1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
3
|
Baranek E, Heraud C, Larroquet L, Surget A, Lanuque A, Terrier F, Skiba-Cassy S, Jérôme R. Long-term regulation of fat sensing in rainbow trout ( Oncorhynchus mykiss) fed a vegetable diet from the first feeding: focus on free fatty acid receptors and their signalling. Br J Nutr 2024; 131:1-16. [PMID: 37469170 DOI: 10.1017/s0007114523001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Taste plays a fundamental role in an animal’s ability to detect nutrients and transmits key dietary information to the brain, which is crucial for its growth and survival. Providing alternative terrestrial ingredients early in feeding influences the growth of rainbow trout (RT, Oncorhynchus mykiss). Thus, the present study aimed to assess the influence, via long-term feeding (from the first feeding to 8 months), of alternative plant ingredients (V diet for vegetable diet v. C diet for a control diet) in RT on the mechanism of fat sensing at the gustatory level. After the feeding trial, we studied the pathways of the fat-sensing mechanism in tongue tissue and the integrated response in the brain. To this end, we analysed the expression pattern of free fatty acid receptors (ffar) 1 and 2, markers of calcium-signalling pathways (phospholipase Cβ, Orai, Stim or Serca), the serotonin level (a key neurotransmitter in taste buds) and the expression pattern of appetite-regulating neuropeptides in the hypothalamus (central area of appetite regulation). The results revealed that the V diet modified the expression pattern of ffar1 and paralogs of ffar2 genes in tongue tissue, along with differential regulation of calcium-signalling pathways and a defect in serotonin level and brain turnover, without influencing neuropeptide expression. This study is the first to support that changes in feeding behaviour of RT fed a V diet could be due to the difference in nutrient sensing and a decrease in hedonic sensation. We revealed that RT have similar fat-detection mechanisms as mammals.
Collapse
Affiliation(s)
- Elodie Baranek
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Roy Jérôme
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
4
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Roy J, Baranek E, Marandel L. Characterization of free fatty acid receptor family in rainbow trout (Oncorhynchus mykiss): towards a better understanding of their involvement in fatty acid signalisation. BMC Genomics 2023; 24:130. [PMID: 36941594 PMCID: PMC10029227 DOI: 10.1186/s12864-023-09181-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Since 20 years of research, free fatty acids receptors (FFARs) have received considerable attention in mammals. To date, four FFARs (FFAR1, FFAR2, FFAR3 and FFAR4) are especially studied owing to their physiological importance in various biological processes. This ubiquitist group of G protein-coupled receptors (GPCRs) are majors reports in the key physiological functions such as the regulation of energy balance, metabolism or fatty acid sensing. However, up till date, even some studies were interested in their potential involvement in fatty acid metabolism, no genome investigation of these FFARs have been carried out in teleost fish. Through genome mining and phylogenetic analysis, we identified and characterised 7 coding sequences for ffar2 in rainbow trout whereas no ffar3 nor ffar4 gene have been found. This larger repertoire of ffar2 genes in rainbow trout results from successive additional whole-genome duplications which occurred in early teleosts and salmonids, respectively. A syntenic analysis was used to assign a new nomenclature to the salmonid ffar2 and showed a clear conservation of genomic organisation, further supporting the identity of these genes as ffar2. RT-qPCR was then used to examine, firstly during ontogenesis and secondly on feeding response the expression pattern of ffar1 and ffar2 genes in proximal gut and brain of all trout ffar genes. Overall, this study presents a comprehensive overview of the ffar family in rainbow trout.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, University of Pau and Pays de L'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapole, F-64310, Saint-Pee-Sur-Nivelle, France.
| | - Elodie Baranek
- INRAE, University of Pau and Pays de L'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapole, F-64310, Saint-Pee-Sur-Nivelle, France
| | - Lucie Marandel
- INRAE, University of Pau and Pays de L'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapole, F-64310, Saint-Pee-Sur-Nivelle, France
| |
Collapse
|
6
|
Khan AS, Hichami A, Murtaza B, Louillat-Habermeyer ML, Ramseyer C, Azadi M, Yesylevskyy S, Mangin F, Lirussi F, Leemput J, Merlin JF, Schmitt A, Suliman M, Bayardon J, Semnanian S, Jugé S, Khan NA. Novel Fat Taste Receptor Agonists Curtail Progressive Weight Gain in Obese Male Mice. Cell Mol Gastroenterol Hepatol 2023; 15:633-663. [PMID: 36410709 PMCID: PMC9871744 DOI: 10.1016/j.jcmgh.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity. METHODS We synthesized 2 fat taste receptor agonists (FTA), NKS-3 (CD36 agonist) and NKS-5 (CD36 and GPR120 agonist). We determined their molecular dynamic interactions with fat taste receptors and the effect on Ca2+ signaling in mouse and human taste bud cells (TBC). In C57Bl/6 male mice, we assessed their gustatory perception and effects of their lingual application on activation of tongue-gut loop. We elucidated their effects on obesity and its related parameters in male mice fed a high-fat diet. RESULTS The two FTA, NKS-3 and NKS-5, triggered higher Ca2+ signaling than a dietary long-chain fatty acid in human and mouse TBC. Mice exhibited a gustatory attraction for these compounds. In conscious mice, the application of FTA onto the tongue papillae induced activation of tongue-gut loop, marked by the release of pancreato-bile juice into collecting duct and cholecystokinin and peptide YY into blood stream. Daily intake of NKS-3 or NKS-5 via feeding bottles decreased food intake and progressive weight gain in obese mice but not in control mice. CONCLUSIONS Our results show that targeting fat sensors in the tongue by novel chemical fat taste agonists might represent a new strategy to reduce obesity.
Collapse
Affiliation(s)
- Amira Sayed Khan
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Aziz Hichami
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Babar Murtaza
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | | | - Christophe Ramseyer
- Laboratoire ChronoEnvironnement, UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Semen Yesylevskyy
- Laboratoire ChronoEnvironnement, UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), Besançon, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Floriane Mangin
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Frederic Lirussi
- HSP-pathies, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Julia Leemput
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Jean-Francois Merlin
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Antonin Schmitt
- HSP-pathies, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Muhtadi Suliman
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Jérôme Bayardon
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sylvain Jugé
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Naim Akhtar Khan
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France.
| |
Collapse
|
7
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
8
|
Sclafani A, Ackroff K. Fat preference deficits and experience-induced recovery in global taste-deficient Trpm5 and Calhm1 knockout mice. Physiol Behav 2022; 246:113695. [PMID: 34998826 PMCID: PMC8826513 DOI: 10.1016/j.physbeh.2022.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
There is much evidence that gustation mediates the preference for dietary fat in rodents. Several studies indicate that mice have fat taste receptors that activate downstream signaling elements, including TRPM5 and CALHM1 ion channels and P2×2/P2×3 purinergic gustatory nerve receptors. Experiment 1 further documented the involvement of TRPM5 in fat appetite by giving Trpm5 knockout (KO) mice, which show global taste deficits, 24-h two-bottle choice tests with ascending concentrations of soybean oil (0.1 - 10% Intralipid) vs. water. Unlike wildtype (WT) mice, naive Trpm5 KO mice were indifferent to 0.5 - 2.5% fat. They preferred 5-10% fat but consumed much less than WT mice. The same KO mice preferred all fat concentrations in a second test series, which is attributed to a postoral fat conditioned attraction to the non-taste flavor qualities of the Intralipid, although they consumed less fat than the WT mice. The fat preference deficits of the Trpm5 KO mice were as great or greater than those observed in Calhm1 KO mice, another KO line with global taste deficits. Experiment 2 examined experience-enhanced fat preferences in Trpm5 KO and Calhm1 KO mice by giving them one-bottle training with 1%, 2.5%, and 5% fat prior to two-bottle fat vs. water tests. The KO mice displayed increased two-bottle preferences for all concentrations, although they still consumed less 1% and 2.5% fat than WT mice. Thus, the postoral actions of fat induce robust preferences for fat in taste-deficient mice, but do not stimulate the high fat intakes observed in WT mice with normal fat taste signaling.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America.
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| |
Collapse
|
9
|
Abstract
During the last couples of years, a number of studies have increasingly accumulated on the gustatory perception of dietary fatty acids in rodent models and human beings in health and disease. There is still a debate to coin a specific term for the gustatory perception of dietary fatty acids either as the sixth basic taste quality or as an alimentary taste. Indeed, the psycho-physical cues of orosensory detection of dietary lipids are not as distinctly perceived as other taste qualities like sweet or bitter. The cellular and molecular pharmacological mechanisms, triggered by the binding of dietary long-chain fatty acids (LCFAs) to tongue taste bud lipid receptors like CD36 and GPR120, involve Ca2+ signaling as other five basic taste qualities. We have not only elucidated the role of Ca2+ signaling but also identified different components of the second messenger cascade like STIM1 and MAP kinases, implicated in fat taste perception. We have also demonstrated the implication of Calhm1 voltage-gated channels and store-operated Ca2+ (SOC) channels like Orai1, Orai1/3, and TRPC3 in gustatory perception of dietary fatty acids. We have not only employed siRNA technology in vitro and ex vivo on tissues but also used animal models of genetic invalidation of STIM1, ERK1, Orai1, Calhm1 genes to explore their implications in fat taste signal transduction. Moreover, our laboratory has also demonstrated the importance of LCFAs detection dysfunction in obesity in animal models and human beings.
Collapse
Affiliation(s)
- Aziz Hichami
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France.
| |
Collapse
|
10
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|
11
|
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab 2021; 32:693-705. [PMID: 34148784 DOI: 10.1016/j.tem.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; Department of Medicine, The Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Dana M Small
- Department of Psychiatry, and the Modern Diet and Physiology Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
12
|
Liu Y, Xu H, Dahir N, Calder A, Lin F, Gilbertson TA. GPR84 Is Essential for the Taste of Medium Chain Saturated Fatty Acids. J Neurosci 2021; 41:5219-5228. [PMID: 33941648 PMCID: PMC8211552 DOI: 10.1523/jneurosci.2530-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
The ability of mammalian taste cells to respond to fatty acids (FAs) has garnered significant attention of late and has been proposed to represent a sixth primary taste. With few exceptions, studies on FA taste have centered exclusively on polyunsaturated FAs, most notably on linoleic acid. In the current study, we have identified an additional FA receptor, GPR84, in the gustatory system that responds to the medium-chain saturated FAs (MCFAs) in male mice. GPR84 ligands activate both Type II and Type III taste cells in calcium imaging and patch-clamp recording assays. MCFAs depolarize and lead to a rise in intracellular free [Ca2+] in mouse taste cells in a concentration-dependent fashion, and the relative ligand specificity in taste cells is consistent with the response profile of GPR84 expressed in a heterologous system. A systemic Gpr84-/- mouse model reveals a specific deficit in both the neural (via chorda tympani recording) and behavioral responses to administration of oral MCFAs compared with WT mice. Together, we show that the peripheral taste system can respond to an additional class of FAs, the saturated FAs, and that the cognate receptor necessary for this ability is GPR84.
Collapse
Affiliation(s)
- Yan Liu
- Department of Internal Medicine, University of Central Florida, Orlando, Florida 32827
| | - Han Xu
- Department of Biology, Utah State University, Logan, Utah 84322
| | - Naima Dahir
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827
| | - Ashley Calder
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827
| | - Fangjun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827
| | - Timothy A Gilbertson
- Department of Internal Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
13
|
Kawabata F, Yoshida Y, Inoue Y, Kawabata Y, Nishimura S, Tabata S. Research Note: Behavioral preference and conditioned taste aversion to oleic acid solution in chickens. Poult Sci 2021; 100:372-376. [PMID: 33357702 PMCID: PMC7772696 DOI: 10.1016/j.psj.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
A functional fatty acid taste receptor, GPR120, is present in chicken oral tissues, and chickens show a preference for lipid in feed. However, it remains unclear whether chickens can detect fatty acids. To address this issue, we adopted 2 behavioral paradigms: a one-bowl drinking test to evaluate the preference for oleic acid solution and a conditioned taste aversion test to investigate the role of gustation in chickens' ability to detect oleic acid. In the one-bowl drinking test, chickens did not show any preference for solution containing 0.001, 0.01, 0.03, 0.1, or 30 mmol/L oleic acid although 30 mmol/L oleic acid was enough to fully activate GPR120, confirmed by Ca2+ imaging. On the other hand, chickens conditioned to avoid 30 mmol/L oleic acid solution also learned to avoid the solution. These results suggested that chickens have a gustatory perception of oleic acid solution but do not have a preference for it. The present results support the idea that chickens prefer lipid in feed, not only by a postingestive effect but also by sensing the taste of fatty acid.
Collapse
Affiliation(s)
- Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Yuta Yoshida
- Department of Food and Life Sciences, Ibaraki University, Ami, Japan; Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuki Inoue
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate Shcool of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Mo Z, Tang C, Li H, Lei J, Zhu L, Kou L, Li H, Luo S, Li C, Chen W, Zhang L. Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci 2019; 242:117133. [PMID: 31830477 DOI: 10.1016/j.lfs.2019.117133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Acute cerebral infarction (ACI) is the most common type of acute cerebrovascular diseases resulting in high rate of death and disability. Numerous evidences show that inflammation is the leading cause of ischemic brain injury, thus anti-inflammatory therapy is an attractive candidate for ischemic brain damage. Eicosapentaenoic acid (EPA) exerts anti-inflammatory activity in lots of human inflammatory diseases, whereas its effect in ACI is left to elucidate. METHOD Nlpr3-/- mice, Gpr40-/-; Gpr120-/- mice and mice with right middle cerebral artery occlusion (MCAO) were used to detect NLR family pyrin domain containing 3 (NLRP3) inflammasome activation by Western Blot and the release of proinflammatory cytokines by ELISA. To estimate the acute ischemic condition in vitro, oxygen-glucose deprivation (OGD) was induced in BV2 microglia cells. Transfection of the shRNA targeting GPR40 and GPR120 mRNA into BV2 cells was also assessed. Apoptosis in ischemic cerebral tissues and BV2 cells was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry. RESULT Here we show that EPA suppresses ACI-induced inflammatory responses through blocking NLRP3 inflammasome activation. In addition, EPA inhibits NLRP3 inflammasome activation through G protein-coupled receptor 40 (GPR40) and GPR120. Importantly, EPA ameliorates ACI-induced apoptosis. CONCLUSION EPA exerts beneficial effect on ACI-induced inflammation through blocking NLRP3 inflammasome activation by GPR40 and GPR120. Our findings suggest the potential clinical use of EPA in ACI.
Collapse
Affiliation(s)
- Zhihuai Mo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Chaogang Tang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China; Department of Neurology, Maoming People's Hospital, 525000, Guangdong, China
| | - Huiqing Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Junjie Lei
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Lingjuan Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Li Kou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Hao Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China; Department of Neurology, Maoming People's Hospital, 525000, Guangdong, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Chunyi Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Wenli Chen
- Department of Pharmacology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China.
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China.
| |
Collapse
|
15
|
Gaudet DA, El-Desoky D, Poret JM, Braymer HD, Primeaux SD. Expression of neural markers of gustatory signaling are differentially altered by continuous and intermittent feeding patterns. Physiol Behav 2019; 212:112719. [PMID: 31634524 DOI: 10.1016/j.physbeh.2019.112719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Food intake patterns are regulated by signals from the gustatory neural circuit, a complex neural network that begins at the tongue and continues to homeostatic and hedonic brain regions involved in eating behavior. The goal of the current study was to investigate the short-term effects of continuous access to a high fat diet (HFD) versus limited access to dietary fat on the gustatory neural circuit. Male Sprague-Dawley rats were fed a chow diet, a HFD (56% kcal from fat), or provided limited, daily (2 h/day) or limited, intermittent (2 h/day, 3 times/week) access to vegetable shortening for 2 weeks. Real time PCR was used to determine mRNA expression of markers of fat sensing/signaling (e.g. CD36) on the circumvallate papillae, markers of homeostatic eating in the mediobasal hypothalamus (MBH) and markers of hedonic eating in the nucleus accumbens (NAc). Continuous HFD increased mRNA levels of lingual CD36 and serotonin signaling, altered markers of homeostatic and hedonic eating. Limited, intermittent access to dietary fat selectively altered the expression of genes associated with the regulation of dopamine signaling. Overall, these data suggest that short-term, continuous access to HFD leads to altered fat taste and decreased expression of markers of homeostatic and hedonic eating. Limited, intermittent access, or binge-like, consumption of dietary fat led to an overall increase in markers of hedonic eating, without altering expression of lingual fat sensors or homeostatic eating. These data suggest that there are differential effects of meal patterns on gustatory neurocircuitry which may regulate the overconsumption of fat and lead to obesity.
Collapse
Affiliation(s)
- Darryl A Gaudet
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Dalia El-Desoky
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Jonquil M Poret
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
16
|
Sclafani A, Ackroff K. Capsaicin-induced visceral deafferentation does not attenuate flavor conditioning by intragastric fat infusions in mice. Physiol Behav 2019; 208:112586. [PMID: 31228498 PMCID: PMC6620128 DOI: 10.1016/j.physbeh.2019.112586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/26/2022]
Abstract
The postoral actions of sugar and fat can rapidly stimulate the intake of and preference for flavors associated with these nutrients via a process known as appetition. Prior findings revealed that postoral glucose appetition is not attenuated following capsaicin-induced visceral deafferentation. The present experiment determined if capsaicin treatment altered fat appetition in C57BL/6 mice. Following capsaicin (Cap) or control (Con) treatment, mice were fitted with chronic intragastric (IG) catheters. They were then given 1-h sessions with a flavored saccharin solution (CS-) paired with IG water infusion or a different flavor (CS+) paired with IG 6.4% fat infusion. IG fat stimulated CS+ intakes in both Cap and Con mice, and the groups displayed similar preferences for CS+ over CS- in two-choice tests. These results confirm prior reports of normal fat conditioning in rats exposed to capsaicin or vagal deafferentation surgery. In contrast, other recent findings indicate that total or selective vagotomy alters the preference of mice for dilute vs. concentrated fat sources.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA.
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
17
|
Su Y, Feng Z, He Y, Hong L, Liu G, Li T, Yin Y. Monosodium L-glutamate and fats change free fatty acid concentrations in intestinal contents and affect free fatty acid receptors express profile in growing pigs. Food Nutr Res 2019; 63:1444. [PMID: 31360149 PMCID: PMC6642617 DOI: 10.29219/fnr.v63.1444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Obesity and its related metabolic syndrome continue to be major public health problems. Monosodium L-glutamate (MSG) may cause metabolic diseases such as obesity. Meanwhile, the Chinese population has undergone rapid transition to a high-fat diet. There is little information available on the effect of MSG and fat alone, or in combination, on free fatty acids (FFAs), lipid metabolism and FFA receptors. OBJECTIVE The aim of this study was to evaluate the effects of MSG and fat alone, or in combination, on intestinal luminal FFAs and expression of gastrointestinal FFA receptors. The aim was also to test whether dietary fat and/or MSG could affect expression of genes related to fatty acid metabolism. DESIGN A total of 32 growing pigs were used and fed with four iso-nitrogenous and iso-caloric diets. Pigs in the four treatments received diets with one of two fat concentrations levels (4.4 and 9.4%) and one of two MSG dose levels (0 and 3%), in which most of the fat were brought by soybean oil. The concentration of short chain fatty acids (SCFAs) in cecum and colon, long chain fatty acids (LCFAs) in ileum, cecum and colon, and FFAs receptors expression in hypothalamus and gastrointestinal tract were determined. RESULTS MSG and/or fat changed intestinal luminal SCFAs, levels of LCFAs, and showed an antagonistic effect on most of LCFAs. Simultaneously, MSG and/or fat decreased the expression of FFA receptors in hypothalamus and gastrointestinal tract. MSG and/or fat promoted fat deposition through different ways in back fat. CONCLUSION Our results support that MSG and/or fat can alter intestinal luminal FFAs composition and concentration, especially LCFAs, in addition, the expression of FFA receptors in ileum and hypothalamus could be decreased. Moreover, MSG and/or fat can promote protein deposition in back fat, and affect the distribution and metabolism of fatty acids in the body tissues and the body's ability to perceive fatty acids; these results provide a reference for the occurrence of fat deposition and obesity caused by high-fat and monosodium glutamate diet.
Collapse
Affiliation(s)
- Yun Su
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zemeng Feng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Yumin He
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Lingling Hong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
- Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangdong Wangda Group Co., Ltd, Guangdong, China
| | - Yulong Yin
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
18
|
Gaillard D, Kinnamon SC. New evidence for fat as a primary taste quality. Acta Physiol (Oxf) 2019; 226:e13246. [PMID: 30588748 DOI: 10.1111/apha.13246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center University of Colorado Anschutz Medical Campus Aurora Colorado
| | - Sue C. Kinnamon
- Department of Otolaryngology, and the Rocky Mountain Taste & Smell CenterUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| |
Collapse
|
19
|
Yasumatsu K, Iwata S, Inoue M, Ninomiya Y. Fatty acid taste quality information via GPR120 in the anterior tongue of mice. Acta Physiol (Oxf) 2019; 226:e13215. [PMID: 30375738 DOI: 10.1111/apha.13215] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Abstract
AIM To elucidate whether fatty acid taste has a quality that does not overlap with other primary qualities, we investigated potential neuron types coding fatty acid information and how GPR120 is involved. METHODS Single fibre recordings in the chorda tympani (CT) nerve and behavioural response measurements using a conditioned taste aversion paradigm were performed in GPR120-knockout (KO) and wild-type (WT) mice. RESULTS Single fibres can be classified into fatty acid (F)-, S-, M-, electrolyte (E)-, Q-, and N-type groups according to the maximal response among oleic acid, sucrose, monopotassium glutamate (MPG), HCl, quinine hydrochloride, and NaCl respectively. Among fibres, 4.0% in GPR120-KO and 17.9% in WT mice showed a maximal response to oleic acid (F-type). Furthermore, half or more of S- and M-type fibres showed responses to fatty acids in both mouse strains, although the thresholds in KO mice were significantly higher and impulse frequencies lower than those in WT mice. GPR120-KO mice conditioned to avoid linoleic acid showed generalized stimulus avoidances for MPG, indicating qualitative similarity between linoleic acid and MPG. The KO mice showed a higher generalization threshold for linoleic acid than that of WT mice. CONCLUSION Fatty acid taste is suggested to have a unique quality owing to the discovery of F-type fibres, with GPR120 involved in neural information pathways for a unique quality and palatable taste qualities in the mouse CT nerve. GPR120 plays roles in distinguishing fatty acid taste from other primary tastes and the detection of low linoleic acid concentrations.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
| | - Shusuke Iwata
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
| | - Mayuko Inoue
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
| | - Yuzo Ninomiya
- Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing Kyushu University Fukuoka Japan
- Monell Chemical Senses Center Philadelphia Pennsylvania
| |
Collapse
|
20
|
Sclafani A, Vural AS, Ackroff K. Profound differences in fat versus carbohydrate preferences in CAST/EiJ and C57BL/6J mice: Role of fat taste. Physiol Behav 2018; 194:348-355. [PMID: 29933030 PMCID: PMC6082157 DOI: 10.1016/j.physbeh.2018.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
Abstract
In a nutrient self-selection study, CAST/EiJ mice consumed more carbohydrate than fat while C57BL/6J (B6) mice showed the opposite preference. The present study revealed similar strain differences in preferences for isocaloric fat (Intralipid) and carbohydrate (sucrose, maltodextrin) solutions in chow-fed mice. In initial 2-day choice tests, percent fat intakes of CAST and B6 mice were 4-9% and 71-81% respectively. In subsequent nutrient vs. water tests, CAST mice consumed considerably less fat but not carbohydrate compared to B6 mice. Orosensory rather than postoral factors are implicated in the very low fat preference and intake of CAST mice. This is supported by results of a choice test with Intralipid mixed with non-nutritive sweeteners vs. non-sweet maltodextrin. The preference of CAST mice for sweetened fat exceeded that of B6 mice (94 vs. 74%) and absolute fat intakes were similar in the two strains. When given unsweetened Intralipid vs. water tests at ascending fat concentrations CAST mice displayed reduced fat preferences at 0.1-5% and reduced intakes at 0.5-5% concentrations, compared to B6 mice. The differential fat preferences of CAST and B6 mice may reflect differences in fat taste sensing or in central neural processes related to fat selection.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - Austin S Vural
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
21
|
Orosensory Detection of Dietary Fatty Acids Is Altered in CB₁R -/- Mice. Nutrients 2018; 10:nu10101347. [PMID: 30241419 PMCID: PMC6213063 DOI: 10.3390/nu10101347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1R). However, the involvement of lingual CB1R in the orosensory perception of dietary fatty acids has never been investigated. In the present study, behavioral tests on CB1R−/− and wild type (WT) mice showed that the invalidation of Cb1r gene was associated with low preference for solutions containing rapeseed oil or a long-chain fatty acid (LCFA), such as linoleic acid (LA). Administration of rimonabant, a CB1R inverse agonist, in mice also brought about a low preference for dietary fat. No difference in CD36 and GPR120 protein expressions were observed in taste bud cells (TBC) from WT and CB1R−/− mice. However, LCFA induced a higher increase in [Ca2+]i in TBC from WT mice than that in TBC from CB1R−/− mice. TBC from CB1R−/− mice also exhibited decreased Proglucagon and Glp-1r mRNA and a low GLP-1 basal level. We report that CB1R is involved in fat taste perception via calcium signaling and GLP-1 secretion.
Collapse
|
22
|
Sclafani A, Ackroff K. Greater reductions in fat preferences in CALHM1 than CD36 knockout mice. Am J Physiol Regul Integr Comp Physiol 2018; 315:R576-R585. [PMID: 29768036 PMCID: PMC6172629 DOI: 10.1152/ajpregu.00015.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023]
Abstract
Several studies indicate an important role of gustation in intake and preference for dietary fat. The present study compared fat preference deficits produced by deletion of CD36, a putative fatty acid taste receptor, and CALHM1, an ion channel responsible for release of the ATP neurotransmitter used by taste cells. Naïve CD36 knockout (KO) mice displayed reduced preferences for soybean oil emulsions (Intralipid) at low concentrations (0.1-1%) compared with wild-type (WT) mice in 24 h/day two-bottle tests. CALHM1 KO mice displayed even greater Intralipid preference deficits compared with WT and CD36 KO mice. These findings indicate that there may be another taste receptor besides CD36 that contributes to fat detection and preference. After experience with concentrated fat (2.5-5%), CD36 KO and CALHM1 KO mice displayed normal preferences for 0.1-5% fat, although they still consumed less fat than WT mice. The experience-induced rescue of fat preferences in KO mice can be attributed to postoral fat conditioning. Short-term (3-min) two-bottle tests further documented the fat preference deficits in CALHM1 KO mice but also revealed residual preferences for concentrated fat (5-10%), which may be mediated by odor and/or texture cues.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York , Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York , Brooklyn, New York
| |
Collapse
|
23
|
Sclafani A, Ackroff K. Role of lipolysis in postoral and oral fat preferences in mice. Am J Physiol Regul Integr Comp Physiol 2018; 315:R434-R441. [PMID: 29668321 PMCID: PMC6172632 DOI: 10.1152/ajpregu.00014.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 11/22/2022]
Abstract
Fatty acid receptors in the mouth and gut are implicated in the appetite for fat-rich foods. The role of lipolysis in oral- and postoral-based fat preferences of C57BL/6J mice was investigated by inhibiting lipase enzymes with orlistat. Experiment 1 showed that postoral lipolysis is required: mice learned to prefer (by 70%) a flavored solution paired with intragastric infusions of 5% soybean oil but not a flavor paired with soybean oil + orlistat (4 mg/g fat) infusions. Experiments 2-4 tested the oral attraction to oil in mice given brief choice tests that minimize postoral effects. In experiment 2, the same low orlistat dose did not reduce the strong (83-94%) preference for 2.5 or 5% soybean oil relative to fat-free vehicle in 3-min tests. Mice in experiment 3 given choice tests between two fat emulsions (2% triolein, corn oil, or soybean oil) with or without orlistat at a high dose (250 mg/g fat) preferred triolein (72%) and soybean oil (67%) without orlistat to the oil with orlistat but were indifferent to corn oil with and without orlistat. In experiment 4, mice preferred 2% triolein (62%) or soybean oil (89%) to vehicle when both choices contained orlistat (250 mg/g fat). Fatty acid receptors are thus essential for postoral but not oral-based preferences. Both triglyceride and fatty acid taste receptors may mediate oral fat preferences.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York , Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York , Brooklyn, New York
| |
Collapse
|
24
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
25
|
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2017; 64:92-108. [PMID: 28887275 DOI: 10.1016/j.mam.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
Unsaturated long-chain fatty acids have been suggested to be beneficial in the context of cardiovascular disorders based in epidemiologic studies conducted in Greenland and Mediterranean. DHA and EPA are omega-3 polyunsaturated fatty acids that are plentiful in fish oil, and oleic acid is an omega-9 monounsaturated fatty acid, rich in olive oil. Dietary intake of these unsaturated long-chain fatty acids have been associated with insulin sensitivity and weight loss, which contrasts with the impairment of insulin sensitivity and weight gain associated with high intakes of saturated long-chain fatty acids. The recent discovery that free fatty acid receptor 4 (FFA4, also known as GPR120) acts as a sensor for unsaturated long-chain fatty acids started to unveil the molecular mechanisms underlying the beneficial functions played by these unsaturated long-chain fatty acids in various physiological processes, which include the secretions of gastrointestinal peptide hormones and glucose homeostasis. In this review, the physiological roles and therapeutic significance of FFA4 in appetite control, insulin sensitization, and inflammation reduction are discussed in relation to obesity and type 2 diabetes from pharmacological viewpoints.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
26
|
Clemmensen C, Müller TD, Woods SC, Berthoud HR, Seeley RJ, Tschöp MH. Gut-Brain Cross-Talk in Metabolic Control. Cell 2017; 168:758-774. [PMID: 28235194 DOI: 10.1016/j.cell.2017.01.025] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
Because human energy metabolism evolved to favor adiposity over leanness, the availability of palatable, easily attainable, and calorically dense foods has led to unprecedented levels of obesity and its associated metabolic co-morbidities that appear resistant to traditional lifestyle interventions. However, recent progress identifying the molecular signaling pathways through which the brain and the gastrointestinal system communicate to govern energy homeostasis, combined with emerging insights on the molecular mechanisms underlying successful bariatric surgery, gives reason to be optimistic that novel precision medicines that mimic, enhance, and/or modulate gut-brain signaling can have unprecedented potential for stopping the obesity and type 2 diabetes pandemics.
Collapse
Affiliation(s)
- Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45220, USA
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70803, USA
| | - Randy J Seeley
- Departments of Surgery, Internal Medicine, and Nutritional Sciences at the University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Center for Diabetes Research (DZD), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| |
Collapse
|
27
|
Monteiro MP, Batterham RL. The Importance of the Gastrointestinal Tract in Controlling Food Intake and Regulating Energy Balance. Gastroenterology 2017; 152:1707-1717.e2. [PMID: 28193513 DOI: 10.1053/j.gastro.2017.01.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
The gastrointestinal tract, the key interface between ingested nutrients and the body, plays a critical role in regulating energy homeostasis. Gut-derived signals convey information regarding incoming nutrients to the brain, initiating changes in eating behavior and energy expenditure, to maintain energy balance. Here we review hormonal, neural, and nutrient signals emanating from the gastrointestinal tract and evidence for their role in controlling feeding behavior. Mechanistic studies that have utilized pharmacologic and/or transgenic approaches targeting an individual hormone/mediator have yielded somewhat disappointing body weight changes, often leading to the hormone/mediator in question being dismissed as a potential obesity therapy. However, the recent finding of sustained weight reduction in response to systemic administration of a long-acting analog of the gut-hormone glucagon-like peptide-1 highlights the therapeutic potential of gut-derived signals acting via nonphysiologic mechanisms. Thus, we also review therapeutics strategies being utilized or developed to leverage gastrointestinal signals in order to treat obesity.
Collapse
Affiliation(s)
- Mariana P Monteiro
- Clinical and Experimental Endocrinology, Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal; Centre for Obesity Research, University College London, London, United Kingdom; University College London Hospitals Bariatric Centre for Weight Management and Metabolic Surgery, London, United Kingdom
| | - Rachel L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom; University College London Hospitals Bariatric Centre for Weight Management and Metabolic Surgery, London, United Kingdom; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.
| |
Collapse
|
28
|
Kraft TT, Huang D, LaMagna S, Warshaw D, Natanova E, Sclafani A, Bodnar RJ. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. Eur J Pharmacol 2017; 799:26-32. [PMID: 28132914 DOI: 10.1016/j.ejphar.2017.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains.
Collapse
Affiliation(s)
- Tamar T Kraft
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Anthony Sclafani
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Brooklyn College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Queens College, CUNY, New York, NY, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To summarize and illuminate the recent findings regarding gastroduodenal mucosal defense mechanisms and the specific biomolecules involved in regulating this process, such as glucagon-like peptides (GLPs). RECENT FINDINGS There has been a growing interest in luminal nutrient chemosensing and its physiological effects throughout the digestive system. From the ingestion of food in the oral cavity to the processing and absorption of nutrients in the intestines, nutrient chemosensing receptors signal the production and release of numerous bioactive peptides from enteroendocrine cells, such as the proglucagon-derived peptides. There has been a major emphasis on two proglucagon-derived peptides, namely GLP-1 and GLP-2, due to their apparent beneficial effect on gut structure, function, and on metabolic processes. As an incretin, GLP-1 not only enhances the effect and release of insulin on pancreatic βcells but also has been implicated in having trophic effects on the intestinal epithelium. In addition, GLP-2, the other major proglucagon-derived peptide, has potent intestinotrophic effects, such as increasing the rate of mucosal stem cell proliferation, mucosal blood flow, and fluid absorption, as well as augmenting the rate of duodenal bicarbonate secretion to improve gastric mucosal health and longevity. SUMMARY Understanding the mechanisms underlying nutrient chemosensing and how it relates to GLP release can further elucidate how the gut functions in response to cellular changes and disturbances. Furthermore, a more in-depth comprehension of GLP release and its tissue-specific effects will help improve the utility of GLP-1 and GLP-2 receptor agonists in clinical settings. This, in turn, should help patients suffering from intestinal failure, malabsorption, and mucosal injury.
Collapse
|
30
|
Spector AC, le Roux CW, Munger SD, Travers SP, Sclafani A, Mennella JA. Proceedings of the 2015 ASPEN Research Workshop-Taste Signaling. JPEN J Parenter Enteral Nutr 2016; 41:113-124. [PMID: 26598504 DOI: 10.1177/0148607115617438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article summarizes research findings from 6 experts in the field of taste and feeding that were presented at the 2015 American Society for Parenteral and Enteral Nutrition Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass and increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding.
Collapse
Affiliation(s)
- Alan C Spector
- 1 Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Carel W le Roux
- 2 Diabetes Complications Research Centre, Conway Institute, University College, Dublin, Ireland
| | - Steven D Munger
- 3 Department of Pharmacology and Therapeutics; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism; Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Susan P Travers
- 4 Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio, USA
| | - Anthony Sclafani
- 5 Department of Psychology, Brooklyn College of the City University of New York, New York, New York, USA
| | - Julie A Mennella
- 6 Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Milligan G, Shimpukade B, Ulven T, Hudson BD. Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev 2016; 117:67-110. [PMID: 27299848 DOI: 10.1021/acs.chemrev.6b00056] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond simple competitive agonism or antagonism by ligands interacting with the orthosteric binding site of the receptor to incorporate concepts of allosteric agonism, allosteric modulation, signaling bias, constitutive activity, and inverse agonism. Herein, we consider how evolving concepts of GPCR pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| | - Bharat Shimpukade
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
32
|
Li AJ, Wiater MF, Wang Q, Wank S, Ritter S. Deletion of GPR40 fatty acid receptor gene in mice blocks mercaptoacetate-induced feeding. Am J Physiol Regul Integr Comp Physiol 2016; 310:R968-74. [PMID: 26984894 DOI: 10.1152/ajpregu.00548.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
Both increased and decreased fatty acid (FA) availability contribute to control of food intake. For example, it is well documented that intestinal FA reduces feeding by triggering enterondocrine secretion of satietogenic peptides, such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). In contrast, mechanisms by which decreased FA availability increase feeding are not well understood. Over the past three decades substantial research related to FA availability and increased feeding has involved use of the orexigenic compound mercaptoacetate (MA). Because MA reportedly inhibits FA oxidation, it has been assumed that reduced FA oxidation accounts for the orexigenic action of MA. Recently, however, we demonstrated that MA antagonizes G protein-coupled receptor 40 (GPR40), a membrane receptor for long and medium chain FA. We also demonstrated that, by antagonizing GPR40, MA inhibits GLP-1 secretion and attenuates vagal afferent activation by FA. Because both vagal afferent activation and GLP-1 inhibit food intake, we postulated that inhibition of GPR40 by MA might underlie the orexigenic action of MA. We tested this hypothesis using male and female GPR40 knockout (KO) and wild-type (WT) mice. Using several testing protocols, we found that MA increased feeding in WT, but not GPR40 KO mice, and that GPR40 KO mice gained more weight than WT on a high-fat diet. Metabolic monitoring after MA or saline injection in the absence of food did not reveal significant differences in respiratory quotient or energy expenditure between treatment groups or genotypes. These results support the hypothesis that MA stimulates food intake by blocking FA effects on GPR40.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington; and
| | - Michael F Wiater
- Programs in Neuroscience, Washington State University, Pullman, Washington; and
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington; and
| | - Stephen Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington; and
| |
Collapse
|
33
|
Li AJ, Wang Q, Dinh TT, Simasko SM, Ritter S. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 2016; 310:R724-32. [PMID: 26791830 DOI: 10.1152/ajpregu.00387.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Thu T Dinh
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Steve M Simasko
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
34
|
Sclafani A, Ackroff K. Operant licking for intragastric sugar infusions: Differential reinforcing actions of glucose, sucrose and fructose in mice. Physiol Behav 2015; 153:115-24. [PMID: 26485294 DOI: 10.1016/j.physbeh.2015.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
Intragastric (IG) flavor conditioning studies in rodents indicate that isocaloric sugar infusions differ in their reinforcing actions, with glucose and sucrose more potent than fructose. Here we determined if the sugars also differ in their ability to maintain operant self-administration by licking an empty spout for IG infusions. Food-restricted C57BL/6J mice were trained 1 h/day to lick a food-baited spout, which triggered IG infusions of 16% sucrose. In testing, the mice licked an empty spout, which triggered IG infusions of different sugars. Mice shifted from sucrose to 16% glucose increased dry licking, whereas mice shifted to 16% fructose rapidly reduced licking to low levels. Other mice shifted from sucrose to IG water reduced licking more slowly but reached the same low levels. Thus IG fructose, like water, is not reinforcing to hungry mice. The more rapid decline in licking induced by fructose may be due to the sugar's satiating effects. Further tests revealed that the Glucose mice increased their dry licking when shifted from 16% to 8% glucose, and reduced their dry licking when shifted to 32% glucose. This may reflect caloric regulation and/or differences in satiation. The Glucose mice did not maintain caloric intake when tested with different sugars. They self-infused less sugar when shifted from 16% glucose to 16% sucrose, and even more so when shifted to 16% fructose. Reduced sucrose self-administration may occur because the fructose component of the disaccharide reduces its reinforcing potency. FVB mice also reduced operant licking when tested with 16% fructose, yet learned to prefer a flavor paired with IG fructose. These data indicate that sugars differ substantially in their ability to support IG self-administration and flavor preference learning. The same post-oral reinforcement process appears to mediate operant licking and flavor learning, although flavor learning provides a more sensitive measure of sugar reinforcement.
Collapse
|
35
|
Sundaresan S, Abumrad NA. Dietary Lipids Inform the Gut and Brain about Meal Arrival via CD36-Mediated Signal Transduction. J Nutr 2015; 145:2195-200. [PMID: 26269236 PMCID: PMC4580959 DOI: 10.3945/jn.115.215483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensing mechanisms for nutrients, in particular dietary fat, operate in the mouth, brain, and gastrointestinal tract and play a key role in regulating feeding behavior and energy balance. Critical to these regulatory mechanisms are the specialized receptors present on taste buds on the tongue, on neurons in specialized centers in the brain, and on epithelial and enteroendocrine cells in the intestinal mucosa. These receptors recognize nutrients and respond by inducing intracellular signals that trigger release of bioactive compounds that influence other organs and help coordinate the response to the meal. Components of dietary fat that are recognized by these receptors are the long-chain fatty acids that act as ligands for 2 G protein-coupled receptors, GPR40 and GPR120, and the fatty acid (FA) translocase/CD36. Recent evidence that emphasizes the important role of CD36 in orosensory, intestinal, and neuronal sensing of FAs under physiologic conditions is highlighted in the review. How this role intersects with that of GPR120 and GPR40 in the regulation of food preference and energy balance is briefly discussed.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and Department of Internal Medicine, Gastroenterology Division, University of Michigan, Ann Arbor, MI
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and
| |
Collapse
|
36
|
Sclafani A, Touzani K, Ackroff K. Ghrelin signaling is not essential for sugar or fat conditioned flavor preferences in mice. Physiol Behav 2015; 149:14-22. [PMID: 26003495 PMCID: PMC4506878 DOI: 10.1016/j.physbeh.2015.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
The oral and post-oral actions of sugar and fat stimulate intake and condition flavor preferences in rodents through a process referred to as appetition. Ghrelin is implicated in food reward processing, and this study investigated its involvement in nutrient conditioning in mice. In Exp. 1 ghrelin receptor-null (GHSR-null) and C57BL/6 wildtype (WT) mice learned to prefer a flavor (CS+) mixed into 8% glucose over another flavor (CS-) mixed into a "sweeter" but non-nutritive 0.1% sucralose+saccharin (S+S) solution. In Exp. 2 treating WT mice with a ghrelin receptor antagonist [(D-Lys3)-GHRP-6] during flavor training did not prevent them from learning to prefer the CS+ glucose over the CS-S+S flavor. GHSR-null and WT mice were trained in Exp. 3 to drink a CS+ paired with intragastric (IG) infusion of 16% glucose and a CS- paired with IG water. Both groups drank more CS+ than CS- in training and preferred the CS+ to CS- in a choice test. The same (Exp. 4) and new (Exp. 5) GHSR-null and WT mice learned to prefer a CS+ flavor paired with IG fat (Intralipid) over a CS- flavor paired with IG water. GHSR-null and WT mice also learned to prefer a CS+ flavor added to 8% fructose over a CS- added to water. Together, these results indicate that ghrelin receptor signaling is not required for flavor preferences conditioned by the oral or post-oral actions of sugar and fat. This contrasts with other findings implicating ghrelin signaling in food reward processing and food-conditioned place preferences.
Collapse
|
37
|
FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. Eur J Pharmacol 2015; 763:160-8. [DOI: 10.1016/j.ejphar.2015.06.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
|
38
|
Abstract
The ability to "see" both incoming and circulating nutrients plays an essential role in the maintenance of energy homeostasis. As such, nutrient-sensing mechanisms in both the gastrointestinal tract and the brain have been implicated in the regulation of energy intake and glucose homeostasis. The intestinal wall is able to differentiate individual nutrients through sensory machinery expressed in the mucosa and provide feedback signals, via local gut peptide action, to maintain energy balance. Furthermore, both the hypothalamus and hindbrain detect circulating nutrients and respond by controlling energy intake and glucose levels. Conversely, nutrient sensing in the intestine plays a role in stimulating food intake and preferences. In this review, we highlight the emerging evidence for the regulation of energy balance through nutrient-sensing mechanisms in the intestine and the brain, and how disruption of these pathways could result in the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sophie C Hamr
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada,
| | | | | | | |
Collapse
|
39
|
Abstract
This article summarizes new knowledge about the contribution of genetic variation to person-to-person differences underlying some sensory aspects of dietary fatty acids. Receptors on the taste cells of the human tongue arise from genes that have marked variation in DNA sequence, which, in some cases, is associated with differences in how these lipids in foods are perceived. These perceptual differences may affect food selection.
Collapse
Affiliation(s)
| | - Mary B Xia
- Monell Chemical Senses Center, Philadelphia, PA
| |
Collapse
|
40
|
Sclafani A, Touzani K, Ackroff K. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice. Physiol Behav 2015; 147:141-8. [PMID: 25911263 DOI: 10.1016/j.physbeh.2015.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 11/15/2022]
Abstract
Mice acquire strong preferences for flavors paired with intragastric (IG) fat infusions. This IG fat conditioning is attenuated in double knockout (DoKO) mice missing GPR40 and GPR120 fatty acid receptors. Here we determined if GPR40/120 DoKO mice are also impaired in IG fat self-administration in an operant lick task. In daily 1-h sessions the mice were trained with a sipper spout that contained dry food pellets; licks on the spout triggered infusions of IG fat (Intralipid). The training sessions were followed by test sessions with an empty spout. GPR40/120 DoKO mice self-infused more 20% fat than wild type (WT) C57BL/6 mice in training with a food-baited spout (2.4 vs. 2.0kcal/h) but self-infused less 20% fat than WT mice in empty spout tests (1.2 vs. 1.7kcal/h). The DoKO mice also self-infused less 5% fat than WT mice (0.6 vs. 1.3kcal/h) although both groups emitted more licks for 5% fat than 20% fat. The DoKO and WT mice did not differ, however, in their self-infusion of 12.5% glucose (1.5 vs. 1.6kcal/h), which is isocaloric to 5% fat. A second 5% IL test showed that the DoKO mice reverted to a reduced self-infusion compared to WT mice. When the infusion was shifted to water, WT mice reduced licking in the first extinction session, whereas DoKO mice were less sensitive to the absence of infused fat. Our results indicate that post-oral GPR40/120 signaling is not required to process IG fat infusions in food-baited spout training sessions but contributes to post-oral fat reinforcement in empty spout tests and flavor conditioning tests.
Collapse
|
41
|
The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women. Br J Nutr 2015; 113:1330-7. [PMID: 25822988 DOI: 10.1017/s0007114515000343] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested that excessive intake of dietary fat is associated with obesity. Some obese subjects have been reported to exhibit high thresholds for the gustatory detection of lipids via lipid receptors, such as cluster of differentiation 36 (CD36). We studied lingual detection thresholds for emulsions containing oleic acid in obese Tunisian women (n 203) using a three-alternative forced choice (3-AFC) method. Genotyping of the TNF-α (rs1800629), IL-6 (rs1800795) and CD36 (rs1761667) genes was performed to associate with lipid taste perception thresholds. The CD36 genotype distribution was as follows: GG (n 42), AG (n 102) and AA (n 59). Women with the CD36 GG genotype exhibited oral detection thresholds for oleic acid that were more than three times lower than those with the CD36 AA genotype. The present study confirms a high threshold of gustatory fat detection in obese women with the CD36 AA genotype, but there is no significant association with the IL-6 and TNF-α gene polymorphisms.
Collapse
|
42
|
Sayed A, Šerý O, Plesnik J, Daoudi H, Rouabah A, Rouabah L, Khan NA. CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int J Obes (Lond) 2015; 39:920-4. [PMID: 25687220 DOI: 10.1038/ijo.2015.20] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVE Obesity is an alarming threat for all age groups, including children. Fat overconsumption is one of the factors that directly influences this pathology. Recent studies have suggested that a common variant in the CD36 gene, that is, single-nucleotide polymorphism (SNP) rs1761667-A allele, that reduces CD36 expression, associates with high oral fat detection thresholds in some obese subjects. The objective was to assess fatty acid sensitivity in relation to CD36 SNP in young lean and obese children. SUBJECTS/METHODS We studied lingual detection thresholds for emulsions, containing oleic acid, in Algerian children (n=116, age=8±0.5 years) who were divided into two groups: obese (n=57; body mass index (BMI) z-score=2.513±0.490) and lean children (n=59; BMI z-score=-0.138±0.601) by alternative-forced choice method. To correlate the lipid taste perception thresholds with CD36 SNP, the children were genotyped for A/G SNP rs1761667 in 5'UTR region of CD36 by using PCR and restriction fragment length polymorphism. RESULTS We noticed significantly higher CD36 A-allele frequency (P=0.036) in young obese children compared with leans. CD36 A-allele was associated with higher lipid taste perception thresholds than G-allele in obese children, but not in lean controls. Moreover, waist circumference was positively correlated with reduced fat taste sensitivity in these children. CONCLUSIONS CD36 SNP A-allele, being present both in young lean and in obese children, is associated with high threshold for fatty acid taste sensitivity only in obese children.
Collapse
Affiliation(s)
- A Sayed
- Laborartoire de Biologie Cellulaire and Moléculaire, Université de Constantine 1, Constantine, Algérie
| | - O Šerý
- 1] Institute of Animal Physiology and Genetics, Academy of Science, Brno, Czech Republic [2] Laboratory of Neurobiology and Molecular Psychiatry, Laboratory of Molecular Physiology, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Plesnik
- 1] Laboratory of Neurobiology and Molecular Psychiatry, Laboratory of Molecular Physiology, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic [2] Physiologie de la Nutrition and Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| | - H Daoudi
- Laborartoire de Biologie Cellulaire and Moléculaire, Université de Constantine 1, Constantine, Algérie
| | - A Rouabah
- Laborartoire de Biologie Cellulaire and Moléculaire, Université de Constantine 1, Constantine, Algérie
| | - L Rouabah
- Laborartoire de Biologie Cellulaire and Moléculaire, Université de Constantine 1, Constantine, Algérie
| | - N A Khan
- Physiologie de la Nutrition and Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| |
Collapse
|
43
|
Lee RJ, Cohen NA. Taste receptors in innate immunity. Cell Mol Life Sci 2015; 72:217-36. [PMID: 25323130 PMCID: PMC4286424 DOI: 10.1007/s00018-014-1736-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein-coupled receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5th floor, Philadelphia, PA 19104 USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5th floor, Philadelphia, PA 19104 USA
- Philadelphia Veterans Affairs Medical Center Surgical Services, 3900 Woodland Ave, Philadelphia, PA 19104 USA
| |
Collapse
|
44
|
Ancel D, Bernard A, Subramaniam S, Hirasawa A, Tsujimoto G, Hashimoto T, Passilly-Degrace P, Khan NA, Besnard P. The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in mice. J Lipid Res 2014; 56:369-78. [PMID: 25489006 DOI: 10.1194/jlr.m055202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Implication of the long-chain fatty acid (LCFA) receptor GPR120, also termed free fatty acid receptor 4, in the taste-guided preference for lipids is a matter of debate. To further unravel the role of GPR120 in the "taste of fat", the present study was conducted on GPR120-null mice and their wild-type littermates. Using a combination of morphological [i.e., immunohistochemical staining of circumvallate papillae (CVP)], behavioral (i.e., two-bottle preference tests, licking tests and conditioned taste aversion) and functional studies [i.e., calcium imaging in freshly isolated taste bud cells (TBCs)], we show that absence of GPR120 in the oral cavity was not associated with changes in i) gross anatomy of CVP, ii) LCFA-mediated increases in intracellular calcium levels ([Ca(2+)]i), iii) preference for oily and LCFA solutions and iv) conditioned avoidance of LCFA solutions. In contrast, the rise in [Ca(2+)]i triggered by grifolic acid, a specific GPR120 agonist, was dramatically curtailed when the GPR120 gene was lacking. Taken together, these data demonstrate that activation of lingual GPR120 and preference for fat are not connected, suggesting that GPR120 expressed in TBCs is not absolutely required for oral fat detection in mice.
Collapse
Affiliation(s)
- Déborah Ancel
- NUTox, UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F21000 Dijon, France
| | - Arnaud Bernard
- NUTox, UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F21000 Dijon, France
| | | | - Akira Hirasawa
- Department of Pharmacogenomics, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gozoh Tsujimoto
- Department of Pharmacogenomics, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | - Naim-Akhtar Khan
- NUTox, UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F21000 Dijon, France
| | - Philippe Besnard
- NUTox, UMR U866 INSERM/Université de Bourgogne/AgroSup Dijon, F21000 Dijon, France
| |
Collapse
|
45
|
Ackroff K, Sclafani A. Flavor change and food deprivation are not critical for post-oral glucose appetition in mice. Physiol Behav 2014; 140:23-31. [PMID: 25484359 DOI: 10.1016/j.physbeh.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/26/2023]
Abstract
When mice trained to consume a CS- flavored solution paired with intragastric (IG) water self-infusion are given a new CS+ flavor paired with IG glucose self-infusion, their intake is stimulated within minutes in the first CS+ test. They also display a preference for the CS+ over the CS- in two-bottle tests. These indicators of post-oral appetite stimulation (appetition) have been studied in food-restricted mice, with novel CS+ and CS- flavors. Two experiments tested whether deprivation and flavor novelty are needed for stimulation of intake. Exp. 1 compared food-restricted and ad libitum fed C57BL/6 mice trained for 1h/day: 3 sessions with CS- flavor and IG water followed by 3 sessions with a novel CS+ flavor and IG 16% glucose. Ad libitum (AL) fed mice licked less overall, but like the food-restricted (FR) group they increased licking in the first session. In the choice test, FR mice displayed a significant CS+ preference (73%) whereas AL mice had a weaker preference (64%). In Exp. 2, food-restricted mice were trained with a flavor and IG water, and then the Same or a New flavor paired with IG 8% glucose. The glucose infusion rapidly stimulated intakes in the first and subsequent sessions and to the same degree in the two groups. Both groups also showed similar reductions in licking in extinction tests with IG water infusions. These data show that mice need not be explicitly food deprived or given a novel flavor cue to increase ongoing ingestion in response to post-oral glucose stimulation.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| |
Collapse
|
46
|
Ancel D, Bernard A, Subramaniam S, Hirasawa A, Tsujimoto G, Passilly-Degrace P, Khan NA, Besnard P. O16: Le senseur lipidique GPR120 n’est pas indispensable pour la préférence aux lipides médiée par le goût chez la souris. NUTR CLIN METAB 2014. [DOI: 10.1016/s0985-0562(14)70592-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Sclafani A, Ackroff K. Maltodextrin and fat preference deficits in "taste-blind" P2X2/P2X3 knockout mice. Chem Senses 2014; 39:507-14. [PMID: 24833134 DOI: 10.1093/chemse/bju019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Adenosine triphosphate is a critical neurotransmitter in the gustatory response to the 5 primary tastes in mice. Genetic deletion of the purinergic P2X2/P2X3 receptor greatly reduces the neural and behavioral response to prototypical primary taste stimuli. In this study, we examined the behavioral response of P2X double knockout mice to maltodextrin and fat stimuli, which appear to activate additional taste channels. P2X double knockout and wild-type mice were given 24-h choice tests (vs. water) with ascending concentrations of Polycose and Intralipid. In Experiment 1, naive double knockout mice, unlike wild-type mice, were indifferent to dilute (0.5-4%) Polycose solutions but preferred concentrated (8-32%) Polycose to water. In a retest, the Polycose-experienced double knockout mice, like wild-type mice, preferred all Polycose concentrations. In Experiment 2, naive double knockout mice, unlike wild-type mice, were indifferent to dilute (0.313-2.5%) Intralipid emulsions but preferred concentrated (5-20%) Intralipid to water. In a retest, the fat-experienced double knockout mice, like wild-type mice, strongly preferred 0.313-5% Intralipid to water. These results indicate that the inherent preferences of mice for maltodextrin and fat are dependent upon adenosine triphosphate taste cell signaling. With experience, however, P2X double knockout mice develop strong preferences for the nontaste flavor qualities of maltodextrin and fat conditioned by the postoral actions of these nutrients.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
48
|
Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol Behav 2014; 133:92-8. [PMID: 24811140 DOI: 10.1016/j.physbeh.2014.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
Abstract
Mice adapted to drink a flavored saccharin solution (CS-) paired with intragastric (IG) self-infusions of water rapidly increase their intake of a new flavored solution (CS+) that is paired with IG glucose self-infusions. The present study extends this method to examine post-oral glucose appetition in rats. Food-restricted rats were trained to consume a CS- flavor (e.g., grape saccharin) paired with IG water in 5 daily 1-h tests. In the next 3 tests, they drank a CS+ (e.g., cherry saccharin) paired with IG glucose. Rats infused with 8% glucose increased intake significantly on CS+ Test 1, but those infused with 16% glucose showed only a small increase in intake, which may reflect a counteracting satiating effect. Both groups further increased CS+ intakes in Tests 2 and 3, and preferred (81%) the CS+ to the CS- in a two-bottle test without infusions. A second experiment investigated rats' responses to IG alpha-methyl-d-glucopyranoside (MDG), a non-metabolizable sugar analog which stimulates CS+ intake and preference in mice. The rats reduced their intake of the MDG-paired CS+ flavor over sessions, and preferred the CS- to the CS+ in the choice test. The glucose data show that rats, like mice, rapidly detect the sugar's positive post-oral effects that can stimulate intake within the first hour of exposure. The MDG avoidance may indicate a greater sensitivity to its post-oral inhibitory effects in rats than in mice, or perhaps slower clearance of MDG in rats. The test protocol described here can be used to investigate the peripheral and central processes involved in stimulation of intake by post-oral nutrients in rats.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
49
|
Massen JJM, Dusch K, Eldakar OT, Gallup AC. A thermal window for yawning in humans: yawning as a brain cooling mechanism. Physiol Behav 2014; 130:145-8. [PMID: 24721675 DOI: 10.1016/j.physbeh.2014.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/24/2014] [Accepted: 03/31/2014] [Indexed: 12/23/2022]
Abstract
The thermoregulatory theory of yawning posits that yawns function to cool the brain in part due to counter-current heat exchange with the deep inhalation of ambient air. Consequently, yawning should be constrained to an optimal thermal zone or range of temperature, i.e., a thermal window, in which we should expect a lower frequency at extreme temperatures. Previous research shows that yawn frequency diminishes as ambient temperatures rise and approach body temperature, but a lower bound to the thermal window has not been demonstrated. To test this, a total of 120 pedestrians were sampled for susceptibly to self-reported yawn contagion during distinct temperature ranges and seasons (winter: 1.4°C, n=60; summer: 19.4°C, n=60). As predicted, the proportion of pedestrians reporting yawning was significantly lower during winter than in summer (18.3% vs. 41.7%), with temperature being the only significant predictor of these differences across seasons. The underlying mechanism for yawning in humans, both spontaneous and contagious, appears to be involved in brain thermoregulation.
Collapse
Affiliation(s)
- Jorg J M Massen
- Department of Cognitive Biology, University of Vienna, Vienna, Austria.
| | - Kim Dusch
- Department of Education, University of Vienna, Vienna, Austria
| | - Omar Tonsi Eldakar
- Farquhar College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, USA
| | | |
Collapse
|
50
|
Hoch T, Pischetsrieder M, Hess A. Snack food intake in ad libitum fed rats is triggered by the combination of fat and carbohydrates. Front Psychol 2014; 5:250. [PMID: 24744741 PMCID: PMC3978285 DOI: 10.3389/fpsyg.2014.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
Snack food like potato chips substantially contributes to energy intake in humans. In contrast to basic food, snacks are consumed additionally to other meals and may thereby lead to non-homeostatic energy intake. Snack food is also frequently associated with hedonic hyperphagia, a food intake independent from hunger. Analysis of brain activity patterns by manganese-enhanced MRI has previously revealed that the intake of potato chips in ad libitum fed rats strongly activates the reward system of the rat brain, which may lead to hedonic hyperphagia. The purpose of the present study was to develop a two-choice preference test to identify molecular determinants of snack food triggering extra food intake in ad libitum fed rats. Different kinds of test food were presented three times a day for 10 min each time. To minimize the influence of organoleptic properties, each test food was applied in a homogenous mixture with standard chow. Food intake as well as food intake-related locomotor activity were analyzed to evaluate the effects induced by the test foods in the two-choice preference test. In summary, fat (F), carbohydrates (CH), and a mixture of fat and carbohydrates (FCH) led to a higher food intake compared to standard chow. Notably, potato chip test food (PC) was highly significantly preferred over standard chow (STD) and also over their single main macronutrients F and CH. Only FCH induced an intake comparable to PC. Despite its low energy density, fat-free potato chip test food (ffPC) was also significantly preferred over STD and CH, but not over F, FCH, and PC. Thus, it can be concluded that the combination of fat and carbohydrates is a major molecular determinant of potato chips triggering hedonic hyperphagia. The applied two-choice preference test will facilitate future studies on stimulating and suppressive effects of other food components on non-homeostatic food intake.
Collapse
Affiliation(s)
- Tobias Hoch
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|