1
|
Rastegarmanesh A, Rostami B, Nasimi A, Hatam M. In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. Synapse 2023; 77:e22259. [PMID: 36271777 DOI: 10.1002/syn.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.
Collapse
Affiliation(s)
- Ali Rastegarmanesh
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Ruyle BC, Martinez D, Heesch CM, Kline DD, Hasser EM. The PVN enhances cardiorespiratory responses to acute hypoxia via input to the nTS. Am J Physiol Regul Integr Comp Physiol 2019; 317:R818-R833. [PMID: 31509428 PMCID: PMC6962628 DOI: 10.1152/ajpregu.00135.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Chemoreflex neurocircuitry includes the paraventricular nucleus (PVN), but the role of PVN efferent projections to specific cardiorespiratory nuclei is unclear. We hypothesized that the PVN contributes to cardiorespiratory responses to hypoxia via projections to the nucleus tractus solitarii (nTS). Rats received bilateral PVN microinjections of adeno-associated virus expressing inhibitory designer receptor exclusively activated by designer drug (GiDREADD) or green fluorescent protein (GFP) control. Efficacy of GiDREADD inhibition by the designer receptor exclusively activated by designer drug (DREADD) agonist Compound 21 (C21) was verified in PVN slices; C21 reduced evoked action potential discharge by reducing excitability to injected current in GiDREADD-expressing PVN neurons. We evaluated hypoxic ventilatory responses (plethysmography) and PVN and nTS neuronal activation (cFos immunoreactivity) to 2 h hypoxia (10% O2) in conscious GFP and GiDREADD rats after intraperitoneal C21 injection. Generalized PVN inhibition via systemic C21 blunted hypoxic ventilatory responses and reduced PVN and also nTS neuronal activation during hypoxia. To determine if the PVN-nTS pathway contributes to these effects, we evaluated cardiorespiratory responses to hypoxia during selective PVN terminal inhibition in the nTS. Anesthetized GFP and GiDREADD rats exposed to brief hypoxia (10% O2, 45 s) exhibited depressor and tachycardic responses and increased sympathetic and phrenic nerve activity. C21 was then microinjected into the nTS, followed after 60 min by another hypoxic episode. In GiDREADD but not GFP rats, PVN terminal inhibition by nTS C21 strongly attenuated the phrenic amplitude response to hypoxia. Interestingly, C21 augmented tachycardic and sympathetic responses without altering the coupling of splanchnic sympathetic nerve activity to phrenic nerve activity during hypoxia. Data demonstrate that the PVN, including projections to the nTS, is critical in shaping sympathetic and respiratory responses to hypoxia.
Collapse
Affiliation(s)
- Brian C Ruyle
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Diana Martinez
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
3
|
Dantzler HA, Matott MP, Martinez D, Kline DD. Hydrogen peroxide inhibits neurons in the paraventricular nucleus of the hypothalamus via potassium channel activation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R121-R133. [PMID: 31042419 DOI: 10.1152/ajpregu.00054.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus is an important homeostatic and reflex center for neuroendocrine, respiratory, and autonomic regulation, including during hypoxic stressor challenges. Such challenges increase reactive oxygen species (ROS) to modulate synaptic, neuronal, and ion channel activity. Previously, in the nucleus tractus solitarius, another cardiorespiratory nucleus, we showed that the ROS H2O2 induced membrane hyperpolarization and reduced action potential discharge via increased K+ conductance at the resting potential. Here, we sought to determine the homogeneity of influence and mechanism of action of H2O2 on PVN neurons. We recorded PVN neurons in isolation and in an acute slice preparation, which leaves neurons in their semi-intact network. Regardless of preparation, H2O2 hyperpolarized PVN neurons and decreased action potential discharge. In the slice preparation, H2O2 also decreased spontaneous excitatory postsynaptic current frequency, but not amplitude. To examine potential mechanisms, we investigated the influence of the K+ channel blockers Ba2+, Cs+, and glibenclamide on membrane potential, as well as the ionic currents active at resting potential and outward K+ currents (IK) upon depolarization. The H2O2 hyperpolarization was blocked by K+ channel blockers. H2O2 did not alter currents between -50 and -110 mV. However, H2O2 induced an outward IK at -50 mV yet, at potentials more positive to 0 mV H2O2, decreased IK. Elevated intracellular antioxidant catalase eliminated H2O2 effects. These data indicate that H2O2 alters synaptic and neuronal properties of PVN neurons likely via membrane hyperpolarization and alteration of IK, which may ultimately alter cardiorespiratory reflexes.
Collapse
Affiliation(s)
- Heather A Dantzler
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Michael P Matott
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Diana Martinez
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| |
Collapse
|
4
|
Ruyle BC, Klutho PJ, Baines CP, Heesch CM, Hasser EM. Hypoxia activates a neuropeptidergic pathway from the paraventricular nucleus of the hypothalamus to the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1167-R1182. [PMID: 30230933 DOI: 10.1152/ajpregu.00244.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) contributes to both autonomic and neuroendocrine function. PVN lesion or inhibition blunts cardiorespiratory responses to peripheral chemoreflex activation, suggesting that the PVN is required for full expression of these effects. However, the role of efferent projections to cardiorespiratory nuclei and the neurotransmitters/neuromodulators that are involved is unclear. The PVN sends dense projections to the nucleus tractus solitarii (nTS), a region that displays neuronal activation following hypoxia. We hypothesized that acute hypoxia activates nTS-projecting PVN neurons. Using a combination of retrograde tracing and immunohistochemistry, we determined whether hypoxia activates PVN neurons that project to the nTS and examined the phenotype of these neurons. Conscious rats underwent 2 h normoxia (21% O2, n = 5) or hypoxia (10% O2, n = 6). Hypoxia significantly increased Fos immunoreactivity in nTS-projecting neurons, primarily in the caudal PVN. The majority of activated nTS-projecting neurons contained corticotropin-releasing hormone (CRH). In the nTS, fibers expressing the CRH receptor corticotropin-releasing factor receptor 2 (CRFR2) were colocalized with oxytocin (OT) fibers and were closely associated with hypoxia-activated nTS neurons. A separate group of animals that received a microinjection of adeno-associated virus type 2-hSyn-green fluorescent protein (GFP) into the PVN exhibited GFP-expressing fibers in the nTS; a proportion of these fibers displayed OT immunoreactivity. Thus, nTS CRFR2s appear to be located on the fibers of PVN OT neurons that project to the nTS. Taken together, our findings suggest that PVN CRH projections to the nTS may modulate nTS neuronal activation, possibly via OTergic mechanisms, and thus contribute to chemoreflex cardiorespiratory responses.
Collapse
Affiliation(s)
- Brian C Ruyle
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Paula J Klutho
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Christopher P Baines
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
5
|
Mendonça MM, Santana JS, da Cruz KR, Ianzer D, Ghedini PC, Nalivaiko E, Fontes MAP, Ferreira RN, Pedrino GR, Colugnati DB, Xavier CH. Involvement of GABAergic and Adrenergic Neurotransmissions on Paraventricular Nucleus of Hypothalamus in the Control of Cardiac Function. Front Physiol 2018; 9:670. [PMID: 29915544 PMCID: PMC5994789 DOI: 10.3389/fphys.2018.00670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Sympathetic premotor neurons of the paraventricular hypothalamus (PVN) play a role in hemodynamics adjustments during changes in body fluid homeostasis. However, PVN contribution to the tonic control of cardiac function remains to be systematically studied. In this study, we assessed whether GABAergic and adrenergic synapses, known for being active in the PVN, are involved in the control of cardiac function. Adult male Wistar rats (250–350 g; n = 27) were anesthetized with urethane (1.2–1.4 g/kg i.p.) and underwent catheterization of femoral artery to record blood pressure and heart rate. The femoral vein was used to inject the vasoactive agents phenylephrine (10 μg/kg) and sodium nitroprusside (10 μg/kg) and to supplement anesthesia. The cardiac left ventricle was catheterized to record left ventricular pressure and its derivative. Craniotomy allowed for injections (100 nL) into the PVN of: muscimol (20 mM), bicuculline methiodide (0.4 mM), propranolol (10 mM), isoproterenol (100 μM), phentolamine (13 mM), phenylephrine (30 nM). We found that: (i) inhibition of PVN by muscimol, reduced arterial pressure, cardiac chronotropy and inotropy; (ii) disinhibition of PVN neurons by bicuculline evoked positive chronotropy and inotropy, and increase blood pressure; (iii) PVN alpha adrenergic receptors control cardiac chronotropy and inotropy; (iv) beta adrenergic receptors of the PVN do not influence cardiac function; (v) afterload does not contribute to the PVN-evoked inotropy. Our results indicate that the modulation of the activity of PVN neurons exerted by GABAergic and adrenergic mechanisms contribute to the control of cardiac function.
Collapse
Affiliation(s)
- Michelle M Mendonça
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Joice S Santana
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Kellen R da Cruz
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Danielle Ianzer
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Paulo C Ghedini
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Eugene Nalivaiko
- Neurocardiology Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Marco A P Fontes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Reginaldo N Ferreira
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Diego B Colugnati
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Carlos H Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
6
|
Electroacupuncture Improved the Function of Myocardial Ischemia Involved in the Hippocampus-Paraventricular Nucleus-Sympathetic Nerve Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2870676. [PMID: 29507590 PMCID: PMC5817851 DOI: 10.1155/2018/2870676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022]
Abstract
We investigated the hippocampus-paraventricular nucleus- (PVN-) sympathetic nerve pathway in electroacupuncture (EA) at the heart meridian for the treatment of myocardial ischemia by observing PVN neuronal discharge, sympathetic nerve discharge, and hemodynamics parameters. Sprague Dawley (SD) rats were equally divided into four groups: Sham, Model, Model + EA, and Model + EA + Lesion. The model rat was established by ligating the left anterior descending branch of the coronary artery. Changes in the sympathetic nerve discharge and hemodynamic parameters were observed. The Model + EA exhibited a significantly lower discharge frequency of PVN neurons compared with the Model. The Model + EA + Lesion had a significantly higher discharge frequency compared with the Model + EA. The total discharge frequency of PVN neurons and interneurons were positively correlated with the sympathetic nerve discharge. The total discharge frequency of PVN neurons was positively correlated with heart rate (HR) and negatively correlated with mean arterial pressure (MAP) and rate pressure product (RPP). The discharge frequency of interneurons was positively correlated with HR and negatively correlated with MAP and RPP. The hippocampus-PVN-sympathetic nerve pathway is involved in electroacupuncture at the heart meridian and interneurons are the key neurons in PVNs.
Collapse
|
7
|
Coldren KM, Li DP, Kline DD, Hasser EM, Heesch CM. Acute hypoxia activates neuroendocrine, but not presympathetic, neurons in the paraventricular nucleus of the hypothalamus: differential role of nitric oxide. Am J Physiol Regul Integr Comp Physiol 2017; 312:R982-R995. [PMID: 28404583 DOI: 10.1152/ajpregu.00543.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022]
Abstract
Hypoxia results in decreased arterial Po2, arterial chemoreflex activation, and compensatory increases in breathing, sympathetic outflow, and neuroendocrine secretions, including increased secretion of AVP, corticotropin-releasing hormone (CRH), adrenocorticotropin hormone (ACTH), and corticosterone. In addition to a brain stem pathway, including the nucleus tractus solitarius (nTS) and the rostral ventrolateral medulla (RVLM), medullary pathways to the paraventricular nucleus of the hypothalamus (PVN) contribute to chemoreflex responses. Experiments evaluated activation of specific cell phenotypes within the PVN following an acute hypoxic stimulus (AH; 2 h, 10% O2) in conscious rats. Retrograde tracers (from spinal cord and RVLM) labeled presympathetic (PreS) neurons, and immunohistochemistry identified AVP- and CRH-immunoreactive (IR) cells. c-Fos-IR was an index of neuronal activation. Hypoxia activated AVP-IR (~6%) and CRH-IR (~15%) cells, but not PreS cells in the PVN, suggesting that sympathoexcitation during moderate AH is mediated mainly by a pathway that does not include PreS neurons in the PVN. Approximately 14 to 17% of all PVN cell phenotypes examined expressed neuronal nitric oxide synthase (nNOS-IR). AH activated only nNOS-negative AVP-IR neurons. In contrast ~23% of activated CRH-IR neurons in the PVN contained nNOS. In the median eminence, CRH-IR terminals were closely opposed to tanycyte processes and end-feet (vimentin-IR) in the external zone, where vascular NO participates in tanycyte retraction to facilitate neuropeptide secretion into the pituitary portal circulation. Results are consistent with an inhibitory role of NO on AVP and PreS neurons in the PVN and an excitatory role of NO on CRH secretion in the PVN and median eminence.
Collapse
Affiliation(s)
- K Max Coldren
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - De-Pei Li
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Schlenker EH. Sexual dimorphism of cardiopulmonary regulation in the arcuate nucleus of the hypothalamus. Respir Physiol Neurobiol 2016; 245:37-44. [PMID: 27756648 DOI: 10.1016/j.resp.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022]
Abstract
The arcuate nucleus of the hypothalamus (ANH) interacts with other hypothalamic nuclei, forebrain regions, and downstream brain sites to affect autonomic nervous system outflow, energy balance, temperature regulation, sleep, arousal, neuroendocrine function, reproduction, and cardiopulmonary regulation. Compared to studies of other ANH functions, how the ANH regulates cardiopulmonary function is less understood. Importantly, the ANH exhibits structural and functional sexually dimorphic characteristics and contains numerous neuroactive substances and receptors including leptin, neuropeptide Y, glutamate, acetylcholine, endorphins, orexin, kisspeptin, insulin, Agouti-related protein, cocaine and amphetamine-regulated transcript, dopamine, somatostatin, components of renin-angiotensin system and gamma amino butyric acid that modulate physiological functions. Moreover, several clinically relevant disorders are associated with ANH ventilatory control dysfunction. This review highlights how ANH neurotransmitter systems and receptors modulate breathing differently in male and female rodents. Results highlight the significance of the ANH in cardiopulmonary regulation. The paucity of studies in this area that will hopefully spark investigations of sexually dimorphic ANH-modulation of breathing.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD, 57069, United States.
| |
Collapse
|
9
|
Czick ME, Shapter CL, Silverman DI. Atrial Fibrillation: The Science behind Its Defiance. Aging Dis 2016; 7:635-656. [PMID: 27699086 PMCID: PMC5036958 DOI: 10.14336/ad.2016.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world, due both to its tenacious treatment resistance, and to the tremendous number of risk factors that set the stage for the atria to fibrillate. Cardiopulmonary, behavioral, and psychological risk factors generate electrical and structural alterations of the atria that promote reentry and wavebreak. These culminate in fibrillation once atrial ectopic beats set the arrhythmia process in motion. There is growing evidence that chronic stress can physically alter the emotion centers of the limbic system, changing their input to the hypothalamic-limbic-autonomic network that regulates autonomic outflow. This leads to imbalance of the parasympathetic and sympathetic nervous systems, most often in favor of sympathetic overactivation. Autonomic imbalance acts as a driving force behind the atrial ectopy and reentry that promote AF. Careful study of AF pathophysiology can illuminate the means that enable AF to elude both pharmacological control and surgical cure, by revealing ways in which antiarrhythmic drugs and surgical and ablation procedures may paradoxically promote fibrillation. Understanding AF pathophysiology can also help clarify the mechanisms by which emerging modalities aiming to correct autonomic imbalance, such as renal sympathetic denervation, may offer potential to better control this arrhythmia. Finally, growing evidence supports lifestyle modification approaches as adjuncts to improve AF control.
Collapse
Affiliation(s)
| | | | - David I. Silverman
- Echocardiography Laboratory, Hartford Hospital, Hartford, CT 06106, USA.
| |
Collapse
|
10
|
Mosca EV, Rousseau JP, Gulemetova R, Kinkead R, Wilson RJA. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression. Exp Physiol 2015; 100:203-15. [PMID: 25398710 DOI: 10.1113/expphysiol.2014.082180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/03/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress.
Collapse
Affiliation(s)
- E V Mosca
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
11
|
Nunez WRR, Ozaki MR, Vinagre AM, Collares EF, Almeida EAD. Neural mechanisms and delayed gastric emptying of liquid induced through acute myocardial infarction in rats. Arq Bras Cardiol 2014; 104:144-51. [PMID: 25494017 PMCID: PMC4375658 DOI: 10.5935/abc.20140190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/02/2014] [Indexed: 11/20/2022] Open
Abstract
Background In pathological situations, such as acute myocardial infarction, disorders of
motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute
myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous
system GABAB receptors and also participation of paraventricular
nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted
rats. Methods Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group
and subdivided. The infarction was performed through ligation of the left anterior
descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy
was performed by sectioning the dorsal and ventral branches. To verify the action
of GABAB receptors, baclofen was injected via icv
(intracerebroventricular). Intravenous prazosin was used to produce chemical
sympathectomy. The lesion in the PVN of the hypothalamus was performed using a
1mA/10s electrical current and GE was determined by measuring the percentage of
gastric retention (% GR) of a saline meal. Results No significant differences were observed regarding GC between groups; vagotomy
significantly reduced % GR in INF group; icv treatment with baclofen significantly
reduced %GR. GABAB receptors were not conclusively involved in delaying
GE; intravenous treatment with prazosin significantly reduced GR% in INF group.
PVN lesion abolished the effect of myocardial infarction on GE. Conclusion Gastric emptying of liquids induced through acute myocardial infarction in rats
showed the involvement of the vagus nerve, alpha1- adrenergic receptors and
PVN.
Collapse
|
12
|
Campos LMG, Cruz-Rizzolo RJ, Watanabe IS, Pinato L, Nogueira MI. Efferent projections of the suprachiasmatic nucleus based on the distribution of vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) immunoreactive fibers in the hypothalamus of Sapajus apella. J Chem Neuroanat 2014; 57-58:42-53. [PMID: 24727411 DOI: 10.1016/j.jchemneu.2014.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/08/2014] [Accepted: 03/09/2014] [Indexed: 02/01/2023]
Abstract
The suprachiasmatic nucleus (SCN), which is considered to be the master circadian clock in mammals, establishes biological rhythms of approximately 24 h that several organs exhibit. One aspect relevant to the study of the neurofunctional features of biological rhythmicity is the identification of communication pathways between the SCN and other brain areas. As a result, SCN efferent projections have been investigated in several species, including rodents and a few primates. The fibers originating from the two main intrinsic fiber subpopulations, one producing vasoactive intestinal peptide (VIP) and the other producing arginine vasopressin (AVP), exhibit morphological traits that distinguish them from fibers that originate from other brain areas. This distinction provides a parameter to study SCN efferent projections. In this study, we mapped VIP (VIP-ir) and AVP (AVP-ir) immunoreactive (ir) fibers and endings in the hypothalamus of the primate Sapajus apella via immunohistochemical and morphologic study. Regarding the fiber distribution pattern, AVP-ir and VIP-ir fibers were identified in regions of the tuberal hypothalamic area, retrochiasmatic area, lateral hypothalamic area, and anterior hypothalamic area. VIP-ir and AVP-ir fibers coexisted in several hypothalamic areas; however, AVP-ir fibers were predominant over VIP-ir fibers in the posterior hypothalamus and medial periventricular area. This distribution pattern and the receiving hypothalamic areas of the VIP-ir and AVP-ir fibers, which shared similar morphological features with those found in SCN, were similar to the patterns observed in diurnal and nocturnal animals. This finding supports the conservative nature of this feature among different species. Morphometric analysis of SCN intrinsic neurons indicated homogeneity in the size of VIP-ir neurons in the SCN ventral portion and heterogeneity in the size of two subpopulations of AVP-ir neurons in the SCN dorsal portion. The distribution of fibers and morphometric features of these neuronal populations are described and compared with those of other species in the present study.
Collapse
Affiliation(s)
- L M G Campos
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, SP, Brazil.
| | - R J Cruz-Rizzolo
- Department of Fundamental Sciences, São Paulo State University, Araçatuba, SP, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - L Pinato
- Department of Speech Language and Hearing Therapy, São Paulo State University, Marília, SP, Brazil
| | - M I Nogueira
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| |
Collapse
|
13
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
14
|
King TL, Kline DD, Ruyle BC, Heesch CM, Hasser EM. Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1112-23. [PMID: 24049118 DOI: 10.1152/ajpregu.00280.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60-90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.
Collapse
Affiliation(s)
- T Luise King
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
15
|
Wu ZJ, Cai RL, He L, Hu WB, Wang KM, Hu L, Zhou YP. Effects of Electroacupuncture Applied to Neiguan (PC 6) and Shenmen (HT 7) on Norepinephrine Levels in Serum and in the Paraventricular Nucleus of Hyperlipidemic Rats with Surgically Induced Acute Myocardial Infarction. Med Acupunct 2013. [DOI: 10.1089/acu.2012.0946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zi-Jian Wu
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Rong-Lin Cai
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lu He
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wu-Bin Hu
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ke-Ming Wang
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ling Hu
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yi-Ping Zhou
- Institute of Acupuncture and Meridian, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Grassi D, Lagunas N, Amorim M, Pinos H, Panzica G, Garcia-Segura LM, Collado P. Role of oestrogen receptors on the modulation of NADPH-diaphorase-positive cell number in supraoptic and paraventricular nuclei of ovariectomised female rats. J Neuroendocrinol 2013; 25:244-50. [PMID: 22967140 DOI: 10.1111/j.1365-2826.2012.02387.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/06/2012] [Accepted: 09/08/2012] [Indexed: 01/24/2023]
Abstract
Modulation of the nitric oxide producing system (demonstrated via the NADPH-diaphorase histochemical reaction) by oestradiol has been established in several structures of the rat brain. The present study aimed to explore the possible regulation of NADPH-diaphorase activity by oestradiol in neurones of the supraoptic (SON) and paraventricular (PVN) nuclei and the role of oestrogen receptors (ERα and ERβ) in this regulation. Adult ovariectomised rats were divided into six groups and injected either with vehicle or a single dose of oestradiol, a selective ERα agonist-PPT [4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol], a selective ERβ agonist-DPN [2,3-bis(4-hydroxyphenyl)-propionitrile], a selective ERα antagonist-MPP [1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride] or a selective ERβ antagonist-PHTPP (4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol). The number of NADPH-diaphorase positive elements in the SON and the PVN was modulated by both ERs but, depending on the nucleus, ERα and ERβ ligands induced different effects. These results suggest that the regulation of nitrergic system by ERs may play a role in the control of oestrogen-dependent physiological mechanisms regulated by the SON and the PVN.
Collapse
Affiliation(s)
- D Grassi
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
King TL, Heesch CM, Clark CG, Kline DD, Hasser EM. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1219-32. [PMID: 22403798 DOI: 10.1152/ajpregu.00028.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia (n = 4, 21% O(2)) or acute hypoxia (12, 10, or 8% O(2); n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O(2) was similar whether arterial pressure was allowed to decrease (-13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ∼75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O(2). Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.
Collapse
Affiliation(s)
- T Luise King
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
18
|
Page MC, Cassaglia PA, Brooks VL. GABA in the paraventricular nucleus tonically suppresses baroreflex function: alterations during pregnancy. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1452-8. [PMID: 21368269 PMCID: PMC3119159 DOI: 10.1152/ajpregu.00736.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
Abstract
It is well established that GABAergic inputs to the paraventricular nucleus of the hypothalamus (PVN) tonically suppress heart rate and the activity of several sympathetic nerves. However, whether GABA similarly inhibits PVN control of baroreflex function has not been previously investigated. To test this hypothesis, it was determined whether microinjection of the GABA(A) antagonist, bicuculline, into the PVN enhances the baroreflex in anesthetized female virgin rats. In addition, because GABAergic inhibition of PVN preautonomic neurons is decreased during pregnancy, it was also determined whether the effects of PVN bicuculline administration on baroreflex function were less in pregnant animals. In virgin rats, PVN microinjection of bicuculline increased (P < 0.05) baroreflex gain and maximum levels of heart rate (gain, from 1.6 ± 0.6 to 3.8 ± 1.3 bpm/mmHg; maximum, from 406 ± 18 to 475 ± 14 bpm) and of lumbar sympathetic nerve activity (gain from 2.6 ± 0.7 to 4.8 ± 1.6%/mmHg; maximum, 149 ± 32 to 273 ± 48%), indicating that PVN GABA normally suppresses baroreflex function. Pregnancy decreased heart rate baroreflex gain (pregnant, 0.9 ± 0.3 bpm/mmHg; virgin, 1.9 ± 0.2 bpm/mmHg; P < 0.05). Following PVN bicuculline administration in pregnant rats, smaller (P < 0.01) increments in baroreflex gain (pregnant, 0.6 ± 0.1 bpm/mmHg; virgin, 2.4 ± 0.9 bpm/mmHg) and maximum (pregnant, 33 ± 7 bpm; virgin, 75 ± 12 bpm; P < 0.05) were produced. Collectively, these data suggest that the PVN normally inhibits the baroreflex via tonic GABAergic inputs and that this inhibition is less during pregnancy.
Collapse
Affiliation(s)
- Mollie C Page
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, 97239, USA
| | | | | |
Collapse
|
19
|
Ulrich-Lai YM, Jones KR, Ziegler DR, Cullinan WE, Herman JP. Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions. J Comp Neurol 2011; 519:1301-19. [PMID: 21452198 PMCID: PMC3893028 DOI: 10.1002/cne.22571] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) regulates numerous homeostatic systems and functions largely under the influence of forebrain inputs. Glutamate is a major neurotransmitter in forebrain, and glutamate neurosignaling in the PVN is known to mediate many of its functions. Previous work showed that vesicular glutamate transporters (VGluTs; specific markers for glutamatergic neurons) are expressed in forebrain sites that project to the PVN; however, the extent of this presumed glutamatergic innervation to the PVN is not clear. In the present study retrograde FluoroGold (FG) labeling of PVN-projecting neurons was combined with in situ hybridization for VGluT1 and VGluT2 mRNAs to identify forebrain regions that provide glutamatergic innervation to the PVN and its immediate surround in rats, with special consideration for the sources to the anterior versus posterior PVN. VGluT1 mRNA colocalization with retrogradely labeled FG neurons was sparse. VGluT2 mRNA colocalization with FG neurons was most abundant in the ventromedial hypothalamus after anterior PVN FG injections, and in the lateral, posterior, dorsomedial, and ventromedial hypothalamic nuclei after posterior PVN injections. Anterograde tract tracing combined with VGluT2 immunolabeling showed that 1) ventromedial nucleus-derived glutamatergic inputs occur in both the anterior and posterior PVN; 2) posterior nucleus-derived glutamatergic inputs occur predominantly in the posterior PVN; and 3) medial preoptic nucleus-derived inputs to the PVN are not glutamatergic, thereby corroborating the innervation pattern seen with retrograde tracing. The results suggest that PVN subregions are influenced by varying amounts and sources of forebrain glutamatergic regulation, consistent with functional differentiation of glutamate projections.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | |
Collapse
|
20
|
Goekoop JG, de Winter RFP, Wolterbeek R, van Kempen GMJ, Wiegant VM. Evidence of vasopressinergic-noradrenergic mechanisms in depression with above-normal plasma vasopressin concentration with and without psychotic features. J Psychopharmacol 2011; 25:345-52. [PMID: 19942636 DOI: 10.1177/0269881109349839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies in the field of melancholic or endogenous depression have resulted in support for a subcategory of depression with above-normal plasma vasopressin (AVP) concentration (ANA). Since an analogous animal model with increased release of above-normal plasma vasopressin exhibits reduced Sympathetic-Nervous-System activity, the present study investigated the plasma norepinephrine concentration and the correlation between plasma norepinephrine and AVP in this ANA depression. As psychotic-melancholic patients may have increased plasma norepinephrine concentration, and noradrenergic activation may stimulate AVP release, potentially confounding effects of psychotic features were also investigated. The data set of the same depressed patient sample that was used before, but limited to those with complete hormonal data (n = 75), was re-analysed. ANA depression (n = 14) had negatively correlating AVP and norepinephrine concentrations. A very small subcategory of ANA depression with psychotic features (n = 3) had high plasma norepinephrine concentration, suggesting that this could be an independent subcategory. This was supported by the combination of relatively low above-normal plasma AVP concentrations with the highest severity scores for depression in this subcategory, which does not correspond with the positive correlation between AVP concentration and severity in non-psychotic ANA depression. The results further support the validity of ANA depression and the analogy with the High Anxiety Behaviour animal model of depression. Further investigations are needed to replicate these findings and to search for genetic and traumatic factors involved.
Collapse
Affiliation(s)
- Jaap G Goekoop
- Department of Psychiatry, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Kinkead R, Gulemetova R. Neonatal maternal separation and neuroendocrine programming of the respiratory control system in rats. Biol Psychol 2010; 84:26-38. [DOI: 10.1016/j.biopsycho.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
22
|
Kc P, Balan KV, Tjoe SS, Martin RJ, Lamanna JC, Haxhiu MA, Dick TE. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. J Physiol 2010; 588:725-40. [PMID: 20051497 DOI: 10.1113/jphysiol.2009.184580] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A co-morbidity of sleep apnoea is hypertension associated with elevated sympathetic nerve activity (SNA) which may result from conditioning to chronic intermittent hypoxia (CIH). Our hypothesis is that SNA depends on input to the rostral ventrolateral medulla (RVLM) from neurons in the paraventricular nucleus (PVN) that release arginine vasopressin (AVP) and specifically, that increased SNA evoked by CIH depends on this excitatory input. In two sets of neuroanatomical experiments, we determined if AVP neurons project from the PVN to the RVLM and if arginine vasopressin (V(1A)) receptor expression increases in the RVLM after CIH conditioning (8 h per day for 10 days). In the first set, cholera toxin beta subunit (CT-beta) was microinjected into the RVLM to retrogradely label the PVN neurons. Immunohistochemical staining demonstrated that 14.6% of CT-beta-labelled PVN neurons were double-labelled with AVP. In the second set, sections of the medulla were immunolabelled for V(1A) receptors, and the V(1A) receptor-expressing cell count was significantly greater in the RVLM (P < 0.01) and in the neighbouring rostral ventral respiratory column (rVRC) from CIH- than from room air (RA)-conditioned rats. In a series of physiological experiments, we determined if blocking V(1A) receptors in the medulla would normalize blood pressure in CIH-conditioned animals and attenuate its response to disinhibition of PVN. Blood pressure (BP), heart rate (HR), diaphragm (D(EMG)) and genioglossus muscle (GG(EMG)) activity were recorded in anaesthetized, ventilated and vagotomized rats. The PVN was disinhibited by microinjecting a GABA(A) receptor antagonist, bicuculline (BIC, 0.1 nmol), before and after blocking V(1A) receptors within the RVLM and rVRC with SR49059 (0.2 nmol). In RA-conditioned rats, disinhibition of the PVN increased BP, HR, minute D(EMG) and GG(EMG) activity and these increases were attenuated after blocking V(1A) receptors. In CIH-conditioned rats, a significantly greater dose of blocker (0.4 nmol) was required to blunt these physiological responses (P < 0.05). Further, this dose normalized the baseline BP. In summary, AVP released by a subset of PVN neurons modulates cardiorespiratory output via V(1A) receptors in the RVLM and rVRC, and increased SNA in CIH-conditioned animals depends on up-regulation of V(1A) receptors in the RVLM.
Collapse
Affiliation(s)
- Prabha Kc
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-6010, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ. Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 2008; 93:746-53. [PMID: 18281391 DOI: 10.1113/expphysiol.2007.041632] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous studies have shown that angiotensin II and reactive oxygen species in the paraventricular nucleus (PVN) modulate the cardiac sympathetic afferent reflex (CSAR). The present study was designed to demonstrate more conclusively that the PVN is an important component of the central neurocircuitry of the CSAR. In anaesthetized Sprague-Dawley rats with sinoaortic denervation and cervical vagotomy, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded. The CSAR was evaluated by the response of the RSNA to epicardial application of bradykinin or capsaicin. Bilateral microinjection of the anaesthetic, lignocaine, into the PVN abolished the CSAR without significant effects on the baseline RSNA and MAP, while l-glutamate, which excites the neurons in the PVN, enhanced the CSAR and increased the baseline RSNA and MAP. Bilateral electrolytic lesions of the PVN irreversibly abolished the CSAR without significant effects on the baseline RSNA and MAP. Bilateral selective lesions of the neurons in the PVN with kainic acid induced rapid and great increases in both RSNA and MAP which returned to nearly normal levels in 60 min. At the 90th minute after kainic acid, epicardial application of bradykinin or capsaicin failed to induce the CSAR. These results indicate that inhibition or lesion of the PVN abolishes the CSAR, but excitation of the neurons in the PVN enhances the CSAR, suggesting that the PVN is an important component of the central neurocircuitry of the CSAR.
Collapse
Affiliation(s)
- Ming-Kui Zhong
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Raggenbass M. Overview of cellular electrophysiological actions of vasopressin. Eur J Pharmacol 2008; 583:243-54. [PMID: 18280467 DOI: 10.1016/j.ejphar.2007.11.074] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/24/2007] [Accepted: 11/07/2007] [Indexed: 11/24/2022]
Abstract
The nonapeptide vasopressin acts both as a hormone and as a neurotransmitter/neuromodulator. As a hormone, its target organs include kidney, blood vessels, liver, platelets and anterior pituitary. As a neurotransmitter/neuromodulator, vasopressin plays a role in autonomic functions, such as cardiovascular regulation and temperature regulation and is involved in complex behavioral and cognitive functions, such as sexual behavior, pair-bond formation and social recognition. At the neuronal level, vasopressin acts by enhancing membrane excitability and by modulating synaptic transmission. The present review will focus on the electrophysiological effects of vasopressin at the cellular level. A large proportion of the experiments summarized here have been performed in in vitro systems, especially in brain and spinal cord slices of the rat. Vasopressin exerts a powerful excitatory action on motoneurons of young rats and mice. It acts by generating a cationic inward current and/or by reducing a potassium conductance. In addition, vasopressin enhances the inhibitory synaptic input to motoneurons. By virtue of these actions, vasopressin may regulate the functioning of neuronal networks involved in motor control. In the amygdala, vasopressin can directly excite a subpopulation of neurons, whereas oxytocin, a related neuropeptide, can indirectly inhibit these same neurons. In the lateral septum, vasopressin exerts a similar dual action: it excites directly a neuronal subpopulation, but causes indirect inhibition of virtually all lateral septal neurons. The actions of vasopressin in the amygdala and lateral septum may represent at least part of the neuronal substrate by which vasopressin influences fear and anxiety-related behavior and social recognition, respectively. Central vasopressin can modulate cardiovascular parameters by causing excitation of spinal sympathetic preganglionic neurons, by increasing the inhibitory input to cardiac parasympathetic neurons in the nucleus ambiguus, by depressing the excitatory input to parabrachial neurons, or by inhibiting glutamate release at solitary tract axon terminals. By acting in or near the hypothalamic supraoptic nucleus, vasopressin can influence magnocellular neuron activity, suggesting that the peptide may exert some control on its own release at neurohypophyseal axon terminals. The central actions of vasopressin are mainly mediated by receptors of the V(1A) type, although recent studies have also reported the presence of vasopressin V(1B) receptors in the brain. Major unsolved problems are: (i) what is the transduction pathway activated following stimulation of central vasopressin V(1A) receptors? (ii) What is the precise nature of the cation channels and/or potassium channels operated by vasopressin? (iii) Does vasopressin, by virtue of its second messenger(s), interfere with other neurotransmitter/neuromodulator systems? In recent years, information concerning the mechanism of action of vasopressin at the neuronal level and its possible role and function at the whole-animal level has been accumulating. Translation of peptide actions at the cellular level into autonomic, behavioral and cognitive effects requires an intermediate level of integration, i.e. the level of neuronal circuitry. Here, detailed information is lacking. Further progress will probably require the introduction of new techniques, such as targeted in vivo whole-cell recording, large-scale recordings from neuronal ensembles or in vivo imaging in small animals.
Collapse
Affiliation(s)
- Mario Raggenbass
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
25
|
Genest SE, Balon N, Laforest S, Drolet G, Kinkead R. Neonatal maternal separation and enhancement of the hypoxic ventilatory response in rat: the role of GABAergic modulation within the paraventricular nucleus of the hypothalamus. J Physiol 2007; 583:299-314. [PMID: 17569732 PMCID: PMC2277229 DOI: 10.1113/jphysiol.2007.135160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neonatal maternal separation (NMS) affects respiratory control development as adult male (but not female) rats previously subjected to NMS show a hypoxic ventilatory response 25% greater than controls. The paraventricular nucleus of the hypothalamus (PVN) is an important modulator of respiratory activity. In the present study, we hypothesized that in awake rats, altered GABAergic inhibition within the PVN contributes to the enhancement of hypoxic ventilatory response observed in rats previously subjected to NMS. During normoxia, the increase in minute ventilation following microinjection of bicuculline (1 mm) within the PVN is greater in NMS versus control rats. These data show that regulation of ventilatory activity related to tonic inhibition of the PVN is more important in NMS than control rats. Microinjection of GABA or muscimol (1 mM) attenuated the ventilatory response to hypoxia (12% O2) in NMS rats only. The higher efficiency of microinjections in NMS rats is supported by results from GABAA receptor autoradiography which revealed a 22% increase in GABAA receptor binding sites within the PVN of NMS rats versus controls. Despite this increase, however, NMS rats still show a larger hypoxic ventilatory response than controls, suggesting that within the PVN the larger number of GABAA receptors either compensate for (1) a deficient GABAergic modulation, (2) an increase in the efficacy of excitatory inputs converging onto this structure, or (3) both. Together, these results show that the life-long consequences of NMS are far reaching as they can compromise the development of vital homeostatic function in a way that may predispose to respiratory disorders.
Collapse
Affiliation(s)
- Sophie-Emmanuelle Genest
- Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
- Neuroscience Research Units, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Norbert Balon
- Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Sylvie Laforest
- Neuroscience Research Units, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Guy Drolet
- Neuroscience Research Units, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Richard Kinkead
- Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| |
Collapse
|
26
|
Rosin DL, Chang DA, Guyenet PG. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 2006; 499:64-89. [PMID: 16958085 DOI: 10.1002/cne.21105] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rat retrotrapezoid nucleus (RTN) contains candidate central chemoreceptors that have extensive dendrites within the marginal layer (ML). This study describes the axonal projections of RTN neurons and their probable synaptic inputs. The ML showed a dense plexus of nerve terminals immunoreactive (ir) for markers of glutamatergic (vesicular glutamate transporters VGLUT1-3), gamma-aminobutyric acid (GABA)-ergic, adrenergic, serotonergic, cholinergic, and peptidergic transmission. The density of VGLUT3-ir terminals tracked the location of RTN chemoreceptors. The efferent and afferent projections of RTN were studied by placing small iontophoretic injections of anterograde (biotinylated dextran amine; BDA) and retrograde (cholera toxin B) tracers where RTN chemoreceptors have been previously recorded. BDA did not label the nearby C1 cells. BDA-ir varicosities were found in the solitary tract nucleus (NTS), all ventral respiratory column (VRC) subdivisions, A5 noradrenergic area, parabrachial complex, and spinal cord. In each target region, a large percentage of the BDA-ir varicosities was VGLUT2-ir (41-83%). Putative afferent input to RTN originated from spinal cord, caudal NTS, area postrema, VRC, dorsolateral pons, raphe nuclei, lateral hypothalamus, central amygdala, and insular cortex. The results suggest that 1) whether or not the ML is specialized for CO(2) sensing, its complex neuropil likely regulates the activity of RTN chemosensitive neurons; 2) the catecholaminergic, cholinergic, and serotonergic innervation of RTN represents a possible substrate for the known state-dependent control of RTN chemoreceptors; 3) VGLUT3-ir terminals are a probable marker of RTN; and 4) the chemosensitive neurons of RTN may provide a chemical drive to multiple respiratory outflows, insofar as RTN innervates the entire VRC.
Collapse
Affiliation(s)
- Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
27
|
Reymond-Marron I, Tribollet E, Raggenbass M. The vasopressin-induced excitation of hypoglossal and facial motoneurons in young rats is mediated by V1a but not V1b receptors, and is independent of intracellular calcium signalling. Eur J Neurosci 2006; 24:1565-74. [PMID: 17004920 DOI: 10.1111/j.1460-9568.2006.05038.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a hormone, vasopressin binds to three distinct receptors: V1a and V1b receptors, which induce phospholipase-Cbeta (PLCbeta) activation and Ca2+ mobilization; and V2 receptors, which are coupled to adenylyl cyclase. V1a and V1b receptors are also present in neurons. In particular, hypoglossal (XII) and facial (VII) motoneurons are excited following vasopressin-V1a receptor binding. The aim of the present study was double: (i) to determine whether V1b receptors contribute to the excitatory effect of vasopressin in XII and VII motoneurons; and (ii) to establish whether the action of vasopressin on motoneurons is mediated by Ca2+ signalling. Patch-clamp recordings were performed in brainstem slices of young rats. Vasopressin depolarized the membrane or generated an inward current. By contrast, [1-deamino-4-cyclohexylalanine] arginine vasopressin (d[Cha4]AVP), a V1b agonist, had no effect. The action of vasopressin was suppressed by Phaa-D-Tyr(Et)-Phe-Gln-Asn-Lys-Pro-Arg-NH2, a V1a antagonist, but not by SSR149415, a V1b antagonist. Thus, the vasopressin-induced excitation of brainstem motoneurons was exclusively mediated by V1a receptors. Light microscopic autoradiography failed to detect V1b binding sites in the facial nucleus. In motoneurons loaded with GTP-gamma-S, a non-hydrolysable analogue of GTP, the effect of vasopressin was suppressed, indicating that neuronal V1a receptors are G-protein-coupled. Intracellular Ca2+ chelation suppressed a Ca2+-activated potassium current, but did not affect the vasopressin-evoked current. H7 and GF109203, inhibitors of protein kinase C, were without effect on the vasopressin-induced excitation. U73122 and D609, PLCbeta inhibitors, were also without effect. Thus, excitation of brainstem motoneurons by V1a receptor activation is probably mediated by a second messenger distinct from that associated with peripheral V1a receptors.
Collapse
Affiliation(s)
- I Reymond-Marron
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
28
|
Mammen PP, Shelton JM, Ye Q, Kanatous SB, McGrath AJ, Richardson JA, Garry DJ. Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J Histochem Cytochem 2006; 54:1349-61. [PMID: 16899760 PMCID: PMC3958125 DOI: 10.1369/jhc.6a7008.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cytoglobin (Cygb) is a novel tissue hemoprotein relatively similar to myoglobin (Mb). Because Cygb shares several structural features with Mb, we hypothesized that Cygb functions in the modulation of oxygen and nitric oxide metabolism or in scavenging free radicals within a cell. In the present study we examined the spatial and temporal expression pattern of Cygb during murine embryogenesis. Using in situ hybridization, RT-PCR, and Northern blot analyses, limited Cygb expression was observed during embryogenesis compared with Mb expression. Cygb expression was primarily restricted to the central nervous system and neural crest derivatives during the latter stages of development. In the adult mouse, Cygb is expressed in distinct regions of the brain as compared with neuroglobin (Ngb), another globin protein, and these regions are responsive to oxidative stress (i.e., hippocampus, thalamus, and hypothalamus). In contrast to Ngb, Cygb expression in the brain is induced in response to chronic hypoxia (10% oxygen). These results support the hypothesis that Cygb is an oxygen-responsive tissue hemoglobin expressed in distinct regions of thenormoxic and hypoxic brain and may play a key role in the response of the brain to ahypoxic insult.
Collapse
Affiliation(s)
- Pradeep P.A. Mammen
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
- Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M. Shelton
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
- Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qiu Ye
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shane B. Kanatous
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amanda J. McGrath
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
| | - James A. Richardson
- Pathology University of Texas Southwestern Medical Center, Dallas, Texas
- Molecular Biology University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel J. Garry
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
- Molecular Biology University of Texas Southwestern Medical Center, Dallas, Texas
- Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
29
|
Mack SO, Wu M, Kc P, Haxhiu MA. Stimulation of the hypothalamic paraventricular nucleus modulates cardiorespiratory responses via oxytocinergic innervation of neurons in pre-Botzinger complex. J Appl Physiol (1985) 2006; 102:189-99. [PMID: 16857863 PMCID: PMC1781418 DOI: 10.1152/japplphysiol.00522.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously we reported that oxytocin (OT)-containing neurons of the hypothalamic paraventricular nucleus (PVN) project to the pre-Bötzinger complex (pre-BötC) region and phrenic motoneurons innervating the diaphragm (D). The aim of these studies was to determine pathways involved in PVN stimulation-induced changes in upper airway and chest wall pumping muscle activity. In addition, we determined the role of OT-containing neurons in the PVN in mediating increased respiratory output elicited by PVN stimulation. Neuroanatomical experiments, using pseudorabies virus (PRV) as a transneuronal tracer in C8 spinalectomized animals showed that PVN neurons project to hypoglossal motoneurons innervating the genioglossus (GG) muscle. Furthermore, microinjection of the PVN with bicuculline, a GABA(A) receptor antagonist, significantly increased (P < 0.05) peak electromyographic activity of GG (GG(EMG)) and of D(EMG), frequency discharge, and arterial blood pressure (BP) and heart rate. Prior injection of OT antagonist [d-(CH(2))(5),Tyr(Me)(2),Orn(8)]-vasotocin intracisternally or blockade of OT receptors in the pre-BötC region with OT antagonist l-368,899, diminished GG(EMG) and D(EMG) responses and blunted the increase in BP and heart rate to PVN stimulation. These data show that PVN stimulation affects central regulatory mechanisms via the pre-BötC region controlling both respiratory and cardiovascular functions. The parallel changes induced by PVN stimulation were mediated mainly through an OT-OT receptor signaling pathway.
Collapse
Affiliation(s)
- S O Mack
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
30
|
Kc P, Karibi-Ikiriko A, Rust CF, Jayam-Trouth A, Haxhiu MA. Phenotypic traits of the hypothalamic PVN cells innervating airway-related vagal preganglionic neurons. Respir Physiol Neurobiol 2006; 154:319-30. [PMID: 16515895 PMCID: PMC1828905 DOI: 10.1016/j.resp.2006.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/10/2006] [Accepted: 01/12/2006] [Indexed: 11/19/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) integrates multiple inputs via projections from arginine vasopressin (AVP)- and oxytocin (OXT)-containing neurons to the brain stem and spinal cord as well as regulates respiratory and cardiovascular stress-related responses, which also affect airway function. In the present study, we used immunocytochemistry and the retrograde transneuronal tracer, Bartha strain of pseudorabies virus expressing green fluorescent protein (PRV-GFP), to localize AVP- and OXT-producing neurons that project to airway-related vagal preganglionic neurons (AVPNs) innervating intrapulmonary airways. PRV-GFP was microinjected into the upper right lung lobe, and after 4 days survival, hypothalamic tissue sections were processed for co-expression of PRV-GFP and AVP or PRV-GFP and OXT. In addition, in a separate group of five rats, Phaseolus vulgaris leucoagglutinin (PHAL), an anterograde tracer, was injected unilaterally into the PVN and cholera toxin beta subunit was microinjected into the tracheal wall. Analysis of five successfully infected animals showed that 14% of PRV-GFP labeled neurons express AVP traits and 18% of transneuronally-labeled neurons contain OXT. Furthermore, the identified AVPNs innervating extrathoracic trachea receive axon terminals of the PVN neurons. The results indicate that AVP- and OXT-producing PVN cells, via direct projections to the AVPNs, could modulate cholinergic outflow to the airways, as a part of overall changes in response to stress.
Collapse
Affiliation(s)
- Prabha Kc
- Specialized Neuroscience Research Program, Department of Physiology and Biophysics, Howard University College of Medicine, 520 "W" St., N.W., Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|