1
|
Masenga SK, Wandira N, Cattivelli-Murdoch G, Saleem M, Beasley H, Hinton A, Ertuglu LA, Mwesigwa N, Kleyman TR, Kirabo A. Salt sensitivity of blood pressure: mechanisms and sex-specific differences. Nat Rev Cardiol 2025:10.1038/s41569-025-01135-0. [PMID: 39984695 DOI: 10.1038/s41569-025-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease in individuals with or without hypertension. However, the mechanisms and management of SSBP remain unclear, mainly because the diagnosis of this condition relies on salt loading-depletion protocols that are not feasible in the clinic. The prevalence of hypertension is lower in premenopausal women than in men, but this sex-specific difference is reversed after menopause. Whether excessive SSBP in women at any age contributes to this reversal is unknown, but many clinical studies that have rigorously assessed for SSBP using salt loading-depletion protocols have confirmed that SSBP is more prevalent in women than in men, including during premenopausal age. In this Review, we discuss sex-specific mechanisms of SSBP. We describe sex-related differences in renal transporters, hypertensive pregnancy, SSBP in autoimmune disorders and mitogen-activated protein kinase signalling pathways, and highlight limitations and lessons learned from Dahl salt-sensitive rat models.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND research Group, Department of Pathology and Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia.
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Nelson Wandira
- Vanderbilt Mater of Public Health Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lale A Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Department of Cell Biology, and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Chen YH, Chang YC, Wu WJ, Chen M, Yen CC, Lan YW, Cheng HC, Chen CM. Kefir peptides mitigate L-NAME-induced preeclampsia in rats through modulating hypertension and endothelial dysfunction. Biomed Pharmacother 2024; 180:117592. [PMID: 39490048 DOI: 10.1016/j.biopha.2024.117592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
AIM Preeclampsia is a complex and serious pregnancy disorder that leads to maternal and neonatal mortality worldwide. Kefir peptides (KPs), derived from various prebiotic fermentations in whole milk by kefir grains, were investigated for their potential therapeutic effects. In this study, we used the L-NAME in drinking water to induce a preeclampsia-like condition in spontaneous hypertension stroke-prone (SHRSP) pregnant rats. MAIN METHODS The rats were assigned to five groups: the normal group (WKY rats), the untreated group (SHRSP rat control pregnant), the L-NAME/Mock group (SHRSP rats fed with L-NAME water), the L-NAME/KPs-LD group (SHRSP rats fed with L-NAME water and low-dose KPs diets), and the L-NAME/KPs-HD group (SHRSP rats fed with L-NAME water and high-dose KPs diets) for a 20-day experiment. Chorioallantois membrane (CAM) assay was applied for ex vivo angiogenesis study of KPs treatment. KEY FINDINGS Data showed that rats in the L-NAME group developed severe hypertension, proteinuria, placental damage, and embryo resorption. Pre-administration of KPs significantly reduced hypertension, proteinuria, improved generalized endothelial dysfunction, and decreased levels of anti-HIF-1α, sFLT1, anti-TNF-α, and IL-6 in the placenta of SHRSP rats. In ex vivo CAM study, L-NAME administration in chicken embryos resulted in lower vessel density and hemorrhage; however, angiogenesis was observed after KPs-HD treatment. SIGNIFICANCE The results indicate that kefir peptides improve renal lesions, prevent renal parenchyma damage, and balance endothelial and angiogenic dysfunction in both maternal and fetal sites in L-NAME-induced SHRSP pregnant rats.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yo-Cheng Chang
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wan-Ju Wu
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Min Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan; Department of Genomic Medicine, Changhua Christian Hospital, Changhua 50046, Taiwan.
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Ying-Wei Lan
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix 85004, USA.
| | - Hsu-Chen Cheng
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Center for General Educational, National Quemoy University, Kinmen 892, Taiwan.
| |
Collapse
|
3
|
Warrington JP, Collins HE, Davidge ST, do Carmo JM, Goulopoulou S, Intapad S, Loria AS, Sones JL, Wold LE, Zinkhan EK, Alexander BT. Guidelines for in vivo models of developmental programming of cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H221-H241. [PMID: 38819382 PMCID: PMC11380980 DOI: 10.1152/ajpheart.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.
Collapse
Grants
- 20YVNR35490079 American Heart Association (AHA)
- R01HL139348 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135158 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54GM115428 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG057046 HHS | NIH | National Institute on Aging (NIA)
- P20 GM104357 NIGMS NIH HHS
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 GM149404 NIGMS NIH HHS
- P20GM104357 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM135002 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL163003 NHLBI NIH HHS
- R01HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK121411 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Excellence Faculty Support Grant Jewish Heritage Fund
- P30GM149404 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P30GM14940 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 23SFRNPCS1067044 American Heart Association (AHA)
- R01 HL146562 NHLBI NIH HHS
- R56HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- 1R01HL163076 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL51971 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- FS154313 CIHR
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky, United States
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jussara M do Carmo
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, United States
- Department of Gynecology, and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Suttira Intapad
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jenny L Sones
- Equine Reproduction Laboratory, Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah and Intermountain Health, Salt Lake City, Utah, United States
- Intermountain Health, Salt Lake City, Utah, United States
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
4
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
5
|
Grano de Oro A, Kumariya S, Mell B, Zubcevic J, Joe B, Osman I. Spontaneous vascular dysfunction in Dahl salt-sensitive male rats raised without a high-salt diet. Physiol Rep 2024; 12:e16165. [PMID: 39048525 PMCID: PMC11268988 DOI: 10.14814/phy2.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Dahl salt-sensitive (SS) rats fed a high-salt diet, but not low-salt, exhibit vascular dysfunction. Several substrains of SS rats exist that differ in their blood pressure phenotypes and salt sensitivity. The goal of this study was to investigate whether the John-Rapp-derived SS rat (SS/Jr), which exhibits spontaneous hypertension on a low-salt diet, presents with hallmarks of vascular dysfunction observed in another experimental model of hypertension independent of dietary salt, the spontaneously hypertensive rat (SHR). Endothelium-intact aortic rings and mesenteric resistance arteries were isolated from low-salt fed adult male SS/Jr rats and SHRs, or their respective controls, for isometric wire myography. Vessels were challenged with cumulative concentrations of various vasoactive substances, in the absence or presence of nitric oxide synthase or cyclooxygenase inhibitors. Despite showing some differences in their responses to various vasoactive substances, both SS/Jr rats and SHRs exhibited key features of vascular dysfunction, including endothelial dysfunction and hyperresponsiveness to vasocontractile agonists. In conclusion, this study provides evidence to support the utility of the SS/Jr rat strain maintained on a low-salt diet as a valid experimental model for vascular dysfunction, a key feature of human hypertension.
Collapse
Affiliation(s)
- Arturo Grano de Oro
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Sanjana Kumariya
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Blair Mell
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Islam Osman
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
6
|
van Kammen CM, Taal SEL, Wever KE, Granger JP, Lely AT, Terstappen F. Reduced uterine perfusion pressure as a model for preeclampsia and fetal growth restriction in murine: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 327:H89-H107. [PMID: 38758122 PMCID: PMC11380978 DOI: 10.1152/ajpheart.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The reduced uterine perfusion pressure (RUPP) model is frequently used to study preeclampsia and fetal growth restriction. An improved understanding of influential factors might improve reproducibility and reduce animal use considering the variability in RUPP phenotype. We performed a systematic review and meta-analysis by searching Medline and Embase (until 28 March, 2023) for RUPP studies in murine. Primary outcomes included maternal blood pressure (BP) or proteinuria, fetal weight or crown-rump length, fetal reabsorptions, or antiangiogenic factors. We aimed to identify influential factors by meta-regression analysis. We included 155 studies. Our meta-analysis showed that the RUPP procedure results in significantly higher BP (MD = 24.1 mmHg; [22.6; 25.7]; n = 148), proteinuria (SMD = 2.3; [0.9; 3.8]; n = 28), fetal reabsorptions (MD = 50.4%; [45.5; 55.2]; n = 42), circulating soluble FMS-like tyrosine kinase-1 (sFlt-1) (SMD = 2.6; [1.7; 3.4]; n = 34), and lower fetal weight (MD = -0.4 g; [-0.47; -0.34]; n = 113. The heterogeneity (variability between studies) in primary outcomes appeared ≥90%. Our meta-regression identified influential factors in the method and time point of BP measurement, randomization in fetal weight, and type of control group in sFlt-1. The RUPP is a robust model considering the evident differences in maternal and fetal outcomes. The high heterogeneity reflects the observed variability in phenotype. Because of underreporting, we observed reporting bias and a high risk of bias. We recommend standardizing study design by optimal time point and method chosen for readout measures to limit the variability. This contributes to improved reproducibility and thereby eventually improves the translational value of the RUPP model.
Collapse
Affiliation(s)
- Caren M van Kammen
- Division of Nanomedicine, Department CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Seija E L Taal
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - A Titia Lely
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Fieke Terstappen
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
7
|
van de Meent M, Nijholt KT, Joemmanbaks SCA, Kooiman J, Schipper HS, Wever KE, Lely AT, Terstappen F. Understanding changes in echocardiographic parameters at different ages following fetal growth restriction: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 326:H1469-H1488. [PMID: 38668703 PMCID: PMC11380958 DOI: 10.1152/ajpheart.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fetal growth restriction (FGR) increases cardiovascular risk by cardiac remodeling and programming. This systematic review and meta-analysis across species examines the use of echocardiography in FGR offspring at different ages. PubMed and Embase.com were searched for animal and human studies reporting on echocardiographic parameters in placental insufficiency-induced FGR offspring. We included six animal and 49 human studies. Although unable to perform a meta-analysis of animal studies because of insufficient number of studies per individual outcome, all studies showed left ventricular dysfunction. Our meta-analyses of human studies revealed a reduced left ventricular mass, interventricular septum thickness, mitral annular peak velocity, and mitral lateral early diastolic velocity at neonatal age. No echocardiographic differences during childhood were observed, although the small age range and number of studies limited these analyses. Only two studies at adult age were performed. Meta-regression on other influential factors was not possible due to underreporting. The few studies on myocardial strain analysis showed small changes in global longitudinal strain in FGR offspring. The quality of the human studies was considered low and the risk of bias in animal studies was mostly unclear. Echocardiography may offer a noninvasive tool to detect early signs of cardiovascular predisposition following FGR. Clinical implementation yet faces multiple challenges including identification of the most optimal timing and the exact relation to long-term cardiovascular function in which echocardiography alone might be limited to reflect a child's vascular status. Future research should focus on myocardial strain analysis and the combination of other (non)imaging techniques for an improved risk estimation.NEW & NOTEWORTHY Our meta-analysis revealed echocardiographic differences between fetal growth-restricted and control offspring in humans during the neonatal period: a reduced left ventricular mass and interventricular septum thickness, reduced mitral annular peak velocity, and mitral lateral early diastolic velocity. We were unable to pool echocardiographic parameters in animal studies and human adults because of an insufficient number of studies per individual outcome. The few studies on myocardial strain analysis showed small preclinical changes in FGR offspring.
Collapse
Affiliation(s)
- Mette van de Meent
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Kirsten T Nijholt
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Shary C A Joemmanbaks
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Judith Kooiman
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Henk S Schipper
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Titia Lely
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Fieke Terstappen
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
- Division Women and Baby, Department of Neonatology, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Zeng S, Liu Z, Yin J, Li S, Jiang M, Yang H, Long Y. Improvement in Clinical Features of L-NAME-Induced Preeclampsia-like Rats through Reduced SERPINA5 Expression. Biomolecules 2023; 13:1792. [PMID: 38136662 PMCID: PMC10742323 DOI: 10.3390/biom13121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy disorder that poses a significant health risk to both mother and fetus, with no preventive or therapeutic measures. Our previous research suggested an association between elevated SERPINA5 levels and PE features. This study investigated whether SERPINA5 could be a potential therapeutic target for PE. We established PE-like features in pregnant rats using L-NAME (75 mg/kg/d) treatment. Adenoviruses carrying overexpressed or suppressed SERPINA5 genes were intravenously injected into these PE rats on the fifth and seventh days of pregnancy. We evaluated the rats' systolic blood pressure, urine protein concentration, and placental and fetal metrics and histology. Placental gene expression following SERPINA5 overexpression was evaluated using mRNA sequencing. The L-NAME-induced PE rat model observed a significant increase in placental and peripheral SERPINA5 levels. The overexpression of SERPINA5 exacerbated L-NAME-induced hypertension and proteinuria in pregnant rats. A histology examination revealed a smaller placental junctional zone in L-NAME + overexpressing rats. Placental gene expression analysis in the L-NAME + overexpressing group indicated increased coagulation activation. L-NAME-induced hypertension and proteinuria were mitigated when SERPINA5 expression was suppressed. Additionally, placental development was improved in the SERPINA5-suppressed group. Our findings suggested that SERPINA5 may worsen L-NAME-induced PE-like features by promoting the activation of the coagulation cascade. Therefore, reducing SERPINA5 expression could potentially serve as a therapeutic strategy for PE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Long
- Department of Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (S.Z.); (Z.L.); (J.Y.); (S.L.); (M.J.); (H.Y.)
| |
Collapse
|
9
|
West CA. Late Pregnant Dahl Salt-Sensitive Rats from Charles River Laboratories Do Not Exhibit Superimposed Preeclampsia. Reprod Sci 2023; 30:2580-2583. [PMID: 36759494 PMCID: PMC11229448 DOI: 10.1007/s43032-023-01182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Healthy pregnancy is characterized by a reduction in total peripheral vascular resistance which produces a decrease in maternal blood pressure. Failure of this normal maternal adaptation to pregnancy results in hypertensive disorders of pregnancy, which are dangerous for both the mother and fetus. Recently, it has been proposed that Dahl salt-sensitive (SS) rats are a model of spontaneous superimposed preeclampsia when maintained on a normal salt diet. Since these reports are from animals that are derived from sources that are not commercially available, the purpose of this study was to evaluate the blood pressure and pregnancy outcomes of SS rats from a commercial vendor. Mean arterial blood pressure was measured by indwelling femoral catheter in anesthetized SS virgin and SS day 21 late pregnant rats from Charles River Laboratories (CRL). Fetal outcomes from SS rats and control Sprague-Dawley (SD) rats were also measured. All rats were euthanized by exsanguination under anesthesia and tissues weighed. Virgin SS rats were found to have normal mean arterial blood pressure (102 ± 2 mmHg), and late pregnant SS rats had the normal decrease in maternal blood pressure. SS rats were also found to have normal pregnancy outcomes. These results suggest that SS rats from CRL are not a model of superimposed preeclampsia. Further studies will be aimed at determining the differences between the blood pressure phenotype and pregnancy outcomes of existing colonies of SS rats in order to elucidate the mechanisms permitting the development of preeclampsia in certain colonies of this strain.
Collapse
Affiliation(s)
- Crystal A West
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
10
|
Man AWC, Zhou Y, Xia N, Li H. Dietary supplements and vascular function in hypertensive disorders of pregnancy. Pflugers Arch 2023:10.1007/s00424-023-02810-2. [PMID: 37043045 DOI: 10.1007/s00424-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Hypertensive disorders of pregnancy are complications that can lead to maternal and infant mortality and morbidity. Hypertensive disorders of pregnancy are generally defined as hypertension and may be accompanied by other end organ damages including proteinuria, maternal organ disturbances including renal insufficiency, neurological complications, thrombocytopenia, impaired liver function, or uteroplacental dysfunction such as fetal growth restriction and stillbirth. Although the causes of these hypertensive disorders of pregnancy are multifactorial and elusive, they seem to share some common vascular-related mechanisms, including diseased spiral arteries, placental ischemia, and endothelial dysfunction. Recently, preeclampsia is being considered as a vascular disorder. Unfortunately, due to the complex etiology of preeclampsia and safety concerns on drug usage during pregnancy, there is still no effective pharmacological treatments available for preeclampsia yet. An emerging area of interest in this research field is the potential beneficial effects of dietary intervention on reducing the risk of preeclampsia. Recent studies have been focused on the association between deficiencies or excesses of some nutrients and complications during pregnancy, fetal growth and development, and later risk of cardiovascular and metabolic diseases in the offspring. In this review, we discuss the involvement of placental vascular dysfunction in preeclampsia. We summarize the current understanding of the association between abnormal placentation and preeclampsia in a vascular perspective. Finally, we evaluate several studied dietary supplementations to prevent and reduce the risk of preeclampsia, targeting placental vascular development and function, leading to improved pregnancy and postnatal outcomes.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
11
|
Beckett AG, McFadden MD, Warrington JP. Preeclampsia history and postpartum risk of cerebrovascular disease and cognitive impairment: Potential mechanisms. Front Physiol 2023; 14:1141002. [PMID: 37064920 PMCID: PMC10102351 DOI: 10.3389/fphys.2023.1141002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Hypertensive disorders of pregnancy such as preeclampsia, eclampsia, superimposed preeclampsia, and gestational hypertension are major causes of fetal and maternal morbidity and mortality. Women with a history of hypertensive pregnancy disorders have increased risk of stroke and cognitive impairments later in life. Moreover, women with a history of preeclampsia have increased risk of mortality from diseases including stroke, Alzheimer's disease, and cardiovascular disease. The underlying pathophysiological mechanisms are currently not fully known. Here, we present clinical, epidemiological, and preclinical studies focused on evaluating the long-term cerebrovascular and cognitive dysfunction that affect women with a history of hypertensive pregnancy disorders and discuss potential underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Ashtin G. Beckett
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Mia D. McFadden
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Junie P. Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
12
|
Shi M, Yang X, Sun L, Ding Y, Huang Z, Zhang P, Yang X, Li R, Wang G. Comparison of different modified operations in the reduced uteroplacental perfusion pressure rat model of preeclampsia. J Reprod Immunol 2023; 156:103815. [PMID: 36701883 DOI: 10.1016/j.jri.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Animal models are indispensable tools in studying the mechanisms underlying the diseases. Rat models with reduced uterine perfusion pressure (RUPP) were able to mimic the pathophysiological traits of placental ischemia and hypoxia in preeclampsia (PE). However, ischemic injury can lead to a cascade of damage to lower limb ischemia in RUPP. Therefore, the aim of our study was to compare three modified surgical procedures of reducing uteroplacental perfusion pressure, and to provide a reference for the recognition of different PE phenotypes in the future. MATERIAL AND METHODS To establish a specific uteroplacental malperfusion model of PE in rats, we bilaterally ligated uterine vessels (UU), ovarian vessels distal to ovarian branches (OO), or both (sRUPP) at 13.5 days post coitum. 21 Sprague-Dawley rats in total were used and were divided into four groups: Sham (n = 4), UU (n = 6), OO (n = 5) and sRUPP (n = 8). RESULTS The results showed that the OO and sRUPP groups could successfully mimic the phenotypes of PE while UU group not. Then, autophagy, apoptosis, and synthesis of unsaturated fatty acids were increased in both the OO and sRUPP groups compared with the Sham group, while inflammation were not statistically different. CONCLUSIONS The OO and sRUPP groups could successfully establish the rat model of PE while the UU group not. Notably, between the OO and sRUPP groups, the OO group has a higher fetal survival rate and might be more suitable for studying fetal-related questions, while the sRUPP group has a heavier phenotypic profile and is more suitable for studying maternal phenotypes related to PE.
Collapse
Affiliation(s)
- Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China.
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Taylor EB, George EM. Animal Models of Preeclampsia: Mechanistic Insights and Promising Therapeutics. Endocrinology 2022; 163:6623845. [PMID: 35772781 PMCID: PMC9262036 DOI: 10.1210/endocr/bqac096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/19/2022]
Abstract
Preeclampsia (PE) is a common pregnancy-specific disorder that is a major cause of both maternal and fetal morbidity and mortality. Central to the pathogenesis of PE is the production of antiangiogenic and inflammatory factors by the hypoxic placenta, leading to the downstream manifestations of the disease, including hypertension and end-organ damage. Currently, effective treatments are limited for PE; however, the development of preclinical animal models has helped in the development and evaluation of new therapeutics. In this review, we will summarize some of the more commonly used models of PE and highlight their similarities to the human syndrome, as well as the therapeutics tested in each model.
Collapse
Affiliation(s)
- Erin B Taylor
- Correspondence: Erin B. Taylor, PhD, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505, USA.
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| |
Collapse
|
14
|
Aslanian-Kalkhoran L, Esparvarinha M, Nickho H, Aghebati-Maleki L, Heris JA, Danaii S, Yousefi M. Understanding main pregnancy complications through animal models. J Reprod Immunol 2022; 153:103676. [PMID: 35914401 DOI: 10.1016/j.jri.2022.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Since human pregnancy is an inefficient process, achieving desired and pleasant outcome of pregnancy - the birth of a healthy and fit baby - is the main goal in any pregnancy. Spontaneous pregnancy failure is actually the most common complication of pregnancy and Most of these pregnancy losses are not known. Animal models have been utilized widely to investigate the system of natural biological adaptation to pregnancy along with increasing our comprehension of the most important hereditary and non-hereditary factors that contribute to pregnancy disorders. We use model organisms because their complexity better reproduces the human condition. A useful animal model for the disease should be pathologically similar to the disease conditions in humans. Animal models deserve a place in research because of the ethical limitations that apply to pregnant women's experiments. The present review provides insights into the overall risk factors involved in recurrent miscarriage, recurrent implant failure and preeclampsia and animal models developed to help researchers identify the source of miscarriage and the best research and treatment strategy for women with Repeated miscarriage and implant failure.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mojgan Esparvarinha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Nickho
- Department of Immuunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Islamic Republic of Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
15
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
16
|
Warrington JP, Shao Q, Clayton AM, Maeda KJ, Beckett AG, Garrett MR, Sasser JM. Pial Vessel-Associated Microglia/Macrophages Increase in Female Dahl-SS/Jr Rats Independent of Pregnancy History. Int J Mol Sci 2022; 23:3384. [PMID: 35328808 PMCID: PMC8950577 DOI: 10.3390/ijms23063384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of layers surrounding the brain and spinal cord. While perivascular microglia within the brain parenchyma increase following chronic hypertension, there are no reports of changes at the meninges, and specifically, associated with the pial vasculature. Thus, we used female Sprague Dawley and Dahl salt-sensitive (SS/Jr) rat brains, stained for ionized calcium-binding adapter molecule (Iba1), and characterized microglia/macrophages associated with pial vessels in the posterior brain. Results indicate that Iba1+ pial vessel-associated microglia (PVAM) completely surrounded the vessels in brains from the Dahl-SS/Jr rats. PVAM density was significantly higher and distance between PVAMs lower in Dahl-SS/Jr compared to the Sprague Dawley rat brains. Pregnancy history did not affect these findings. While the functional role of these cells are not known, we contextualize our novel findings with that of other studies assessing or characterizing myeloid cells at the borders of the CNS (meninges and choroid plexus) and perivascular macrophages and propose their possible origin in the Dahl-SS/Jr model of chronic hypertension.
Collapse
Affiliation(s)
- Junie P. Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Q.S.); (A.M.C.); (A.G.B.)
- Department of Neurobiology & Anatomical Sciences, Neuro Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Qingmei Shao
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Q.S.); (A.M.C.); (A.G.B.)
| | - Ahsia M. Clayton
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Q.S.); (A.M.C.); (A.G.B.)
| | - Kenji J. Maeda
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.J.M.); (M.R.G.); (J.M.S.)
| | - Ashtin G. Beckett
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Q.S.); (A.M.C.); (A.G.B.)
| | - Michael R. Garrett
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.J.M.); (M.R.G.); (J.M.S.)
| | - Jennifer M. Sasser
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.J.M.); (M.R.G.); (J.M.S.)
| |
Collapse
|
17
|
Ishimwe JA, Baker MB, Garrett MR, Sasser JM. Periconceptional 1,3-butanediol supplementation suppresses the superimposed preeclampsia-like phenotype in the Dahl salt-sensitive rat. Am J Physiol Heart Circ Physiol 2022; 322:H285-H295. [PMID: 34919457 PMCID: PMC8782659 DOI: 10.1152/ajpheart.00060.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Preeclampsia is a hypertensive pregnancy disorder with no treatment beyond management of symptoms and delivery of the fetus and placenta. Chronic hypertension increases the risk of developing superimposed preeclampsia. Previous reports showed that 1,3-butanediol attenuates hypertension in rodents; however, the therapeutic potential of 1,3-butanediol for the prevention of preeclampsia has not been investigated. This study tested the hypothesis that attenuating hypertension before pregnancy and through the placentation period via 1,3-butanediol prevents the onset of preeclampsia in female Dahl salt-sensitive (SS/Jr) rats. Female Dahl SS/Jr rats were divided into two groups: 1,3-butanediol treated (20% via drinking water) and control (ad libitum water). Both groups were maintained on low-salt rodent chow (Teklad 7034, 0.3% NaCl; n = 8/group). Animals were treated with 1,3-butanediol for 7 wk (baseline), mated, and treated through day 12 of pregnancy. 1,3-Butanediol treatment increased plasma β-hydroxybutyrate (metabolite of 1,3-butanediol) that negatively correlated with maternal body weight in late pregnancy. Mean arterial pressure was lower in the treated group at baseline, early, and mid pregnancy, but no difference was observed in late pregnancy after treatment ended. Uterine artery resistance index (UARI) was reduced in the treated dams. No adverse fetal effects were observed, and there were no differences in pup weight or length. Placentas from treated dams had decreased vascular endothelial growth factor levels as well as decreased placental basal zone thickness and increased labyrinth zone thickness. These findings support the therapeutic role of physiological ketosis via 1,3-butanediol as a potential therapeutic approach for managing chronic hypertension, thereby preventing and mitigating adverse pregnancy outcomes associated with preeclampsia.NEW & NOTEWORTHY A ketogenic diet or increased β-hydroxybutyrate levels can reduce hypertension, but the potential of 1,3-butanediol, a β-hydroxybutyrate precursor, for treatment of preeclampsia is unknown. We hypothesized that attenuating hypertension before and during pregnancy via 1,3-butanediol prevents preeclampsia in Dahl Salt-sensitive rats. 1,3-Butanediol significantly lowered blood pressure and improved uterine artery resistance with no observable adverse fetal effects. Physiological ketosis via 1,3-butanediol may be a potential therapeutic approach for managing hypertension and mitigating adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jeanne A. Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Melanie B. Baker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M. Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Bakrania BA, George EM, Granger JP. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol 2022; 226:S973-S987. [PMID: 33722383 PMCID: PMC8141071 DOI: 10.1016/j.ajog.2020.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023]
Abstract
Animal models have been critical in investigating the pathogenesis, mediators, and even therapeutic options for a number of diseases, including preeclampsia. Preeclampsia is the leading cause of maternal and fetal morbidity and mortality worldwide. The placenta is thought to play a central role in the pathogenesis of this disease because it releases antiangiogenic and proinflammatory factors into the maternal circulation, resulting in the maternal syndrome. Despite the deleterious effects preeclampsia has been shown to have on the mother and baby during pregnancy and postpartum, there is still no effective treatment for this disease. Although clinical studies in patients are crucial to identify the involvement of pathogenic factors in preeclampsia, there are obvious limitations that prevent detailed investigation of the quantitative importance of time-dependent mechanisms involved in this syndrome. Animal models allow investigators to perform proof-of-concept studies and examine whether certain factors found in women with preeclampsia mediate hypertension and other manifestations of this disease. In this brief review, we summarize some of the more widely studied models used to investigate pathophysiological mechanisms that are thought to be involved in preeclampsia. These include models of placental ischemia, angiogenic imbalance, and maternal immune activation. Infusion of preeclampsia-related factors into animals has been widely studied to understand the specific mediators of this disease. These models have been included, in addition to a number of genetic models involved in overexpression of the renin-angiotensin system, complement activation, and trophoblast differentiation. Together, these models cover multiple mechanisms of preeclampsia from trophoblast dysfunction and impaired placental vascularization to the excess circulating placental factors and clinical manifestation of this disease. Most animal studies have been performed in rats and mice; however, we have also incorporated nonhuman primate models in this review. Preclinical animal models not only have been instrumental in understanding the pathophysiology of preeclampsia but also continue to be important tools in the search for novel therapeutic options for the treatment of this disease.
Collapse
Affiliation(s)
- Bhavisha A Bakrania
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Joey P Granger
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
19
|
Man AWC, Zhou Y, Lam UDP, Reifenberg G, Werner A, Habermeier A, Closs EI, Daiber A, Münzel T, Xia N, Li H. L-citrulline ameliorates pathophysiology in a rat model of superimposed preeclampsia. Br J Pharmacol 2021; 179:3007-3023. [PMID: 34935131 DOI: 10.1111/bph.15783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Preeclampsia, characterized by hypertension, proteinuria, and fetal growth restriction, is one of the leading causes of maternal and perinatal mortality. By far, there is no effective pharmacological therapy for preeclampsia. The present study was conducted to investigate the effects of L-citrulline supplementation in Dahl salt-sensitive rat, a model of superimposed preeclampsia. EXPERIMENTAL APPROACH Parental DSSR were treated with L-citrulline (2.5 g/L in drinking water) from the day of mating to the end of lactation period. Blood pressure of the rats was monitored throughout pregnancy and markers of preeclampsia were assessed. Endothelial function of the pregnant DSSR was assessed by wire myograph. KEY RESULTS L-citrulline supplementation significantly reduced maternal blood pressure, proteinuria, and levels of circulating soluble fms-like tyrosine kinase 1 in DSSR. L-citrulline improved maternal endothelial function by augmenting the production of nitric oxide in the aorta and improving endothelium-derived hyperpolarizing factor-mediated vasorelaxation in resistance arteries. L-citrulline supplementation improved placental insufficiency and fetal growth, which were associated with an enhancement of angiogenesis and reduction of fibrosis and senescence in the placentas. In addition, L-citrulline downregulated genes involved in the toll-like receptor 4 and nuclear factor-κB signaling pathway. CONCLUSION AND IMPLICATIONS This study shows that L-citrulline supplementation reduces gestational hypertension, improves placentation and fetal growth in a rat model of superimposed preeclampsia. L-citrulline supplementation may represent an effective and safe therapeutic strategy for preeclampsia that benefit both the mother and the fetus.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Uyen D P Lam
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anke Werner
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
20
|
Taylor EB, George EM, Ryan MJ, Garrett MR, Sasser JM. Immunological comparison of pregnant Dahl salt-sensitive and Sprague-Dawley rats commonly used to model characteristics of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R125-R138. [PMID: 34105357 PMCID: PMC8409910 DOI: 10.1152/ajpregu.00298.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
The pregnant Dahl salt-sensitive (S) rat is an established preclinical model of superimposed spontaneous preeclampsia characterized by exacerbated hypertension, increased urinary protein excretion, and increased fetal demise. Because of the underlying immune system dysfunction present in preeclamptic pregnancies in humans, we hypothesized that the pregnant Dahl S rat would also have an altered immune status. Immune system activation was assessed during late pregnancy in the Dahl S model and compared with healthy pregnant Sprague-Dawley (SD) rats subjected to either a sham procedure or a procedure to reduce uterine perfusion pressure (RUPP). Circulating immunoglobulin and cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA) and Milliplex bead assay, respectively, and percentages of circulating, splenic, and placental immune cells were determined using flow cytometry. The pregnant Dahl S rat exhibited an increase in CD4+ T cells, and specifically TNFα+CD4+ T cells, in the spleen compared with virgin Dahl S rats. The Dahl also had increased neutrophils and decreased B cells in the peripheral blood as compared with Dahl virgin rats. SD rats that received the RUPP procedure had increases in circulating monocytes and increased IFN-ɣ+CD4+ splenic T cells. Together these findings suggest that dysregulated T cell activity is an important factor in both the pregnant Dahl S rats and SD rats after the RUPP procedure.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- University of South Carolina School of Medicine, Columbia, South Carolina
- Columbia Veterans Affairs Medical Center, Columbia, South Carolina
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
21
|
Kumagai A, Takeda S, Sohara E, Uchida S, Iijima H, Itakura A, Koya D, Kanasaki K. Dietary Magnesium Insufficiency Induces Salt-Sensitive Hypertension in Mice Associated With Reduced Kidney Catechol-O-Methyl Transferase Activity. Hypertension 2021; 78:138-150. [PMID: 33840199 DOI: 10.1161/hypertensionaha.120.16377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Asako Kumagai
- Faculty of Medicine, Internal Medicine I, Shimane University, Izumo, Japan (A.K., K.K.)
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
- Department of Diabetology and Endocrinology (A.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan (E.S., S.U.)
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan (E.S., S.U.)
| | - Hiroshi Iijima
- School of Pharmacy, Nihon University, Chiba, Japan (H.I.)
| | - Astuo Itakura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology (A.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (D.K., K.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Faculty of Medicine, Internal Medicine I, Shimane University, Izumo, Japan (A.K., K.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (D.K., K.K.), Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
22
|
Travis OK, Baik C, Tardo GA, Amaral L, Jackson C, Greer M, Giachelli C, Ibrahim T, Herrock OT, Williams JM, Cornelius DC. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats. Am J Reprod Immunol 2021; 85:e13386. [PMID: 33315281 PMCID: PMC8131208 DOI: 10.1111/aji.13386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The Reduced Uterine Perfusion Pressure (RUPP) rat model of placental ischemia recapitulates many characteristics of preeclampsia including maternal hypertension, intrauterine growth restriction (IUGR), and increased cytolytic natural killer cells (cNKs). While we have previously shown a 5-fold higher cytotoxicity of RUPP NKs versus normal pregnant NKs, their role in RUPP pathophysiology remains unclear. In this study, we tested the hypotheses that (1) adoptive transfer of RUPP-stimulated NKs will induce maternal hypertension and IUGR in normal pregnant control (Sham) rats and (2) adoptive transfer of Sham NKs will attenuate maternal hypertension and IUGR in RUPP rats. METHOD OF STUDY On gestation day (GD)14, vehicle or 5 × 106 RUPP NKs were infused i.v. into a subset of Sham rats (Sham+RUPP NK), and vehicle or 5 × 106 Sham NKs were infused i.v. into a subset of RUPP rats (RUPP+Sham NK; n = 12/group). On GD18, Uterine Artery Resistance Index (UARI) was measured. On GD19, mean arterial pressure (MAP) was measured, animals were sacrificed, and blood and tissues were collected for analysis. RESULTS Adoptive transfer of RUPP NKs into Sham rats resulted in elevated NK activation, UARI, placental oxidative stress, and preproendothelin expression as well as reduced circulating nitrate/nitrite. This led to maternal hypertension and IUGR. RUPP recipients of Sham NKs demonstrated normalized NK activation, sFlt-1, circulating and placental VEGF, and UARI, which led to improved maternal blood pressure and normal fetal growth. CONCLUSION These data suggest a direct role for cNKs in causing preeclampsia pathophysiology and a role for normal NKs to improve maternal outcomes and IUGR during late gestation.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Cedar Baik
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Geilda A Tardo
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Lorena Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Carmilya Jackson
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Mallory Greer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Chelsea Giachelli
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Owen T. Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
- Department of Emergency Medicine University of Mississippi Medical Center
| |
Collapse
|
23
|
Ishimwe JA. Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiol Rep 2021; 9:e14875. [PMID: 34042284 PMCID: PMC8157769 DOI: 10.14814/phy2.14875] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia is a devastating hypertensive pregnancy disorder that currently affects 2%–8% of pregnancies worldwide. It is associated with maternal and fetal mortality and morbidity and adverse health outcomes both in mom and offspring beyond pregnancy. The pathophysiology is not completely understood, and there are no approved therapies to specifically treat for the disease, with only few therapies approved to manage symptoms. Recent advances suggest that aberrations in the composition of the microbiome may play a role in the pathogenesis of various diseases including preeclampsia. The maternal and uteroplacental environments greatly influence the long‐term health outcomes of the offspring through developmental programming mechanisms. The current review summarizes recent developments on the role of the microbiome in adverse pregnancy outcomes with a focus on preeclampsia. It also discusses the potential role of the maternal microbiome in fetal programming; explores gut‐targeted therapeutics advancement and their implications in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
24
|
Blois SM, Prince PD, Borowski S, Galleano M, Barrientos G. Placental Glycoredox Dysregulation Associated with Disease Progression in an Animal Model of Superimposed Preeclampsia. Cells 2021; 10:800. [PMID: 33916770 PMCID: PMC8066545 DOI: 10.3390/cells10040800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023] Open
Abstract
Pregnancies carried by women with chronic hypertension are at increased risk of superimposed preeclampsia, but the placental pathways involved in disease progression remain poorly understood. In this study, we used the stroke-prone spontaneously hypertensive rat (SHRSP) model to investigate the placental mechanisms promoting superimposed preeclampsia, with focus on cellular stress and its influence on galectin-glycan circuits. Our analysis revealed that SHRSP placentas are characterized by a sustained activation of the cellular stress response, displaying significantly increased levels of markers of lipid peroxidation (i.e., thiobarbituric acid reactive substances (TBARS)) and protein nitration and defective antioxidant enzyme expression as early as gestation day 14 (which marks disease onset). Further, lectin profiling showed that such redox imbalance was associated with marked alterations of the placental glycocode, including a prominent decrease of core 1 O-glycan expression in trophoblasts and increased decidual levels of sialylation in SHRSP placentas. We also observed significant changes in the expression of galectins 1, 3 and 9 with pregnancy progression, highlighting the important role of the galectin signature as dynamic interpreters of placental microenvironmental challenges. Collectively, our findings uncover a new role for the glycoredox balance in the pathogenesis of superimposed preeclampsia representing a promising target for interventions in hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Sandra M. Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Paula D. Prince
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; (P.D.P.); (M.G.)
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Sophia Borowski
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and the Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; (P.D.P.); (M.G.)
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1118AAT, Argentina
| |
Collapse
|
25
|
Ishimwe JA, Akinleye A, Johnson AC, Garrett MR, Sasser JM. Gestational gut microbial remodeling is impaired in a rat model of preeclampsia superimposed on chronic hypertension. Physiol Genomics 2021; 53:125-136. [PMID: 33491590 DOI: 10.1152/physiolgenomics.00121.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a progressive hypertensive disorder of pregnancy affecting 2%-8% of pregnancies globally. Preexisting chronic hypertension is a major risk factor associated with developing preeclampsia, and growing evidence suggests a role for the gut microbiome in the development of preeclampsia. However, neither alterations in the gut microbiome associated with preeclampsia nor the mechanisms involved are fully understood. In this study, we tested the hypothesis that normal gestational maternal gut microbiome remodeling is impaired in the Dahl salt-sensitive (Dahl S) rat model of superimposed preeclampsia. Gut microbiome profiles of pregnant Dahl S, normal pregnant Sprague-Dawley (SD), and matched virgin controls were assessed by 16S rRNA gene sequencing at baseline; during early, middle, and late pregnancy; and 1-wk postpartum. Dahl S rats had significantly higher abundance in Proteobacteria, and multiple genera were significantly different from SD rats at baseline. The pregnant SD displayed a significant increase in Proteobacteria and genera such as Helicobacter, but these were not different between pregnant and virgin Dahl S rats. By late pregnancy, Dahl S rats had significantly lower α-diversity and Firmicutes compared with their virgin Dahl S controls. β-diversity was significantly different among groups (P < 0.001). KEGG metabolic pathways including those associated with short-chain fatty acids were different in Dahl S pregnancy but not in SD pregnancy. These results reveal an association between chronic hypertension and gut microbiome dysbiosis which may hinder pregnancy-specific remodeling in the gut microbial composition during superimposed preeclampsia.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adesanya Akinleye
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
26
|
Grobbel MR, Lee LC, Watts SW, Fink GD, Roccabianca S. Left ventricular geometry, tissue composition, and residual stress in High Fat Diet Dahl-Salt sensitive rats. EXPERIMENTAL MECHANICS 2021; 61:191-201. [PMID: 33776071 PMCID: PMC7990029 DOI: 10.1007/s11340-020-00664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hypertension drives myocardial remodeling, leading to changes in structure, composition and mechanical behavior, including residual stress, which are linked to heart disease progression in a gender-specific manner. Emerging therapies are also targeting constituent-specific pathological features. All previous studies, however, have characterized remodeling in the intact tissue, rather than isolated tissue constituents, and did not include sex as a biological variable. OBJECTIVE In this study we first identified the contribution of collagen fiber network and myocytes to the myocardial residual stress/strain in Dahl-Salt sensitive rats fed with high fat diet. Then, we quantified the effect of hypertension on the remodeling of the left ventricle (LV), as well as the existence of sex-specific remodeling features. METHODS We performed mechanical tests (opening angle, ring-test) and histological analysis on isolated constituents and intact tissue of the LV. Based on the measurements from the tests, we performed a stress analysis to evaluate the residual stress distribution. Statistical analysis was performed to identify the effects of constituent isolation, elevated blood pressure, and sex of the animal on the output of both experimental measures and modeling results. RESULTS Hypertension leads to reduced residual stress/strain intact tissue, isolated collagen fibers, and isolated myocytes in male and female rats. Collagen remains the largest contributor to myocardial residual stress in both normotensive and hypertensive animals. We identified sex-differences in both hypertensive and normotensive animals. CONCLUSIONS We observed both constituent- and sex-specific remodeling features in the LV of an animal model of hypertension.
Collapse
Affiliation(s)
- M. R. Grobbel
- Michigan State University, Mechanical Engineering Department
| | - L. C. Lee
- Michigan State University, Mechanical Engineering Department
| | - S. W. Watts
- Michigan State University, Pharmacology & Toxicology Department
| | - G. D. Fink
- Michigan State University, Pharmacology & Toxicology Department
| | - S. Roccabianca
- Michigan State University, Mechanical Engineering Department
| |
Collapse
|
27
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
28
|
Maeda KJ, McClung DM, Showmaker KC, Warrington JP, Ryan MJ, Garrett MR, Sasser JM. Endothelial cell disruption drives increased blood-brain barrier permeability and cerebral edema in the Dahl SS/jr rat model of superimposed preeclampsia. Am J Physiol Heart Circ Physiol 2020; 320:H535-H548. [PMID: 33275518 DOI: 10.1152/ajpheart.00383.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preeclampsia is characterized by increases in blood pressure and proteinuria in late pregnancy, and neurological symptoms can appear in the form of headaches, blurred vision, cerebral edema, and, in the most severe cases, seizures (eclampsia). The causes for these cerebral manifestations remain unknown, so the use of animal models that mimic preeclampsia is essential to understanding its pathogenesis. The Dahl salt-sensitive (Dahl SS/jr) rat model develops spontaneous preeclampsia superimposed on chronic hypertension; therefore, we hypothesized that the Dahl SS/jr rat would display cerebrovascular features similar to those seen in human preeclampsia. Furthermore, we predicted that this model would allow for the identification of mechanisms underlying these changes. The pregnant Dahl SS/jr rat displayed increased cerebral edema and blood-brain barrier disruption despite tighter control of cerebral blood flow autoregulation and vascular smooth muscle myogenic tone. Analysis of cerebral endothelial cell morphology revealed increased opening of tight junctions, basement membrane dissolution, and vesicle formation. RNAseq analysis identified that genes related to endothelial cell tight junctions and blood-brain barrier integrity were differentially expressed in cerebral vessels from pregnant Dahl SS/jr compared with healthy pregnant Sprague Dawley rats. Overall, our data reveal new insights into mechanisms involved in the cerebrovascular dysfunction of preeclampsia.NEW & NOTEWORTHY This study uses the Dahl SS/jr rat as a preclinical model of spontaneous superimposed preeclampsia to demonstrate uncoupling of cerebral vascular permeability and blood-brain barrier disruption from cerebral blood flow autoregulatory dysfunction and myogenic tone. Additionally, the data presented in this study lay the foundational framework on which future experiments assessing specific transcellular transport components such as individual transporter protein expression and components of the vesicular transport system (caveolae) can be built to help reveal a potential direct mechanistic insight into the causes of cerebrovascular complications during preeclamptic pregnancies.
Collapse
Affiliation(s)
- Kenji J Maeda
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Daniel M McClung
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kurt C Showmaker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Szczepanski J, Spencer SK, Griffin A, Bowles T, Williams JM, Kyle PB, Dumas JP, Araji S, Wallace K. Acute kidney injury during pregnancy leads to increased sFlt-1 and sEng and decreased renal T regulatory cells in pregnant rats with HELLP syndrome. Biol Sex Differ 2020; 11:54. [PMID: 32972452 PMCID: PMC7517692 DOI: 10.1186/s13293-020-00331-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The incidence of acute kidney injury (AKI) during pregnancy precedes a high maternal mortality rate of 20-40%. AKI during pregnancy has multiple etiologies; however, the more common are maternal hypertensive disorders, which include preeclampsia and HELLP (hemolysis, elevated liver enzyme, low platelet) syndrome. Therefore, we sought to assess the impact of AKI on blood pressure, kidney injury, and anti-angiogenic factors during pregnancies with and without HELLP syndrome. METHODS On gestational day (GD) 12, mini-osmotic pumps were inserted into a subset of normal pregnant (NP) rats infusing 4.7 μg/kg soluble fms-like tyrosine kinase-1 (sFlt-1) and 7 μg/kg soluble endoglin (sEng) to induce HELLP syndrome. On GD18, the renal pedicles were occluded for 45 min to induce AKI via bilateral ischemia reperfusion in a subset of NP (n = 18) or HELLP (n = 20) rats. Control NP (n = 20) and HELLP (n = 20) rats underwent a SHAM surgery on GD18. Plasma, urine, and maternal organs were saved for further analysis. Renal injury was assessed via renal histopathology, glomerular filtration rate (GFR), T cell infiltration, and assessment of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Data was measured via two-way analysis of variance with Tukey's test for post hoc analysis. RESULTS Blood pressures were increased in HELLP+AKI rats (p = 0.0001); both NP+AKI and HELLP+AKI rats had increased lactate dehydrogenase (p < 0.0001) and aspartate aminotransferase levels (p < 0.0001), and decreased platelet levels (p < 0.001) vs. NP rats. HELLP+AKI (p = 0.002) and HELLP rats (p = 0.0002) had evidence of renal fibrosis vs. NP rats. GFR was decreased in HELLP+AKI (p = 0.01) rats vs. NP rats. Urinary KIM-1 was increased in NP+AKI rats vs. NP (p = 0.003) and HELLP rats (p = 0.01). HELLP+AKI rats had increased urinary KIM-1 vs. NP (p = 0.0008) and HELLP rats (p = 0.004) and increased NGAL vs. HELLP rats (p = 0.002). HELLP+AKI rats had increased sFlt-1 (p = 0.009) vs. NP rats. NP+AKI (p = 0.02) and HELLP+AKI (p = 0.007) rats had increased sEng vs. NP rats. CD3+CD4+ T cells were significantly increased in HELLP+AKI rats vs. NP (p = 0.0002) and NP+AKI (p = 0.05) rats. T regulatory cells were significantly decreased in HELLP+AKI (p = 0.03) and NP+AKI (p = 0.02) rats vs. NP rats; there were no changes between groups in T helper 17 cells (p = 0.34). CONCLUSION The findings in this study suggest that AKI during pregnancy contributes to increased blood pressure and biochemical markers for HELLP syndrome, creates an anti-angiogenic imbalance, and exacerbates kidney injury as shown on histopathology, GFR, and kidney injury markers.
Collapse
Affiliation(s)
- Jamie Szczepanski
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - Shauna-Kay Spencer
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - Ashley Griffin
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Teylor Bowles
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - Jan Michael Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Patrick B Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Polk Dumas
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - Sarah Araji
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - Kedra Wallace
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| |
Collapse
|
30
|
Fetal programming effects of pentaerythritol tetranitrate in a rat model of superimposed preeclampsia. J Mol Med (Berl) 2020; 98:1287-1299. [PMID: 32748067 PMCID: PMC7447665 DOI: 10.1007/s00109-020-01949-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Abstract Preeclampsia is a common medical condition during pregnancy and a major cause of maternal and prenatal mortality. The present study was conducted to investigate the effects of maternal treatment with pentaerythritol tetranitrate (PETN) in Dahl salt-sensitive rats (DSSR), a model of superimposed preeclampsia. F0 parental DSSR were treated with PETN (50 mg/kg) from the time point of mating to the end of lactation. Maternal PETN treatment improved fetal growth and had no effect on blood pressure in DSSR offspring fed with normal chow or high-salt diet. Upon high-fat diet (HFD) feeding, offspring from PETN-treated mother showed improved glucose tolerance despite similar weight gain. Unexpectedly, maternal PETN treatment significantly potentiated the HFD-induced blood pressure elevation in male DSSR offspring. Endothelium-derived hyperpolarization factor (EDHF)-mediated vasodilation was similar between NCD-fed and HFD-fed control offspring but was markedly reduced in HFD-fed PETN offspring. EDHF genes were downregulated in the vasculature of HFD-fed PETN offspring, which was associated with epigenetic changes in histone modifications. In conclusion, maternal PETN treatment in DSSR shows both beneficial and unfavorable effects. It improves fetal growth and ameliorates glucose tolerance in the offspring. Although maternal PETN treatment has no effect on blood pressure in offspring fed with normal chow or high-salt diet, the offspring is at higher risk to develop HFD-induced hypertension. PETN may potentiate the blood pressure response to HFD by epigenetic modifications of EDHF genes. Key messages The core findings of this article suggest that maternal PETN treatment of DSSR, a rat model of a spontaneous superimposed preeclampsia, leads to • Improvement of fetal growth; • No changes of maternal blood pressure or markers of preeclampsia; • Amelioration of HFD-induced glucose intolerance in adult offspring; • No changes in blood pressure development of the offspring on normal chow or high salt-diet; • Potentiation of blood pressure elevation of the offspring on HFD. Electronic supplementary material The online version of this article (10.1007/s00109-020-01949-0) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Prior exposure to placental ischemia causes increased salt sensitivity of blood pressure via vasopressin production and secretion in postpartum rats. J Hypertens 2020; 37:1657-1667. [PMID: 30950978 DOI: 10.1097/hjh.0000000000002091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Women with a history of preeclampsia exhibit increased salt sensitivity of blood pressure at postpartum, which might be responsible for their increased risk of future cardiovascular diseases. However, it is unclear whether preeclampsia can cause increased salt sensitivity at postpartum. Vasopressin may play a role in the pathogenesis of preeclampsia and salt-sensitive hypertension. Therefore, the aim of this study was to determine whether the exposure to preeclampsia, as elicited by placental ischemia, causes increased salt sensitivity at postpartum, and if so, whether vasopressin is involved in its process. METHODS AND RESULTS We used a reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. Pregnant Sprague-Dawley rats were categorized into the following two groups: RUPP-operated and sham-operated (SHAM) control groups. A 1-week-long high-salt diet was initiated at 3 weeks postpartum. The high-salt diet-induced increase in mean arterial pressure was significantly greater in the RUPP group than in the SHAM group. In addition, the plasma levels of copeptin, a substitute for plasma vasopressin, increased and serum osmolality decreased in the RUPP group. Double immunostaining revealed that the expression of c-Fos, a marker of neural activity, in vasopressin-producing neurons and presympathetic neurons in the hypothalamic paraventricular nucleus was significantly elevated in the RUPP group. The oral administration of conivaptan, the dual V1a/V2 vasopressin receptor antagonist, during high-salt diet abolished the enhanced increase in mean arterial pressure in RUPP rats. CONCLUSION Prior exposure to placental ischemia causes increased salt sensitivity of blood pressure at postpartum probably due to enhanced vasopressin production and secretion.
Collapse
|
32
|
Turbeville HR, Johnson AC, Garrett MR, Dent EL, Sasser JM. Nitric oxide and oxidative stress pathways do not contribute to sex differences in renal injury and function in Dahl SS/Jr rats. Physiol Rep 2020; 8:e14440. [PMID: 32652814 PMCID: PMC7354091 DOI: 10.14814/phy2.14440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The burden of hypertension in the United States is increasing and yields significant morbidity and mortality, and sex differences in hypertension are widely recognized. Reduced nitric oxide (NO) bioavailability and increased oxidative stress are known to contribute to the pathogenesis of hypertensive renal injury, and but their contributions to sex differences in injury progression of are undefined. Our purpose was to test the hypothesis that male hypertensive rats have accelerated renal injury compared to females and to determine the contributions of the nitric oxide pathway and oxidative stress in these differences. Male and female Dahl SS/Jr rats, a model that spontaneously develops hypertension with age, were allowed to age on a 0.3% NaCl diet until 3 or 6 months of age, at which points blood pressure was measured and plasma, tissue, and urine were collected. While no significant sex differences in blood pressure were present at either time point, renal injury measured by urine protein excretion was more severe (male = 44.9 ± 6; female = 15±3 mg/day/100 g bw, p = .0001), and renal function was reduced (male = 0.48 ± 0.02; female = 0.7 ± 0.03 ml min-1 g-1 kw, p = .001) in males compared to females with age. Both male and female rats exhibited reduced nitric oxide metabolites (3 months: male = 0.65 ± 0.1; female = 0.74 ± 0.3; 6 months: male = 0.16 ± 0.1; female = 0.41 ± 0.1 ml min-1 g-1 kw, p, age = 0.02, p, sex = 0.3). Levels of urinary TBARS were similar (3 months: male = 20±1.5; female = 23±1.8; 6 months: male = 26±4.8; female = 23±4.7µM day g-1 kw, p, age = 0.4, p, sex = 0.9), extracellular superoxide dismutase (EC SOD) mRNA was greater in females (3 months: male = 0.35 ± 0.03; female = 1.4 ± 0.2; 6 months: male = 0.4 ± 0.05; female = 1.3 ± 0.1 normalized counts, p, age = 0.7, p, sex < 0.0001), but EC SOD protein expression was not different (3 months: male = 0.01 ± 0.002; female = 0.01 ± 0.002; 6 months: male = 0.02 ± 0.004; female = 0.01 ± 0.002 relative density, p, age = 0.2, p, sex = 0.8). These data support the presence of significant sex differences in renal injury and function in the Dahl S rat and identify a need for further study into the mechanisms involved.
Collapse
Affiliation(s)
- Hannah R. Turbeville
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Ashley C. Johnson
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Michael R. Garrett
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Elena L. Dent
- Department Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Jennifer M. Sasser
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
33
|
Turbeville HR, Johnson AC, Garrett MR, Sasser JM. Sildenafil Citrate Does Not Reprogram Risk of Hypertension and Chronic Kidney Disease in Offspring of Preeclamptic Pregnancies in the Dahl SS/Jr Rat. KIDNEY360 2020; 1:510-520. [PMID: 35368603 PMCID: PMC8809312 DOI: 10.34067/kid.0001062020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/14/2020] [Indexed: 06/14/2023]
Abstract
Background Preeclampsia is a disorder of pregnancy with accompanying high disease and economic burdens in the United States. Evidence supporting longstanding effects of preeclampsia on the offspring of affected pregnancies is high, but the effects of current antihypertensive therapies for preeclampsia on cardio-renal outcomes are largely unknown. The purpose of this study was to test the hypothesis that sildenafil citrate, a phosphodiesterase-5 inhibitor, reprograms the risk of hypertension and kidney disease in offspring of preeclamptic pregnancies by altering responses to secondary stressors. Methods Dahl SS/Jr rats on a 0.3% NaCl diet were mated. At gestational day 10, pregnant dams were randomized to vehicle diet or diet with sildenafil (50 mg/kg per day), which was continued until birth. Pups were weaned at 4 weeks of age and allowed to age on a 0.3% NaCl diet until 3 months of age. At this point, pups were randomized into three groups: baseline or no intervention, 2% NaCl diet challenge for 4 weeks, or a subpressor infusion of angiotensin II (200 ng/kg per minute) for 2 weeks. Results There were no differences among maternal treatment groups at baseline. Upon introduction of 2% NaCl diet, male offspring of sildenafil-treated dams exhibited an attenuated rise in BP; however, this protection was not observed during angiotensin II infusion. Conclusions Our findings indicate that intrapartum sildenafil does not reprogram the risk of hypertension and kidney disease in offspring of preeclamptic pregnancies.
Collapse
Affiliation(s)
- Hannah R Turbeville
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
34
|
Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Renal Physiol 2020; 318:F1315-F1326. [PMID: 32249616 PMCID: PMC7311709 DOI: 10.1152/ajprenal.00071.2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/26/2023] Open
Abstract
Preeclampsia is defined as new-onset hypertension after the 20th wk of gestation along with evidence of maternal organ failure. Rates of preeclampsia have steadily increased over the past 30 yr, affecting ∼4% of pregnancies in the United States and causing a high economic burden (22, 69). The pathogenesis is multifactorial, with acknowledged contributions by placental, vascular, renal, and immunological dysfunction. Treatment is limited, commonly using symptomatic management and/or early delivery of the fetus (6). Along with significant peripartum morbidity and mortality, current research continues to demonstrate that the consequences of preeclampsia extend far beyond preterm delivery. It has lasting effects for both mother and child, resulting in increased susceptibility to hypertension and chronic kidney disease (45, 54, 115, 116), yielding lifelong risk to both individuals. This review discusses recent guideline updates and recommendations along with current research on these long-term consequences of preeclampsia.
Collapse
Affiliation(s)
- Hannah R Turbeville
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
35
|
Ramos AC, de Mattos Hungria F, Camerini BA, Suiama MA, Calzavara MB. Potential beneficial effects of caffeine administration in the neonatal period of an animal model of schizophrenia. Behav Brain Res 2020; 391:112674. [PMID: 32417274 DOI: 10.1016/j.bbr.2020.112674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Obstetric complications, like maternal hypertension and neonatal hypoxia, disrupt brain development, leading to psychiatry disorders later in life, like schizophrenia. The exact mechanisms behind this risk are not yet well known. Spontaneously hypertensive rats (SHR) are a well-established model to study neurodevelopment of schizophrenia since they exhibit behavioral alterations mimicking schizophrenia that can be improved with antipsychotic drugs. SHR mothers are hypertensive, and the SHR offspring develop in preeclampsia-like conditions. Hypoxic conditions increase levels of adenosine, which play an important role in brain development. The enhanced levels of adenosine at birth could be related to the future development of schizophrenia. To investigate this hypothesis adenosine levels of brain neonatal Wistar rats and SHR were quantified. After that, caffeine, an antagonist of adenosinergic system, was administrated on PND (postnatal day) 7 (neurodevelopmental age similar to a human at delivery) and rats were observed at adolescent and adult ages. We also investigated the acute effects of caffeine at adolescent and adult ages. SHR control adolescent and adult groups presented behavioral deficits like hyperlocomotion, deficit in social interaction (SI), and contextual fear conditioning (CFC). In SHR, neonatal caffeine treatment on PND 7 normalized hyperlocomotion, improved SI, and CFC observed at adolescent period and adult ages, showing a beneficial effect on schizophrenia-like behaviors. Wistar rats neonatally treated with caffeine exhibited hyperlocomotion, deficit in SI and CFC when observed at adolescent and adult ages. Acutely caffeine treatment administrated at adolescent and adult ages increased locomotion and decreased SI time of Wistar rats and impair CFC in adult Wistars. No effects were observed in SHR. In conclusion, caffeine can be suggested as a useful drug to prevent behavioral deficits observed in this animal model of prenatal hypoxia-induced schizophrenia profile when specifically administered on PND 7.
Collapse
Affiliation(s)
- Aline Camargo Ramos
- Department of Psychiatry, Universidade Federal De São Paulo, São Paulo, SP, Brazil
| | | | | | - Mayra Akimi Suiama
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, SP, Brazil
| | - Mariana Bendlin Calzavara
- Department of Psychiatry, Universidade Federal De São Paulo, São Paulo, SP, Brazil; School of Medicine from Faculdade Israelita De Ciências Da Saúde Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
37
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
38
|
Terstappen F, Clarke SM, Joles JA, Ross CA, Garrett MR, Minnion M, Feelisch M, van Goor H, Sasser JM, Lely AT. Sodium Thiosulfate in the Pregnant Dahl Salt-Sensitive Rat, a Model of Preeclampsia. Biomolecules 2020; 10:biom10020302. [PMID: 32075042 PMCID: PMC7072460 DOI: 10.3390/biom10020302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Aberrant production of hydrogen sulfide (H2S) has been linked to preeclampsia. We hypothesized that sodium thiosulfate (STS), a H2S donor, reduces hypertension and proteinuria, and diminishes fetal growth restriction in the Dahl salt-sensitive (S) rat, a spontaneous model of superimposed preeclampsia. In addition to a control group (n = 13), two groups received STS via drinking water at a dose of 2 g (n = 9) or 3 g per kg body weight per day (n = 8) from gestational day (GD) 10 to 20. Uterine artery resistance index was measured (GD18), urinary protein excretion rate was determined (GD19), and blood pressure and fetal outcomes were evaluated (GD20). At 2 g, STS had no effect on preeclamptic symptoms or fetal outcome. At 3 g, STS reduced maternal hypertension (121.8 ± 3.0 vs. 136.3 ± 2.9), but increased proteinuria (89 ± 15 vs. 56 ± 5 mg/24h), and relative kidney weight (0.86 ± 0.04 vs. 0.73 ± 0.02%). Fetal/placental weight ratio was reduced (3.83 ± 0.07 vs. 4.31 ± 0.08) without affecting litter size. No differences in uterine artery flow or renal histological damage were noted across treatment groups. While these data suggest a promising antihypertensive effect that could imply prolongation of preeclamptic pregnancies, the unfavorable effects on proteinuria, kidney weight, and fetal/placental weight ratio implies that clinical implementation of STS is contra-indicated until safety for mother and child can be verified.
Collapse
Affiliation(s)
- Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands; (S.M.C.); (A.T.L.)
- Department of Developmental Origins of Disease (DDOD), Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-88-757-7251
| | - Sinéad M. Clarke
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands; (S.M.C.); (A.T.L.)
| | - Jaap A. Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands;
| | - Courtney A Ross
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA; (C.A.R.); (M.R.G.); (J.M.S.)
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA; (C.A.R.); (M.R.G.); (J.M.S.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.M.); (M.F.)
- NIHR Southampton Biomedical Research Center, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.M.); (M.F.)
- NIHR Southampton Biomedical Research Center, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands;
| | - Jennifer M. Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA; (C.A.R.); (M.R.G.); (J.M.S.)
| | - A. Titia Lely
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3508GA Utrecht, The Netherlands; (S.M.C.); (A.T.L.)
| |
Collapse
|
39
|
Szczepanski J, Griffin A, Novotny S, Wallace K. Acute Kidney Injury in Pregnancies Complicated With Preeclampsia or HELLP Syndrome. Front Med (Lausanne) 2020; 7:22. [PMID: 32118007 PMCID: PMC7020199 DOI: 10.3389/fmed.2020.00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
Acute kidney injury that occurs during pregnancy or in the post-partum period (PR-AKI) is a serious obstetric complication with risk of significant associated maternal and fetal morbidity and mortality. Recent data indicates that the incidence of PR-AKI is increasing, although accurate calculation is limited by the lack of a uniform diagnostic criteria that is validated in pregnancy. Hypertensive and thrombotic microangiopathic disorders of pregnancy have been identified as major contributors to the burden of PR-AKI. As is now accepted regarding preeclampsia, HELLP syndrome and atypical hemolytic uremic syndrome, it is believed that PR-AKI may have long-term renal, cardiovascular and neurocognitive consequences that persist beyond the post-partum period. Further research regarding PR-AKI could be advanced by the development of a pregnancy-specific validated definition and classification system; and the establishment of refined animal models that would allow researchers to further elucidate the mechanisms and sequelae of the disorder.
Collapse
Affiliation(s)
- Jamie Szczepanski
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ashley Griffin
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sarah Novotny
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kedra Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
40
|
Rapp JP, Garrett MR. Will the real Dahl S rat please stand up? Am J Physiol Renal Physiol 2019; 317:F1231-F1240. [PMID: 31545925 PMCID: PMC6879929 DOI: 10.1152/ajprenal.00359.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
- John P Rapp
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
41
|
Alula KM, Biltz R, Xu H, Garver H, Laimon-Thomson EL, Fink GD, Galligan JJ. Effects of high-fat diet on sympathetic neurotransmission in mesenteric arteries from Dahl salt-sensitive rat. Auton Neurosci 2019; 222:102599. [PMID: 31731103 DOI: 10.1016/j.autneu.2019.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Obesity hypertension is driven by sympathetic neurotransmission to the heart and blood vessels. We tested the hypothesis that high-fat diet (HFD)-induced hypertension is driven by sympathetic neurotransmission to mesenteric arteries (MA) in male but not female Dahl salt-sensitive (Dahl ss) rat. Rats were fed a control diet (CD; 10 kcal% from fat) or HFD (60 kcal% from fat) beginning at 3 weeks (wk) of age; measurements were made at 10-, 17- and 24-wk. Body weight increased with HFD, age and sex. Mean arterial pressure (MAP) was higher in HFD versus CD rats from both sexes at 17- and 24-wk. MA constriction measured using pressure myography, and electrical field stimulation (EFS, 0.2-30 Hz) was greater in HFD versus CD in males at 17-wk; this was not due to changes in α2 autoreceptor or norepinephrine transporter (NET) function. Prazosin (α1-AR antagonist) and suramin (P2 receptor antagonist) inhibited neurogenic MA constriction equally in all groups. Arterial reactivity to exogenous norepinephrine (NE; 10-8 - 10-5 M) was lower in HFD versus CD at 10-wk in males. Female MA reactivity to exogenous ATP was lower at 24-weeks compared to earlier time points. HFD did not affect tyrosine hydroxylase (TH) or the vesicular nucleotide transporter (VNUT) nerve density in MA from both sexes. NE content was lower in MA but higher in plasma at 24-wk compared to 10- and 17-wk in both sexes. In conclusion, HFD-induced hypertension is not driven by increased sympathetic neurotransmission to MA in male and female Dahl ss rats.
Collapse
Affiliation(s)
- Kibrom M Alula
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Rebecca Biltz
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hui Xu
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Erinn L Laimon-Thomson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
Beckers KF, Sones JL. Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. Am J Physiol Heart Circ Physiol 2019; 318:H1-H10. [PMID: 31626558 DOI: 10.1152/ajpheart.00469.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder that can be life threatening for both mother and baby. It is characterized by a new onset hypertension during the second half of pregnancy and affects ~300,000 women in the United States every year. There is no cure for PE, and the only effective treatment is delivery of the placenta and the fetus, which is often preterm. PE is believed to be a severe manifestation of placental dysfunction due to early angiogenic imbalances and inflammatory disturbances; however, the cause of this is unknown. The once thought "sterile" placenta now has been proposed to have a unique microbiome of its own. Under ideal conditions, the microbiome represents a balanced bacterial community that is important to the maintenance of a healthy environment. Dysbiosis of these communities may lead to inflammation that potentially contributes to adverse pregnancy outcomes, such as preterm birth and PE. Thus far, the female reproductive tract microbiome has been found to be influenced by periodontal disease, cardiometabolic complications, and maternal obesity, all of which have been identified as contributors to PE. This review will look at the maternal reproductive tract microbiome, evidence for and against, and its role in pregnancy and PE-related events as well as data from relevant mouse models that could be useful for further investigating the influence of the reproductive tract microbiome on the pathogenesis of PE.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
43
|
Cerebral Blood Flow Regulation in Pregnancy, Hypertension, and Hypertensive Disorders of Pregnancy. Brain Sci 2019; 9:brainsci9090224. [PMID: 31487961 PMCID: PMC6769869 DOI: 10.3390/brainsci9090224] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
The regulation of cerebral blood flow (CBF) allows for the metabolic demands of the brain to be met and for normal brain function including cognition (learning and memory). Regulation of CBF ensures relatively constant blood flow to the brain despite changes in systemic blood pressure, protecting the fragile micro-vessels from damage. CBF regulation is altered in pregnancy and is further altered by hypertension and hypertensive disorders of pregnancy including preeclampsia. The mechanisms contributing to changes in CBF in normal pregnancy, hypertension, and preeclampsia have not been fully elucidated. This review summarizes what is known about changes in CBF regulation during pregnancy, hypertension, and preeclampsia.
Collapse
|
44
|
Maeda KJ, Showmaker KC, Johnson AC, Garrett MR, Sasser JM. Spontaneous superimposed preeclampsia: chronology and expression unveiled by temporal transcriptomic analysis. Physiol Genomics 2019; 51:342-355. [PMID: 31125289 DOI: 10.1152/physiolgenomics.00020.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE), a multifactorial pregnancy-specific syndrome accounting for up to 8% of pregnancy complications, is a leading cause of maternal and fetal morbidity and mortality. PE is also associated with long-term risk of hypertension and stroke for both mother and fetus. Currently, the only "cure" is delivery of the baby and placenta, largely because the pathogenesis of PE is not yet fully understood. PE is associated with impaired vascular remodeling at the maternal-fetal interface and placental insufficiency; however, specific factors contributing to this impairment have not been identified. To identify molecular pathways involved in PE, we examined temporal transcriptomic changes occurring within the uterus, uterine implantation sites, and placentae from the Dahl salt-sensitive (Dahl S) rat model of superimposed PE compared with Sprague Dawley (SD) rats. We hypothesized that targeted gene analysis and whole transcriptome analysis would identify genetic factors that contribute to development of the preeclamptic phenotype in the Dahl S rat and unveil novel biomarkers, therapeutic targets, and mechanistic pathways in PE. Quantitative real-time PCR (qRT-PCR) and whole genome microarray analysis were performed on isolated total RNA from uterus (day 0), uterine implantation sites (days 7 and 10), and placenta (days 14 and 20). We found 624, 332, 185, and 366 genes to be differentially expressed between Dahl S (PE) and SD (normal pregnancy) on days 0, 7, 10, and 14, respectively. Our data revealed numerous pathways that may play a role in the pathophysiology of spontaneous superimposed PE and allow for further investigation of novel therapeutic targets and biomarker development.
Collapse
Affiliation(s)
- Kenji J Maeda
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kurt C Showmaker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
45
|
Terstappen F, Spradley FT, Bakrania BA, Clarke SM, Joles JA, Paauw ND, Garrett MR, Lely AT, Sasser JM. Prenatal Sildenafil Therapy Improves Cardiovascular Function in Fetal Growth Restricted Offspring of Dahl Salt-Sensitive Rats. Hypertension 2019; 73:1120-1127. [PMID: 30827146 PMCID: PMC6458081 DOI: 10.1161/hypertensionaha.118.12454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fetal growth restriction (FGR) is associated with increased risk for cardiovascular and renal disorders in later life. Prenatal sildenafil improves birth weight in FGR animal models. Whether sildenafil treatment protects against long-term cardiovascular and renal disease in these offspring is unknown. The aim of this study is to test the hypothesis that prenatal sildenafil ameliorates cardiovascular and renal function in FGR offspring of Dahl salt-sensitive rats. Sildenafil citrate (60 mg/kg per day) or control gel diet (containing 0.3% salt) was administered from gestational day ten until birth. In male and female offspring, the mean arterial pressure was measured by telemetry in 1 subset from week 5 until week twenty. Echocardiographic parameters, glomerular filtration rate, and fractional electrolyte excretion were determined in another subset at week 9. Aortic and mesenteric artery rings were prepared to assess endothelial-dependent (acetylcholine) and -independent (sodium nitroprusside) vasorelaxation (week 10). The rise in mean arterial pressure per week was attenuated in treated versus untreated male offspring. Mesenteric arteries showed an increased endothelium-dependent relaxation and improved endothelium-independent relaxation in treated versus control male offspring. No differences in aortic relaxation, echocardiographic parameters or renal function were observed between groups. Prenatal sildenafil treatment subtly improves cardiovascular but not renal function in the offspring of this FGR rat model. Translationally, in utero treatment could be beneficial for cardiovascular programming in a sex-specific manner; however, caution is warranted since recent human trials have been halted because of potentially deleterious neonatal side effects when treating pregnancies complicated with severe FGR with sildenafil.
Collapse
Affiliation(s)
- Fieke Terstappen
- From the Department of Obstetrics (F.T., S.M.C., N.D.P., A.T.L.), University Medical Center Utrecht, the Netherlands
- Laboratory of Neuro-Immunology and Developmental Origin of Disease (F.T.), University Medical Center Utrecht, the Netherlands
| | - Frank T Spradley
- Department of Surgery (F.T.S.), University of Mississippi Medical Center, Jackson
| | - Bhavisha A Bakrania
- Department of Physiology (B.A.B.), University of Mississippi Medical Center, Jackson
| | - Sinéad M Clarke
- From the Department of Obstetrics (F.T., S.M.C., N.D.P., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Jaap A Joles
- Wilhelmina Children's Hospital Birth Center and Department of Nephrology and Hypertension (J.A.J.), University Medical Center Utrecht, the Netherlands
| | - Nina D Paauw
- From the Department of Obstetrics (F.T., S.M.C., N.D.P., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Michael R Garrett
- Department of Pharmacology and Toxicology (M.R.G., J.M.S.), University of Mississippi Medical Center, Jackson
| | - A Titia Lely
- From the Department of Obstetrics (F.T., S.M.C., N.D.P., A.T.L.), University Medical Center Utrecht, the Netherlands
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology (M.R.G., J.M.S.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
46
|
Badran M, Abuyassin B, Ayas N, Laher I. Intermittent hypoxia impairs uterine artery function in pregnant mice. J Physiol 2019; 597:2639-2650. [PMID: 31002746 PMCID: PMC6826231 DOI: 10.1113/jp277775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Obstructive sleep apnoea (OSA) is a chronic condition characterized by intermittent hypoxia that induces oxidative stress and inflammation leading to cardiovascular disease. Women can develop OSA during late pregnancy, which is associated with adverse maternal and fetal outcomes. However, the effects of OSA throughout pregnancy on fetoplacental outcomes are unknown. Using a mouse model of intermittent hypoxia, we evaluated main uterine artery function, spiral artery remodelling, circulating angiogenic and anti-angiogenic factors, and placental hypoxia and oxidative stress at gestational day 14.5 in pregnant mice. Gestational intermittent hypoxia increased placental weight but decreased fetal weight, impaired uterine artery function, increased circulating angiogenic and anti-angiogenic factors, and induced placental hypoxia and oxidative stress, but had no impact on spiral artery remodelling. Our results suggest that pregnant women experiencing OSA during pregnancy could be at risk of maternal and fetal complications. ABSTRACT Obstructive sleep apnoea (OSA) is characterized by chronic intermittent hypoxia (IH) and is associated with increased inflammation, oxidative stress and endothelial dysfunction. OSA is a common sleep disorder and remains under-diagnosed; it can increase the risk of adverse maternal and fetal outcomes in pregnant women. We investigated the effects of gestational IH (GIH) on uterine artery function, spiral artery remodelling and placental circulating angiogenic and anti-angiogenic factors in pregnant female mice. WT C57BL/6 mice (8 weeks) were exposed to either GIH ( F I O 2 12%) or intermittent air ( F I O 2 21%) for 14.5 days of gestation. Exposure to GIH reduced fetal weight but increased placental weight. GIH dams had higher plasma levels of oxidative stress (8-isoprostane) and inflammatory markers (tumour necrosis factor-α). GIH significantly reduced uterine artery function as indicated by reduced endothelium-dependent vasodilatation and enhanced vasoconstriction. Plasma levels of placental angiogenic and anti-angiogenic markers (soluble fms-like tyrosine kinase-1, soluble endoglin, angiogenic placental growth factor-2 and vascular endothelial growth factor) were higher in pregnant mice exposed to GIH. There was no evidence of impaired spiral artery remodelling based on immunostaining with α-smooth muscle actin and cytokeratin-7, and also by measurements of lumen area. Immunostaining for markers of hypoxia (pimonidazole) and oxidative stress (4-hydroxynonenal) were higher in mice exposed to GIH. Our data show that GIH adversely affects uterine vascular function and may be a mechanism by which gestational OSA leads to adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of AnesthesiologyPharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Bisher Abuyassin
- Department of AnesthesiologyPharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Najib Ayas
- Divisions of Critical Care and Respiratory MedicineDepartment of MedicineUniversity of British ColumbiaVancouverBCCanada
- Sleep Disorders ProgramUBC HospitalVancouverBCCanada
- Division of Critical Care MedicineProvidence HealthcareVancouverBCCanada
| | - Ismail Laher
- Department of AnesthesiologyPharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
47
|
Abstract
Complications of pregnancy remain key drivers of morbidity and mortality, affecting the health of both the mother and her offspring in the short and long term. There is lack of detailed understanding of the pathways involved in the pathology and pathogenesis of compromised pregnancy, as well as a shortfall of effective prognostic, diagnostic and treatment options. In many complications of pregnancy, such as in preeclampsia, there is an increase in uteroplacental vascular resistance. However, the cause and effect relationship between placental dysfunction and adverse outcomes in the mother and her offspring remains uncertain. In this review, we aim to highlight the value of gestational hypoxia-induced complications of pregnancy in elucidating underlying molecular pathways and in assessing candidate therapeutic options for these complex disorders. Chronic maternal hypoxia not only mimics the placental pathology associated with obstetric syndromes like gestational hypertension at morphological, molecular and functional levels, but also recapitulates key symptoms that occur as maternal and fetal clinical manifestations of these pregnancy disorders. We propose that gestational hypoxia provides a useful model to study the inter-relationship between placental dysfunction and adverse outcomes in the mother and her offspring in a wide array of examples of complicated pregnancy, such as in preeclampsia.
Collapse
|
48
|
Turbeville HR, Taylor EB, Garrett MR, Didion SP, Ryan MJ, Sasser JM. Superimposed Preeclampsia Exacerbates Postpartum Renal Injury Despite Lack of Long-Term Blood Pressure Difference in the Dahl Salt-Sensitive Rat. Hypertension 2019; 73:650-658. [PMID: 30612494 PMCID: PMC6374193 DOI: 10.1161/hypertensionaha.118.12097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Preeclampsia results in increased susceptibility to hypertension and chronic kidney disease postpartum; however, the mechanisms responsible for disease progression in these women remain unknown. The purpose of this study was to test the hypothesis that 2 mechanisms contribute to the link between the maternal syndrome of preeclampsia and the increased postpartum risk of cardiovascular and renal disease: (1) increased T cells in the kidney and (2) a decreased NO:ET-1 (endothelin-1) ratio. Dahl S rats (a previously characterized model of preeclampsia superimposed on chronic hypertension) who experienced 2 pregnancies and virgin littermate controls were studied at 6 months of age. Mean arterial pressure was measured via telemetry, and renal injury was assessed through both histological analysis and measurement of urinary markers including nephrin, podocalyxin, and KIM-1 (kidney injury marker 1). Contributing mechanisms were assessed through flow cytometric analysis of renal T cells, quantification of plasma TNF-α (tumor necrosis factor-α) and IL-10 (interleukin-10), and quantification of urinary concentrations of NO metabolites and ET-1. Although prior pregnancy did not exacerbate the hypertension at 6 months, this group showed greater renal injury compared with virgin littermates. Flow cytometric analyses revealed an increase in renal T cells after pregnancy, and cytokine analysis revealed a systemic proinflammatory shift. Finally, the NO:ET-1 ratio was reduced. These results demonstrate that the link between the maternal syndrome of superimposed preeclampsia and postpartum risk of chronic kidney disease could involve both immune system activation and dysregulation of the NO:ET-1 balance.
Collapse
Affiliation(s)
- Hannah R. Turbeville
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J. Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M. Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
49
|
Reckelhoff JF, Alexander BT. Reproducibility in animal models of hypertension: a difficult problem. Biol Sex Differ 2018; 9:53. [PMID: 30577880 PMCID: PMC6303982 DOI: 10.1186/s13293-018-0216-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
In 2016, the National Institutes of Health mandated that all grant proposals enhance reproducibility through rigor and transparency. In the past few years, physiological outcomes in established animal models of hypertension, in particular in regard to sex differences, have varied from study to study or laboratory to laboratory. The aim of this commentary is to increase investigator awareness of caveats related to animal models that may be sensitive to vendor-, barrier-, or diet-specific changes that result in an inability to sustain the genotype and/or phenotype of well-established experimental models. These considerations are critical in order for investigators to make informed and educated decisions in regard to their hypothesis-driven research, in particular as it relates to experimental design and interpretation, and the reporting of results.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, USA. .,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, USA. .,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, USA.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| |
Collapse
|
50
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|