1
|
Hostrup M, Jacobson GA, Eibye K, Narkowicz CK, Nichols DS, Jessen S. Beta 2-adrenergic agonist salbutamol exhibits enantioselective disposition in skeletal muscle of lean young men following oral administration. Drug Test Anal 2024. [PMID: 39148405 DOI: 10.1002/dta.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Salbutamol is a common short-acting beta2-adrenergic agonist used in treatment of asthma and exercise-induced bronchoconstriction but also possesses anabolic and metabolic actions in skeletal muscle. As a chiral compound, salbutamol is a racemic 1:1 mixture of two enantiomers, (R)-salbutamol and (S)-salbutamol, which exhibit divergent pharmacokinetic and pharmacodynamic actions. Despite salbutamol being available for decades, information on the enantioselective disposition of salbutamol enantiomers in human skeletal muscle is absent. In this study, we determined concentrations of (R)-salbutamol and (S)-salbutamol by UHPLC-MS/MS in arterial plasma and vastus lateralis muscle samples from 12 lean young men 2½ and 7 h following ingestion of 24 mg oral salbutamol. Mean (range) arterial plasma concentrations were 10-fold higher (p < 0.001) for (S)-salbutamol than (R)-salbutamol, being 33(9-62) and 49(30-84) ng·mL-1 for (S)-salbutamol and 4 (1-6) and 4 (2-5) ng·mL-1 for (R)-salbutamol 2½ and 7 h following administration, respectively, reflecting faster elimination of the (R)-enantiomer. Mean (range) muscle concentrations were higher (p < 0.001) for (S)-salbutamol than (R)-salbutamol 2½ h (0.17 [0.1-0.26] vs. 0.04 [0.02-0.06]) and 7 h (0.31 [0.21-0.46] vs. 0.06 [0.04-0.12] ng·mgd.w. -1) after administration. However, muscle:plasma partition coefficient was two-fold higher (p < 0.001) for (R)-salbutamol than (S)-salbutamol 7 h following administration. These observations demonstrate that oral salbutamol exhibits enantioselective disposition in systemic circulation and muscle favoring the (S)-enantiomer but with higher relative partitioning of the (R)-enantiomer in skeletal muscle. Furthermore, the concentration-time profiles of salbutamol enantiomers are different in skeletal muscle and systemic circulation following oral ingestion. These findings have implications for the application of chiral switch (R)-salbutamol in doping control.
Collapse
Affiliation(s)
- Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Glenn A Jacobson
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Kasper Eibye
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christian K Narkowicz
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Søren Jessen
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Azevedo Voltarelli V, Coronado M, Gonçalves Fernandes L, Cruz Campos J, Jannig PR, Batista Ferreira JC, Fajardo G, Chakur Brum P, Bernstein D. β 2-Adrenergic Signaling Modulates Mitochondrial Function and Morphology in Skeletal Muscle in Response to Aerobic Exercise. Cells 2021; 10:cells10010146. [PMID: 33450889 PMCID: PMC7828343 DOI: 10.3390/cells10010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms underlying skeletal muscle mitochondrial adaptations induced by aerobic exercise (AE) are not fully understood. We have previously shown that AE induces mitochondrial adaptations in cardiac muscle, mediated by sympathetic stimulation. Since direct sympathetic innervation of neuromuscular junctions influences skeletal muscle homeostasis, we tested the hypothesis that β2-adrenergic receptor (β2-AR)-mediated sympathetic activation induces mitochondrial adaptations to AE in skeletal muscle. Male FVB mice were subjected to a single bout of AE on a treadmill (80% Vmax, 60 min) under β2-AR blockade with ICI 118,551 (ICI) or vehicle, and parameters of mitochondrial function and morphology/dynamics were evaluated. An acute bout of AE significantly increased maximal mitochondrial respiration in tibialis anterior (TA) isolated fiber bundles, which was prevented by β2-AR blockade. This increased mitochondrial function after AE was accompanied by a change in mitochondrial morphology towards fusion, associated with increased Mfn1 protein expression and activity. β2-AR blockade fully prevented the increase in Mfn1 activity and reduced mitochondrial elongation. To determine the mechanisms involved in mitochondrial modulation by β2-AR activation in skeletal muscle during AE, we used C2C12 myotubes, treated with the non-selective β-AR agonist isoproterenol (ISO) in the presence of the specific β2-AR antagonist ICI or during protein kinase A (PKA) and Gαi protein blockade. Our in vitro data show that β-AR activation significantly increases mitochondrial respiration in myotubes, and this response was dependent on β2-AR activation through a Gαs-PKA signaling cascade. In conclusion, we provide evidence for AE-induced β2-AR activation as a major mechanism leading to alterations in mitochondria function and morphology/dynamics. β2-AR signaling is thus a key-signaling pathway that contributes to skeletal muscle plasticity in response to exercise.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
| | - Michael Coronado
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (M.C.); (G.F.)
| | - Larissa Gonçalves Fernandes
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
| | - Juliane Cruz Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-030, SP, Brazil; (J.C.C.); (J.C.B.F.)
| | - Paulo Roberto Jannig
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-030, SP, Brazil; (J.C.C.); (J.C.B.F.)
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Giovanni Fajardo
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (M.C.); (G.F.)
| | - Patricia Chakur Brum
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
- Correspondence: or (P.C.B.); (D.B.); Tel.: +55-11-30913136 (P.C.B.); Fax: +55-11-38135921 (P.C.B.)
| | - Daniel Bernstein
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (M.C.); (G.F.)
- Correspondence: or (P.C.B.); (D.B.); Tel.: +55-11-30913136 (P.C.B.); Fax: +55-11-38135921 (P.C.B.)
| |
Collapse
|
3
|
Jessen S, Reitelseder S, Kalsen A, Kreiberg M, Onslev J, Gad A, Ørtenblad N, Backer V, Holm L, Bangsbo J, Hostrup M. β 2-Adrenergic agonist salbutamol augments hypertrophy in MHCIIa fibers and sprint mean power output but not muscle force during 11 weeks of resistance training in young men. J Appl Physiol (1985) 2020; 130:617-626. [PMID: 33357007 DOI: 10.1152/japplphysiol.00553.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the effect of β2-agonist salbutamol at oral doses during a period of resistance training on sprint performance, quadriceps contractile function, skeletal muscle hypertrophy, fiber type composition, maximal activity of enzymes of importance for anaerobic energy turnover, and sarcoplasmic reticulum Ca2+ handling in young men. Twenty-six men (23 ± 2 yr; means ± SD) were randomized to daily intake of oral salbutamol (16 mg/day; RES+SAL) or placebo (RES) during 11 wk of full-body resistance training 3 times/wk. Mean power output during 10-s maximal cycling increased more (P = 0.027) in RES+SAL (+12%) than in RES (+7%), whereas peak power output increased similarly (RES+SAL: +8%; RES: +7%; P = 0.400). Quadriceps dynamic peak torque and maximal voluntary isometric torque increased by 13 and 14% (P ≤ 0.001) in RES+SAL and 13 and 13% (P ≤ 0.001) in RES, respectively. Myosin heavy-chain (MHC) isoform distribution transitioned from MHCI and MHCIIx toward MHCIIa in RES+SAL (P = 0.002), but not in RES (P = 0.323). MHCIIa cross-sectional-area increased more (P = 0.040) in RES+SAL (+35%) than RES (+21%). Sarcoplasmic reticulum Ca2+ release rate increased in both groups (RES+SAL: +9%, P = 0.048; RES: +13%, P = 0.008), whereas Ca2+-uptake rate increased only in RES (+12%, P = 0.022) but was not different from the nonsignificant change in RES+SAL (+2%, P = 0.484). Maximal activity of lactate dehydrogenase increased only in RES+SAL (+13%, P = 0.008). Muscle content of the dihydropyridine receptor, ryanodine receptor 1, and sarcoplasmic reticulum Ca2+-ATPase isoform 1 and 2 did not change with the intervention in either group (P ≥ 0.100). These observations indicate that the enhancement of sprint mean power output induced by salbutamol is at least partly attributed to greater hypertrophy of MHCIIa fibers and transition toward the MHCIIa isoform.NEW & NOTEWORTHY Here, we show that daily oral treatment with selective β2-agonist salbutamol induces muscle fiber isoform transition from myosin-heavy-chain (MHC)-I toward MHCIIa and augments hypertrophy of MHCIIa fibers during a period of resistance training. Compared with placebo, salbutamol enhanced sprint mean power output, whereas peak power output and measures of muscle strength increased similarly during the resistance training period despite augmented hypertrophy with salbutamol. Thus, salbutamol is a muscle anabolic drug that can enhance sprint ability adaptations to resistance training.
Collapse
Affiliation(s)
- Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Anders Kalsen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kreiberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gad
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research, Rigshospitalet and University of Copenhagen, Copenhagen Denmark.,Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Hostrup M, Jacobson GA, Jessen S, Lemminger AK. Anabolic and lipolytic actions of beta
2
‐agonists in humans and antidoping challenges. Drug Test Anal 2020; 12:597-609. [DOI: 10.1002/dta.2728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| | - Glenn A. Jacobson
- School of Pharmacy and Pharmacology, College of Health and MedicineUniversity of Tasmania Hobart Australia
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| | - Anders Krogh Lemminger
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
5
|
Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, Lefeuvre-Orfila L, Bendavid C, Rué O, Mariadassou M, Bonnieu A, Ollendorff V, Lepage P, Derbré F, Koechlin-Ramonatxo C. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am J Physiol Endocrinol Metab 2019; 317:E158-E171. [PMID: 31039010 DOI: 10.1152/ajpendo.00521.2018] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gut microbiota is involved in the development of several chronic diseases, including diabetes, obesity, and cancer, through its interactions with the host organs. It has been suggested that the cross talk between gut microbiota and skeletal muscle plays a role in different pathological conditions, such as intestinal chronic inflammation and cachexia. However, it remains unclear whether gut microbiota directly influences skeletal muscle function. In this work, we studied the impact of gut microbiota modulation on mice skeletal muscle function and investigated the underlying mechanisms. We determined the consequences of gut microbiota depletion after treatment with a mixture of a broad spectrum of antibiotics for 21 days and after 10 days of natural reseeding. We found that, in gut microbiota-depleted mice, running endurance was decreased, as well as the extensor digitorum longus muscle fatigue index in an ex vivo contractile test. Importantly, the muscle endurance capacity was efficiently normalized by natural reseeding. These endurance changes were not related to variation in muscle mass, fiber typology, or mitochondrial function. However, several pertinent glucose metabolism markers, such as ileum gene expression of short fatty acid chain and glucose transporters G protein-coupled receptor 41 and sodium-glucose cotransporter 1 and muscle glycogen level, paralleled the muscle endurance changes observed after treatment with antibiotics for 21 days and reseeding. Because glycogen is a key energetic substrate for prolonged exercise, modulating its muscle availability via gut microbiota represents one potent mechanism that can contribute to the gut microbiota-skeletal muscle axis. Taken together, our results strongly support the hypothesis that gut bacteria are required for host optimal skeletal muscle function.
Collapse
Affiliation(s)
- Kevin Nay
- DMEM, University of Montpellier, INRA, Montpellier , France
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes , France
| | - Maxence Jollet
- DMEM, University of Montpellier, INRA, Montpellier , France
| | | | - Narjes Baati
- DMEM, University of Montpellier, INRA, Montpellier , France
| | - Barbara Vernus
- DMEM, University of Montpellier, INRA, Montpellier , France
| | - Maria Pontones
- DMEM, University of Montpellier, INRA, Montpellier , France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes , France
| | - Claude Bendavid
- Institut NuMeCan, Inserm U1241/CHU Rennes/INRA, Université de Rennes , Rennes , France
| | - Olivier Rué
- MaIAGE, INRA, Université Paris-Saclay , Jouy-en-Josas , France
| | | | - Anne Bonnieu
- DMEM, University of Montpellier, INRA, Montpellier , France
| | | | - Patricia Lepage
- MICALIS, AgroParisTech, INRA, Université Paris-Saclay , Jouy-en-Josas , France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes , France
| | | |
Collapse
|
6
|
Ito A, Ohnuki Y, Suita K, Ishikawa M, Mototani Y, Shiozawa K, Kawamura N, Yagisawa Y, Nariyama M, Umeki D, Nakamura Y, Okumura S. Role of β-adrenergic signaling in masseter muscle. PLoS One 2019; 14:e0215539. [PMID: 30986276 PMCID: PMC6464212 DOI: 10.1371/journal.pone.0215539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
In skeletal muscle, the major isoform of β-adrenergic receptor (β-AR) is β2-AR and the minor isoform is β1-AR, which is opposite to the situation in cardiac muscle. Despite extensive studies in cardiac muscle, the physiological roles of the β-AR subtypes in skeletal muscle are not fully understood. Therefore, in this work, we compared the effects of chronic β1- or β2-AR activation with a specific β1-AR agonist, dobutamine (DOB), or a specific β2-AR agonist, clenbuterol (CB), on masseter and cardiac muscles in mice. In cardiac muscle, chronic β1-AR stimulation induced cardiac hypertrophy, fibrosis and myocyte apoptosis, whereas chronic β2-AR stimulation induced cardiac hypertrophy without histological abnormalities. In masseter muscle, however, chronic β1-AR stimulation did not induce muscle hypertrophy, but did induce fibrosis and apoptosis concomitantly with increased levels of p44/42 MAPK (ERK1/2) (Thr-202/Tyr-204), calmodulin kinase II (Thr-286) and mammalian target of rapamycin (mTOR) (Ser-2481) phosphorylation. On the other hand, chronic β2-AR stimulation in masseter muscle induced muscle hypertrophy without histological abnormalities, as in the case of cardiac muscle, concomitantly with phosphorylation of Akt (Ser-473) and mTOR (Ser-2448) and increased expression of microtubule-associated protein light chain 3-II, an autophagosome marker. These results suggest that the β1-AR pathway is deleterious and the β2-AR is protective in masseter muscle. These data should be helpful in developing pharmacological approaches for the treatment of skeletal muscle wasting and weakness.
Collapse
Affiliation(s)
- Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
7
|
Milioto C, Malena A, Maino E, Polanco MJ, Marchioretti C, Borgia D, Pereira MG, Blaauw B, Lieberman AP, Venturini R, Plebani M, Sambataro F, Vergani L, Pegoraro E, Sorarù G, Pennuto M. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Sci Rep 2017; 7:41046. [PMID: 28117338 PMCID: PMC5259768 DOI: 10.1038/srep41046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/15/2016] [Indexed: 02/02/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease characterized by the loss of lower motor neurons. SBMA is caused by expansions of a polyglutamine tract in the gene coding for androgen receptor (AR). Expression of polyglutamine-expanded AR causes damage to motor neurons and skeletal muscle cells. Here we investigated the effect of β-agonist stimulation in SBMA myotube cells derived from mice and patients, and in knock-in mice. We show that treatment of myotubes expressing polyglutamine-expanded AR with the β-agonist clenbuterol increases their size. Clenbuterol activated the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway and decreased the accumulation of polyglutamine-expanded AR. Treatment of SBMA knock-in mice with clenbuterol, which was started at disease onset, ameliorated motor function and extended survival. Clenbuterol improved muscle pathology, attenuated the glycolytic-to-oxidative metabolic alterations occurring in SBMA muscles and induced hypertrophy of both glycolytic and oxidative fibers. These results indicate that β-agonist stimulation is a novel therapeutic strategy for SBMA.
Collapse
Affiliation(s)
- Carmelo Milioto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy.,Dipartimento di Medicina Sperimentale, University of Genova, 16100 Genova, Italy
| | - Adriana Malena
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Eleonora Maino
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Maria J Polanco
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Caterina Marchioretti
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Doriana Borgia
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Marcelo Gomes Pereira
- Venetian Institute of Molecular Medicine, Department of Biomedical Science, University of Padova, 35100 Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Department of Biomedical Science, University of Padova, 35100 Padova, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roberta Venturini
- Department of Laboratory Medicine, University Hospital of Padova, 35100 Padova, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University Hospital of Padova, 35100 Padova, Italy
| | - Fabio Sambataro
- Department of Experimental &Clinical Medical Sciences (DISM), University of Udine, 33100 Udine, Italy
| | - Lodovica Vergani
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| |
Collapse
|
8
|
Puzzo D, Raiteri R, Castaldo C, Capasso R, Pagano E, Tedesco M, Gulisano W, Drozd L, Lippiello P, Palmeri A, Scotto P, Miniaci MC. CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength. Sci Rep 2016; 5:37504. [PMID: 27874066 PMCID: PMC5118701 DOI: 10.1038/srep37504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Catania, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Italy
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Catania, Italy
| | - Lisaveta Drozd
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Italy
| | | | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Catania, Italy
| | - Pietro Scotto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
9
|
Ohnuki Y, Umeki D, Mototani Y, Shiozawa K, Nariyama M, Ito A, Kawamura N, Yagisawa Y, Jin H, Cai W, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S. Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol. Physiol Rep 2016; 4:4/10/e12791. [PMID: 27207782 PMCID: PMC4886163 DOI: 10.14814/phy2.12791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023] Open
Abstract
Clenbuterol (CB), a selective β2-adrenergic receptor (AR) agonist, induces muscle hypertrophy and counteracts muscle atrophy. However, it is paradoxically less effective in slow-twitch muscle than in fast-twitch muscle, though slow-twitch muscle has a greater density of β-AR We recently demonstrated that Epac1 (exchange protein activated by cyclic AMP [cAMP]1) plays a pivotal role in β2-AR-mediated masseter muscle hypertrophy through activation of the Akt and calmodulin kinase II (CaMKII)/histone deacetylase 4 (HDAC4) signaling pathways. Here, we investigated the role of Epac1 in the differential hypertrophic effect of CB using tibialis anterior muscle (TA; typical fast-twitch muscle) and soleus muscle (SOL; typical slow-twitch muscle) of wild-type (WT) and Epac1-null mice (Epac1KO). The TA mass to tibial length (TL) ratio was similar in WT and Epac1KO at baseline and was significantly increased after CB infusion in WT, but not in Epac1KO The SOL mass to TL ratio was also similar in WT and Epac1KO at baseline, but CB-induced hypertrophy was suppressed in both mice. In order to understand the mechanism involved, we measured the protein expression levels of β-AR signaling-related molecules, and found that phosphodiesterase 4 (PDE4) expression was 12-fold greater in SOL than in TA These results are consistent with the idea that increased PDE4-mediated cAMP hydrolysis occurs in SOL compared to TA, resulting in a reduced cAMP concentration that is insufficient to activate Epac1 and its downstream Akt and CaMKII/HDAC4 hypertrophic signaling pathways in SOL of WT This scenario can account for the differential effects of CB on fast- and slow-twitch muscles.
Collapse
Affiliation(s)
- Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
10
|
Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors. Psychopharmacology (Berl) 2016; 233:2099-2108. [PMID: 26935825 DOI: 10.1007/s00213-016-4254-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. OBJECTIVES Our aim was to study the mechanism of epinephrine-dependent contextual learning. METHODS Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. RESULTS Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. CONCLUSIONS Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.
Collapse
|
11
|
Han SO, Li S, Koeberl DD. Salmeterol enhances the cardiac response to gene therapy in Pompe disease. Mol Genet Metab 2016; 118:35-40. [PMID: 27017193 PMCID: PMC4833676 DOI: 10.1016/j.ymgme.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Enzyme replacement therapy (ERT) with recombinant human (rh) acid α-glucosidase (GAA) has prolonged the survival of patients. However, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up rhGAA, correlated with a poor response to ERT by muscle in Pompe disease. Clenbuterol, a selective β2 receptor agonist, enhanced the CI-MPR expression in striated muscle through Igf-1 mediated muscle hypertrophy, which correlated with increased CI-MPR (also the Igf-2 receptor) expression. In this study we have evaluated 4 new drugs in GAA knockout (KO) mice in combination with an adeno-associated virus (AAV) vector encoding human GAA, 3 alternative β2 agonists and dehydroepiandrosterone (DHEA). Mice were injected with AAV2/9-CBhGAA (1E+11 vector particles) at a dose that was not effective at clearing glycogen storage from the heart. Heart GAA activity was significantly increased by either salmeterol (p<0.01) or DHEA (p<0.05), in comparison with untreated mice. Furthermore, glycogen content was reduced in the heart by treatment with DHEA (p<0.001), salmeterol (p<0.05), formoterol (p<0.01), or clenbuterol (p<0.01) in combination with the AAV vector, in comparison with untreated GAA-KO mice. Wirehang testing revealed that salmeterol and the AAV vector significantly increased performance, in comparison with the AAV vector alone (p<0.001). Similarly, salmeterol with the vector increased performance significantly more than any of the other drugs. The most effective individual drugs had no significant effect in absence of vector, in comparison with untreated mice. Thus, salmeterol should be further developed as adjunctive therapy in combination with either ERT or gene therapy for Pompe disease.
Collapse
Affiliation(s)
- Sang-Oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Songtao Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Yates DT, Cadaret CN, Beede KA, Riley HE, Macko AR, Anderson MJ, Camacho LE, Limesand SW. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1020-9. [PMID: 27053651 DOI: 10.1152/ajpregu.00528.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/29/2016] [Indexed: 01/02/2023]
Abstract
Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P < 0.05) than controls and exhibited hypoxemia and hypoglycemia, which contributed to 6.9-fold greater (P < 0.05) plasma norepinephrine and ∼53% lower (P < 0.05) plasma insulin concentrations. IUGR semitendinosus muscles contained less (P < 0.05) myosin heavy chain-I protein (MyHC-I) and proportionally fewer (P < 0.05) Type I and Type I/IIa fibers than controls, but MyHC-II protein concentrations, Type II fibers, and Type IIx fibers were not different. IUGR biceps femoris muscles exhibited similar albeit less dramatic differences in fiber type proportions. Type I and IIa fibers are more responsive to adrenergic and insulin regulation than Type IIx and may be more profoundly impaired by the high catecholamines and low insulin in our IUGR fetuses, leading to their proportional reduction. In both muscles, fibers of each type were uniformly smaller (P < 0.05) in IUGR fetuses than controls, which indicates that fiber hypertrophy is not dependent on type but rather on other factors such as myoblast differentiation or protein synthesis. Together, our findings show that IUGR fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and
| | - Hannah E Riley
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| |
Collapse
|
13
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
14
|
Mayne RJ, van der Poel C, Woods MG, Lynch GS. Skeletal effects of the alteration of masseter muscle function. AUSTRALASIAN ORTHODONTIC JOURNAL 2015. [DOI: 10.21307/aoj-2020-154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Aim
To investigate the effects of muscle denervation and the introduction of the β2-adrenoceptor agonist, formoterol, on the relationship between muscles and underlying skeletal growth.
Method
Thirty-one (4-week-old) male Sprague-Dawley rats were assigned to four groups: Surgical Sham; Denervated; Denervated +β2-agonist; and β2-agonist only. The Surgical Sham group had the left masseteric nerve exposed but not sectioned. Both of the denervated groups had the left masseteric nerve exposed and sectioned. The groups receiving the β2-agonist had formoterol directly injected into the left masseter muscle every three days for eight weeks. Sixteen angular and linear skeletal measurements were assessed in the overall craniofacial region and the mandible via standardised digital radiography in three views: lateral head, submento-vertex and right and left disarticulated hemi-mandibles.
Results
The findings indicated that, following surgical denervation of the masseter muscle, there were significant changes in the muscle and in the subsequent development of the underlying skeletal structures. The post-surgical changes were largely offset by the administration of a β2-agonist, formoterol, which attenuated muscle atrophy. However, the administration of the β2-agonist only, without surgical denervation, did not lead to changes in skeletal facial form.
Conclusions
Denervation atrophy of the masseter muscle results in statistically significant changes in the development of the underlying skeleton. The changes, however, are localised to areas of muscle attachment. The administration of the β2-agonist, formoterol, despite its effect on muscle anabolism, does not have a significant effect on underlying skeletal growth.
Collapse
Affiliation(s)
- Robert J. Mayne
- * Orthodontic Unit , University of Melbourne , Melbourne , Australia
| | - Chris van der Poel
- † Department of Physiology , University of Melbourne , Melbourne , Australia
| | - Michael G. Woods
- + Oral and Maxillofacial Surgery Unit , Melbourne Health and Royal Melbourne Hospital , Melbourne , Australia
| | - Gordon S. Lynch
- † Department of Physiology , University of Melbourne , Melbourne , Australia
| |
Collapse
|
15
|
Caron G, Marqueste T, Decherchi P. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle. PLoS One 2015; 10:e0140439. [PMID: 26485650 PMCID: PMC4617719 DOI: 10.1371/journal.pone.0140439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/25/2015] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.
Collapse
Affiliation(s)
- Guillaume Caron
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM), Equipe, Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CC910 - 163 Avenue de Luminy, F-13288, Marseille, cedex 09, France
| | - Tanguy Marqueste
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM), Equipe, Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CC910 - 163 Avenue de Luminy, F-13288, Marseille, cedex 09, France
| | - Patrick Decherchi
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM), Equipe, Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CC910 - 163 Avenue de Luminy, F-13288, Marseille, cedex 09, France
- * E-mail:
| |
Collapse
|
16
|
Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, Ørtenblad N, Backer V, Bangsbo J. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985) 2015; 119:475-86. [DOI: 10.1152/japplphysiol.00319.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/07/2015] [Indexed: 01/16/2023] Open
Abstract
The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group [oral terbutaline 5 mg/30 kg body weight (bw) twice daily (TER); n = 9] or a control group [placebo (PLA); n = 9] for a 4-wk intervention. No changes were observed with the intervention in PLA. Isometric muscle force of the quadriceps increased ( P ≤ 0.01) by 97 ± 29 N (means ± SE) with the intervention in TER compared with PLA. Peak and mean power output during 30 s of maximal cycling increased ( P ≤ 0.01) by 32 ± 8 and 25 ± 9 W, respectively, with the intervention in TER compared with PLA. Maximal oxygen consumption (V̇o2max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95 ± 0.8 kg ( P ≤ 0.05) with the intervention in TER compared with PLA. Change in single fiber cross-sectional area of myosin heavy chain (MHC) I (1,205 ± 558 μm2; P ≤ 0.01) and MHC II fibers (1,277 ± 595 μm2; P ≤ 0.05) of the vastus lateralis muscle was higher for TER than PLA with the intervention, whereas no changes were observed in MHC isoform distribution. Expression of muscle proteins involved in growth, ion handling, lactate production, and clearance increased ( P ≤ 0.05) with the intervention in TER compared with PLA, with no change in oxidative enzymes. Our observations suggest that muscle hypertrophy is the primary mechanism underlying enhancements in muscle force and peak power during maximal cycling induced by chronic β2-adrenergic stimulation in humans.
Collapse
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Anders Kalsen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Johan Onslev
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Christoffer Haase
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sajad Habib
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Biomechanics, University of Southern Denmark, Odense, Denmark; and
- Swedish Winter Sports Research Centre, Mid Sweden University, Sundsvall, Sweden
| | - Vibeke Backer
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Py G, Ramonatxo C, Sirvent P, Sanchez AMJ, Philippe AG, Douillard A, Galbès O, Lionne C, Bonnieu A, Chopard A, Cazorla O, Lacampagne A, Candau RB. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery. J Physiol 2015; 593:2071-84. [PMID: 25656230 DOI: 10.1113/jphysiol.2014.287060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 01/30/2023] Open
Abstract
Clenbuterol is a β2 -adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg(-1) day(-1) ) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po ) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca(2+) transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (-19%, P < 0.01) and 21 days (-25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca(2+) release during contraction could partially explain these deleterious effects.
Collapse
Affiliation(s)
- G Py
- Faculté des Sciences du Sport, Université Montpellier, 700 avenue du Pic Saint-Loup, F-34060, Montpellier, France; INRA, UMR866, Université Montpellier, 2 Place Viala, F-34060, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ohnuki Y, Umeki D, Mototani Y, Jin H, Cai W, Shiozawa K, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation. J Physiol 2014; 592:5461-75. [PMID: 25344550 DOI: 10.1113/jphysiol.2014.282996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling.
Collapse
Affiliation(s)
- Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
19
|
Hida T, Harada A, Imagama S, Ishiguro N. Managing sarcopenia and its related-fractures to improve quality of life in geriatric populations. Aging Dis 2014; 5:226-37. [PMID: 25110607 DOI: 10.14336/ad.2014.0500226] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, an aging-induced generalized decrease in muscle mass, strength, and function, is known to affect elderly individuals by decreasing mobile function and increasing frailty and imbalance that lead to falls and fragile fractures. Sarcopenia is a known risk factor for osteoporotic fractures, infections, and early death in some specific situations. The number of patients with sarcopenia is estimated to increase to 500 million people in the year 2050. Sarcopenia is believed to be caused by multiple factors such as disuse, malnutrition, age-related cellular changes, apoptosis, and genetic predisposition; however, this remains to be determined. Various methods have been developed, but no safe or effective treatment has been found to date. This paper is a review on the association between sarcopenia and its related-fractures and their diagnoses and management methods to prevent fractures.
Collapse
Affiliation(s)
| | - Atsushi Harada
- Department of Orthopedic Surgery, National Center for Geriatrics and Gerontology
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
20
|
Sirvent P, Douillard A, Galbes O, Ramonatxo C, Py G, Candau R, Lacampagne A. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle. PLoS One 2014; 9:e100281. [PMID: 24971566 PMCID: PMC4074032 DOI: 10.1371/journal.pone.0100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Abstract
Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg−1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+ -transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.
Collapse
Affiliation(s)
- Pascal Sirvent
- Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, Aubière, France; U1046, INSERM, Université Montpellier 1, Université Montpellier 2, 34295 Montpellier, France; CHRU Montpellier, 34295 Montpellier, France; National Institute for Agronomic Research (INRA), UMR 866 Muscular Dynamic and Metabolism, University of Montpellier, Montpellier, France
| | - Aymerick Douillard
- National Institute for Agronomic Research (INRA), UMR 866 Muscular Dynamic and Metabolism, University of Montpellier, Montpellier, France
| | - Olivier Galbes
- U1046, INSERM, Université Montpellier 1, Université Montpellier 2, 34295 Montpellier, France; CHRU Montpellier, 34295 Montpellier, France; National Institute for Agronomic Research (INRA), UMR 866 Muscular Dynamic and Metabolism, University of Montpellier, Montpellier, France
| | - Christelle Ramonatxo
- U1046, INSERM, Université Montpellier 1, Université Montpellier 2, 34295 Montpellier, France; CHRU Montpellier, 34295 Montpellier, France; National Institute for Agronomic Research (INRA), UMR 866 Muscular Dynamic and Metabolism, University of Montpellier, Montpellier, France
| | - Guillaume Py
- National Institute for Agronomic Research (INRA), UMR 866 Muscular Dynamic and Metabolism, University of Montpellier, Montpellier, France
| | - Robin Candau
- National Institute for Agronomic Research (INRA), UMR 866 Muscular Dynamic and Metabolism, University of Montpellier, Montpellier, France
| | - Alain Lacampagne
- U1046, INSERM, Université Montpellier 1, Université Montpellier 2, 34295 Montpellier, France; CHRU Montpellier, 34295 Montpellier, France
| |
Collapse
|
21
|
Kolmus K, Van Troys M, Van Wesemael K, Ampe C, Haegeman G, Tavernier J, Gerlo S. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms. PLoS One 2014; 9:e90649. [PMID: 24603712 PMCID: PMC3946252 DOI: 10.1371/journal.pone.0090649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/04/2014] [Indexed: 02/04/2023] Open
Abstract
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | | | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Department of Physiology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Sarah Gerlo
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
22
|
Joassard OR, Amirouche A, Gallot YS, Desgeorges MM, Castells J, Durieux AC, Berthon P, Freyssenet DG. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. Int J Biochem Cell Biol 2013; 45:2444-55. [PMID: 23916784 DOI: 10.1016/j.biocel.2013.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Administration of β2-agonists triggers skeletal muscle anabolism and hypertrophy. We investigated the time course of the molecular events responsible for rat skeletal muscle hypertrophy in response to 1, 3 and 10 days of formoterol administration (i.p. 2000μg/kg/day). A marked hypertrophy of rat tibialis anterior muscle culminated at day 10. Phosphorylation of Akt, ribosomal protein S6, 4E-BP1 and ERK1/2 was increased at day 3, but returned to control level at day 10. This could lead to a transient increase in protein translation and could explain previous studies that reported increase in protein synthesis following β2-agonist administration. Formoterol administration was also associated with a significant reduction in MAFbx/atrogin-1 mRNA level (day 3), suggesting that formoterol can also affect protein degradation of MAFbx/atrogin1 targeted substrates, including MyoD and eukaryotic initiation factor-3f (eIF3-f). Surprisingly, mRNA level of autophagy-related genes, light chain 3 beta (LC3b) and gamma-aminobutyric acid receptor-associated protein-like 1 (Gabarapl1), as well as lysosomal hydrolases, cathepsin B and cathepsin L, was significantly and transiently increased after 1 and/or 3 days, suggesting that autophagosome formation would be increased in response to formoterol administration. However, this has to be relativized since the mRNA level of Unc-51-like kinase1 (Ulk1), BCL2/adenovirus E1B interacting protein3 (Bnip3), and transcription factor EB (TFEB), as well as the protein content of Ulk1, Atg13, Atg5-Atg12 complex and p62/Sqstm1 remained unchanged or was even decreased in response to formoterol administration. These results demonstrate that the effects of formoterol are mediated, in part, through the activation of Akt-mTOR pathway and that other signaling pathways become more important in the regulation of skeletal muscle mass with chronic administration of β2-agonists.
Collapse
Affiliation(s)
- Olivier Roger Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Joassard OR, Durieux AC, Freyssenet DG. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int J Biochem Cell Biol 2013; 45:2309-21. [PMID: 23845739 DOI: 10.1016/j.biocel.2013.06.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
β2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, β2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of β2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that β2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of β2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of β2-agonists, we will review the anti-atrophy effects of β2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Olivier R Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | |
Collapse
|
24
|
Key signalling factors and pathways in the molecular determination of skeletal muscle phenotype. Animal 2012; 1:681-98. [PMID: 22444469 DOI: 10.1017/s1751731107702070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular basis and control of the biochemical and biophysical properties of skeletal muscle, regarded as muscle phenotype, are examined in terms of fibre number, fibre size and fibre types. A host of external factors or stimuli, such as ligand binding and contractile activity, are transduced in muscle into signalling pathways that lead to protein modifications and changes in gene expression which ultimately result in the establishment of the specified phenotype. In skeletal muscle, the key signalling cascades include the Ras-extracellular signal regulated kinase-mitogen activated protein kinase (Erk-MAPK), the phosphatidylinositol 3'-kinase (PI3K)-Akt1, p38 MAPK, and calcineurin pathways. The molecular effects of external factors on these pathways revealed complex interactions and functional overlap. A major challenge in the manipulation of muscle of farm animals lies in the identification of regulatory and target genes that could effect defined and desirable changes in muscle quality and quantity. To this end, recent advances in functional genomics that involve the use of micro-array technology and proteomics are increasingly breaking new ground in furthering our understanding of the molecular determinants of muscle phenotype.
Collapse
|
25
|
Ung RV, Rouleau P, Guertin PA. Functional and Physiological Effects of Treadmill Training Induced by Buspirone, Carbidopa, and L-DOPA in Clenbuterol-Treated Paraplegic Mice. Neurorehabil Neural Repair 2011; 26:385-94. [DOI: 10.1177/1545968311427042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Roth-Visal Ung
- Laval University Medical Center (CHUL-CHUQ), Québec City, Québec, Canada
| | - Pascal Rouleau
- Laval University Medical Center (CHUL-CHUQ), Québec City, Québec, Canada
| | - Pierre A. Guertin
- Laval University Medical Center (CHUL-CHUQ), Québec City, Québec, Canada
- Laval University, Québec City, Québec, Canada
| |
Collapse
|
26
|
Muscle plasticity and β₂-adrenergic receptors: adaptive responses of β₂-adrenergic receptor expression to muscle hypertrophy and atrophy. J Biomed Biotechnol 2011; 2011:729598. [PMID: 22190857 PMCID: PMC3228688 DOI: 10.1155/2011/729598] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/23/2011] [Indexed: 02/04/2023] Open
Abstract
We discuss the functional roles of β2-adrenergic receptors in skeletal
muscle hypertrophy and atrophy as well as
the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using
anabolic drugs increases muscle mass by promoting
muscle protein synthesis and/or attenuating
protein degradation. These effects are prevented
by the downregulation of the receptor. Endurance
training improves oxidative performance partly
by increasing β2-adrenergic receptor density in
exercise-recruited slow-twitch muscles. However,
excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on
atrophy induced by muscle disuse and catabolic
hormones or drugs are observed, these catabolic
conditions decrease β2-adrenergic receptor expression in
slow-twitch muscles. These findings present
evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal
muscles play an important physiological role in
the regulation of protein and energy balance.
Collapse
|
27
|
Abstract
Asthma is frequently found among elite athletes performing endurance sports such as swimming, rowing and cross-country skiing. Although these athletes often report symptoms while exercising, they seldom have symptoms at rest. Moreover, compared with nonathletic asthmatic individuals, elite athletes have been shown to have a different distribution of airway inflammation and unequal response to bronchial provocative test. Elite athletes display signs of exercise-induced symptoms, for example, nonasthmatic inspiratory wheeze, vocal cord dysfunction and cardiac arrhythmias, which could limit their physical capacity. Elite athletes should undergo comprehensive assessment to confirm an asthma diagnosis and determine its degree of severity. Treatment should be as for any other asthmatic individual, including the use of β2-agonist, inhaled steroid as well as leukotriene-antagonist. It should, however, be noted that daily use of β-agonists could expose elite athletes to the risk of developing tolerance towards these drugs. Use of β2-agonist should be replaced with daily inhaled corticosteroid treatment, the most important treatment of exercise-induced asthma. All physicians treating asthma should be aware of the doping aspects. Systemic β2-agonist intake is strictly prohibited, whereas inhaled treatment is allowed in therapeutic doses when asthma is documented and dispensation has been granted when needed.
Collapse
Affiliation(s)
- Jimmi Elers
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen NV, Denmark
| | | | | |
Collapse
|
28
|
Talan MI, Ahmet I, Xiao RP, Lakatta EG. β₂ AR agonists in treatment of chronic heart failure: long path to translation. J Mol Cell Cardiol 2010; 51:529-33. [PMID: 20888833 DOI: 10.1016/j.yjmcc.2010.09.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/22/2022]
Abstract
The main clinical manifestations of advanced chronic heart failure (CHF), e.g. in dilated cardiomyopathy (DCM), are reduced systolic and diastolic functions, increased arterial elastance and arterio-ventricular uncoupling, accompanied and exacerbated by an excessive sympathetic activation and extensive abnormalities in the βAR signaling. Loss of cardiomyocytes due to apoptosis is one mechanism that undoubtedly contributes to cardiac remodeling and functional deterioration associated with dilated cardiomyopathy (DCM). Research during the last decade on the single cardiomyocyte level strongly suggested that selective stimulation of β(1) AR activates the proapoptotic signaling pathways, while selective stimulation of β(2) AR is antiapoptotic, but its precise mechanisms remain to be elucidated. Extensive research in the rat model of DCM following induction of myocardial infarction (MI) showed that prolonged treatment with of β(2) AR agonist, fenoterol, in combination with a β(1) AR blocker, metoprolol, is more effective than β(1) AR blocker alone and as effective as β(1) AR blocker with ACE inhibitor with respect to survival and cardiac remodeling. This combined regimen of β(2) AR agonists and a β(1) AR blocker might be considered for clinical testing as alternative or adjunct therapy to currently acceptable CHF arsenal. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Mark I Talan
- Laboratory of Cardiovascular Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
29
|
Ung RV, Rouleau P, Guertin PA. Effects of co-administration of clenbuterol and testosterone propionate on skeletal muscle in paraplegic mice. J Neurotrauma 2010; 27:1129-42. [PMID: 20482256 DOI: 10.1089/neu.2009.1211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spinal cord injury (SCI) is generally associated with a rapid and significant decrease in muscle mass and corresponding changes in skeletal muscle properties. Although beta(2)-adrenergic and androgen receptor agonists are anabolic substances clearly shown to prevent or reverse muscle wasting in some pathological conditions, their effects in SCI patients remain largely unknown. Here we studied the effects of clenbuterol and testosterone propionate administered separately or in combination on skeletal muscle properties and adipose tissue in adult CD1 mice spinal-cord-transected (Tx) at the low-thoracic level (i.e., induced complete paraplegia). Administered shortly post-Tx, these substances were found to differentially reduce loss in body weight, muscle mass, and muscle fiber cross-sectional area (CSA) values. Although all three treatments induced significant effects, testosterone-treated animals were generally less protected against Tx-related changes. However, none of the treatments prevented fat tissue loss or muscle fiber type conversion and functional loss generally found in Tx animals. These results provide evidence suggesting that clenbuterol alone or combined with testosterone may constitute better clinically-relevant treatments than testosterone alone to decrease muscle atrophy (mass and fiber CSA) in SCI subjects.
Collapse
Affiliation(s)
- Roth-Visal Ung
- Neuroscience Unit, Laval University Medical Center (CHUL-CHUQ), Quebec City, Quebec, Canada
| | | | | |
Collapse
|
30
|
Cadena SM, Tomkinson KN, Monnell TE, Spaits MS, Kumar R, Underwood KW, Pearsall RS, Lachey JL. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J Appl Physiol (1985) 2010; 109:635-42. [PMID: 20466801 DOI: 10.1152/japplphysiol.00866.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This is the first report that inhibition of negative regulators of skeletal muscle by a soluble form of activin type IIB receptor (ACE-031) increases muscle mass independent of fiber-type expression. This finding is distinct from the effects of selective pharmacological inhibition of myostatin (GDF-8), which predominantly targets type II fibers. In our study 8-wk-old C57BL/6 mice were treated with ACE-031 or vehicle control for 28 days. By the end of treatment, mean body weight of the ACE-031 group was 16% greater than that of the control group, and wet weights of soleus, plantaris, gastrocnemius, and extensor digitorum longus muscles increased by 33, 44, 46 and 26%, respectively (P<0.05). Soleus fiber-type distribution was unchanged with ACE-031 administration, and mean fiber cross-sectional area increased by 22 and 28% (P<0.05) in type I and II fibers, respectively. In the plantaris, a predominantly type II fiber muscle, mean fiber cross-sectional area increased by 57% with ACE-031 treatment. Analysis of myosin heavy chain (MHC) isoform transcripts by real-time PCR indicated no change in transcript levels in the soleus, but a decline in MHC I and IIa in the plantaris. In contrast, electrophoretic separation of total soleus and plantaris protein indicated that there was no change in the proportion of MHC isoforms in either muscle. Thus these data provide optimism that ACE-031 may be a viable therapeutic in the treatment of musculoskeletal diseases. Future studies should be undertaken to confirm that the observed effects are not age dependent or due to the relatively short study duration.
Collapse
Affiliation(s)
- Samuel M Cadena
- Acceleron Pharma Inc., 128 Sidney St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim HC, Lee GD, Hwang YS. Skeletal Muscle Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2010. [DOI: 10.4046/trd.2010.68.3.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Gi Dong Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Young Sil Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
32
|
Koopman R, Ryall JG, Church JE, Lynch GS. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders. Curr Opin Clin Nutr Metab Care 2009; 12:601-6. [PMID: 19741516 DOI: 10.1097/mco.0b013e3283318a25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The beta-adrenergic signaling pathway represents a novel therapeutic target for skeletal muscle wasting disorders due to its roles in regulating protein synthesis and degradation. beta-Adrenoceptor agonists (beta-agonists) have therapeutic potential for attenuating muscle wasting associated with sarcopenia (age-related muscle wasting), cancer cachexia, sepsis, disuse, burns, HIV-AIDS, chronic kidney or heart failure, and neuromuscular diseases such as the muscular dystrophies. This review describes the role of beta-adrenergic signaling in the mechanisms controlling muscle wasting due to its effects on protein synthesis, protein degradation, and muscle fiber phenotype. RECENT FINDINGS Stimulation of the beta-adrenergic signaling pathway with beta-agonists has therapeutic potential for muscle wasting since administration can elicit an anabolic response in skeletal muscle. As a consequence of their potent muscle anabolic actions, the effects of beta-agonist administration have been examined in several animal models and human conditions of muscle wasting in the hope of discovering a new therapeutic. The repartitioning characteristics of beta-agonists (increasing muscle mass and decreasing fat mass) have also made them attractive anabolic agents for use in livestock and by some athletes. However, potentially deleterious cardiovascular side-effects of beta-agonists have been identified and these will need to be obviated in order for the therapeutic potential of beta-agonists to be realized. SUMMARY Multiple studies have identified anticachectic effects of beta-agonists and their therapeutic potential for pathologic states when muscle protein hypercatabolism is indicated. Future studies examining beta-agonist administration for muscle wasting conditions need to separate beneficial effects on skeletal muscle from potentially deleterious effects on the heart and cardiovascular system.
Collapse
Affiliation(s)
- René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One 2009; 4:e5631. [PMID: 19462004 PMCID: PMC2680484 DOI: 10.1371/journal.pone.0005631] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 03/26/2009] [Indexed: 11/30/2022] Open
Abstract
In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative. Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase) were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1. Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia.
Collapse
|
34
|
Turpin SM, Ryall JG, Southgate R, Darby I, Hevener AL, Febbraio MA, Kemp BE, Lynch GS, Watt MJ. Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice. J Physiol 2009; 587:1593-605. [PMID: 19204053 DOI: 10.1113/jphysiol.2008.166033] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Excess lipid accumulation resulting from an elevated supply of plasma fatty acids is linked to the pathogenesis of the metabolic syndrome and heart disease. The term 'lipotoxicity' was coined to describe how lipid accumulation leads to cellular dysfunction and death in non-adipose tissues including the heart, pancreas and liver. While lipotoxicity has been shown in cultured skeletal muscle cells, the degree of lipotoxicity in vivo and the functional consequences are unresolved. We studied three models of fatty acid overload in male mice: 5 h Intralipid((R)) and heparin infusion, prolonged high fat feeding (HFF) and genetic obesity induced by leptin deficiency (ob/ob mice). Markers of apoptosis, proteolysis and autophagy were assessed as readouts of lipotoxicity. The Intralipid((R)) infusion increased caspase 3 activity in skeletal muscle, demonstrating that enhancing fatty acid flux activates pro-apoptotic pathways. HFF and genetic obesity increased tissue lipid content but did not influence apoptosis. Gene array analysis revealed that HFF reduced the expression of 31 pro-apoptotic genes. Markers of autophagy (LC3beta and beclin-1 expression) were unaffected by HFF and were associated with enhanced Bcl(2) protein expression. Proteolytic activity was similarly unaffected by HFF or in ob/ob mice. Thus, contrary to our previous findings in muscle culture in vitro and in other non-adipose tissues in vivo, lipid overload did not induce apoptosis, autophagy or proteolysis in skeletal muscle. A broad transcriptional suppression of pro-apoptotic proteins may explain this resistance to lipid-induced cell death in skeletal muscle.
Collapse
Affiliation(s)
- S M Turpin
- St Vincent's Institute of Medical Research and the Department of Medicine, University of Melbourne, Fitzroy, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ryall JG, Lynch GS. The potential and the pitfalls of β-adrenoceptor agonists for the management of skeletal muscle wasting. Pharmacol Ther 2008; 120:219-32. [DOI: 10.1016/j.pharmthera.2008.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 01/08/2023]
|
36
|
von Haehling S, Lainscak M, Springer J, Anker SD. Cardiac cachexia: a systematic overview. Pharmacol Ther 2008; 121:227-52. [PMID: 19061914 DOI: 10.1016/j.pharmthera.2008.09.009] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 09/03/2008] [Indexed: 01/10/2023]
Abstract
Cardiac cachexia as a terminal stage of chronic heart failure carries a poor prognosis. The definition of this clinical syndrome has been a matter of debate in recent years. This review describes the ongoing discussion about this issue and the complex pathophysiology of cardiac cachexia and chronic heart failure with particular focus on immunological, metabolic, and hormonal aspects at the intracellular and extracellular level. These include regulators such as neuropeptide Y, leptin, melanocortins, ghrelin, growth hormone, and insulin. The regulation of feeding is discussed as are nutritional aspects in the treatment of the disease. The mechanisms of wasting in different body compartments are described. Moreover, we discuss several therapeutic approaches. These include appetite stimulants like megestrol acetate, medroxyprogesterone acetate, and cannabinoids. Other drug classes of interest comprise angiotensin-converting enzyme inhibitors, beta-blockers, anabolic steroids, beta-adrenergic agonists, anti-inflammatory substances, statins, thalidomide, proteasome inhibitors, and pentoxifylline.
Collapse
Affiliation(s)
- Stephan von Haehling
- Applied Cachexia Research, Department of Cardiology, Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
Caruso JF, Hamill JL, Yamauchi M, Saito K, Cook TD, Mercado DR. Temporal strength changes from resistance exercise and albuterol on unloaded muscle. J Strength Cond Res 2008; 22:1156-63. [PMID: 18545194 DOI: 10.1519/jsc.0b013e31816eb46a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To assess unloaded knee extensor temporal strength changes, healthy subjects without asthma performed 40 continuous days of unilateral limb suspension, whereby their left leg refrained from normal weight-bearing and ambulatory activity. During the 40-day period, subjects performed resistance exercise (REX) with their unloaded leg on an inertial resistance ergometer and, as part of a double-blind design, consumed the maximal oral therapeutic dosage of albuterol (i.e., 16 mg.d) or a placebo (i.e., lactose) with no crossover. Workout data were partitioned into 4 10-day periods that ran consecutively. Dependent strength variables included concentric total work, eccentric total work, concentric average power (CAP), and eccentric average power (EAP). Dependent variables were analyzed with 5 (time) x 2 (group) x 2 (gender) mixed factorial analyses of variance and the Tukey honestly significant difference test. Concentric total work, CAP, and EAP each demonstrated a time-group-gender (p < 0.05) interaction. Female REX-placebo subjects had the greatest percentage of unloaded knee extensor strength loss. However, female REX-albuterol subjects fared best throughout the 40-day period and incurred significant unloaded knee extensor strength gains. Differences in strength changes between male and female REX-albuterol subjects was likely due to the higher relative dosage administered to the latter, as body mass showed a gender (i.e., men > women) effect. Future research may elucidate the ideal dose-response relationship for REX-albuterol treatment for use aboard manned space flights and in other disuse models. Coaches and practitioners should carefully examine their sport-governing bodies' rules on albuterol administration and give the drug only if an athlete's health warrants such treatment.
Collapse
Affiliation(s)
- John F Caruso
- Exercise and Sports Science Program, The University of Tulsa, Tulsa, Oklahoma, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Wu PIK, Edelman ER. Structural biomechanics modulate intramuscular distribution of locally delivered drugs. J Biomech 2008; 41:2884-91. [PMID: 18706562 DOI: 10.1016/j.jbiomech.2008.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
As local drug delivery continues to emerge as a clinical force, so does understanding of its potentially narrow therapeutic window. Classic molecular transport studies are of value but do not typically account for the local nature of drug transport or the effects of regional dynamic function in target tissues like muscle that may undergo cyclical and variable mechanical motion and loading. We examined the impact of dynamic architecture on intramuscular drug distribution. We designed a tissue mounting technique and mechanical loading system that uniquely enables pharmacokinetics investigations in association with control of muscle biomechanics while preserving physiologic tissue architecture. The system was validated and used to elucidate the influence of architecture and controlled cyclic strain on intramuscular drug distribution. Rat soleus muscles underwent controlled deformations within a drug delivery chamber that preserved in vivo physiology. Penetration of 1mM 20 kDa FITC-dextran at planar surfaces of the soleus axial cross-section increased significantly from 0.52+/-0.09 mm under 80 min of static (0%) strain to 0.81+/-0.09 mm under cyclic (3 Hz, 0-20% peak-to-peak) strain, demonstrating the driving effect of cyclic loading on transport. Penetration at curved margins was 1.57- and 2.53-fold greater than at planar surfaces under static and cyclic strain, respectively, and was enhanced 1.6-fold more by cyclic strain, revealing architecturally dictated spatial heterogeneity in transport and modulation of motion dynamics. Architectural geometry and dynamics modulate the impact of mechanical loading on local drug penetration and intramuscular distribution. Future work will use the biomechanical test system to investigate mechanisms underlying transport effects of specific loading regimens. It is hoped that this work will initiate a broader understanding of intramuscular pharmacokinetics and guide local drug delivery strategies.
Collapse
Affiliation(s)
- Peter I-Kung Wu
- Biomedical Engineering Center, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, E25-442, Cambridge, MA 02139, USA.
| | | |
Collapse
|
39
|
Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008; 88:729-67. [PMID: 18391178 DOI: 10.1152/physrev.00028.2007] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The importance of beta-adrenergic signaling in the heart has been well documented, but it is only more recently that we have begun to understand the importance of this signaling pathway in skeletal muscle. There is considerable evidence regarding the stimulation of the beta-adrenergic system with beta-adrenoceptor agonists (beta-agonists). Although traditionally used for treating bronchospasm, it became apparent that some beta-agonists could increase skeletal muscle mass and decrease body fat. These so-called "repartitioning effects" proved desirable for the livestock industry trying to improve feed efficiency and meat quality. Studying beta-agonist effects on skeletal muscle has identified potential therapeutic applications for muscle wasting conditions such as sarcopenia, cancer cachexia, denervation, and neuromuscular diseases, aiming to attenuate (or potentially reverse) the muscle wasting and associated muscle weakness, and to enhance muscle growth and repair after injury. Some undesirable cardiovascular side effects of beta-agonists have so far limited their therapeutic potential. This review describes the physiological significance of beta-adrenergic signaling in skeletal muscle and examines the effects of beta-agonists on skeletal muscle structure and function. In addition, we examine the proposed beneficial effects of beta-agonist administration on skeletal muscle along with some of the less desirable cardiovascular effects. Understanding beta-adrenergic signaling in skeletal muscle is important for identifying new therapeutic targets and identifying novel approaches to attenuate the muscle wasting concomitant with many diseases.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
40
|
Ryall JG, Schertzer JD, Alabakis TM, Gehrig SM, Plant DR, Lynch GS. Intramuscular beta2-agonist administration enhances early regeneration and functional repair in rat skeletal muscle after myotoxic injury. J Appl Physiol (1985) 2008; 105:165-72. [PMID: 18436698 DOI: 10.1152/japplphysiol.00317.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Systemic administration of beta(2)-adrenoceptor agonists (beta(2)-agonists) can improve skeletal muscle regeneration after injury. However, therapeutic application of beta(2)-agonists for muscle injury has been limited by detrimental cardiovascular side effects. Intramuscular administration may obviate some of these side effects. To test this hypothesis, the right extensor digitorum longus (EDL) muscle from rats was injected with bupivacaine hydrochloride to cause complete muscle fiber degeneration. Five days after injury, half of the injured muscles received an intramuscular injection of formoterol (100 mug). Muscle function was assessed at 7, 10, and 14 days after injury. A single intramuscular injection of formoterol increased muscle mass and force-producing capacity at day 7 by 17 and 91%, respectively, but this effect was transient because these values were not different from control levels at day 10. A second intramuscular injection of formoterol at day 7 prolonged the increase in muscle mass and force-producing capacity. Importantly, single or multiple intramuscular injections of formoterol did not elicit cardiac hypertrophy. To characterize any potential cardiovascular effects of intramuscular formoterol administration, we instrumented a separate group of rats with indwelling radio telemeters. Following an intramuscular injection of formoterol, heart rate increased by 18%, whereas systolic and diastolic blood pressure decreased by 31 and 44%, respectively. These results indicate that intramuscular injection can enhance functional muscle recovery after injury without causing cardiac hypertrophy. Therefore, if the transient cardiovascular effects associated with intramuscular formoterol administration can be minimized, this form of treatment may have significant therapeutic potential for muscle-wasting conditions.
Collapse
Affiliation(s)
- James G Ryall
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, 3010 Australia
| | | | | | | | | | | |
Collapse
|
41
|
Backer V, Lund T, Pedersen L. Pharmaceutical treatment of asthma symptoms in elite athletes - doping or therapy? Scand J Med Sci Sports 2008; 17:615-22. [PMID: 18093034 DOI: 10.1111/j.1600-0838.2007.00711.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Asthma, exercise-induced bronchoconstriction, and airway hyper-responsiveness are often found in elite athletes, perhaps as a consequence of their sport or maybe because asthma is a common disorder in young adults. Inhaled beta2-agonists (IBA) are frequently used in elite athletes, but due to regulations introduced by the International Olympic Committee, the use of anti-asthmatic therapy might change. Drugs that make ergogenic effect persist are prohibited in all athletes, whether or not they take part in competitions and systemic steroids and beta2-agonists are among such drugs. On the other hand, opinion is more divided about the use of inhaled corticosteroids (ICS) and IBA. In humans, no effect has been found on the oxygen uptake, performance or distance run with therapeutic doses of IBA, either in asthmatics or non-asthmatics, whereas others report an ergogenic effect and better lung function of high doses of a beta2-agonist in non-asthmatics. Anti-asthmatic treatment is necessary for asthmatics, but should not be used by non-asthmatic elite athletes due to both possible systemic effects and furthermore, side effects of both ICS and IBA.
Collapse
Affiliation(s)
- V Backer
- Department of Respiratory Medicine, Bispebjerg Hospital, University Hospital of Copenhagen, Denmark.
| | | | | |
Collapse
|
42
|
Beitzel F, Sillence MN, Lynch GS. beta-Adrenoceptor signaling in regenerating skeletal muscle after beta-agonist administration. Am J Physiol Endocrinol Metab 2007; 293:E932-40. [PMID: 17623752 DOI: 10.1152/ajpendo.00175.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulating the beta-adrenoceptor (beta-AR) signaling pathway can enhance the functional repair of skeletal muscle after injury, but long-term use of beta-AR agonists causes beta-AR downregulation, which may limit their therapeutic effectiveness. The aim was to examine beta-AR signaling during early regeneration in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles after bupivacaine injury and test the hypothesis that, during regeneration, beta-agonist administration does not cause beta-AR desensitization. Rats received either the beta-AR agonist fenoterol (1.4 mgxkg(-1)xday(-1) ip) or saline for 7 days postinjury. Fenoterol reduced beta-AR density in regenerating soleus muscles by 42%. Regenerating EDL muscles showed a threefold increase in beta-AR density, and, again, these values were 43% lower with fenoterol treatment. An amplified adenylate cyclase (AC) response to isoproterenol was observed in cell membrane fragments from EDL and soleus muscles 7 days postinjury. Fenoterol attenuated this increase in regenerating EDL muscles but not soleus muscles. beta-AR signaling mechanisms were assessed using AC stimulants (NaF, forskolin, and Mn(2+)). Although beta-agonist treatment reduces beta-AR density in regenerating muscles, these muscles can produce large cAMP responses relative to healthy (uninjured) muscles. Desensitization of beta-AR signaling in regenerating muscles is prevented by altered rates of beta-AR synthesis and/or degradation, changes in G protein populations and coupling efficiency, and altered AC activity. These mechanisms have important therapeutic implications for modulating beta-AR signaling to enhance muscle repair after injury.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- GTP-Binding Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Regeneration/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Felice Beitzel
- Basic and Clinical Myology Laboratory, Dept. of Physiology, The Univ. of Melbourne, Victoria, 3010 Australia
| | | | | |
Collapse
|
43
|
Ryall JG, Schertzer JD, Lynch GS. Attenuation of age-related muscle wasting and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia. J Gerontol A Biol Sci Med Sci 2007; 62:813-23. [PMID: 17702871 DOI: 10.1093/gerona/62.8.813] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the potential of the beta(2)-adrenoceptor agonist formoterol to increase mass and force-producing capacity of extensor digitorum longus (EDL) and soleus muscles from young, adult, and old rats. In addition, we examined the result of formoterol withdrawal. Young (3 month), adult (16 month), and old (27 month) F344 rats were treated with either formoterol (25 microg/kg/day, i.p.) or saline vehicle for 4 weeks. Another group of rats (for each age) was similarly treated with formoterol, followed by a withdrawal period of 4 weeks. Formoterol treatment increased EDL muscle mass and the force-producing capacity of both EDL and soleus muscles, without a concomitant increase in heart mass in adult and old rats. The hypertrophy and increased force-producing capacity of EDL muscles persisted 4 weeks after withdrawal of treatment. The findings have major implications for potential clinical trials utilizing beta(2)-agonists for sarcopenia.
Collapse
Affiliation(s)
- James G Ryall
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010 Australia
| | | | | |
Collapse
|
44
|
Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007; 113:461-87. [PMID: 17258813 DOI: 10.1016/j.pharmthera.2006.11.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness are common in many disease states and conditions including aging, cancer cachexia, sepsis, denervation, disuse, inactivity, burns, HIV-acquired immunodeficiency syndrome (AIDS), chronic kidney or heart failure, unloading/microgravity, and muscular dystrophies. Although the maintenance of muscle mass is generally regarded as a simple balance between protein synthesis and protein degradation, these mechanisms are not strictly independent, but in fact they are coordinated by a number of different and sometimes complementary signaling pathways. Clearer details are now emerging about these different molecular pathways and the extent to which these pathways contribute to the etiology of various muscle wasting disorders. Therapeutic strategies for attenuating muscle wasting and improving muscle function vary in efficacy. Exercise and nutritional interventions have merit for slowing the rate of muscle atrophy in some muscle wasting conditions, but in most cases they cannot halt or reverse the wasting process. Hormonal and/or other drug strategies that can target key steps in the molecular pathways that regulate protein synthesis and protein degradation are needed. This review describes the signaling pathways that maintain muscle mass and provides an overview of some of the major conditions where muscle wasting and weakness are indicated. The review provides details on some therapeutic strategies that could potentially attenuate muscle atrophy, promote muscle growth, and ultimately improve muscle function. The emphasis is on therapies that can increase muscle mass and improve functional outcomes that will ultimately lead to improvement in the quality of life for affected patients.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
45
|
Kline WO, Panaro FJ, Yang H, Bodine SC. Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol (1985) 2007; 102:740-7. [PMID: 17068216 DOI: 10.1152/japplphysiol.00873.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clenbuterol and other β2-adrenergic agonists are effective at inducing muscle growth and attenuating muscle atrophy through unknown mechanisms. This study tested the hypothesis that clenbuterol-induced growth and muscle sparing is mediated through the activation of Akt and mammalian target of rapamycin (mTOR) signaling pathways. Clenbuterol was administered to normal weight-bearing adult rats to examine the growth-inducing effects and to adult rats undergoing muscle atrophy as the result of hindlimb suspension or denervation to examine the muscle-sparing effects. The pharmacological inhibitor rapamycin was administered in combination with clenbuterol in vivo to determine whether activation of mTOR was involved in mediating the effects of clenbuterol. Clenbuterol administration increased the phosphorylation status of PKB/Akt, S6 kinase 1/p70s6k, and eukaryotic initiation factor 4E binding protein 1/PHAS-1. Clenbuterol treatment induced growth by 27–41% in normal rats and attenuated muscle loss during hindlimb suspension by 10–20%. Rapamycin treatment resulted in a 37–97% suppression of clenbuterol-induced growth and a 100% reduction of the muscle-sparing effect. In contrast, rapamycin was unable to block the muscle-sparing effects of clenbuterol after denervation. Clenbuterol was also shown to suppress the expression of the MuRF1 and MAFbx transcripts in muscles from normal, denervated, and hindlimb-suspended rats. These results demonstrate that the effects of clenbuterol are mediated, in part, through the activation of Akt and mTOR signaling pathways.
Collapse
Affiliation(s)
- William O Kline
- Univ. of California, Davis, Section of Neurobiology, Physiology, and Behavior, One Shields Ave., Davis, California 95616, USA
| | | | | | | |
Collapse
|
46
|
Burniston JG, Tan LB, Goldspink DF. Relative myotoxic and haemodynamic effects of the beta-agonists fenoterol and clenbuterol measured in conscious unrestrained rats. Exp Physiol 2006; 91:1041-9. [PMID: 16973691 PMCID: PMC1828613 DOI: 10.1113/expphysiol.2006.035014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The beta(2)-adrenoceptor (beta(2)-AR) agonists clenbuterol and fenoterol have similar beneficial effects in animal models of heart failure. However, large doses of clenbuterol can induce cardiomyocyte death, and it is not known which of these agents has the most favourable therapeutic profile. We have investigated the cardiotoxicity of clenbuterol and fenoterol alongside that of isoprenaline, and compared their haemodynamic effects. Wistar rats (n = 6 per group) were subcutaneously injected with each beta-agonist (0.003-3 mmol kg(-1)) or saline, and cardiomyocyte apoptosis was detected by caspase 3 immunohistochemistry. In a separate experiment, rats (n = 4) were given equivalent doses to those used in the myotoxicity studies, in a randomized cross-over design, and their blood pressure recorded via radiotelemetry. Injection of 0.3 mmol kg(-1) fenoterol or isoprenaline, but not clenbuterol, induced significant cardiomyocyte apoptosis (0.4 +/- 0.05%; P < 0.05). At 3 mmol kg(-1), all agonists induced apoptosis (fenoterol, 1.1 +/- 0.1%; isoprenaline, 0.9 +/- 0.8%; and clenbuterol, 0.4 +/- 0.07%; P < 0.05). beta(1)-Adrenoceptor antagonism (10 mg kg(-1) bisoprolol) prevented 92% (P < 0.05) of apoptosis induced by all three agonists, but clenbuterol-induced apoptosis could also be prevented by 96% (P < 0.05) by beta(2)-AR antagonism (10 mg kg(-1) ICI 118 551). Clenbuterol decreased diastolic (1.3- to 1.6-fold; P < 0.05) and systolic blood pressure (1.3-fold; P < 0.05), and doses > 0.3 mmol kg(-1) increased heart rate (1.4-fold; P < 0.05). Fenoterol increased heart rate (1.2- to 1.4-fold; P < 0.05), and doses > 0.3 mmol kg(-1) decreased diastolic blood pressure (1.3-fold; P < 0.05). In conclusion, the cardiotoxicity of fenoterol was similar to isoprenaline and greater than clenbuterol, and fenoterol had less desirable haemodynamic effects.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Webster Street, Liverpool L3 2ET, UK.
| | | | | |
Collapse
|
47
|
Ryall JG, Sillence MN, Lynch GS. Systemic administration of beta2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. Br J Pharmacol 2006; 147:587-95. [PMID: 16432501 PMCID: PMC1751341 DOI: 10.1038/sj.bjp.0706669] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
beta(2)-Adrenoceptor agonists provide a potential therapy for muscle wasting and weakness, but their use may be limited by adverse effects on the heart, mediated in part, by beta(1)-adrenoceptor activation. Two beta(2)-agonists, formoterol and salmeterol, are approved for treating asthma and have an extended duration of action and increased safety, associated with greater beta(2)-adrenoceptor selectivity. The pharmacological profiles of formoterol and salmeterol and their effects on skeletal and cardiac muscle mass were investigated in 12-week-old, male F344 rats. Formoterol and salmeterol were each administered via daily i.p. injection at one of seven doses (ranging from 1 to 2,000 microg kg(-1) day(-1)), for 4 weeks. Rats were anaesthetised and the EDL and soleus muscles and the heart were excised and weighed. Dose-response curves were constructed based on skeletal and cardiac muscle hypertrophy. Formoterol was more potent than salmeterol, with a significantly lower ED(50) in EDL muscles (1 and 130 microg kg(-1) day(-1), P <0.05), whereas salmeterol had greater intrinsic activity than formoterol in both EDL and soleus muscles (12% greater hypertrophy than formoterol). The drugs had similar potency and intrinsic activity in the heart, with a smaller leftward shift for formoterol than seen in skeletal muscle. A dose of 25 microg kg(-1) day(-1) of formoterol elicited greater EDL and soleus hypertrophy than salmeterol, but resulted in similar beta-adrenoceptor downregulation. These results show that doses as low as 1 microg kg(-1) day(-1) of formoterol can elicit significant muscle hypertrophy with minimal cardiac hypertrophy and provide important information regarding the potential therapeutic use of formoterol and salmeterol for muscle wasting.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-Agonists/administration & dosage
- Adrenergic beta-Agonists/pharmacology
- Albuterol/administration & dosage
- Albuterol/analogs & derivatives
- Albuterol/pharmacology
- Animals
- Cardiomegaly/chemically induced
- Dose-Response Relationship, Drug
- Down-Regulation
- Ethanolamines/administration & dosage
- Ethanolamines/pharmacology
- Formoterol Fumarate
- Heart/drug effects
- Male
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Inbred F344
- Receptors, Adrenergic, beta-2/metabolism
- Salmeterol Xinafoate
Collapse
Affiliation(s)
- James G Ryall
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Grattan Street, Victoria 3010, Australia
| | - Martin N Sillence
- School of Agricultural and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Grattan Street, Victoria 3010, Australia
- Author for correspondence:
| |
Collapse
|
48
|
Axell AM, MacLean HE, Plant DR, Harcourt LJ, Davis JA, Jimenez M, Handelsman DJ, Lynch GS, Zajac JD. Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab 2006; 291:E506-16. [PMID: 16621900 DOI: 10.1152/ajpendo.00058.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Androgens promote anabolism in skeletal muscle; however, effects on subsequent muscle function are less well defined because of a lack of reliable experimental models. We established a rigorous model of androgen withdrawal and administration in male mice and assessed androgen regulation of muscle mass, structure, and function. Adult C57Bl/6J male mice were orchidectomized (Orx) or sham-operated (Sham) and received 10 wk of continuous testosterone (T) or control treatment (C) via intraperitoneal implants. Mass, fiber cross-sectional area (CSA), and in vitro contractile function were assessed for fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles. After 10 wk, Orx+C mice had reduced body weight gain (P < 0.05), seminal vesicle mass (P < 0.01), and levator ani muscle mass (P < 0.001) compared with Sham+C mice, and these effects were prevented with testosterone treatment. Orx+T mice had greater EDL (P < 0.01) and SOL (P < 0.01) muscle mass compared with Orx+C mice; however, median fiber CSA was not significantly altered in these muscles. EDL and SOL muscle force was greater in Sham+T compared with Orx+C mice (P < 0.05) in proportion to muscle mass. Unexpectedly, Orx+T mice had increased fatigue resistance of SOL muscle compared with Orx+C mice (P < 0.001). We used a rigorous model of androgen withdrawal and administration in male mice to demonstrate an essential role of androgens in the maintenance of muscle mass and force. In addition, we showed that testosterone treatment increases resistance to fatigue of slow- but not fast-twitch muscle.
Collapse
Affiliation(s)
- Anna-Maree Axell
- Dept. of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gregorevic P, Ryall JG, Plant DR, Sillence MN, Lynch GS. Chronic β-agonist administration affects cardiac function of adult but not old rats, independent of β-adrenoceptor density. Am J Physiol Heart Circ Physiol 2005; 289:H344-9. [PMID: 15734875 DOI: 10.1152/ajpheart.01254.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although β-adrenoceptor agonists have clinical merit for attenuating the age-related loss of skeletal muscle mass and strength (sarcopenia), potential cardiac-related side effects may limit their clinical application. The aim of this study was to determine whether chronic β-agonist administration impairs cardiac function in adult or aged rats. Adult (16 mo) and aged (28 mo) Fischer 344 rats were treated with fenoterol (1.4 mg·kg−1·day−1 ip) or vehicle for 4 wk. Heart function was assessed in vitro before analyses of cardiac structure and β-adrenoceptor density. Heart mass increased 17% and 25% in fenoterol-treated adult and aged rats, respectively. The increased heart mass in aged, but not adult, rats was associated with a relative increase in collagen content. Cardiac hypertrophy in adult rats was associated with an increase in left ventricular developed pressure, a marked reduction in cardiac output, and a reduction in coronary flow per unit heart mass. In contrast, negligible differences in ventricular function were observed in fenoterol-treated aged rats. The differential effect on contractile function was not associated with age-related differences in β-adrenoceptor density but, rather, an age-related increase in downregulation after treatment. Our results show that chronic β-agonist treatment impairs cardiac function to a greater extent in adult than in aged rats. These results provide important information regarding the potential effects of chronic β-agonist use on cardiac function and the future development of safe and effective treatments for sarcopenia.
Collapse
Affiliation(s)
- Paul Gregorevic
- Dept. of Physiology, The Univ. of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
50
|
Busquets S, Figueras MT, Fuster G, Almendro V, Moore-Carrasco R, Ametller E, Argilés JM, López-Soriano FJ. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res 2004; 64:6725-31. [PMID: 15374990 DOI: 10.1158/0008-5472.can-04-0425] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In cancer cachexia both cardiac and skeletal muscle suffer an important protein mobilization as a result of increased proteolysis. Administration of the beta2-agonist formoterol to both rats and mice bearing highly cachectic tumors resulted in an important reversal of the muscle-wasting process. The anti-wasting effects of the drug were based on both an activation of the rate of protein synthesis and an inhibition of the rate of muscle proteolysis. Northern blot analysis revealed that formoterol treatment resulted in a decrease in the mRNA content of ubiquitin and proteasome subunits in gastrocnemius muscles; this, together with the decreased proteasome activity observed, suggest that the main anti-proteolytic action of the drug may be based on an inhibition of the ATP-ubiquitin-dependent proteolytic system. Interestingly, the beta2-agonist was also able to diminish the increased rate of muscle apoptosis (measured as DNA laddering as well as caspase-3 activity) present in tumor-bearing animals. The present results indicate that formoterol exerted a selective, powerful protective action on heart and skeletal muscle by antagonizing the enhanced protein degradation that characterizes cancer cachexia, and it could be revealed as a potential therapeutic tool in pathologic states wherein muscle protein hypercatabolism is a critical feature such as cancer cachexia or other wasting diseases.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cachexia/drug therapy
- Cachexia/metabolism
- Cachexia/pathology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Disease Models, Animal
- Eating/drug effects
- Ethanolamines/pharmacology
- Formoterol Fumarate
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Wistar
- Sarcoma, Yoshida/metabolism
- Sarcoma, Yoshida/pathology
Collapse
Affiliation(s)
- Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|