1
|
Biouss G, Antounians L, Aguet J, Kopcalic K, Fakhari N, Baranger J, Mertens L, Villemain O, Zani A. The brain of fetuses with congenital diaphragmatic hernia shows signs of hypoxic injury with loss of progenitor cells, neurons, and oligodendrocytes. Sci Rep 2024; 14:13680. [PMID: 38871804 DOI: 10.1038/s41598-024-64412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a birth defect characterized by incomplete closure of the diaphragm, herniation of abdominal organs into the chest, and compression of the lungs and the heart. Besides complications related to pulmonary hypoplasia, 1 in 4 survivors develop neurodevelopmental impairment, whose etiology remains unclear. Using a fetal rat model of CDH, we demonstrated that the compression exerted by herniated organs on the mediastinal structures results in decreased brain perfusion on ultrafast ultrasound, cerebral hypoxia with compensatory angiogenesis, mature neuron and oligodendrocyte loss, and activated microglia. In CDH fetuses, apoptosis was prominent in the subventricular and subgranular zones, areas that are key for neurogenesis. We validated these findings in the autopsy samples of four human fetuses with CDH compared to age- and sex-matched controls. This study reveals the molecular mechanisms and cellular changes that occur in the brain of fetuses with CDH and creates opportunities for therapeutic targets.
Collapse
Affiliation(s)
- George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, ON, M5T 1W7, Canada
| | - Katarina Kopcalic
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Nikan Fakhari
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Jerome Baranger
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Luc Mertens
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Olivier Villemain
- Translation Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
2
|
Batool M, Cai CL, Aranda JV, Hand I, Beharry KD. Early versus late caffeine and/or non-steroidal anti-inflammatory drugs (NSAIDS) for prevention of intermittent hypoxia-induced neuroinflammation in the neonatal rat. Int J Dev Neurosci 2024; 84:227-250. [PMID: 38459740 DOI: 10.1002/jdn.10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Preterm infants often experience frequent intermittent hypoxia (IH) episodes which are associated with neuroinflammation. We tested the hypotheses that early caffeine and/or non-steroidal inflammatory drugs (NSAIDs) confer superior therapeutic benefits for protection against IH-induced neuroinflammation than late treatment. Newborn rats were exposed to IH or hyperoxia (50% O2) from birth (P0) to P14. For early treatment, the pups were administered: 1) daily caffeine (Caff) citrate (Cafcit, 20 mg/kg IP loading on P0, followed by 5 mg/kg from P1-P14); 2) ketorolac (Keto) topical ocular solution in both eyes from P0 to P14; 3) ibuprofen (Ibu, Neoprofen, 10 mg/kg loading dose on P0 followed by 5 mg/kg/day on P1 and P2); 4) Caff+Keto co-treatment; 5) Caff+Ibu co-treatment; or 6) equivalent volume saline (Sal). On P14, animals were placed in room air (RA) with no further treatment until P21. For late treatment, pups were exposed from P0 to P14, then placed in RA during which they received similar treatments from P15-P21 (Sal, Caff, and/or Keto), or P15-P17 (Ibu). RA controls were similarly treated. At P21, whole brains were assessed for histopathology, apoptosis, myelination, and biomarkers of inflammation. IH caused significant brain injury and hemorrhage, inflammation, reduced myelination, and apoptosis. Early treatment with Caff alone or in combination with NSAIDs conferred better neuroprotection against IH-induced damage than late treatment. Early postnatal treatment during a critical time of brain development, may be preferable for the prevention of IH-induced brain injury in preterm infants.
Collapse
Affiliation(s)
- Myra Batool
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, New York City Health & Hospitals/Kings County, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
3
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
4
|
Halder SK, Milner R. Spinal Cord Blood Vessels in Aged Mice Show Greater Levels of Hypoxia-Induced Vascular Disruption and Microglial Activation. Int J Mol Sci 2023; 24:11235. [PMID: 37510999 PMCID: PMC10378993 DOI: 10.3390/ijms241411235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In response to chronic mild hypoxia (CMH, 8% O2), spinal cord blood vessels launch a robust angiogenic response that is associated with transient disruption of the blood-spinal cord barrier (BSCB) which, in turn, triggers a microglial vasculo-protective response. Because hypoxia occurs in many age-related conditions, the goal of this study was to define how aging influences these responses by comparing events in young (8-10 weeks) and aged (20 months) mice. This revealed that aged mice had much greater (3-4-fold) levels of hypoxic-induced BSCB disruption than young mice and that, while the early stage of the angiogenic response in aged mice was no different to young mice, the maturation of newly formed vessels was significantly delayed. Interestingly, microglia in the spinal cords of aged mice were much more activated than young mice, even under normoxic conditions, and this was further enhanced by CMH, though, surprisingly, this resulted in reduced microglial clustering around leaky blood vessels and diminished vasculo-protection. Vascular disruption was associated with loss of myelin in spinal cord white matter (WM) in both young and aged mice. Furthermore, it was notable that the spinal cord of aged mice contained a lower density of Olig2+ oligodendroglial cells even under normoxic conditions and that CMH significantly reduced the density of Olig2+ cells in spinal cord WM of the aged, but not the young, mice. These results demonstrate that spinal cord blood vessels of aged mice are much more vulnerable to the damaging effects of hypoxia than young mice, in part due to the reduced vasculo-protection conferred by chronically activated microglial cells. These observations may have implications for the pathogenesis and/or treatment of spinal cord diseases such as amyotrophic lateral sclerosis (ALS) and suggest that an improvement in microglial function could offer therapeutic potential for treating these age-related conditions.
Collapse
Affiliation(s)
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA;
| |
Collapse
|
5
|
Luo Q, Zhang JX, Huang S, Hu YH, Wang H, Chen X. Effects of long-term exposure to high altitude on brain structure in healthy people: an MRI-based systematic review and meta-analysis. Front Psychiatry 2023; 14:1196113. [PMID: 37435401 PMCID: PMC10330765 DOI: 10.3389/fpsyt.2023.1196113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Purpose To conduct a systematic review and meta-analysis of observational studies of brain MRI, this paper assesses the effects of long-term exposure to high-altitude on brain structures in healthy people. Methods Observational studies related to high-altitude, brain and MRI were systematically searched based on data retrieved from PubMed, Embase and Cochrane Library. The timescale for collecting literature was from the establishment of the databases to 2023. NoteExpress 3.2 was used to manage the literature. Two investigators performed literature screening and data extraction based on inclusion criteria, exclusion criteria, and literature quality. The quality of the literature was assessed using the NOS Scale. Finally, meta-analysis of included studies was performed using Reviewer Manager 5.3. Results Initially, 3,626 articles were retrieved. After screening, 16 articles (n = 756 participants) were included in the systematic review, and meta-analysis was performed on 6 articles (n = 350 participants). The overall quality of the included articles was at medium level, with a mean NOS score of 5.62. The results of meta-analysis showed that the differences between the HA group and LA group were not statistically significant, in total GM volume (MD: -0.60, 95% CI: -16.78 to 15.58, P = 0.94), WM volume (MD: 3.05, 95% CI: -15.72 to 21.81, P = 0.75) and CSF volume (MD: 5.00, 95% CI: -11.10 to 21.09, P = 0.54).The differences between HA and LA in FA values of frontotemporal lobes were not statistically significant: right frontal lobe (MD: -0.02, 95% CI: -0.07 to 0.03, P = 0.38), left frontal lobe (MD: 0.01, 95% CI: -0.02 to 0.04, P = 0.65), right temporal lobe (MD: -0.00, 95% CI: -0.03 to 0.02, P = 0.78) and left temporal lobe (MD: -0.01, 95% CI: -0.04 to 0.02, P = 0.62). However, there were significant differences in GM volume, GM density and FA values in local brain regions between HA group and LA group. Conclusion Compared with LA area, there were no significant differences in total GM, WM and CSF volumes in healthy people living at high-altitude area for long-term, while there were significant differences in GM volume and FA values in local brain regions. Long-term exposure to high-altitude area caused the adaptive structural changes in local brain regions. Since heterogeneity existed between the studies, further studies are needed to uncover the effects of high-altitude on brain of healthy people. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42023403491.
Collapse
Affiliation(s)
- Qiao Luo
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Third People's Hospital of Chengdu City, Chengdu, China
| | - Jie-Xin Zhang
- Department of Laboratory Medicine, Southwest Jiaotong University, Chengdu, China
| | - Shuo Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-He Hu
- Department of Laboratory Medicine, Southwest Jiaotong University, Chengdu, China
- The General Hospital of Western Theater Command, Chengdu, China
| | - Han Wang
- The Third People's Hospital of Chengdu City, Chengdu, China
| | - Xin Chen
- The Third People's Hospital of Chengdu City, Chengdu, China
| |
Collapse
|
6
|
Coelho-Santos V, Cruz AJN, Shih AY. Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? Dev Neurosci 2023; 46:44-54. [PMID: 37231864 DOI: 10.1159/000530957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Anne-Jolene N Cruz
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
张 晨, 李 文, 陆 林, 朱 楚, 秦 璠, 苑 孟, 薛 倩, 徐 发. [Influence of bronchopulmonary dysplasia on cerebral blood flow in preterm infants: a prospective study based on arterial spin labeling]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:31-37. [PMID: 36655661 PMCID: PMC9893825 DOI: 10.7499/j.issn.1008-8830.2208068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To investigate local cerebral blood perfusion in preterm infants with bronchopulmonary dysplasia (BPD) based on cerebral blood flow (CBF) values of arterial spin labeling (ASL). METHODS A prospective study was conducted on 90 preterm infants with a gestational age of <32 weeks and a birth weight of <1 500 g who were born in the Department of Obstetrics and admitted to the Department of Neonatology in the Third Affiliated Hospital of Zhengzhou University from August 2021 to June 2022. All of the infants underwent cranial MRI and ASL at the corrected gestational age of 35-40 weeks. According to the presence or absence of BPD, they were divided into a BPD group with 45 infants and a non-BPD group with 45 infants. The two groups were compared in terms of the CBF values of the same regions of interest (frontal lobe, temporal lobe, parietal lobe, occipital lobe, thalamus, and basal ganglia) on ASL image. RESULTS Compared with the non-BPD group, the BPD group had a significantly lower 1-minute Apgar score, a significantly longer duration of assisted ventilation, and a significantly higher incidence rate of fetal distress (P<0.05). After control for the confounding factors such as corrected age and age at the time of cranial MRI by multiple linear regression analysis, compared with the non-BPD group, the BPD group still had higher CBF values of the frontal lobe, temporal lobe, parietal lobe, occipital lobe, basal ganglia, and thalamus at both sides (P<0.05). CONCLUSIONS BPD can increase cerebral blood perfusion in preterm infants, which might be associated with hypoxia and a long duration of assisted ventilation in the early stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - 发林 徐
- 河南省儿科疾病临床医学研究中心,河南郑州450052
- 郑州大学先进医学研究中心,河南郑州450052
| |
Collapse
|
8
|
Campion S, Inselman A, Hayes B, Casiraghi C, Joseph D, Facchinetti F, Salomone F, Schmitt G, Hui J, Davis-Bruno K, Van Malderen K, Morford L, De Schaepdrijver L, Wiesner L, Kourula S, Seo S, Laffan S, Urmaliya V, Chen C. The benefits, limitations and opportunities of preclinical models for neonatal drug development. Dis Model Mech 2022; 15:dmm049065. [PMID: 35466995 PMCID: PMC9066504 DOI: 10.1242/dmm.049065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.
Collapse
Affiliation(s)
- Sarah Campion
- Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA
| | - Amy Inselman
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR 72079, USA
| | - Belinda Hayes
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Costanza Casiraghi
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - David Joseph
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Georg Schmitt
- Pharma Research and Early Development, Roche Innovation Center Basel, Pharmaceutical Sciences, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julia Hui
- Bristol Myers Squibb, Nonclinical Research and Development, Summit, NJ 07901, USA
| | - Karen Davis-Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Karen Van Malderen
- Federal Agency for Medicines and Health Products (FAMHP), Department DG PRE authorization, 1210 Brussels, Belgium
| | - LaRonda Morford
- Eli Lilly, Global Regulatory Affairs, Indianapolis, IN 46285, USA
| | | | - Lutz Wiesner
- Federal Institute for Drugs and Medical Devices, Clinical Trials, 53175 Bonn, Germany
| | - Stephanie Kourula
- Janssen R&D, Drug Metabolism & Pharmacokinetics, 2340 Beerse, Belgium
| | - Suna Seo
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Susan Laffan
- GlaxoSmithKline, Non-Clinical Safety, Collegeville, PA 19406, USA
| | | | - Connie Chen
- Health and Environmental Sciences Institute, Washington, DC 20005, USA
| |
Collapse
|
9
|
Lee JI, Lim JS, Hong JH, Kim S, Lee SW, Ji HD, Won KS, Song BI, Kim HW. Selective neurodegeneration of the hippocampus caused by chronic cerebral hypoperfusion: F-18 FDG PET study in rats. PLoS One 2022; 17:e0262224. [PMID: 35143502 PMCID: PMC8830734 DOI: 10.1371/journal.pone.0262224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chronic cerebral hypoperfusion (CCH) is known to induce Alzheimer’s disease (AD) pathology, but its mechanism remains unclear. The purpose of this study was to identify the cerebral regions that are affected by CCH, and to evaluate the development of AD pathology in a rat model of CCH. Methods A rat model of CCH was established by bilaterally ligating the common carotid arteries in adult male rats (CCH group). The identical operations were performed on sham rats without arteries ligation (control group). Regional cerebral glucose metabolism was evaluated at 1 and 3 months after bilateral CCA ligation using positron emission tomography with F-18 fluorodeoxyglucose. The expression levels of amyloid β40 (Aβ40), amyloid β42 (Aβ42), and hyperphosphorylated tau were evaluated using western blots at 3 months after the ligation. Cognitive function was evaluated using the Y-maze test at 3 months after the ligation. Results At 1 month after the ligation, cerebral glucose metabolism in the entorhinal, frontal association, motor, and somatosensory cortices were significantly decreased in the CCH group compared with those in the control group. At 3 months after the ligation, cerebral glucose metabolism was normalized in all regions except for the anterodorsal hippocampus, which was significantly decreased compared with that of the control group. The expression of Aβ42 and the Aβ42/40 ratio were significantly higher in the CCH group than those in the control group. The phosphorylated-tau levels of the hippocampus in the CCH group were significantly lower than those in the control group. Cognitive function was more impaired in the CCH group than that in the control group. Conclusion Our findings suggest that CCH causes selective neurodegeneration of the anterodorsal hippocampus, which may be a trigger point for the development of AD pathology.
Collapse
Affiliation(s)
- Jung-In Lee
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Ji Sun Lim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jeong-Ho Hong
- Department of Neurology, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Dong Ji
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine & Institute for Medical Science, Keimyung University, Daegu, Korea
- * E-mail:
| |
Collapse
|
10
|
Impaired Cognitive Performance in Mice Exposed to Prolonged Hyperoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:69-73. [PMID: 36527616 DOI: 10.1007/978-3-031-14190-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplementation of oxygen at concentrations significantly above environmental level for prolonged periods may lead to hyperoxia and tissue toxicity. The mammalian brain undergoes structural and functional changes during adaptation to hypoxia and hyperoxia. In this study we investigated the effect of prolonged hyperoxic exposure on cognitive and motor performance in mice. Two-month-old male mice were placed in either hyperoxic (50% O2) or normoxic conditions for 3 weeks. Cognitive function was measured using the Y-maze test. High alteration rate between the three arms of the maze is indicative of sustained memory and cognitive function. Motor function was measured using the grip strength and rotarod tests. In the rotarod test high speed and long latency are indicative of coordination and resistance. After 3 weeks of exposure, hematocrit levels were significantly decreased in the hyperoxia group compared to normoxic control littermates (%, mean ± SD, 37.8 ± 1.3, n = 15 vs. 49.9 ± 5.1, n = 15, p < 0.05). In the Y-maze test, chronic hyperoxic exposure resulted in a statistically significant decrease in alteration rate compared to normoxic control (%, mean ± SD, 53.4 ± 9.9, n = 30 vs. 61.2 ± 9.5, n = 15, p < 0.05). The rotarod and grip strength tests did not show statistically significant changes between the two groups. Our data suggest that chronic hyperoxia may lead to decreased cognitive performance in adult mice, which may be secondary to structural and functional changes in the brain.
Collapse
|
11
|
Komarovsky MB, Tsipis CP, Almotah KA, Boron WF, Xu K, LaManna J. Postnatal Exposure to Brief Hypoxia Alters Brain VEGF Expression and Capillary Density in Adult Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:65-68. [PMID: 36527615 DOI: 10.1007/978-3-031-14190-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Perinatal hypoxia leads to changes in cerebral angiogenesis and persistent structural and functional changes in the adult brain. It may also result in greater vulnerability to subsequent challenges. We investigated the effect of postnatal day 2 (P2) hypoxic preconditioning on adult brain capillary density and brain vascular endothelial growth factor (VEGF) expression in mice. P2 mice were exposed to hypoxia (5% O2) in a normobaric chamber for 2 h then returned to normoxia while their littermates remained in normoxia (P2 control). After 2-6 months, they were euthanised and their brains were removed for capillary density determination. Another set of animals (P2 hypoxic mice and P2 controls) were euthanised at 2, 10, 23, and 60 days after birth and brain VEGF expression was assessed by western blot. Adult brain capillary density was significantly increased in the P2 hypoxic mice when compared to the P2 control mice. Additionally, VEGF expression appeared to be elevated in the P2-hypoxia mice when compared to the P2-control mice at all time points, and VEGF levels in P2-hypoxia mice declined with age similarly to P2-control mice. These data demonstrate that transient early-postnatal hypoxic stress leads to an increase in capillary density that persists in the adult, possibly due to increased VEGF expression. These results might be explained by epigenetic factors in the VEGF gene.
Collapse
|
12
|
Zhou D, Xue J, Miyamoto Y, Poulsen O, Eckmann L, Haddad GG. Microbiota Modulates Cardiac Transcriptional Responses to Intermittent Hypoxia and Hypercapnia. Front Physiol 2021; 12:680275. [PMID: 34248668 PMCID: PMC8267877 DOI: 10.3389/fphys.2021.680275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital-San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Manlapaz-Mann A, Cai CL, Bodkin D, Mustafa G, Aranda JV, Beharry KD. Effects of omega 3 polyunsaturated fatty acids, antioxidants, and/or non-steroidal inflammatory drugs in the brain of neonatal rats exposed to intermittent hypoxia. Int J Dev Neurosci 2021; 81:448-460. [PMID: 33969544 DOI: 10.1002/jdn.10120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Preterm infants experience frequent arterial oxygen desaturations during oxygen therapy, or intermittent hypoxia (IH). Neonatal IH increases oxidative distress which contributes to neuroinflammation and brain injury. We tested the hypotheses that exposure to neonatal IH is detrimental to the immature brain and that early supplementation with antioxidants and/or omega 3 polyunsaturated fatty acids (n-3 PUFAs) combined with non-steroidal anti-inflammatory drugs (NSAIDs) is protective. Newborn rats were exposed to brief hypoxia (12% O2 ) during hyperoxia (50% O2 ) from the first day of life (P0) until P14 during which they received daily oral supplementation with antioxidants, namely coenzyme Q10 (CoQ10) or glutathione nanoparticles (nGSH), n-3 PUFAs and/or topical ocular ketorolac. Placebo controls received daily oral olive oil and topical ocular saline. Room air (RA) littermates remained in 21% O2 from birth to P21 with all treatments identical. At P14 animals were allowed to recover in RA until P21 with no further treatment. Whole brains were harvested for histopathology and morphometric analyses, and assessed for biomarkers of oxidative stress and inflammation, as well as myelin injury. Neonatal IH resulted in higher brain/body weight ratios, an effect that was reversed with n-3 PUFAs and n-3 PUFAs+CoQ10 with or without ketorolac. Neonatal IH was also associated with hemorrhage, oxidative stress, and elevations in inflammatory prostanoids. Supplementation with n-3 PUFAs and nGSH with and without ketorolac were most beneficial for myelin growth and integrity when administered in RA. However, the benefit of n-3 PUFAs was significantly curtailed in neonatal IH. Neonatal IH during a critical time of brain development causes inflammation and oxidative injury. Loss of therapeutic benefits of n-3 PUFAs suggest its susceptibility to oxidation in neonatal IH and therefore indicate that co-administration with antioxidants may be necessary to sustain its efficacy.
Collapse
Affiliation(s)
- Alex Manlapaz-Mann
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Darren Bodkin
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Ghassan Mustafa
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,SUNY Eye Institute, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.,SUNY Eye Institute, Brooklyn, NY, USA
| |
Collapse
|
14
|
Greisen G, Dempsey E, Mimouni F. The clinical usefulness of cerebral oximetry. J Perinatol 2021; 41:655-657. [PMID: 33574583 DOI: 10.1038/s41372-021-00939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital, Rigshospitalet, Denmark & University of Copenhagen, Copenhagen, Denmark.
| | | | - Francis Mimouni
- Department of Neonatology, Shaare Zedek Medical Center, Jerusalem, Israel.,Sackler School of Medicine, Tel Aviv, Israel
| |
Collapse
|
15
|
Chai Y, Ji C, Coloigner J, Choi S, Balderrama M, Vu C, Tamrazi B, Coates T, Wood JC, O'Neil SH, Lepore N. Tract-specific analysis and neurocognitive functioning in sickle cell patients without history of overt stroke. Brain Behav 2021; 11:e01978. [PMID: 33434353 PMCID: PMC7994688 DOI: 10.1002/brb3.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. SCD patients are at increased risks for strokes and neurocognitive deficit, even though neurovascular screening and treatments have lowered the rate of overt strokes. Tract-specific analysis (TSA) is a statistical method to evaluate microstructural WM damage in neurodegenerative disorders, using diffusion tensor imaging (DTI). METHODS We utilized TSA and compared 11 major brain WM tracts between SCD patients with no history of overt stroke, anemic controls, and healthy controls. We additionally examined the relationship between the most commonly used DTI metric of WM tracts and neurocognitive performance in the SCD patients and healthy controls. RESULTS Disruption of WM microstructure orientation-dependent metrics for the SCD patients was found in the genu of the corpus callosum (CC), cortico-spinal tract, inferior fronto-occipital fasciculus, right inferior longitudinal fasciculus, superior longitudinal fasciculus, and left uncinate fasciculus. Neurocognitive performance indicated slower processing speed and lower response inhibition skills in SCD patients compared to controls. TSA abnormalities in the CC were significantly associated with measures of processing speed, working memory, and executive functions. CONCLUSION Decreased DTI-derived metrics were observed on six tracts in chronically anemic patients, regardless of anemia subtype, while two tracks with decreased measures were unique to SCD patients. Patients with WMHs had more significant FA abnormalities. Decreased FA values in the CC significantly correlated with all nine neurocognitive tests, suggesting a critical importance for CC in core neurocognitive processes.
Collapse
Affiliation(s)
- Yaqiong Chai
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Chaoran Ji
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Julie Coloigner
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Division of CardiologyChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Soyoung Choi
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Melissa Balderrama
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Hematology, Oncology, and Blood and Marrow TransplantationChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Chau Vu
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Benita Tamrazi
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Thomas Coates
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Hematology, Oncology, and Blood and Marrow TransplantationChildren's Hospital Los AngelesLos AngelesCAUSA
| | - John C. Wood
- Division of CardiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Sharon H. O'Neil
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of NeurologyChildren's Hospital Los AngelesLos AngelesCAUSA
- The Saban Research InstituteChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Natasha Lepore
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
16
|
Barhwal KK, Biswal S, Chandra Nag T, Chaurasia OP, Hota SK. Class switching of carbonic anhydrase isoforms mediates remyelination in CA3 hippocampal neurons during chronic hypoxia. Free Radic Biol Med 2020; 161:102-114. [PMID: 33035636 DOI: 10.1016/j.freeradbiomed.2020.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Chronic exposure to hypoxia results in cerebral white matter hyperintensities, increased P300 latency, delayed response and impairment in working memory. Despite burgeoning evidence on role of myelination in nerve conduction, the effect of chronic hypoxia on myelination of hippocampal neurons has been less studied. The present study provides novel evidence on alterations in myelination of hippocampal CA3 neurons following chronic hypoxic exposure. Sprague Dawley rats exposed to global hypobaric hypoxia simulating altitude of 25,000 ft showed progressive demyelination in CA3 hippocampal neurons on 14 days followed by remyelination on 21 and 28 days. The demyelination of CA3 neurons was associated with increased apoptosis of both oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs), peroxidation of myelin lipids, and nitration induced reduced expression of Carbonic Anhydrase II (CAII). Prolonged hypoxic exposure of 21 and 28 days on the other hand resulted in peroxisome proliferator-activated receptor alpha (PPARα) induced upregulation of Carbonic Anhydrase IV (CAIV) expression in mature oligodendrocytes through iNOS mediated mechanisms along with reduction in lipid peroxidation and remyelination. Inhibition of carbonic anhydrase activity on the other hand prevented remyelination of CA3 neurons. Based on these findings we propose a novel iNOS mediated mechanism for regulation of myelination in hypoxic hippocampal neurons through class switching of carbonic anhydrases.
Collapse
Affiliation(s)
- Kalpana Kumari Barhwal
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India.
| | - Suryanarayan Biswal
- Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India; Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Sunil Kumar Hota
- O/o Director General (Life Sciences), DRDO Head Quarters, Rajaji Marg, New Delhi, 110011, India
| |
Collapse
|
17
|
Oliphant EA, McKinlay CJD, McNamara DG, Alsweiler JM. (Rad 8)Caffeine prophylaxis to improve intermittent hypoxaemia in infants born late preterm: a randomised controlled dosage trial (Latte Dosage Trial). BMJ Open 2020; 10:e038271. [PMID: 33082191 PMCID: PMC7577061 DOI: 10.1136/bmjopen-2020-038271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Infants born late preterm (34+0 to 36+6 weeks' gestational age) have frequent episodes of intermittent hypoxaemia compared with term infants. Caffeine citrate reduces apnoea and intermittent hypoxaemia and improves long-term neurodevelopmental outcomes in infants born very preterm and may have similar effects in late preterm infants. Clearance of caffeine citrate increases with gestational age and late preterm infants are likely to need a higher dose than very preterm infants. Our aim is to determine the most effective and best-tolerated dose of caffeine citrate to reduce transient intermittent hypoxaemia events in late preterm infants. METHODS AND ANALYSIS A phase IIB, double-blind, five-arm, parallel, randomised controlled trial to compare the effect of four doses of oral caffeine citrate versus placebo on the frequency of intermittent hypoxaemia. Late preterm infants will be enrolled within 72 hours of birth and randomised to receive 5, 10, 15 or 20 mg/kg/day caffeine citrate or matching placebo daily until term corrected age. The frequency of intermittent hypoxaemia (events/hour where oxygen saturation concentration is ≥10% below baseline for ≤2 min) will be assessed with overnight oximetry at baseline, 2 weeks after randomisation (primary outcome) and at term corrected age. Growth will be measured at these timepoints, and effects on feeding and sleeping will be assessed by parental report. Data will be analysed using generalised linear mixed models. ETHICS AND DISSEMINATION This trial has been approved by the Health and Disability Ethics Committees of New Zealand (reference 18/NTA/129) and the local institutional research review committees. Findings will be disseminated to peer-reviewed journals to clinicians and researchers at local and international conferences and to the public. The findings of the trial will inform the design of a large multicentre trial of prophylactic caffeine in late preterm infants, by indicating the most appropriate dose to use and providing information on feasibility. TRIAL REGISTRATION NUMBER ACTRN12618001745235; Pre-results.
Collapse
Affiliation(s)
- Elizabeth Anne Oliphant
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
- Newborn Services, Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Christopher J D McKinlay
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand
| | - David G McNamara
- Paediatrics Respiratory Services, Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Jane Marie Alsweiler
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
19
|
Villasana-Salazar B, Hernández-Soto R, Guerrero-Gómez ME, Ordaz B, Manrique-Maldonado G, Salgado-Puga K, Peña-Ortega F. Chronic intermittent hypoxia transiently increases hippocampal network activity in the gamma frequency band and 4-Aminopyridine-induced hyperexcitability in vitro. Epilepsy Res 2020; 166:106375. [PMID: 32745888 DOI: 10.1016/j.eplepsyres.2020.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic intermittent hypoxia (CIH) is the most distinct feature of obstructive sleep apnea (OSA), a common breathing and sleep disorder that leads to several neuropathological consequences, including alterations in the hippocampal network and in seizure susceptibility. However, it is currently unknown whether these alterations are permanent or remit upon normal oxygenation. Here, we investigated the effects of CIH on hippocampal spontaneous network activity and hyperexcitability in vitro and explored whether these alterations endure or fade after normal oxygenation. Results showed that applying CIH for 21 days to adult rats increases gamma-band hippocampal network activity and aggravates 4-Aminopyridine-induced epileptiform activity in vitro. Interestingly, these CIH-induced alterations remit after 30 days of normal oxygenation. Our findings indicate that hippocampal network alterations and increased seizure susceptibility induced by CIH are not permanent and can be spontaneously reverted, suggesting that therapeutic interventions against OSA in patients with epilepsy, such as surgery or continuous positive airway pressure (CPAP), could be favorable for seizure control.
Collapse
Affiliation(s)
- Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - María Estefanía Guerrero-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Guadalupe Manrique-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
20
|
Guo Z, Fan C, Li T, Gesang L, Yin W, Wang N, Weng X, Gong Q, Zhang J, Wang J. Neural network correlates of high-altitude adaptive genetic variants in Tibetans: A pilot, exploratory study. Hum Brain Mapp 2020; 41:2406-2430. [PMID: 32128935 PMCID: PMC7267913 DOI: 10.1002/hbm.24954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/16/2020] [Accepted: 02/09/2020] [Indexed: 02/05/2023] Open
Abstract
Although substantial progress has been made in the identification of genetic substrates underlying physiology, neuropsychology, and brain organization, the genotype–phenotype associations remain largely unknown in the context of high‐altitude (HA) adaptation. Here, we related HA adaptive genetic variants in three gene loci (EGLN1, EPAS1, and PPARA) to interindividual variance in a set of physiological characteristics, neuropsychological tests, and topological attributes of large‐scale structural and functional brain networks in 135 indigenous Tibetan highlanders. Analyses of individual HA adaptive single‐nucleotide polymorphisms (SNPs) revealed that specific SNPs selectively modulated physiological characteristics (erythrocyte level, ratio between forced expiratory volume in the first second to forced vital capacity, arterial oxygen saturation, and heart rate) and structural network centrality (the left anterior orbital gyrus) with no effects on neuropsychology or functional brain networks. Further analyses of genetic adaptive scores, which summarized the overall degree of genetic adaptation to HA, revealed significant correlations only with structural brain networks with respect to local interconnectivity of the whole networks, intermodule communication between the right frontal and parietal module and the left occipital module, nodal centrality in several frontal regions, and connectivity strength of a subnetwork predominantly involving in intramodule edges in the right temporal and occipital module. Moreover, the associations were dependent on gene loci, weight types, or topological scales. Together, these findings shed new light on genotype–phenotype interactions under HA hypoxia and have important implications for developing new strategies to optimize organism and tissue responses to chronic hypoxia induced by extreme environments or diseases.
Collapse
Affiliation(s)
- Zhiyue Guo
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Cunxiu Fan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Neurology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ting Li
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Luobu Gesang
- Institute of High Altitude Medicine, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, China
| | - Ningkai Wang
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Xuchu Weng
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Institute for Brain Research and Rehabilitation, Guangzhou, China
| | - Qiyong Gong
- Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhui Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Institute for Brain Research and Rehabilitation, Guangzhou, China
| |
Collapse
|
21
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Philippe C. [Sleep-related breathing disorders in adults: diagnosis, consequences and comorbidities]. Orthod Fr 2019; 90:289-299. [PMID: 34643516 DOI: 10.1051/orthodfr/2019031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a collapse of the upper airways leading to a decrease (hypopneas) or interruption of air flow (apneas). Since its identification, only forty years ago, definitions, diagnostic techniques have evolved, the consequences of this syndrome have been widely studied but establishing it as an independent cardiovascular (CV) risk factor has come up against the existence of many confounding factors, such as obesity, high blood pressure (hypertension)… Paraclinical diagnosis is based on the results of poly(somno)graphy. Recommendations on measurement techniques and scoring are regularly published, evolving in parallel with technological progress, with the aim of standardizing and ensuring the reliability of the diagnosis. At the same time, large cohort studies were set up in the 1990s, allowing for transversal and longitudinal follow-up of thousands of patients. Finally, the pathophysiological mechanisms of the consequences of SAHOS were explored. OSA has been shown to be responsible for a particularly high accidental risk due to sleep fragmentation induced by abnormal respiratory events. It has been possible to establish an independent statistical relationship between SAHOS and CV diseases, metabolic disorders and more recently cancer, mainly explained by intermittent hypoxia. OSAHOS is a frequent disease, diagnosed on the basis of clinical signs and poly(somno)graphy, now established as an independent risk factor for morbidity and mortality (accidental and CV).
Collapse
Affiliation(s)
- Carole Philippe
- Unité des Pathologies du Sommeil, Service du Pr Arnulf, Groupe Hospitalier Pitié Salpêtrière, 47-83 boulevard de l'hôpital, 75651 Paris Cedex 13, France
| |
Collapse
|
23
|
Yin M, Wang H, Hu X, Li X, Fei G, Yu Y. Patterns of brain structural alteration in COPD with different levels of pulmonary function impairment and its association with cognitive deficits. BMC Pulm Med 2019; 19:203. [PMID: 31699064 PMCID: PMC6839173 DOI: 10.1186/s12890-019-0955-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background To explore patterns of brain structural alteration in chronic obstructive pulmonary disease (COPD) patients with different levels of lung function impairment and the associations of those patterns with cognitive functional deficits using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analyses based on high-resolution structural MRI and diffusion tensor imaging (DTI). Methods A total of 115 right-handed participants (26 severe, 29 moderate, and 29 mild COPD patients and a comparison group of 31 individuals without COPD) completed tests of cognitive (Montreal Cognitive Assessment [MoCA]) and pulmonary function (forced expiratory volume in 1 s [FEV1]) and underwent MRI scanning. VBM and TBSS analyses were used to identify changes in grey matter density (GMD) and white matter (WM) integrity in COPD patients. In addition, correlation analyses between these imaging parameter changes and cognitive and pulmonary functional impairments were performed. Results There was no significant difference in brain structure between the comparison groups and the mild COPD patients. Patients with moderate COPD had atrophy of the left middle frontal gyrus and right opercular part/triangular part of the inferior frontal gyrus, and WM changes were present mainly in the superior and posterior corona radiata, corpus callosum and cingulum. Patients with severe COPD exhibited the most extensive changes in GMD and WM. Some grey matter (GM) and WM changes were correlated with MoCA scores and FEV1. Conclusions These findings suggest that patients with COPD exhibit progressive structural impairments in both the GM and the WM, along with impaired levels of lung function, highlighting the importance of early clinical interventions.
Collapse
Affiliation(s)
- Minmin Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xianwei Hu
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Guanghe Fei
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
24
|
Ennis K, Felt B, Georgieff MK, Rao R. Early-Life Iron Deficiency Alters Glucose Transporter-1 Expression in the Adult Rodent Hippocampus. J Nutr 2019; 149:1660-1666. [PMID: 31162576 PMCID: PMC6736205 DOI: 10.1093/jn/nxz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early-life iron deficiency (ID) impairs hippocampal energy production. Whether there are changes in glucose transporter (GLUT) expression is not known. OBJECTIVE The aim of this study was to investigate whether early-life ID and the treatment iron dose alter brain regional GLUT expression in adult rats and mice. METHODS In Study 1, ID was induced in male and female Sprague Dawley rat pups by feeding dams a 3-mg/kg iron diet during gestation and the first postnatal week, followed by treatment using low-iron [3-10 mg/kg; formerly iron-deficient (FID)-10 group], standard-iron (40-mg/kg; FID-40 group), or high-iron (400-mg/kg; FID-400 group) diets until weaning. The control group received the 40 mg/kg iron diet. GLUT1, GLUT3, hypoxia-inducible factor (HIF)-1α, and prolyl-hydroxylase-2 (PHD2) mRNA and protein expression in the cerebral cortex, hippocampus, striatum, cerebellum, and hypothalamus were determined at adulthood. In Study 2, the role of hippocampal ID in GLUT expression was examined by comparing the Glut1, Glut3, Hif1α, and Phd2 mRNA expression in adult male and female wild-type (WT) and nonanemic hippocampal iron-deficient and iron-replete dominant negative transferrin receptor 1 (DNTfR1-/-) transgenic mice. RESULTS In Study 1, Glut1, Glut3, and Hif1α mRNA, and GLUT1 55-kDa protein expression was upregulated 20-33% in the hippocampus of the FID-10 group but not the FID-40 group, relative to the control group. Hippocampal Glut1 mRNA (-39%) and GLUT1 protein (-30%) expression was suppressed in the FID-400 group, relative to the control group. Glut1 and Glut3 mRNA expression was not altered in the other brain regions in the 3 FID groups. In Study 2, hippocampal Glut1 (+14%) and Hif1α (+147%) expression was upregulated in the iron-deficient DNTfR1-/- mice, but not in the iron-replete DNTfR1-/- mice, relative to the WT mice (P < 0.05, all). CONCLUSIONS Early-life ID is associated with altered hippocampal GLUT1 expression in adult rodents. The mouse study suggests that tissue ID is potentially responsible.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Address correspondence to RR (e-mail: )
| |
Collapse
|
25
|
Chen X, Li H, Zhang Q, Wang J, Zhang W, Liu J, Li B, Xin Z, Liu J, Yin H, Chen J, Kong Y, Luo W. Combined fractional anisotropy and subcortical volumetric abnormalities in healthy immigrants to high altitude: A longitudinal study. Hum Brain Mapp 2019; 40:4202-4212. [PMID: 31206892 DOI: 10.1002/hbm.24696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023] Open
Abstract
The study of individuals at high-altitude (HA) exposure provides an important opportunity for unraveling physiological and psychological mechanism of brain underlying hypoxia condition. However, this has rarely been assessed longitudinally. We aim to explore the cognitive and cerebral microstructural alterations after chronic HA exposure. We recruited 49 college freshmen who immigrated to Tibet and followed up for 2 years. Control group consisted of 49 gender and age-matched subjects from sea level. Neuropsychological tests were also conducted to determine whether the subjects' cognitive function had changed in response to chronic HA exposure. Surface-based cortical and subcortical volumes were calculated from structural magnetic resonance imaging data, and tract-based spatial statistics (TBSS) analysis of white matter (WM) fractional anisotropy (FA) based on diffusion weighted images were performed. Compared to healthy controls, the high-altitude exposed individuals showed significantly lower accuracy and longer reaction times in memory tests. Significantly decreased gray matter volume in the caudate region and significant FA changes in multiple WM tracts were observed for HA immigrants. Furthermore, differences in subcortical volume and WM integration were found to be significantly correlated with the cognitive changes after 2 years' HA exposure. Cognitive functions such as working memory and psychomotor function were found to be impaired during chronic HA. Differences of brain subcortical volumes and WM integration between HA and sea-level participants indicated potential impairments in the brain structural modifications and microstructural integrity of WM tracts after HA exposure.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Hong Li
- CAS Key Laboratory of Behavioral Sciences, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jian Liu
- Network Center, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Sciences, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| |
Collapse
|
26
|
Lawrence KM, McGovern PE, Mejaddam A, Rossidis AC, Baumgarten H, Kim A, Grinspan JB, Licht DJ, Didier RA, Vossough A, Radaelli E, Rychik J, Song L, Peranteau WH, Davey MG, Flake AW, Gaynor JW. Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep. J Thorac Cardiovasc Surg 2019; 157:1982-1991. [PMID: 30745051 DOI: 10.1016/j.jtcvs.2018.12.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/16/2018] [Accepted: 12/31/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We tested the hypothesis that chronic fetal hypoxia, at a severity present in many types of congenital heart disease, would lead to abnormal neurodevelopment. METHODS Eight mid-gestation fetal sheep were cannulated onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid-filled environment for 22 ± 2 days under normoxic or hypoxic conditions. Total parenteral nutrition was provided. Control fetuses (n = 7) were harvested at gestational age 133 ± 4 days. At necropsy, brains were fixed for histopathology. Neurons were quantified in white matter tracts, and the thickness of the external granular layer of the cerebellum was measured to assess neuronal migration. Capillary density and myelination were quantified in white matter. Data were analyzed with unpaired Student t tests or 1-way analysis of variance, as appropriate. RESULTS Oxygen delivery was reduced in hypoxic fetuses (15.6 ± 1.8 mL/kg/min vs 24.3 ± 2.3 mL/kg/min, P < .01), but umbilical blood flow and caloric delivery were not different between the 2 groups. Compared with normoxic and control animals, hypoxic fetuses had reduced neuronal density and increased external granular layer thickness. Compared with normoxic and control animals, hypoxic fetuses had increased capillary density in white matter. Cortical myelin integrity score was lower in the hypoxic group compared with normoxic and control animals. There was a significant negative correlation between myelin integrity and capillary density. CONCLUSIONS Chronic fetal hypoxia leads to white matter hyper-vascularity, decreased neuronal density, and impaired myelination, similar to the neuropathologic findings observed in children with congenital heart disease. These findings support the hypothesis that fetal hypoxia, even in the setting of normal caloric delivery, impairs neurodevelopment.
Collapse
Affiliation(s)
- Kendall M Lawrence
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Patrick E McGovern
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Ali Mejaddam
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Avery C Rossidis
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Heron Baumgarten
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Aimee Kim
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Judith B Grinspan
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Daniel J Licht
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Ryne A Didier
- Division of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Arastoo Vossough
- Division of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Enrico Radaelli
- Division of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pa
| | - Jack Rychik
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Limei Song
- Division of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - William H Peranteau
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Marcus G Davey
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Alan W Flake
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - J William Gaynor
- Division of Cardiothoracic Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pa.
| |
Collapse
|
27
|
Abstract
The human cerebral vasculature originates in the fourth week of gestation and continues to expand and diversify well into the first few years of postnatal life. A key feature of this growth is smooth muscle differentiation, whereby smooth muscle cells within cerebral arteries transform from migratory to proliferative to synthetic and finally to contractile phenotypes. These phenotypic transformations can be reversed by pathophysiological perturbations such as hypoxia, which causes loss of contractile capacity in immature cerebral arteries. In turn, loss of contractility affects all whole-brain cerebrovascular responses, including those involved in flow-metabolism coupling, vasodilatory responses to acute hypoxia and hypercapnia, cerebral autoregulation, and reactivity to activation of perivascular nerves. Future strategies to minimize cerebral injury following hypoxia-ischemic insults in the immature brain might benefit by targeting treatments to preserve and promote contractile differentiation in the fetal cerebrovasculature. This could potentially be achieved through inhibition of receptor tyrosine kinase-mediated growth factors, such as vascular endothelial growth factor and platelet-derived growth factor, which are mobilized by hypoxic and ischemic injury and which facilitate contractile dedifferentiation. Interruption of the effects of other vascular mitogens, such as endothelin and angiotensin-II, and even some miRNA species, also could be beneficial. Future experimental work that addresses these possibilities offers promise to improve current clinical management of neonates who have suffered and survived hypoxic, ischemic, asphyxic, or inflammatory cerebrovascular insults.
Collapse
Affiliation(s)
- William J Pearce
- From the Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
28
|
Yang LQ, Chen M, Zhang JL, Ren DL, Hu B. Hypoxia Delays Oligodendrocyte Progenitor Cell Migration and Myelin Formation by Suppressing Bmp2b Signaling in Larval Zebrafish. Front Cell Neurosci 2018; 12:348. [PMID: 30337858 PMCID: PMC6180284 DOI: 10.3389/fncel.2018.00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Hypoxia in newborns tends to result in developmental deficiencies in the white matter of the brain. As previous studies of the effects of hypoxia on neuronal development in rodents and human infants have been unable to use in vivo imaging, insight into the dynamic development of oligodendrocytes (OLs) in the central nervous system under hypoxia is limited. Here, we developed a visual model to study OL development using sublethal postnatal hypoxia in zebrafish larvae. We observed that hypoxia significantly suppressed OL progenitor cell migration toward the dorsum using in vivo imaging. Further, we found that hypoxia affected myelination, as indicated by thinner myelin sheaths and by a downregulation of myelin basic protein expression. Bmp2b protein expression was also significantly downregulated following hypoxia onset. Using gain of function and loss of function experiments, we demonstrated that the Bmp2b protein was associated with the regulation of OL development. Thus, our work provides a visual hypoxia model within which to observe OL development in vivo, and reveals the underlying mechanisms involved in these processes.
Collapse
Affiliation(s)
- Lei-Qing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Min Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Long Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Da-Long Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
29
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
30
|
Maki T, Choi YK, Miyamoto N, Shindo A, Liang AC, Ahn BJ, Mandeville ET, Kaji S, Itoh K, Seo JH, Gelman IH, Lok J, Takahashi R, Kim KW, Lo EH, Arai K. A-Kinase Anchor Protein 12 Is Required for Oligodendrocyte Differentiation in Adult White Matter. Stem Cells 2018; 36:751-760. [PMID: 29314444 DOI: 10.1002/stem.2771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes in cerebral white matter. However, the underlying mechanisms that regulate this process remain to be fully defined, especially in adult brains. Recently, it has been suggested that signaling via A-kinase anchor protein 12 (AKAP12), a scaffolding protein that associates with intracellular molecules such as protein kinase A, may be involved in Schwann cell homeostasis and peripheral myelination. Here, we asked whether AKAP12 also regulates the mechanisms of myelination in the CNS. AKAP12 knockout mice were compared against wild-type (WT) mice in a series of neurochemical and behavioral assays. Compared with WTs, 2-months old AKAP12 knockout mice exhibited loss of myelin in white matter of the corpus callosum, along with perturbations in working memory as measured by a standard Y-maze test. Unexpectedly, very few OPCs expressed AKAP12 in the corpus callosum region. Instead, pericytes appeared to be one of the major AKAP12-expressing cells. In a cell culture model system, conditioned culture media from normal pericytes promoted in-vitro OPC maturation. However, conditioned media from AKAP12-deficient pericytes did not support the OPC function. These findings suggest that AKAP12 signaling in pericytes may be required for OPC-to-oligodendrocyte renewal to maintain the white matter homeostasis in adult brain. Stem Cells 2018;36:751-760.
Collapse
Affiliation(s)
- Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yoon Kyung Choi
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Republic of Korea
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bum Ju Ahn
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Kanako Itoh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ji Hae Seo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Kyu-Won Kim
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742, Korea
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Chen L, Cai C, Yang T, Lin J, Cai S, Zhang J, Chen Z. Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neuroimage 2016; 147:488-499. [PMID: 27986608 DOI: 10.1016/j.neuroimage.2016.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Hypoxia can induce physiological changes. This study aims to explore effects of high-altitude (HA) hypoxia on cerebral iron concentration. Twenty-nine healthy sea-level participants were tested shortly before and after approximately 4-week adaptation to the HA environment at fQinghai-Tibet Plateau (4200m), and were re-investigated after re-adaptation to the sea-level environment one year later. Iron concentration was quantified with quantitative susceptibility mapping (QSM), and the results were compared with transverse relaxation rate (R*2) measurements. The variations of magnetic susceptibility indicate that the iron concentration in gray matter regions, especially in basal ganglia, including caudate nucleus, putamen, globus pallidus and substantia nigra, increases significantly after HA exposure. This increase appears consistent with the conclusion from R*2 value variations. However, unlike QSM, the R*2 value fails to demonstrate the statistical difference of iron content in red nucleus. The re-investigation results show that most variations are recovered after sea-level re-adaptation for one year. Additionally, hemisphere- and gender-related differences in iron concentration changes were analyzed among cerebral regions. The results show greater possibilities in the right hemisphere and females. Further studies based on diffusion tensor imaging (DTI) suggest that the fractional anisotropy increases and the mean diffusivity decreases after HA exposure in six deep gray matter nuclei, with linear dependence on iron concentration only in putamen. In conclusion, the magnetic susceptibility value can serve as a quantitative marker of brain iron, and variations of regional susceptibility reported herein indicate that HA hypoxia can result in significant iron deposition in most deep gray matter regions. Additionally, the linear dependence of DTI metrics on iron concentration in putamen indicates a potential relationship between ferritin and water diffusion.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Congbo Cai
- Department of Communication Engineering, Xiamen University, Xiamen 361005, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen 361102, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
Fan C, Zhao Y, Yu Q, Yin W, Liu H, Lin J, Yang T, Fan M, Gesang L, Zhang J. Reversible Brain Abnormalities in People Without Signs of Mountain Sickness During High-Altitude Exposure. Sci Rep 2016; 6:33596. [PMID: 27633944 PMCID: PMC5025655 DOI: 10.1038/srep33596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 01/23/2023] Open
Abstract
A large proportion of lowlanders ascending to high-altitude (HA) show no signs of mountain sickness. Whether their brains have indeed suffered from HA environment and the persistent sequelae after return to lowland remain unknown. Thirty-one sea-level college students, who had a 30-day teaching on Qinghai-Tibet plateau underwent MRI scans before, during, and two months after HA exposure. Brain volume, cortical structures, and white matter microstructure were measured. Besides, serum neuron-specific enolase (NSE), C-reactive protein, and interleukin-6 and neuropsychiatric behaviors were tested. After 30-day HA exposure, the gray and white matter volumes and cortical surface areas significantly increased, with cortical thicknesses and curvatures changed in a wide spread regions; Anisotropy decreased with diffusivities increased in multiple sites of white matter tracts. Two months after HA exposure, cortical measurements returned to basal level. However, increased anisotropy with decreased diffusivities was observed. Behaviors and serum inflammatory factor did not significant changed during three time-point tests. NSE significantly decreased during HA but increased after HA exposure. Results suggest brain swelling occurred in people without neurological signs at HA, but no negative sequelae in cortical structures and neuropsychiatric functions were left after the return to lowlands. Reoxygenation changed white matter microstructure.
Collapse
Affiliation(s)
- Cunxiu Fan
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Yuhua Zhao
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Qian Yu
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Luobu Gesang
- Institute of high altitude medicine, Tibet Autonomous Region People’s Hospital, Lasa 850000, Tibet Autonomous Region, China
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
34
|
Lim DC, Brady DC, Soans R, Kim EY, Valverde L, Keenan BT, Guo X, Kim WY, Park MJ, Galante R, Shackleford JA, Pack AI. Different cyclical intermittent hypoxia severities have different effects on hippocampal microvasculature. J Appl Physiol (1985) 2016; 121:78-88. [PMID: 27125850 DOI: 10.1152/japplphysiol.01040.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
Abstract
Recent studies have shown an association between obstructive sleep apnea (OSA) and cognitive impairment. This study was done to investigate whether varied levels of cyclical intermittent hypoxia (CIH) differentially affect the microvasculature in the hippocampus, operating as a mechanistic link between OSA and cognitive impairment. We exposed C57BL/6 mice to sham [continuous air, arterial O2 saturation (SaO2 ) 97%], severe CIH to inspired O2 fraction (FiO2 ) = 0.10 (CIH10; SaO2 nadir of 61%), or very severe CIH to FiO2 = 0.05 (CIH5; SaO2 nadir of 37%) for 12 h/day for 2 wk. We quantified capillary length using neurostereology techniques in the dorsal hippocampus and utilized quantitative PCR methods to measure changes in sets of genes related to angiogenesis and to metabolism. Next, we employed immunohistochemistry semiquantification algorithms to quantitate GLUT1 protein on endothelial cells within hippocampal capillaries. Capillary length differed among CIH severity groups (P = 0.013) and demonstrated a linear relationship with CIH severity (P = 0.002). There was a strong association between CIH severity and changes in mRNA for VEGFA (P < 0.0001). Less strong, but nominally significant associations with CIH severity were also observed for ANGPT2 (PANOVA = 0.065, PTREND = 0.040), VEGFR2 (PANOVA = 0.032, PTREND = 0.429), and TIE-2 (PANOVA = 0.006, PTREND = 0.010). We found that the CIH5 group had increased GLUT1 protein relative to sham (P = 0.006) and CIH10 (P = 0.001). There was variation in GLUT1 protein along the microvasculature in different hippocampal subregions. An effect of CIH5 on GLUT1 mRNA was seen (PANOVA = 0.042, PTREND = 0.012). Thus CIH affects the microvasculature in the hippocampus, but consequences depend on CIH severity.
Collapse
Affiliation(s)
- Diane C Lim
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Daniel C Brady
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rajath Soans
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Emily Y Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laise Valverde
- Superior School of Health Sciences, Brasilia, Brazil; and
| | - Brendan T Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaofeng Guo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Raymond Galante
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James A Shackleford
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 2016; 318:178-89. [PMID: 26804242 DOI: 10.1016/j.neuroscience.2016.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis is a demyelinating disease with severe neurological symptoms due to blockage of signal conduction in affected axons. Spontaneous remyelination via endogenous progenitors is limited and eventually fails. Recent reports showed that forced expression of some transcription factors within the brain converted somatic cells to neural progenitors and neuroblasts. Here, we report the effect of valproic acid (VPA) along with forced expression of Oct4 transcription factor on lysolecithin (LPC)-induced experimental demyelination. Mice were gavaged with VPA for one week, and then inducible Oct4 expressing lentiviral particles were injected into the lateral ventricle. After one-week induction of Oct4, LPC was injected into the optic chiasm. Functional remyelination was assessed by visual-evoked potential (VEP) recording. Myelination level was studied using FluoroMyelin staining and immunohistofluorescent (IHF) against proteolipid protein (PLP). IHF was also performed to detect Oct4 and SSEA1 as pluripotency markers and Olig2, Sox10, CNPase and PDGFRα as oligodendrocyte lineage markers. One week after injection of Oct4 expressing vector, pluripotency markers SSEA1 and Oct4 were detected in the rims of the 3rd ventricle. LPC injection caused extensive demyelination and significantly delayed the latency of VEP wave. Animals pre-treated with VPA+Oct4 expressing vector, showed faster recovery in the VEP latency and enhanced myelination. Immunostaining against oligodendrocyte lineage markers showed an increased number of Sox10+ and myelinating cells. Moreover, transdifferentiation of some Oct4-transfected cells (GFP+ cells) to Olig2+ and CNPase+ cells was confirmed by immunostaining. One-week administration of VPA followed by one-week forced expression of Oct4 enhanced myelination by converting transduced cells to myelinating oligodendrocytes. This finding seems promising for enhancing myelin repair within the adult brains.
Collapse
Affiliation(s)
- S Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Hesaraki
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - M Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - J Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Y Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
36
|
Abstract
Hypoxic episodes are troublesome components of bronchopulmonary dysplasia (BPD) in preterm infants. Immature respiratory control seems to be the major contributor, superimposed on abnormal respiratory function. Relatively short respiratory pauses may precipitate desaturation and bradycardia. This population is predisposed to pulmonary hypertension; it is likely that pulmonary vasoconstriction also plays a role. The natural history has been well-characterized in the preterm population at risk for BPD; however, the consequences are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships.
Collapse
Affiliation(s)
- Richard J. Martin
- Case Western Reserve University School of Medicine, Rainbow Babies & Children’s Hospital, 11100 Euclid Avenue, Suite RBC 3100, Cleveland, Ohio 44106-6010, Ph: 216-844-3387/Fax: 216-844-3380
| | - Juliann M. Di Fiore
- Case Western Reserve University, Rainbow Babies & Children’s Hospital, 11100 Euclid Avenue, Suite RBC 3100, Cleveland, Ohio 44106-6010, Ph: 216-368-1245/Fax: 216-844-3380
| | - Michele C. Walsh
- Case Western Reserve University School of Medicine, Rainbow Babies & Children’s Hospital, 11100 Euclid Avenue, Suite RBC 3100, Cleveland, Ohio 44106-6010, Ph: 216-844-3759/Fax: 216-844-3380
| |
Collapse
|
37
|
Bouslama M, Adla-Biassette H, Ramanantsoa N, Bourgeois T, Bollen B, Brissaud O, Matrot B, Gressens P, Gallego J. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity. Front Physiol 2015; 6:313. [PMID: 26582992 PMCID: PMC4631942 DOI: 10.3389/fphys.2015.00313] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 01/15/2023] Open
Abstract
Apnea of prematurity (AOP) is considered a risk factor for neurodevelopmental disorders in children based on epidemiological studies. This idea is supported by studies in newborn rodents in which exposure to intermittent hypoxia (IH) as a model of AOP significantly impairs development. However, the severe IH used in these studies may not fully reflect the broad spectrum of AOP severity. Considering that hypoxia appears neuroprotective under various conditions, we hypothesized that moderate IH would protect the neonatal mouse brain against behavioral stressors and brain damage. On P6, each pup in each litter was randomly assigned to one of three groups: a group exposed to IH while separated from the mother (IH group), a control group exposed to normoxia while separated from the mother (AIR group), and a group of untreated unmanipulated pups left continuously with their mother until weaning (UNT group). Exposure to moderate IH (8% O2) consisted of 20 hypoxic events/hour, 6 h per day from postnatal day 6 (P6) to P10. The stress generated by maternal separation in newborn rodents is known to impair brain development, and we expected this effect to be smaller in the IH group compared to the AIR group. In a separate experiment, we combined maternal separation with excitotoxic brain lesions mimicking those seen in preterm infants. We analyzed memory, angiogenesis, neurogenesis and brain lesion size. In non-lesioned mice, IH stimulated hippocampal angiogenesis and neurogenesis and improved short-term memory indices. In brain-lesioned mice, IH decreased lesion size and prevented memory impairments. Contrary to common perception, IH mimicking moderate apnea may offer neuroprotection, at least in part, against brain lesions and cognitive dysfunctions related to prematurity. AOP may therefore have beneficial effects in some preterm infants. These results support the need for stratification based on AOP severity in clinical trials of treatments for AOP, to determine whether in patients with moderate AOP, these treatments are beneficial or deleterious.
Collapse
Affiliation(s)
- Myriam Bouslama
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France
| | - Homa Adla-Biassette
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France ; Department of Pathology, Lariboisière Hospital Paris, France
| | - Nelina Ramanantsoa
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France
| | - Thomas Bourgeois
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France
| | - Bieke Bollen
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France ; Laboratory of Biological Psychology, University of Leuven Leuven, Belgium
| | - Olivier Brissaud
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France ; Neonatal Intensive Care Unit, Bordeaux University Hospital Bordeaux, France
| | - Boris Matrot
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France
| | - Pierre Gressens
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France
| | - Jorge Gallego
- Inserm, U1141, Robert Debré Hospital Paris, France ; Paris Diderot-Paris 7 University Paris, France
| |
Collapse
|
38
|
Yoon S, Kim JM, Kang HJ, Bae KY, Kim SW, Shin IS, Yoon JS. Associations of Pulmonary Function with Dementia and Depression in an Older Korean Population. Psychiatry Investig 2015; 12:443-50. [PMID: 26508954 PMCID: PMC4620300 DOI: 10.4306/pi.2015.12.4.443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Previous studies reported an association between pulmonary function and cognitive function. However, not much has been investigated in this regard concerning dementia in a community population, taking depression into account. We aimed to examine the associations of pulmonary function with dementia and depression in a community-dwelling elderly population. METHODS A total of 1,038 participants were evaluated for dementia and depression using the Korean version of the Geriatric Mental State Schedule B3 (GMS B3-K), the Community Screening Interview for Dementia-Korean version (CSID-K) and a modified 10-item Word List Learning from the Consortium to Establish a Registry of Alzheimer's Disease (CERAD). Pulmonary function was measured as forced expiratory volume in 1 s (FEV1) from a forced expiratory maneuver. RESULTS Prevalence rates of dementia and depression were 11.0% and 10.4%, respectively. Individuals who were diagnosed with dementia manifested a lower mean FEV1, as compared to those without dementia after adjusting for potential confounders, including disability and depression [OR=1.34 (1.05-1.72)]. Following gender-stratified analysis, the association was only statistically significant in women [OR=1.40 (1.04-1.89)]. The association between depression and mean FEV1 was less significant compared to dementia [OR=1.32 (1.10-1.58)]. However, the association was no longer significant after adjusting for age and years of education. No association was significant in the gender-stratified analysis. CONCLUSION Decreased pulmonary function was associated with dementia status only in an older female Korean population. Pulmonary function and depression were not significantly associated in either gender.
Collapse
Affiliation(s)
- Suelin Yoon
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung-Yeol Bae
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jin-Sang Yoon
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
39
|
West JB. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers. J Physiol 2015; 594:1127-34. [PMID: 25962370 DOI: 10.1113/jp270284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/04/2015] [Indexed: 11/08/2022] Open
Abstract
Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093-0623, USA
| |
Collapse
|
40
|
Watzlawik JO, Kahoud RJ, O’Toole RJ, White KAM, Ogden AR, Painter MM, Wootla B, Papke LM, Denic A, Weimer JM, Carey WA, Rodriguez M. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice. PLoS One 2015; 10:e0128007. [PMID: 26020269 PMCID: PMC4447462 DOI: 10.1371/journal.pone.0128007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by dysmyelination, abnormal spinal neuron composition, and neuro-motor deficits in adulthood.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Robert J. Kahoud
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ryan J. O’Toole
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. M. White
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Alyssa R. Ogden
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Meghan M. Painter
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Louisa M. Papke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jill M. Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - William A. Carey
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
41
|
Koundal S, Gandhi S, Kaur T, Trivedi R, Khushu S. Investigation of prolonged hypobaric hypoxia-induced change in rat brain using T2 relaxometry and diffusion tensor imaging at 7T. Neuroscience 2015; 289:106-13. [PMID: 25592421 DOI: 10.1016/j.neuroscience.2014.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The present study examines the change in water diffusion properties of the corpus callosum (CC) and the hippocampus, in response to prolonged hypobaric hypoxia (HH) stress, using in vivo magnetic resonance imaging (MRI) modalities such as T2 relaxometry and diffusion tensor imaging (DTI). Three groups of rats (n=7/group) were exposed to a simulated altitude of 6700m above sea level for the duration of 7, 14 and 21days, respectively. Data were acquired pre-exposure, post-exposure and after 1week of normoxic follow-up in each group. The increment in T2 values with no apparent diffusion coefficient (ADC) change in the CC after 7 and 14days of HH exposure indicated mixed (vasogenic and cytotoxic) edema formation. After 1week of normoxia, 7-day HH-exposed rats showed a decrease in ADC values in the CC, probably due to cytotoxic edema. A delayed decrease in ADC values was observed in the hippocampus after 1week normoxic follow-up in 7- and 14-day HH groups giving an insight of cytotoxic edema formation. Interestingly, 21-day HH-exposed rats did not show change in ADC values. The decrease in T2 values after 14 and 21days in the hippocampal region depicts iron deposition, which was confirmed by histopathology. This study successfully demonstrated the use of MRI modality to trace water diffusion changes in the brain due to prolonged HH exposure.
Collapse
Affiliation(s)
- S Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India; Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - S Gandhi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - T Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - R Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - S Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
42
|
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36:1-14. [PMID: 24882635 PMCID: PMC4247812 DOI: 10.1016/j.yfrne.2014.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022]
Abstract
The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
43
|
Hypomyelination, memory impairment, and blood-brain barrier permeability in a model of sleep apnea. Brain Res 2014; 1597:28-36. [PMID: 25482664 DOI: 10.1016/j.brainres.2014.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/16/2014] [Accepted: 11/24/2014] [Indexed: 01/28/2023]
Abstract
We investigated the effect of intermittent hypoxia, mimicking sleep apnea, on axonal integrity, blood-brain barrier permeability, and cognitive function of mice. Forty-seven C57BL mice were exposed to intermittent or sham hypoxia, alternating 30s of progressive hypoxia and 30s of reoxigenation, during 8h/day. The axonal integrity in cerebellum was evaluated by transmission electron microscopy. Short- and long-term memories were assessed by novel object recognition test. The levels of endothelin-1 were measured by ELISA. Blood-brain barrier permeability was quantified by Evans Blue dye. After 14 days, animals exposed to intermittent hypoxia showed hypomyelination in cerebellum white matter and higher serum levels of endothelin-1. The short and long-term memories in novel object recognition test was impaired in the group exposed to intermittent hypoxia as compared to controls. Blood-brain barrier permeability was similar between the groups. These results indicated that hypomyelination and impairment of short- and long-term working memories occurred in C57BL mice after 14 days of intermittent hypoxia mimicking sleep apnea.
Collapse
|
44
|
Yan X. Pro: All dwellers at high altitude are persons of impaired physical and mental powers. High Alt Med Biol 2014; 14:208-11. [PMID: 24067176 DOI: 10.1089/ham.2013.1026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaodan Yan
- New York University School of Medicine , New York, New York
| |
Collapse
|
45
|
Affiliation(s)
- Xiaodan Yan
- New York University School of Medicine, New York, New York
| |
Collapse
|
46
|
Trzepizur W, Gagnadoux F. Épidémiologie du syndrome d’apnées-hypopnées obstructives du sommeil. Rev Mal Respir 2014; 31:568-77. [DOI: 10.1016/j.rmr.2014.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/12/2014] [Indexed: 01/13/2023]
|
47
|
Silpanisong J, Pearce WJ. Vasotrophic regulation of age-dependent hypoxic cerebrovascular remodeling. Curr Vasc Pharmacol 2014; 11:544-63. [PMID: 24063376 DOI: 10.2174/1570161111311050002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/08/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia's remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation.
Collapse
Affiliation(s)
- Jinjutha Silpanisong
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
48
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
49
|
Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med Rev 2014; 18:35-48. [PMID: 23541562 PMCID: PMC3758447 DOI: 10.1016/j.smrv.2012.12.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/14/2022]
Abstract
Increasing data support a connection between obstructive sleep apnea (OSA) and cognitive impairment but a causal link has yet to be established. Although neuronal loss has been linked to cognitive impairment, emerging theories propose that changes in synaptic plasticity can cause cognitive impairment. Studies demonstrate that disruption to the blood-brain barrier (BBB), which is uniquely structured to tightly maintain homeostasis inside the brain, leads to changes in the brain's microenvironment and affects synaptic plasticity. Cyclical intermittent hypoxia is a stressor that could disrupt the BBB via molecular responses already known to occur in either OSA patients or animal models of intermittent hypoxia. However, we do not yet know if or how intermittent hypoxia can cause cognitive impairment by mechanisms operating at the BBB. Therefore, we propose that initially, adaptive homeostatic responses at the BBB occur in response to increased oxygen and nutrient demand, specifically through regulation of influx and efflux BBB transporters that alter microvessel permeability. We further hypothesize that although these responses are initially adaptive, these changes in BBB transporters can have long-term consequences that disrupt the brain's microenvironment and alter synaptic plasticity leading to cognitive impairment.
Collapse
Affiliation(s)
- Diane C Lim
- Department of Medicine, Division of Sleep Medicine, and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104, USA.
| | - Allan I Pack
- Department of Medicine, Division of Sleep Medicine, and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Morken TS, Nyman AKG, Sandvig I, Torp SH, Skranes J, Goa PE, Brubakk AM, Widerøe M. Brain development after neonatal intermittent hyperoxia-hypoxia in the rat studied by longitudinal MRI and immunohistochemistry. PLoS One 2013; 8:e84109. [PMID: 24358332 PMCID: PMC3866165 DOI: 10.1371/journal.pone.0084109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/12/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neonatal intermittent hyperoxia-hypoxia (IHH) is involved in the pathogenesis of retinopathy of prematurity. Whether similar oxygen fluctuations will create pathological changes in the grey and white matter of the brain is unknown. METHODS From birth until postnatal day 14 (P14), two litters (total n = 22) were reared in IHH: hyperoxia (50% O2) interrupted by three consecutive two-minute episodes of hypoxia (12% O2) every sixth hour. Controls (n = 8) were reared in room-air (20.9% O2). Longitudinal MRI (Diffusion Tensor Imaging and T2-mapping) was performed on P14 and P28 and retinal and brain tissue were examined for histopathological changes. Long-term neurodevelopment was assessed on P20 and P27. RESULTS Mean, radial and axial diffusivity were higher in white matter of IHH versus controls at P14 (p < 0.04), while fractional anisotropy (FA) was lower in the hippocampal fimbria and tended to be lower in corpus callosum (p = 0.08) and external capsule (p = 0.05). White matter diffusivity in IHH was similar to controls at P28. Higher cortical vessel density (p = 0.005) was observed at P14. Cortical and thalamic T2-relaxation time and mean diffusivity were higher in the IHH group at P14 (p ≤ 0.03), and albumin leakage was present at P28. Rats in the IHH group ran for a longer time on a Rotarod than the control group (p ≤ 0.005). Pups with lower bodyweight had more severe MRI alterations and albumin leakage. CONCLUSION IHH led to subtle reversible changes in brain white matter diffusivity, grey matter water content and vascular density. However, alterations in blood-brain barrier permeability may point to long-term effects. The changes seen after IHH exposure were more severe in animals with lower bodyweight and future studies should aim at exploring possible interactions between IHH and growth restriction.
Collapse
Affiliation(s)
- Tora Sund Morken
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Karl Gottfrid Nyman
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre Helge Torp
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jon Skranes
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav University Hospital, Central Norway Regional Health Authority, Trondheim, Norway
| | - Pål Erik Goa
- Department of Radiology, St. Olav University Hospital, Central Norway Regional Health Authority, Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav University Hospital, Central Norway Regional Health Authority, Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|