained on days of life (DOLs) 1, 3, and 7 and compared with concentrations at similar DOLs from preterm infants. Fetal baboon (165 ± 2 days; 89% gestation) and term baboon plasma AA concentrations were obtained for comparison. RESULTS Premature baboons receiving early and high parenteral AA supplementation exhibited significant differences in plasma AA concentrations compared with fetuses. In particular, concentrations of leucine, isoleucine, valine, and ornithine were elevated (fold increase: 2.14, 2.03, 1.95, and 16.5, respectively; P < 0.001) on DOL 3 vs fetuses. These alterations mimicked those found in preterm infants. CONCLUSION Early and high AA supplementation in extremely premature baboons significantly disrupted plasma AA concentrations. Elevated concentrations of branched-chain AAs and ornithine raise concerns for adverse neurodevelopmental outcomes. These results are consistent with those found in premature human infants and emphasize the need to optimize parenteral AA solutions for the unique metabolic requirements of premature infants. Improved technologies for rapid monitoring of AA concentrations during treatment are essential.
Collapse
Affiliation(s)
- Cynthia Blanco
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lisa McGill-Vargas
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lauryn Winter
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Peter Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
12
|
Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. Placenta-on-a-Chip: In Vitro Study of Caffeine Transport across Placental Barrier Using Liquid Chromatography Mass Spectrometry. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800112. [PMID: 31565368 PMCID: PMC6436596 DOI: 10.1002/gch2.201800112] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Indexed: 05/18/2023]
Abstract
Due to the particular structure and functionality of the placenta, most current human placenta drug testing methods are limited to animal models, conventional cell testing, and cohort/controlled testing. Previous studies have produced inconsistent results due to physiological differences between humans and animals and limited availability of human and/or animal models for controlled testing. To overcome these challenges, a placenta-on-a-chip system is developed for studying the exchange of substances to and from the placenta. Caffeine transport across the placental barrier is studied because caffeine is a xenobiotic widely consumed on a daily basis. Since a fetus does not carry the enzymes that inactivate caffeine, when it crosses a placental barrier, high caffeine intake may harm the fetus, so it is important to quantify the rate of caffeine transport across the placenta. In this study, a caffeine concentration of 0.25 mg mL-1 is introduced into the maternal channel, and the resulting changes are observed over a span of 7.5 h. A steady caffeine concentration of 0.1513 mg mL-1 is reached on the maternal side after 6.5 h, and a 0.0033 mg mL-1 concentration on the fetal side is achieved after 5 h.
Collapse
Affiliation(s)
| | - Jeremy D. Caplin
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
- Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Saurabh S. Aykar
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Reza Montazami
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Nicole N. Hashemi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
- Department of Biomedical SciencesIowa State UniversityAmesIA50011USA
| |
Collapse
|
13
|
Wai SG, Rozance PJ, Wesolowski SR, Hay WW, Brown LD. Prolonged amino acid infusion into intrauterine growth-restricted fetal sheep increases leucine oxidation rates. Am J Physiol Endocrinol Metab 2018; 315:E1143-E1153. [PMID: 30205012 PMCID: PMC6336957 DOI: 10.1152/ajpendo.00128.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming impaired growth in an intrauterine growth-restricted (IUGR) fetus has potential to improve neonatal morbidity, long-term growth, and metabolic health outcomes. The extent to which fetal anabolic capacity persists as the IUGR condition progresses is not known. We subjected fetal sheep to chronic placental insufficiency and tested whether prolonged amino acid infusion would increase protein accretion in these IUGR fetuses. IUGR fetal sheep were infused for 10 days with either mixed amino acids providing ~2 g·kg-1·day-1 (IUGR-AA) or saline (IUGR-Sal) during late gestation. At the end of the infusion, fetal plasma leucine, isoleucine, lysine, methionine, and arginine concentrations were higher in the IUGR-AA than IUGR-Sal group ( P < 0.05). Fetal plasma glucose, oxygen, insulin, IGF-1, cortisol, and norepinephrine concentrations were similar between IUGR groups, but glucagon concentrations were fourfold higher in the IUGR-AA group ( P < 0.05). Net umbilical amino acid uptake rate did not differ between IUGR groups; thus the total amino acid delivery rate (net umbilical amino acid uptake + infusion rate) was higher in the IUGR-AA than IUGR-Sal group (30 ± 4 vs. 19 ± 1 μmol·kg-1·min-1, P < 0.05). Net umbilical glucose, lactate, and oxygen uptake rates were similar between IUGR groups. Fetal leucine oxidation rate, measured using a leucine tracer, was higher in the IUGR-AA than IUGR-Sal group (2.5 ± 0.3 vs. 1.7 ± 0.3 μmol·kg-1·min-1, P < 0.05). Fetal protein accretion rate was not statistically different between the IUGR groups (1.6 ± 0.4 and 0.8 ± 0.3 μmol·kg-1·min-1 in IUGR-AA and IUGR-Sal, respectively) due to variability in response to amino acids. Prolonged amino acid infusion into IUGR fetal sheep increased leucine oxidation rates with variable anabolic response.
Collapse
Affiliation(s)
- Sandra G Wai
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
14
|
Jahanfar S, Lim K. Is there a relationship between fetal sex and placental pathological characteristics in twin gestations? BMC Pregnancy Childbirth 2018; 18:285. [PMID: 29973164 PMCID: PMC6031115 DOI: 10.1186/s12884-018-1896-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background Placenta plays a central role in mediating growth and development of fetuses. Sex-specific placentas may complicate this role. Methods The study aimed at investigating the association between fetal sex and placental pathological findings in twin gestations using generalized estimating equation modeling. We used a large population-based clinical data born in British Columbia (BC) and linked the fetal-maternal data to hand-searched pathology reports of 1493 twin placentas from twins born in BC Women hospital. We analyzed the data using generalized estimating equations taking the cluster nature of twins into consideration. Results About 26.5% of twins were monochorionic and 73.5% were dizygotic. Most twins were male (51.3%). About 2/3 of twins were sex concordant (66.6%). Of the sex concordant twins, similar percentages were male-male (34.7%) and female-female (31.2%). Of the sex discordant twins, the male-female (33.3%) group constituted about 1/3 of the whole population. Adjusted for chorionicity, birth weight discordance ≥30% and gestational age, the odds of chorionitis (1.38, 95% CI = 1.04–1.84), anastomosis (1.63, 95% CI = 1.22–2.19), unequal sharing of placenta (1.72, 95% CI = 1.11–2.64), placental inflammation (1.30, 95% CI = 1.05–1.62) and lesions (1.83, 95% CI = 1.02–3.31) were higher in male twins compared with females. Twins of either sex from sex-discordant pairs were less likely to have placental anastomosis compared to the reference category. Males from male-male pairs had higher odds of unequal placental sharing (74% higher) and composite inflammation (52% higher) compared with the reference twins. Conclusion Our findings suggest a relationship between sex and placental pathological results.
Collapse
Affiliation(s)
- Shayesteh Jahanfar
- School of Health Sciences Building 2242, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Kenneth Lim
- Division of Maternal Fetal Medicine, BC Women's Hospital, Vancouver, Canada
| |
Collapse
|
15
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
16
|
Li C, Jenkins S, Mattern V, Comuzzie AG, Cox LA, Huber HF, Nathanielsz PW. Effect of moderate, 30 percent global maternal nutrient reduction on fetal and postnatal baboon phenotype. J Med Primatol 2017; 46:293-303. [PMID: 28744866 DOI: 10.1111/jmp.12290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Most developmental programming studies on maternal nutrient reduction (MNR) are in altricial rodents whose maternal nutritional burden and offspring developmental trajectory differ from precocial non-human primates and humans. METHODS Control (CTR) baboon mothers ate ad libitum; MNR mothers ate 70% global control diet in pregnancy and lactation. RESULTS We present offspring morphometry, blood cortisol, and adrenocorticotropin (ACTH) during second half of gestation (G) and first three postnatal years. Moderate MNR produced intrauterine growth restriction (IUGR). IUGR males (n=43) and females (n=28) were smaller than CTR males (n=50) and females (n=47) in many measurements at many ages. In CTR, fetal ACTH increased 228% and cortisol 48% between 0.65G and 0.9G. IUGR ACTH was elevated at 0.65G and cortisol at 0.9G. 0.9G maternal gestational weight gain, fetal weight, and placenta weight were correlated. CONCLUSIONS Moderate IUGR decreased body weight and morphometric measurements at key time points and altered hypothalamo-pituitary-adrenal function.
Collapse
Affiliation(s)
- Cun Li
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, WY, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Susan Jenkins
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, WY, USA
| | - Vicki Mattern
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Laura A Cox
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hillary F Huber
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, WY, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
17
|
Rosario FJ, Nathanielsz PW, Powell TL, Jansson T. Maternal folate deficiency causes inhibition of mTOR signaling, down-regulation of placental amino acid transporters and fetal growth restriction in mice. Sci Rep 2017. [PMID: 28638048 PMCID: PMC5479823 DOI: 10.1038/s41598-017-03888-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Maternal folate deficiency is linked to restricted fetal growth, however the underlying mechanisms remain to be established. Here we tested the hypothesis that mTOR functions as a folate sensor in vivo in mice and that maternal folate deficiency inhibits placental mTOR signaling and amino acid transporter activity and causes fetal growth restriction. Folate deficient mice had lower serum folate (−60%). In late pregnancy, fetal weight in the folate deficient group was decreased (−17%, p < 0.05), whereas placental weight, litter size and crown rump length were unaltered. Maternal folate deficiency inhibited placental mTORC1 and mTORC2 signaling and decreased trophoblast plasma membrane System A and L amino acid transporter activities and transporter isoform expression. Folate deficiency also caused a decrease in phosphorylation of specific functional readouts of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues. We have identified a novel specific molecular link between maternal folate availability and fetal growth, involving regulation of placental mTOR signaling by folate, resulting in changes in placental nutrient transport. mTOR folate sensing may have broad biological significance because of the critical role of folate in normal cell function and the wide range of disorders, including cancer, that have been linked to folate availability.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramsie, WY, 82071, USA.,Southwest National Primate Research Center, San Antonio, TX, 78249, USA
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595:5057-5093. [PMID: 28337745 DOI: 10.1113/jp273330] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype, which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ionel Sandovici
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Miguel Constancia
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
19
|
Che L, Yang Z, Xu M, Xu S, Che L, Lin Y, Fang Z, Feng B, Li J, Chen D, Wu D. Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genomics 2017; 18:213. [PMID: 28245787 PMCID: PMC5331709 DOI: 10.1186/s12864-017-3601-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 02/22/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Intra-uterine growth restriction (IUGR) and fetal overgrowth increase risks to postnatal health. Maternal nutrition is the major intrauterine environmental factor that alters fetal weight. However, the mechanisms underlying the effects of maternal nutrition on fetal development are not entirely clear. We developed a pig model, and using isobaric tags for relative and absolute quantification (iTRAQ), we investigated alterations in the placental proteome of gilts on a normal-energy-intake (Con) and high-energy-intake (HE) diet. RESULTS In the Con group, heavy and light fetuses were found at the tubal and cervical ends of the uterus respectively at 90 d of gestation. Moreover, the heavy fetuses had a higher glucose concentration than the light fetuses. However, a higher uniformity was noted in the HE group. Placental promoters between these two positions indicated that 78 and 50 differentially expressed proteins were detected in the Con and HE groups respectively. In the Con group, these proteins were involved in lipid metabolism (HADHA, AACS, CAD), nutrient transport (GLUT, SLC27A1), and energy metabolism (NDUFV1, NDUFV2, ATP5C1). However, in the HE group they mainly participated in transcriptional and translational regulation, and intracellular vesicular transport. CONCLUSIONS Our findings revealed that maternal nutrition may alter birth weight mainly through the modulation of placental lipid and energy metabolism, which also provides a possible mechanism to explain the higher uniformity of fetal weight in gilts fed a HE diet.
Collapse
Affiliation(s)
- Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - ZhenGuo Yang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - MengMeng Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - ShengYu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - LianQiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - ZhengFeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - DaiWen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
20
|
Vaughan O, Rosario F, Powell T, Jansson T. Regulation of Placental Amino Acid Transport and Fetal Growth. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:217-251. [DOI: 10.1016/bs.pmbts.2016.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Hellmuth C, Uhl O, Standl M, Demmelmair H, Heinrich J, Koletzko B, Thiering E. Cord Blood Metabolome Is Highly Associated with Birth Weight, but Less Predictive for Later Weight Development. Obes Facts 2017; 10:85-100. [PMID: 28376503 PMCID: PMC5644937 DOI: 10.1159/000453001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIMS Fetal metabolism may be changed by the exposure to maternal factors, and the route to obesity may already set in utero. Cord blood metabolites might predict growth patterns and later obesity. We aimed to characterize associations of cord blood with birth weight, postnatal weight gain, and BMI in adolescence. METHODS Over 700 cord blood samples were collected from infants participating in the German birth cohort study LISAplus. Glycerophospholipid fatty acids (GPL-FA), polar lipids, non-esterified fatty acids (NEFA), and amino acids were analyzed with a targeted, liquid chromatography-tandem mass spectrometry based metabolomics platform. Cord blood metabolites were related to growth factors by linear regression models adjusted for confounding variables. RESULTS Cord blood metabolites were highly associated with birth weight. Lysophosphatidylcholines C16:1, C18:1, C20:3, C18:2, C20:4, C14:0, C16:0, C18:3, GPL-FA C20:3n-9, and GPL-FA C22:5n-6 were positively related to birth weight, while higher cord blood concentrations of NEFA C22:6, NEFA C20:5, GPL-FA C18:3n-3, and PCe C38:0 were associated with lower birth weight. Postnatal weight gain and BMI z-scores in adolescents were not significantly associated with cord blood metabolites after adjustment for multiple testing. CONCLUSION Potential long-term programming effects of the intrauterine environment and metabolism on later health cannot be predicted with profiling of the cord blood metabolome.
Collapse
Affiliation(s)
- Christian Hellmuth
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Childrenʼs Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Childrenʼs Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Childrenʼs Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Childrenʼs Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- *Prof. Dr. Berthold Koletzko, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Childrenʼs Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Lindwurmstraße 4, 80337 Munich, Germany,
| | - Elisabeth Thiering
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Childrenʼs Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
22
|
Pantham P, Rosario FJ, Weintraub ST, Nathanielsz PW, Powell TL, Li C, Jansson T. Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons. Biol Reprod 2016; 95:98. [PMID: 27605346 PMCID: PMC5178152 DOI: 10.1095/biolreprod.116.141085] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is an important risk factor for perinatal complications and adult disease. IUGR is associated with down-regulation of placental amino acid transporter expression and activity at birth. It is unknown whether these changes are a cause or a consequence of human IUGR. We hypothesized that placental amino acid transport capacity is reduced prior to onset of reduced fetal growth in baboons with maternal nutrient restriction (MNR). Pregnant baboons were fed either a control (n = 8) or MNR diet (70% of control diet, n = 9) from Gestational Day 30. At Gestational Day 120 (0.65 of gestation), fetuses and placentas were collected. Microvillous (MVM) and basal (BM) plasma membrane vesicles were isolated. System A and system L transport activity was determined in MVM, and leucine transporter activity was assessed in BM using radiolabeled substrates. MVM amino acid transporter isoform expression (SNAT1, SNAT2, and SNAT4 and LAT1 and LAT2) was measured using Western blots. LAT1 and LAT2 expression were also determined in BM. Maternal and fetal plasma amino acids concentrations were determined using mass spectrometry. Fetal and placental weights were unaffected by MNR. MVM system A activity was decreased by 37% in MNR baboon placentas (P = 0.03); however MVM system A amino acid transporter protein expression was unchanged. MVM system L activity and BM leucine transporter activity were not altered by MNR. Fetal plasma concentrations of essential amino acids isoleucine and leucine were reduced, while citrulline increased (P < 0.05) in MNR fetuses compared to controls. In this primate model of IUGR, placental MVM system A amino acid transporter activity is decreased prior to the onset of reduction in the fetal growth trajectory. The reduction in plasma leucine and isoleucine in MNR fetuses may be caused by reduced activity of MVM system A, which is strongly coupled with system L essential amino acid uptake. Our findings indicate that reduced placental amino acid transport may be a cause rather than a consequence of IUGR due to inadequate maternal nutrition.
Collapse
Affiliation(s)
- Priyadarshini Pantham
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fredrick J Rosario
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming.,Southwest National Primate Research Center, San Antonio, Texas
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, Wyoming.,Southwest National Primate Research Center, San Antonio, Texas
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Hellmuth C, Uhl O, Kirchberg FF, Harder U, Peissner W, Koletzko B, Nathanielsz PW. Influence of moderate maternal nutrition restriction on the fetal baboon metabolome at 0.5 and 0.9 gestation. Nutr Metab Cardiovasc Dis 2016; 26:786-796. [PMID: 27146364 DOI: 10.1016/j.numecd.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Moderately reduced maternal nutrient availability during pregnancy has adverse effects on the fetuses' growth and metabolism during and after pregnancy. The aim of this study was to explore effects of maternal nutrition restriction (MNR) on key metabolites of the fetal energy metabolism, particularly amino acids (AA), nonesterified fatty acids (NEFA), acylcarnitines and phospholipids. These effects may reflect mechanisms relating MNR to later adverse outcomes. METHODS AND RESULTS Plasma and liver samples of fetal baboons, whose mothers were fed ad libitum (CTR) or MNR (70% of CTR), were collected at 0.5 and 0.9 gestation (G - term 184 days). Metabolites were measured with liquid chromatography coupled to mass spectrometry. In both, CTR and MNR, fetal metabolic profiles changed markedly between 0.5G and 0.9G. Fetal liver glucose concentrations were strongly increased. Hepatic levels of NEFA, sphingomyelins, and alkyl-linked phospholipids increased while plasma NEFA and acyl-linked phospholipids levels decreased with progression of gestation. At 0.5G, MNR fetal plasma levels of short- and medium-chain acylcarnitines were elevated, but did no longer differ between groups at 0.9G. At 0.9G, plasma levels of methionine and threonine as well as hepatic threonine levels were lower in the MNR group. CONCLUSION Small differences in the concentrations of plasma and liver metabolites between MNR and CTR fetuses reflect good adaptation to MNR. Fetal liver metabolic profiles changed markedly between the two gestation stages, reflecting enhanced liver glucose and lipid levels with advancing gestation. Decreased concentrations of AA suggest an up-regulation of gluconeogenesis in MNR.
Collapse
Affiliation(s)
- C Hellmuth
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - O Uhl
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - F F Kirchberg
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - U Harder
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - W Peissner
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - B Koletzko
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany.
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, 82701, WY, USA; Texas Pregnancy & Life-course Health Research Center, San Antonio, 7620 NW Loop 410, 78227, TX, USA
| |
Collapse
|
24
|
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, Ozanne SE. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 2016; 9:1221-1229. [PMID: 27585884 PMCID: PMC5087829 DOI: 10.1242/dmm.026591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. Summary: Muscle of ‘developmentally programmed’ rat offspring demonstrated accelerated aging and oxidative stress, which could explain why some individuals are at greater risk of developing age-associated muscular dysfunction than others.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Jian Hua Chen
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| |
Collapse
|
25
|
Gaccioli F, Lager S. Placental Nutrient Transport and Intrauterine Growth Restriction. Front Physiol 2016; 7:40. [PMID: 26909042 PMCID: PMC4754577 DOI: 10.3389/fphys.2016.00040] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/28/2016] [Indexed: 01/30/2023] Open
Abstract
Intrauterine growth restriction refers to the inability of the fetus to reach its genetically determined potential size. Fetal growth restriction affects approximately 5–15% of all pregnancies in the United States and Europe. In developing countries the occurrence varies widely between 10 and 55%, impacting about 30 million newborns per year. Besides having high perinatal mortality rates these infants are at greater risk for severe adverse outcomes, such as hypoxic ischemic encephalopathy and cerebral palsy. Moreover, reduced fetal growth has lifelong health consequences, including higher risks of developing metabolic and cardiovascular diseases in adulthood. Numerous reports indicate placental insufficiency as one of the underlying causes leading to altered fetal growth and impaired placental capacity of delivering nutrients to the fetus has been shown to contribute to the etiology of intrauterine growth restriction. Indeed, reduced expression and/or activity of placental nutrient transporters have been demonstrated in several conditions associated with an increased risk of delivering a small or growth restricted infant. This review focuses on human pregnancies and summarizes the changes in placental amino acid, fatty acid, and glucose transport reported in conditions associated with intrauterine growth restriction, such as maternal undernutrition, pre-eclampsia, young maternal age, high altitude and infection.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge Cambridge, UK
| | - Susanne Lager
- Department of Obstetrics and Gynaecology, University of Cambridge Cambridge, UK
| |
Collapse
|
26
|
Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth. Front Physiol 2016; 7:12. [PMID: 26858656 PMCID: PMC4731498 DOI: 10.3389/fphys.2016.00012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation. We have proposed that placental nutrient sensing integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensing signaling pathways to balance fetal demand with the ability of the mother to support pregnancy by regulating maternal physiology, placental growth, and placental nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling pathway mechanistic target of rapamycin (mTOR) plays a central role in this process. Thus, placental nutrient sensing plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the life-long health of the fetus.
Collapse
Affiliation(s)
- Kris Genelyn Dimasuay
- Department of Medicine, The University of MelbourneMelbourne, VIC, Australia
- Centre for Biomedical Research, Burnet InstituteMelbourne, VIC, Australia
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Philippe Boeuf
- Department of Medicine, The University of MelbourneMelbourne, VIC, Australia
- Centre for Biomedical Research, Burnet InstituteMelbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourne, VIC, Australia
| | - Theresa L. Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| |
Collapse
|