1
|
Balnis J, Madrid A, Drake LA, Vancavage R, Tiwari A, Patel VJ, Ramos RB, Schwarz JJ, Yucel R, Singer HA, Alisch RS, Jaitovich A. Blood DNA methylation in post-acute sequelae of COVID-19 (PASC): a prospective cohort study. EBioMedicine 2024; 106:105251. [PMID: 39024897 PMCID: PMC11286994 DOI: 10.1016/j.ebiom.2024.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND DNA methylation integrates environmental signals with transcriptional programs. COVID-19 infection induces changes in the host methylome. While post-acute sequelae of COVID-19 (PASC) is a long-term complication of acute illness, its association with DNA methylation is unknown. No universal blood marker of PASC, superseding single organ dysfunctions, has yet been identified. METHODS In this single centre prospective cohort study, PASC, post-COVID without PASC, and healthy participants were enrolled to investigate their symptoms association with peripheral blood DNA methylation data generated with state-of-the-art whole genome sequencing. PASC-induced quality-of-life deterioration was scored with a validated instrument, SF-36. Analyses were conducted to identify potential functional roles of differentially methylated loci, and machine learning algorithms were used to resolve PASC severity. FINDINGS 103 patients with PASC (22.3% male, 77.7% female), 15 patients with previous COVID-19 infection but no PASC (40.0% male, 60.0% female), and 27 healthy volunteers (48.1% male, 51.9% female) were enrolled. Whole genome methylation sequencing revealed 39 differentially methylated regions (DMRs) specific to PASC, each harbouring an average of 15 consecutive positions, that differentiate patients with PASC from the two control groups. Motif analyses of PASC-regulated DMRs identify binding domains for transcription factors regulating circadian rhythm and others. Some DMRs annotated to protein coding genes were associated with changes of RNA expression. Machine learning support vector algorithm and random forest hierarchical clustering reveal 28 unique differentially methylated positions (DMPs) in the genome discriminating patients with better and worse quality of life. INTERPRETATION Blood DNA methylation levels identify PASC, stratify PASC severity, and suggest that DNA motifs are targeted by circadian rhythm-regulating pathways in PASC. FUNDING This project has been funded by the following agencies: NIH-AI173035 (A. Jaitovich and R. Alisch); and NIH-AG066179 (R. Alisch).
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Lisa A Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Rachel Vancavage
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Vraj J Patel
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - John J Schwarz
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, PA, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
2
|
Maaß H, Ynga-Durand M, Milošević M, Krstanović F, Matešić MP, Žuža I, Jonjić S, Brizić I, Šustić A, Bloos F, Protić A, Čičin-Šain L. Serum cytokine dysregulation signatures associated with COVID-19 outcomes in high mortality intensive care unit cohorts across pandemic waves and variants. Sci Rep 2024; 14:13605. [PMID: 38871772 DOI: 10.1038/s41598-024-64384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The aim of this study was to characterize the systemic cytokine signature of critically ill COVID-19 patients in a high mortality setting aiming to identify biomarkers of severity, and to explore their associations with viral loads and clinical characteristics. We studied two COVID-19 critically ill patient cohorts from a referral centre located in Central Europe. The cohorts were recruited during the pre-alpha/alpha (November 2020 to April 2021) and delta (end of 2021) period respectively. We determined both the serum and bronchoalveolar SARS-CoV-2 viral load and identified the variant of concern (VoC) involved. Using a cytokine multiplex assay, we quantified systemic cytokine concentrations and analyzed their relationship with clinical findings, routine laboratory workup and pulmonary function data obtained during the ICU stay. Patients who did not survive had a significantly higher systemic and pulmonary viral load. Patients infected with the pre-alpha VoC showed a significantly lower viral load in comparison to those infected with the alpha- and delta-variants. Levels of systemic CTACK, M-CSF and IL-18 were significantly higher in non-survivors in comparison to survivors. CTACK correlated directly with APACHE II scores. We observed differences in lung compliance and the association between cytokine levels and pulmonary function, dependent on the VoC identified. An intra-cytokine analysis revealed a loss of correlation in the non-survival group in comparison to survivors in both cohorts. Critically ill COVID-19 patients exhibited a distinct systemic cytokine profile based on their survival outcomes. CTACK, M-CSF and IL-18 were identified as mortality-associated analytes independently of the VoC involved. The Intra-cytokine correlation analysis suggested the potential role of a dysregulated systemic network of inflammatory mediators in severe COVID-19 mortality.
Collapse
Affiliation(s)
- Henrike Maaß
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Mario Ynga-Durand
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Marko Milošević
- Department of Anesthesiology, Faculty of Medicine, Reanimation, Intensive Care and Emergency Medicine, University of Rijeka, Rijeka, Croatia
| | - Fran Krstanović
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | | | - Iva Žuža
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | - Alan Šustić
- Department of Anesthesiology, Faculty of Medicine, Reanimation, Intensive Care and Emergency Medicine, University of Rijeka, Rijeka, Croatia
- Department of Clinical Medical Science II, Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Frank Bloos
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Alen Protić
- Department of Anesthesiology, Faculty of Medicine, Reanimation, Intensive Care and Emergency Medicine, University of Rijeka, Rijeka, Croatia
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany.
- German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Braunschweig, Germany.
| |
Collapse
|
3
|
Balnis J, Lauria EJM, Yucel R, Singer HA, Alisch RS, Jaitovich A. Peripheral Blood Omics and Other Multiplex-based Systems in Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2023; 69:383-390. [PMID: 37379507 PMCID: PMC10557924 DOI: 10.1165/rcmb.2023-0153ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023] Open
Abstract
Over the last years, the use of peripheral blood-derived big datasets in combination with machine learning technology has accelerated the understanding, prediction, and management of pulmonary and critical care conditions. The goal of this article is to provide readers with an introduction to the methods and applications of blood omics and other multiplex-based technologies in the pulmonary and critical care medicine setting to better appreciate the current literature in the field. To accomplish that, we provide essential concepts needed to rationalize this approach and introduce readers to the types of molecules that can be obtained from the circulating blood to generate big datasets; elaborate on the differences between bulk, sorted, and single-cell approaches; and the basic analytical pipelines required for clinical interpretation. Examples of peripheral blood-derived big datasets used in recent literature are presented, and limitations of that technology are highlighted to qualify both the current and future value of these methodologies.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Eitel J. M. Lauria
- School of Computer Science and Mathematics, Marist College, Poughkeepsie, New York
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, Pennsylvania; and
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Reid S. Alisch
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
4
|
Tenda ED, Henrina J, Samosir J, Amalia R, Yulianti M, Pitoyo CW, Setiati S. Machine learning-based COVID-19 acute respiratory distress syndrome phenotyping and clinical outcomes: A systematic review. Heliyon 2023; 9:e17276. [PMID: 37366530 PMCID: PMC10275654 DOI: 10.1016/j.heliyon.2023.e17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
COVID-19-related acute respiratory distress syndrome (CARDS) has been suggested to differ from the typical ARDS. While distinct phenotypes of ARDS have been identified through latent class analysis (LCA), it is unclear whether such phenotypes exist for CARDS and how they affect clinical outcomes. To address this question, we conducted a systematic review of the current evidence.We searched several, including PubMed, EBSCO Host, and Web of Science, from inception to July 1, 2022. Our exposure and outcome of interest were different CARDS phenotypes identified and their associated outcomes, such as 28-day, 90-day, 180-day mortality, ventilator-free days, and other relevant outcomes.We identified four studies comprising a total of 1776 CARDS patients.Of the four studies, three used LCA to identify subphenotypes (SPs) of CARDS. One study based on longitudinal data identified two SPs, with SP2 associated with worse ventilation and mechanical parameters than SP1. The other two studies based on baseline data also identified two SPs, with SP2 and SP1 were associated with hyperinflammatory and hypoinflammatory CARDS, respectively. The fourth study identified three SPs primarily stratified by comorbidities using multifactorial analysis.All studies identified a subphenotype associated with poorer outcomes, including mortality, ventilator-free days, multiple-organ injury, and pulmonary embolism. Two studies reported differential responses to corticosteroids among the SPs, with improved mortality in the hyperinflammatory and worse in the hypoinflammatory SPs.Overall, our review highlights the importance of phenotyping in understanding CARDS and its impact on disease management and prognostication. However, a consensus approach to phenotyping is necessary to ensure consistency and comparability across studies. We recommend that randomized clinical trials stratified by phenotype should only be initiated after such consensus is reached. Short title COVID-19 ARDS subphenotypes and outcomes.
Collapse
Affiliation(s)
- Eric Daniel Tenda
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Joshua Henrina
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Jistrani Samosir
- Department of Internal Medicine, Dr.T.C. Hillers General Public Hospital, East Nusa Tenggara, Kabupaten Sikka, Indonesia
| | - Ridha Amalia
- University of Indonesia Hospital, Depok, Indonesia
| | - Mira Yulianti
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ceva Wicaksono Pitoyo
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Siti Setiati
- Division of Geriatric Medicine, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Clinical Epidemiology and Evidence-Based Medicine Unit, Faculty of Medicine, Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
5
|
Chiang CY, Lin YJ, Weng WT, Lin HD, Lu CY, Chen WJ, Shih CY, Lin PY, Lin SZ, Ho TJ, Shibu MA, Huang CY. Recuperative herbal formula Jing Si maintains vasculature permeability balance, regulates inflammation and assuages concomitants of "Long-Covid". Biomed Pharmacother 2023; 163:114752. [PMID: 37116351 PMCID: PMC10130602 DOI: 10.1016/j.biopha.2023.114752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide health threat that has long-term effects on the patients and there is currently no efficient cure prescribed for the treatment and the prolonging effects. Traditional Chinese medicines (TCMs) have been reported to exert therapeutic effect against COVID-19. In this study, the therapeutic effects of Jing Si herbal tea (JSHT) against COVID-19 infection and associated long-term effects were evaluated in different in vitro and in vivo models. The anti-inflammatory effects of JSHT were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in Omicron pseudotyped virus-induced acute lung injury model. The effect of JSHT on cellular stress was determined in HK-2 proximal tubular cells and H9c2 cardiomyoblasts. The therapeutic benefits of JSHT on anhedonia and depression symptoms associated with long COVID were evaluated in mice models for unpredictable chronic mild stress (UCMS). JSHT inhibited the NF-ƙB activities, and significantly reduced LPS-induced expression of TNFα, COX-2, NLRP3 inflammasome, and HMGB1. JSHT was also found to significantly suppress the production of NO by reducing iNOS expression in LPS-stimulated RAW 264.7 cells. Further, the protective effects of JSHT on lung tissue were confirmed based on mitigation of lung injury, repression in TMRRSS2 and HMGB-1 expression and reduction of cytokine storm in the Omicron pseudotyped virus-induced acute lung injury model. JSHT treatment in UCMS models also relieved chronic stress and combated depression symptoms. The results therefore show that JSHT attenuates the cytokine storm by repressing NF-κB cascades and provides the protective functions against symptoms associated with long COVID-19 infection.
Collapse
Affiliation(s)
- Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wen-Tsan Weng
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Heng-Dao Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wan-Jing Chen
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan; Buddhist Tzu Chi Foundation Hospital, Hualien 97002, Tawian
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Foundation Hospital, Hualien 97002, Tawian; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004,Taiwan; Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
6
|
Yudhawati R, Sakina S, Fitriah M. Interleukin-1β and Interleukin-10 Profiles and Ratio in Serum of COVID-19 Patients and Correlation with COVID-19 Severity: A Time Series Study. Int J Gen Med 2022; 15:8043-8054. [PMID: 36389025 PMCID: PMC9645129 DOI: 10.2147/ijgm.s381404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Coronavirus disease-19 (COVID-19) can, in severe cases, lead to cytokine-release syndrome owing to an excessive immune response. The release of different cytokines aggravates disease severity. IL-1β is a pro-inflammatory cytokine, while IL-10 is an anti-inflammatory cytokine, and both are involved in the human immune response to infection. This study aimed to determine whether serum levels of IL-1β and IL-10 and the ratio of the two over time in patients with COVID-19 could facilitate early identification of disease severity. METHODS An analytical, observational time-series design was employed. Fifty participants were enrolled between May and October 2020 and were divided into two groups-non-severe (n = 20), and severe (n = 30). IL-1β and IL-10 were analyzed using BD cytometric bead array sets. Association of the IL-1β:IL-10 ratio with COVID-19 severity was analyzed using a Mann-Whitney test and Fisher's exact test. Optimal cut-off values to predict disease severity were determined by Youden's index. RESULTS In non-severe and severe groups, the median serum levels of IL-1β decreased on day 3 (1.72 ng/mL and 2.10 ng/mL, respectively), then increased on day 6 (2.05 ng/mL and 3.31 ng/mL, respectively). However, the median of IL-10 increased on day 3 (1.88 ng/mL and 2.30 ng/mL, respectively) and day 6 (2.02 ng/mL and 2.39 ng/mL, respectively). There was no significant association between the IL-1β:IL-10 ratio and COVID-19 severity at any time-point (p>0.05). The cutoff value of serum IL-10 between the two groups on days 0, 3, and 6 was 1.09 pg/mL (sensitivity: 66.6%; PPV: 71.4%), 2.11 pg/mL (sensitivity: 67.7%; PPV: 50.0%), and 2.08 pg/mL (sensitivity: 78.6%; PPV: 70.9%), respectively. CONCLUSION The IL-1β:IL-10 ratio was not correlated to COVID-19 severity. However, owing to its high sensitivity, IL-10 may be a potential biomarker for disease severity in severe COVID-19.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga – Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Sakina Sakina
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga – Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Munawaroh Fitriah
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga – Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
7
|
Karimabad MN, Hassanshahi G, Kounis NG, Mplani V, Roditis P, Gogos C, Lagadinou M, Assimakopoulos SF, Dousdampanis P, Koniari I. The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines (Basel) 2022; 10:vaccines10081299. [PMID: 36016187 PMCID: PMC9416781 DOI: 10.3390/vaccines10081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26500 Patras, Greece
- Correspondence:
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, 26500 Patras, Greece
| | - Pavlos Roditis
- Department of Cardiology, Mamatsio Kozanis General Hospital, 50100 Kozani, Greece
| | - Christos Gogos
- COVID-19 Unit, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Maria Lagadinou
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Periklis Dousdampanis
- Department of Nephrology, Saint Andrews State General Hospital, 26221 Patras, Greece
| | - Ioanna Koniari
- Department of Cardiology, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| |
Collapse
|
8
|
Alturaiki W. Considerations for Novel COVID-19 Mucosal Vaccine Development. Vaccines (Basel) 2022; 10:1173. [PMID: 35893822 PMCID: PMC9329946 DOI: 10.3390/vaccines10081173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Mucosal surfaces are the first contact sites of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most SARS-CoV-2 vaccines induce specific IgG responses but provide limited mucosal immunity. Cytokine B-cell activation factor (BAFF) and A proliferation-inducing ligand (APRIL) in the tumor necrosis factor (TNF) superfamily play key immunological functions during B cell development and antibody production. Furthermore, homeostatic chemokines, such as C-X-C motif chemokine ligand 13 (CXCL13), chemokine (C-C motif) ligand 19 (CCL19), and CCL21, can induce B- and T-cell responses to infection and promote the formation of inducible bronchus-associated lymphoid tissues (iBALT), where specific local immune responses and memory cells are generated. We reviewed the role of BAFF, APRIL, CXCL13, CCL19, and CCL21 in the activation of local B-cell responses and antibody production, and the formation of iBALT in the lung following viral respiratory infections. We speculate that mucosal vaccines may offer more efficient protection against SARS-CoV-2 infection than systematic vaccines and hypothesize that a novel SARS-CoV-2 mRNA mucosal vaccine using BAFF/APRIL or CXCL13 as immunostimulants combined with the spike protein-encoding mRNA may enhance the efficiency of the local immune response and prevent the early stages of SARS-CoV-2 replication and the rapid viral clearance from the airways.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
9
|
Balnis J, Madrid A, Hogan KJ, Drake LA, Adhikari A, Vancavage R, Singer HA, Alisch RS, Jaitovich A. Persistent blood DNA methylation changes one year after SARS-CoV-2 infection. Clin Epigenetics 2022; 14:94. [PMID: 35871090 PMCID: PMC9308917 DOI: 10.1186/s13148-022-01313-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
We recently reported the COVID-19-induced circulating leukocytes DNA methylation profile. Here, we hypothesized that some of these genes would persist differentially methylated after disease resolution. Fifteen participants previously hospitalized for SARS-CoV-2 infection were epityped one year after discharge. Of the 1505 acute illness-induced differentially methylated regions (DMRs) previously identified, we found 71 regions with persisted differentially methylated, with an average of 7 serial CpG positions per DMR. Sixty-four DMRs persisted hypermethylated, and 7 DMR persisted hypomethylated. These data are the first reported evidence that DNA methylation changes in circulating leukocytes endure long after recovery from acute illness.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, USA.,Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC91, Albany, New York, 12208, USA
| | - Andy Madrid
- Department of Neurological Surgery, Albany Medical College, Madison, Wisconsin, USA
| | - Kirk J Hogan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lisa A Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, USA
| | - Anish Adhikari
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, USA.,Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC91, Albany, New York, 12208, USA
| | - Rachel Vancavage
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, USA.,Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC91, Albany, New York, 12208, USA
| | - Harold A Singer
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, USA
| | - Reid S Alisch
- Department of Neurological Surgery, Albany Medical College, Madison, Wisconsin, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, USA. .,Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC91, Albany, New York, 12208, USA.
| |
Collapse
|
10
|
Tolossa T, Merdassa Atomssa E, Fetensa G, Bayisa L, Ayala D, Turi E, Wakuma B, Mulisa D, Seyoum D, Getahun A, Shibiru T, Fekadu G, Desalegn M, Bikila H. Acute respiratory distress syndrome among patients with severe COVID-19 admitted to treatment center of Wollega University Referral Hospital, Western Ethiopia. PLoS One 2022; 17:e0267835. [PMID: 35709142 PMCID: PMC9202843 DOI: 10.1371/journal.pone.0267835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background
Acute respiratory distress syndrome is a life-threatening condition that has a significant effect on the occurrence of morbidity and mortality among patients with severe Coronavirus disease 2019 (COVID-19). To the best of researchers’ knowledge, there is no Study on ARDS of COVID-19 in Ethiopia. Therefore, this study aimed to identify the prevalence of ARDS and associated factors among severe COVID-19 patients at Wollega University Referral Hospital.
Methods
An institution-based retrospective cross-sectional study was conducted from September 20, 2020, to June 10, 2021. Real-Time Reverse transcription-polymerase Chain Reaction (rRT-PCR) test was used to test Patients for COVID-19. Epi-data version 3.2 was used for data entry, and the final data analysis was through STATA version 14. After checking the assumption P-value<0.25 in the bivariable analysis was used to select a candidate variable for multi-variable analysis, and a p-value of <0.05 was used to declare statistical significance.
Results
In this study, the prevalence of ARDS was 32%. Almost all the patients had the clinical feature of cough (93.7%), followed by shortness of breath (79.9%), fever (77.7%), and headache (67%). Age older than 65 years (AOR = 3.35, 95%CI = 1.31, 8.55), male gender (AOR = 5.63, 95%CI = 2.15, 14.77), and low oxygen saturation level (AOR = 4.60, 95%CI = 1.15, 18.35) were the independent predictors of ARDS among severe COVID-19 patients.
Conclusion
The prevalence of ARDS among patients with severe COVID-19 was high in the study area. Therefore, elders and patients with critical conditions (low oxygen saturation) better to get special attention during COVID-19 case management to enhance good care and monitoring of the patients.
Collapse
Affiliation(s)
- Tadesse Tolossa
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
- * E-mail:
| | - Emiru Merdassa Atomssa
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Getahun Fetensa
- Department of Nursing, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
- Department of Hea lth Behavior and Society, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Lami Bayisa
- Department of Nursing, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Diriba Ayala
- Department of Midwifery, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Ebisa Turi
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Bizuneh Wakuma
- Department of Nursing, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Diriba Mulisa
- Department of Nursing, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Dejene Seyoum
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Ayantu Getahun
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Tesfaye Shibiru
- School of Medicine, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Ginenus Fekadu
- Department of Pharmacy, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Markos Desalegn
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Haile Bikila
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
11
|
Wiernsperger N, Al-Salameh A, Cariou B, Lalau JD. Protection by metformin against severe Covid-19: an in-depth mechanistic analysis. DIABETES & METABOLISM 2022; 48:101359. [PMID: 35662580 PMCID: PMC9154087 DOI: 10.1016/j.diabet.2022.101359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022]
Abstract
Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifactorial pathophysiological mechanisms of Covid-19 progression with metformin's well-known pleiotropic properties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed, metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metformin mechanisms of action, we want to highlight more particularly its unique microcirculatory protective effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic drug that targets many of Covid-19′s pathophysiology processes in a diabetes-independent manner.
Collapse
Affiliation(s)
| | - Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France
| | - Bertrand Cariou
- Département d'Endocrinologie, Diabétologie et Nutrition, l'institut du thorax, Inserm, CNRS, UNIV Nantes, CHU Nantes, Hôpital Guillaume et René Laennec, 44093 Nantes Cedex 01, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
12
|
Budhraja A, Basu A, Gheware A, Abhilash D, Rajagopala S, Pakala S, Sumit M, Ray A, Subramaniam A, Mathur P, Nambirajan A, Kumar S, Gupta R, Wig N, Trikha A, Guleria R, Sarkar C, Gupta I, Jain D. Molecular signature of postmortem lung tissue from COVID-19 patients suggests distinct trajectories driving mortality. Dis Model Mech 2022; 15:dmm049572. [PMID: 35438176 PMCID: PMC9194484 DOI: 10.1242/dmm.049572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
To elucidate the molecular mechanisms that manifest lung abnormalities during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we performed whole-transcriptome sequencing of lung autopsies from 31 patients with severe COVID-19 and ten uninfected controls. Using metatranscriptomics, we identified the existence of two distinct molecular signatures of lethal COVID-19. The dominant 'classical' signature (n=23) showed upregulation of the unfolded protein response, steroid biosynthesis and complement activation, supported by massive metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) that potentially represents 'cytokine release syndrome' (CRS) showed upregulation of cytokines such as IL1 and CCL19, but absence of complement activation. We found that a majority of patients cleared SARS-CoV-2 infection, but they suffered from acute dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus cohnii in 'classical' patients and Pasteurella multocida in CRS patients. Our results suggest two distinct models of lung pathology in severe COVID-19 patients, which can be identified through complement activation, presence of specific cytokines and characteristic microbiome. These findings can be used to design personalized therapy using in silico identified drug molecules or in mitigating specific secondary infections.
Collapse
Affiliation(s)
- Anshul Budhraja
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Anubhav Basu
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Atish Gheware
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dasari Abhilash
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Seesandra Rajagopala
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman Pakala
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madhuresh Sumit
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Animesh Ray
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Arulselvi Subramaniam
- Department of Laboratory Medicine, JPNATC, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Purva Mathur
- Department of Laboratory Medicine, JPNATC, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sachin Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (IRCH), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anjan Trikha
- Department of Anaesthesiology, Critical Care and Pain Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Randeep Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
13
|
Pati A, Nayak N, Sarangi S, Barik D, Kumar Nahak S, Padhi S, Panda AK. OUP accepted manuscript. J Infect Dis 2022; 225:1865-1866. [PMID: 35091748 PMCID: PMC9383388 DOI: 10.1093/infdis/jiac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Abhijit Pati
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Nisha Nayak
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Surjyapratap Sarangi
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Debashis Barik
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Suraj Kumar Nahak
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Sunali Padhi
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Aditya K Panda
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
- Correspondence: Aditya K. Panda, PhD, Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India, 760007 ()
| |
Collapse
|
14
|
OUP accepted manuscript. J Infect Dis 2022; 225:1866-1868. [DOI: 10.1093/infdis/jiac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
|
15
|
Gomes AMC, Farias GB, Dias‐Silva M, Laia J, Trombetta AC, Godinho‐Santos A, Rosmaninho P, Santos DF, Conceição CM, Costa‐Reis R, Adão‐Serrano M, Mota C, Almeida ARM, Sousa AE, Fernandes SM. SARS-CoV2 pneumonia recovery is linked to expansion of innate lymphoid cells type 2 expressing CCR10. Eur J Immunol 2021; 51:3194-3201. [PMID: 34564853 PMCID: PMC8646914 DOI: 10.1002/eji.202149311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022]
Abstract
Accelerate lung repair in SARS-CoV-2 pneumonia is essential for pandemic handling. Innate lymphoid cells (ILCs) are likely players, given their role in mucosal protection and tissue homeostasis. We studied ILC subpopulations at two time points in a cohort of patients admitted in the hospital due to SARS-CoV-2 infection. COVID-19 patients with moderate/severe respiratory failure featured profound depletion of circulating ILCs at hospital admission, in agreement with overall lymphocyte depletion. However, ILCs recovered in direct correlation with lung function improvement as measured by oxygenation index and in negative association with inflammatory and lung/endothelial damage markers like RAGE. While both ILC1 and ILC2 expanded, ILC2 showed the most striking phenotype changes, with CCR10 upregulation in strong correlation with these parameters. Overall, CCR10+ ILC2 emerge as relevant contributors to SARS-CoV-2 pneumonia recovery.
Collapse
Affiliation(s)
- André M. C. Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Clínica Universitária de Medicina IntensivaFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Guilherme B. Farias
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Manuel Dias‐Silva
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Joel Laia
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Centre for Ecology, Evolution and Environmental ChangesFaculdade de Ciências, Universidade de LisboaLisboa1749‐016Portugal
| | - Amelia C. Trombetta
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Ana Godinho‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Diana F. Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Carolina M. Conceição
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Renato Costa‐Reis
- Serviço de Medicina IntensivaCentro Hospitalar Universitário Lisboa NorteLisboaPortugal
| | - Maria Adão‐Serrano
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Serviço de Medicina IntensivaCentro Hospitalar Universitário Lisboa NorteLisboaPortugal
| | - Catarina Mota
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Serviço de Medicina IIHospital de Santa MariaCentro Hospitalar Universitário Lisboa NorteLisboaPortugal
| | - Afonso R. M. Almeida
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Ana E. Sousa
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Susana M. Fernandes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Clínica Universitária de Medicina IntensivaFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Serviço de Medicina IntensivaCentro Hospitalar Universitário Lisboa NorteLisboaPortugal
| |
Collapse
|
16
|
Impact of the Innate Inflammatory Response on ICU Admission and Death in Hospitalized Patients with COVID-19. Biomedicines 2021; 9:biomedicines9111675. [PMID: 34829906 PMCID: PMC8615389 DOI: 10.3390/biomedicines9111675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: To describe the capacity of a broad spectrum of cytokines and growth factors to predict ICU admission and/or death in patients with severe COVID-19. Design: An observational, analytical, retrospective cohort study with longitudinal follow-up. Setting: Hospital Universitario Príncipe de Asturias (HUPA). Participants: 287 patients diagnosed with COVID-19 admitted to our hospital from 24 March to 8 May 2020, followed until 31 August 2020. Main outcome measures: Profiles of immune response (IR) mediators were determined using the Luminex Multiplex technique in hospitalized patients within six days of admission by examining serum levels of 62 soluble molecules classified into the three groups: adaptive IR-related cytokines (n = 19), innate inflammatory IR-related cytokines (n = 27), and growth factors (n = 16). Results: A statistically robust link with ICU admission and/or death was detected for increased serum levels of interleukin (IL)-6, IL-15, soluble (s) RAGE, IP10, MCP3, sIL1RII, IL-8, GCSF and MCSF and IL-10. The greatest prognostic value was observed for the marker combination IL-10, IL-6 and GCSF. Conclusions: When severe COVID-19 progresses to ICU admission and/or death there is a marked increase in serum levels of several cytokines and chemokines, mainly related to the patient’s inflammatory IR. Serum levels of IL-10, IL-6 and GCSF were most prognostic of the outcome measure.
Collapse
|
17
|
Balnis J, Madrid A, Hogan KJ, Drake LA, Chieng HC, Tiwari A, Vincent CE, Chopra A, Vincent PA, Robek MD, Singer HA, Alisch RS, Jaitovich A. Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics 2021; 13:118. [PMID: 34034806 PMCID: PMC8148415 DOI: 10.1186/s13148-021-01102-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There are no prior reports that compare differentially methylated regions of DNA in blood samples from COVID-19 patients to samples collected before the SARS-CoV-2 pandemic using a shared epigenotyping platform. We performed a genome-wide analysis of circulating blood DNA CpG methylation using the Infinium Human MethylationEPIC BeadChip on 124 blood samples from hospitalized COVID-19-positive and COVID-19-negative patients and compared these data with previously reported data from 39 healthy individuals collected before the pandemic. Prospective outcome measures such as COVID-19-GRAM risk-score and mortality were combined with methylation data. RESULTS Global mean methylation levels did not differ between COVID-19 patients and healthy pre-pandemic controls. About 75% of acute illness-associated differentially methylated regions were located near gene promoter regions and were hypo-methylated in comparison with healthy pre-pandemic controls. Gene ontology analyses revealed terms associated with the immune response to viral infections and leukocyte activation; and disease ontology analyses revealed a predominance of autoimmune disorders. Among COVID-19-positive patients, worse outcomes were associated with a prevailing hyper-methylated status. Recursive feature elimination identified 77 differentially methylated positions predictive of COVID-19 severity measured by the GRAM-risk score. CONCLUSION Our data contribute to the awareness that DNA methylation may influence the expression of genes that regulate COVID-19 progression and represent a targetable process in that setting.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kirk J Hogan
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Lisa A Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Hau C Chieng
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Catherine E Vincent
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Peter A Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA.
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
18
|
Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, Weis S, Garcia-Salido A, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Almansa R, de la Fuente A, Martin-Loeches I, Meisel C, Spinetti T, Schefold JC, Cilloniz C, Torres A, Giamarellos-Bourboulis EJ, Ferrer R, Girardis M, Cossarizza A, Netea MG, van der Poll T, Bermejo-Martín JF, Rubio I. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. THE LANCET RESPIRATORY MEDICINE 2021; 9:622-642. [PMID: 33965003 PMCID: PMC8102044 DOI: 10.1016/s2213-2600(21)00218-6] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.
Collapse
Affiliation(s)
- Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Martin S Winkler
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Manu Shankar-Hari
- Guy's and St Thomas' NHS Foundation Trust, ICU support offices, St Thomas' Hospital, London, UK; School of Immunology & Microbial Sciences, Kings College London, London, UK
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Guillaume Monneret
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, Lyon, France; Pathophysiology of Injury-Induced Immunosuppression, Equipe d'Accueil 7426, Université Claude Bernard Lyon 1 - bioMérieux - Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, Lyon, France; Pathophysiology of Injury-Induced Immunosuppression, Equipe d'Accueil 7426, Université Claude Bernard Lyon 1 - bioMérieux - Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital-Friedrich Schiller University, Jena, Germany; Center for Clinical Studies, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital-Friedrich Schiller University, Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Alberto Garcia-Salido
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Joost Wiersinga
- Division of Infectious Diseases and Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis, Hospital Universitario Río Hortega de Valladolid, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de salud Carlos III, Madrid, Spain
| | - Amanda de la Fuente
- Group for Biomedical Research in Sepsis, Hospital Universitario Río Hortega de Valladolid, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization, St James's Hospital, Dublin, Ireland
| | - Christian Meisel
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Catia Cilloniz
- Pneumology Department, Respiratory Institute, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, ICREA, CIBERESUCICOVID, Spain
| | - Antoni Torres
- Division of Infectious Diseases and Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; Pneumology Department, Respiratory Institute, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, ICREA, CIBERESUCICOVID, Spain; SGR 911-ICREA Academia, Barcelona, Spain
| | | | - Ricard Ferrer
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de salud Carlos III, Madrid, Spain; Intensive Care Department and Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Mihai G Netea
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Tom van der Poll
- Division of Infectious Diseases and Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jesús F Bermejo-Martín
- Group for Biomedical Research in Sepsis, Hospital Universitario Río Hortega de Valladolid, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de salud Carlos III, Madrid, Spain
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital-Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
19
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|