1
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|
2
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Zhang C, Clough SJ, Adamah-Biassi EB, Sveinsson MH, Hutchinson AJ, Miura I, Furuse T, Wakana S, Matsumoto YK, Okanoya K, Hudson RL, Kato T, Dubocovich ML, Kasahara T. Impact of endogenous melatonin on rhythmic behaviors, reproduction, and survival revealed in melatonin-proficient C57BL/6J congenic mice. J Pineal Res 2021; 71:e12748. [PMID: 34085306 DOI: 10.1111/jpi.12748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
The hormone melatonin is synthesized from serotonin by two enzymatic reactions (AANAT and ASMT/HIOMT) in the pineal gland following a circadian rhythm with low levels during the day and high levels at night. The robust nightly peak of melatonin secretion is an output signal of the circadian clock to the whole organism. However, so far the regulatory roles of endogenous melatonin in mammalian biological rhythms and physiology processes are poorly understood. Here, we establish congenic mouse lines (>N10 generations) that are proficient or deficient in melatonin synthesis (AH+/+ or AH-/- mice, respectively) on the C57BL/6J genetic background by crossing melatonin-proficient MSM/Ms with C57BL/6J. AH+/+ mice displayed robust nightly peak of melatonin secretion and had significantly higher levels of pineal and plasma melatonin vs AH-/- mice. Using this mice model, we investigated the role of endogenous melatonin in regulating multiple biological rhythms, physiological processes, and rhythmic behaviors. In the melatonin-proficient (AH+/+) mice, the rate of re-entrainment of wheel-running activity was accelerated following a 6-hour phase advance of dark onset when comparted with AH-/- mice, suggesting a role of endogenous melatonin in facilitating clock adjustment. Further in the AH+/+ mice, there was a significant decrease in body weight, gonadal weight and reproductive performance, and a significant increase in daily torpor (a hypothermic and hypometabolic state lasting only hours during adverse conditions). Endogenous melatonin, however, had no effect in the modulation of the diurnal rhythm of 2-[125 I]-iodomelatonin receptor expression in the SCN, free-running wheel behavior in constant darkness, life span, spontaneous homecage behaviors, and various types of social-emotional behaviors. The findings also shed light on the role of endogenous melatonin in mice domestication and provide new insights into melatonin's action in reducing energy expenditure during a food shortage. In summary, the congenic mice model generated in this study offers a significant advantage toward understanding of the role of endogenous melatonin in regulating melatonin receptor-mediated rhythm behaviors and physiological functions.
Collapse
Affiliation(s)
- Chongyang Zhang
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Shannon J Clough
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Ekue B Adamah-Biassi
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Michele H Sveinsson
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Anthony J Hutchinson
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, BioResource Research Center, RIKEN, Tsukuba-shi, Ibaraki, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, BioResource Research Center, RIKEN, Tsukuba-shi, Ibaraki, Japan
| | - Shigeharu Wakana
- Department of Gerontology, Institute of Biomedical Research and Innovation, Kobe-shi, Hyogo, Japan
| | - Yui K Matsumoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Randall L Hudson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Tadafumi Kato
- Laboratory for the Molecular Dynamics of Mental Disorders, Center for Brain Science, RIKEN, Wako-shi, Saitama, Japan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, USA
| | - Takaoki Kasahara
- Laboratory for the Molecular Dynamics of Mental Disorders, Center for Brain Science, RIKEN, Wako-shi, Saitama, Japan
- Career Development Program, Center for Brain Science, RIKEN, Wako-shi, Saitama, Japan
| |
Collapse
|
4
|
Logan RW, Parekh PK, Kaplan G, Becker-Krail D, Williams W, Yamaguchi S, Yoshino J, Shelton MA, Zhu X, Zhang H, Waplinger S, Fitzgerald E, Oliver-Smith J, Sundarvelu P, Enwright JF, Huang YH, McClung CA. NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward. Mol Psychiatry 2019; 24:1668-1684. [PMID: 29728703 PMCID: PMC6215755 DOI: 10.1038/s41380-018-0061-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.
Collapse
Affiliation(s)
- Ryan W. Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| | - Puja K. Parekh
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gabrielle Kaplan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Darius Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wilbur Williams
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Shintaro Yamaguchi
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| | - Jun Yoshino
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| | - Micah A. Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Xiyu Zhu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,School of Medicine, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Spencer Waplinger
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Ethan Fitzgerald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Jeffrey Oliver-Smith
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Poornima Sundarvelu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - John F. Enwright
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | | | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609,Correspondence: (C.A.M.)
| |
Collapse
|
5
|
Lafaye G, Desterke C, Marulaz L, Benyamina A. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addict Biol 2019; 24:921-934. [PMID: 30307084 DOI: 10.1111/adb.12660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022]
Abstract
Cannabis is often used by consumers for sleep disorders. Studies show that circadian rhythm could be affected by a misuse of cannabis. Recent research has connected the role of microglial cells with psychiatric disorders such as substance abuse. The aim was to show the effect of two major components of cannabis on circadian genes regulation in microglial cells. In BV-2 microglial cells, cannabidiol (CBD) induces a deregulation of circadian genes with (P-value = 0.039) or without (P-value = 0.0015) lipopolisaccharides stimulation. CBD up regulated Arntl (P = 9.72E-5) and down regulated Clock (P = 0.0034) in BV-2 cells. Temporal expression of Arntl (light and dark P = 0.0054) and Clock (light and dark P = 0.047) was confirmed to have 24 hours light and dark rhythmic regulation in dissected suprachiasmatic nucleus as well as of Cb1 cannabinoid receptor (light and dark P = 0.019). In BV-2 microglia cells, CBD also up regulated CRY2 (P = 0.0473) and PER1 (P = 0.0131). Other nuclear molecules show a deregulation of circadian rhythm in microglial cells by CBD, such as RORA, RevErbα, RORB, CREBBP, AFT4, AFT5 and NFIL3. Our study suggests that circadian rhythm in microglial cells is deregulated by CBD but not by THC. It is consistent with clinical observations of the use of therapeutic cannabis to treat insomnia.
Collapse
Affiliation(s)
- Geneviève Lafaye
- Dpt Addictologie, AP-HP, GH Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- INSERM U1178, Villejuif, France
| | | | - Laurent Marulaz
- Dpt Addictologie, AP-HP, GH Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- INSERM U1178, Villejuif, France
| | - Amine Benyamina
- Dpt Addictologie, AP-HP, GH Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- INSERM U1178, Villejuif, France
| |
Collapse
|
6
|
Affiliation(s)
- David J. Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Research Building, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Yamanaka Y, Yamada Y, Honma KI, Honma S. Cryptochrome deficiency enhances transcription but reduces protein levels of pineal Aanat. J Mol Endocrinol 2018; 61:219-229. [PMID: 30328353 DOI: 10.1530/jme-18-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptochrome (Cry) 1 and 2 are essential for circadian rhythm generation, not only in the suprachiasmatic nucleus, the site of the mammalian master circadian clock, but also in peripheral organs throughout the body. CRY is also known as a repressor of arylalkylamine-N-acetyltransferase (Aanat) transcription; therefore, Cry deficiency is expected to induce constantly high pineal melatonin content. Nevertheless, we previously found that the content was consistently low in melatonin-proficient Cry1 and Cry2 double-deficient mice (Cry1−/−/Cry2−/−) on C3H background. This study aims to clarify the mechanism underlying this discrepancy. In the Cry1−/−/Cry2−/− pineal, expression levels of Aanat and clock gene Per1 were consistently high with no circadian fluctuation on the first day in constant darkness, demonstrating that CRY acts in vivo as a repressor of the pineal circadian clock and AANAT. In contrast, the enzyme activity and protein levels of AANAT remained low throughout the day, supporting our previous observation of continuously low melatonin. Thus, effects of Cry deficiency on the responses of β-adrenergic receptors were examined in cultured pineal glands. Isoproterenol, a β-adrenergic stimulant, significantly increased melatonin content, although the increase was smaller in Cry1−/−/Cry2−/− than in WT mice, during both the day and night. However, the increase in cAMP in response to forskolin was similar in both genotypes, indicating that CRY deficiency does not affect the pathway downstream of the β-adrenergic receptor. These results suggest that a lack of circadian adrenergic input due to CRY deficiency decreases β-receptor activity and cAMP levels, resulting in consistently low AANAT levels despite abundant Aanat mRNA.
Collapse
Affiliation(s)
- Yujiro Yamanaka
- Department of Physiology, Hokkaido University Graduate school of Medicine, Sapporo, Japan
- Laboratory of Life and Health Science, Hokkaido University Graduate school of Education, Sapporo, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
| | - Yoshiko Yamada
- Department of Chronomedicine, Hokkaido University Graduate school of Medicine, Sapporo, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate school of Medicine, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Department of Chronomedicine, Hokkaido University Graduate school of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Varcoe TJ, Gatford KL, Kennaway DJ. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol 2017; 314:R231-R241. [PMID: 29141950 DOI: 10.1152/ajpregu.00248.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in temperature, substrates, and various maternal hormones. Meanwhile, the fetus is developing an endogenous circadian timing system, preparing for life in an external environment where light, food availability, and other environmental factors change predictably and repeatedly every 24 h. In humans, there are many situations that can disrupt circadian rhythms, including shift work, international travel, insomnias, and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a growing consensus that this chronodisruption can have deleterious consequences for an individual's health and well-being. However, the impact of chronodisruption during pregnancy on the health of both the mother and fetus is not well understood. In this review, we outline circadian timing system ontogeny in mammals and examine emerging research from animal models demonstrating long-term negative implications for progeny health following maternal chronodisruption during pregnancy.
Collapse
Affiliation(s)
- Tamara J Varcoe
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
9
|
Mark PJ, Crew RC, Wharfe MD, Waddell BJ. Rhythmic Three-Part Harmony: The Complex Interaction of Maternal, Placental and Fetal Circadian Systems. J Biol Rhythms 2017; 32:534-549. [PMID: 28920512 DOI: 10.1177/0748730417728671] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
From the perspective of circadian biology, mammalian pregnancy presents an unusual biological scenario in which an entire circadian system (i.e., that of the fetus) is embodied within another (i.e., that of the mother). Moreover, both systems are likely to be influenced at their interface by a third player, the placenta. Successful pregnancy requires major adaptations in maternal physiology, many of which involve circadian changes that support the high metabolic demands of the growing fetus. A functional role for maternal circadian adaptations is implied by the effects of circadian disruption, which result in pregnancy complications including higher risks for miscarriage, preterm labor, and low birth weight. Various aspects of fetal physiology lead to circadian variation, at least in late gestation, but it remains unclear what drives this rhythmicity. It likely involves contributions from the maternal environment and possibly from the placenta and the developing intrinsic molecular clocks within fetal tissues. The role of the placenta is of particular significance because it serves not only to relay signals about the external environment (via the mother) but may also exhibit its own circadian rhythmicity. This review considers how the fetus may be influenced by dynamic circadian signals from the mother and the placenta during gestation, and how, in the face of these changing influences, a new fetal circadian system emerges. Particular emphasis is placed on the role of endocrine signals, most notably melatonin and glucocorticoids, as mediators of maternal-fetal circadian interactions, and on the expression of the clock gene in the 3 compartments. Further study is required to understand how the mother, placenta, and fetus interact across pregnancy to optimize circadian adaptations that support adequate growth and development of the fetus and its transition to postnatal life in a circadian environment.
Collapse
Affiliation(s)
- Peter J Mark
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Rachael C Crew
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Michaela D Wharfe
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan J Waddell
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Fletcher EK, Morgan J, Kennaway DR, Bienvenu LA, Rickard AJ, Delbridge LMD, Fuller PJ, Clyne CD, Young MJ. Deoxycorticosterone/Salt-Mediated Cardiac Inflammation and Fibrosis Are Dependent on Functional CLOCK Signaling in Male Mice. Endocrinology 2017; 158:2906-2917. [PMID: 28911177 DOI: 10.1210/en.2016-1911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Activation of the mineralocorticoid receptor (MR) promotes inflammation, fibrosis, and hypertension. Clinical and experimental studies show that MR antagonists have significant therapeutic benefit for all-cause heart failure; however, blockade of renal MRs limits their widespread use. Identification of key downstream signaling mechanisms for the MR in the cardiovascular system may enable development of targeted MR antagonists with selectivity for pathological MR signaling and lower impact on physiological renal electrolyte handling. One candidate pathway is the circadian clock, the dysregulation of which is associated with cardiovascular diseases. We have previously shown that the circadian gene Per2 is dysregulated in hearts with selective deletion of cardiomyocyte MR. We therefore investigated MR-mediated cardiac inflammation and fibrosis in mice that lack normal regulation and oscillation of the circadian clock in peripheral tissues, that is, CLOCKΔ19 mutant mice. The characteristic cardiac inflammatory/fibrotic response to a deoxycorticosterone (DOC)/salt for 8 weeks was significantly blunted in CLOCKΔ19 mice when compared with wild-type mice, despite a modest increase at "baseline" for fibrosis and macrophage number in CLOCKΔ19 mice. In contrast, cardiac hypertrophy in response to DOC/salt was significantly greater in CLOCKΔ19 vs wild-type mice. Markers for renal inflammation and fibrosis were similarly attenuated in the CLOCKΔ19 mice given DOC/salt. Moreover, increased CLOCK expression in H9c2 cardiac cells enhanced MR-mediated transactivation of Per1, suggesting cooperative signaling between these transcription factors. This study demonstrates that the full development of MR-mediated cardiac inflammation and fibrosis is dependent on intact signaling by the circadian protein CLOCK.
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Morgan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - David R Kennaway
- School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Laura A Bienvenu
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda J Rickard
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
11
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Varcoe TJ, Voultsios A, Gatford KL, Kennaway DJ. The impact of prenatal circadian rhythm disruption on pregnancy outcomes and long-term metabolic health of mice progeny. Chronobiol Int 2016; 33:1171-1181. [PMID: 27463559 DOI: 10.1080/07420528.2016.1207661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Animal studies demonstrate that circadian rhythm disruption during pregnancy can be deleterious to reproductive capacity and the long-term health of the progeny. Our previous studies in rats have shown that exposure of pregnant dams to an environment that significantly disrupts maternal circadian rhythms programs increased adiposity and poor glucose metabolism in offspring. In this study, we used mice with a ClockΔ19 mutation to determine whether foetal development within a genetically disrupted circadian environment affects pregnancy outcomes and alters the metabolic health of offspring. Ten female ClockΔ19+MEL mutant mice were mated with 10 wildtype males, and 10 wildtype females were mated with 10 ClockΔ19+MEL mutant males. While genetically identical, the heterozygote foetuses were exposed to either a normal (wildtype dams) or disrupted (ClockΔ19+MEL mutant dams) circadian environment during gestation. Pregnancy outcomes including time to mate, gestation length, litter size and birth weight were assessed. One male and one female offspring from each litter were assessed for postnatal growth, body composition, intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test at 3 and 12 months of age. There was no effect of maternal genotype on pregnancy outcomes, with days to plug, gestation length, litter size and perinatal mortality not significantly different between wildtype and ClockΔ19+MEL mutant dams. Similarly, there was no effect of maternal genotype on weight of the offspring at birth or at any stage of postnatal growth. While there was an effect of sex on various tissue weights at 3 and 12 months of age, there were minimal effects of maternal genotype. Relative adrenal weight was significantly reduced (-32%) in offspring from ClockΔ19+MEL mutant dams, whereas gastrocnemius muscle was significantly increased (+16%) at 3 months of age only. Intraperitoneal glucose tolerance tests at 3 months of age revealed female offspring from ClockΔ19+MEL mutant dams had significantly reduced area under the curve following glucose administration (-25%), although no differences were found at 12 months of age. There was no effect of maternal genotype on intraperitoneal insulin tolerance at 3 or 12 months of age for either sex. These results demonstrate that foetal growth within a genetically disrupted circadian environment during gestation has no effect on pregnancy success, and only marginal impacts upon the long-term metabolic health of offspring. These results do not support the hypothesis that circadian rhythm disruption during pregnancy programs poor metabolic homeostasis in offspring. However, when maintained on a 12L:12D photoperiod, the ClockΔ19+MEL mutant dams display relatively normal patterns of activity and melatonin secretion, which may have reduced the impact of the mutation upon foetal metabolic programming.
Collapse
Affiliation(s)
- Tamara J Varcoe
- a Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine , The University of Adelaide , Adelaide , Australia
| | - Athena Voultsios
- a Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine , The University of Adelaide , Adelaide , Australia
| | - Kathryn L Gatford
- a Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine , The University of Adelaide , Adelaide , Australia
| | - David J Kennaway
- a Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
13
|
Butler MP, Honma S, Fukumoto T, Kawamoto T, Fujimoto K, Noshiro M, Kato Y, Honma KI. Dec1 and Dec2 Expression is Disrupted in the Suprachiasmatic Nuclei of Clock Mutant Mice. J Biol Rhythms 2016; 19:126-34. [PMID: 15038852 DOI: 10.1177/0748730403262870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
DEC1 and DEC2 are basic helix-loop-helix transcription factors that functionally resemble negative feedback components of the mammalian circadian clock. The genes Dec1 and Dec2 are expressed rhythmically in the rat suprachiasmatic nuclei, and Dec1 expression is stimulated by light in a timedependent manner with the kinetics of an immediate early gene. DEC1 and DEC2 can inhibit CLOCK:BMAL1 transactivation of the clock gene Per1, suggesting that these transcription factors may help regulate circadian timing. The authors present data on the expression pattern of Dec1 and Dec2 in wild-type and homozygous Clock mutant mice. In the suprachiasmatic nuclei, the Clock mutation significantly reduces the expression of Dec1 and Dec2. Dec1 becomes arrhythmic; Dec2 remains weakly rhythmic in a 12L:12D light-dark cycle but is arrhythmic in constant darkness. A robust attenuation of the Dec1 and Dec2 signals in Clock mutant mice was detected in all brain areas examined. These data point to up-regulation of Dec1 and Dec2 by Clock in vivo.
Collapse
Affiliation(s)
- Matthew Preston Butler
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Varcoe TJ, Gatford KL, Voultsios A, Salkeld MD, Boden MJ, Rattanatray L, Kennaway DJ. Rapidly alternating photoperiods disrupt central and peripheral rhythmicity and decrease plasma glucose, but do not affect glucose tolerance or insulin secretion in sheep. Exp Physiol 2014; 99:1214-28. [DOI: 10.1113/expphysiol.2014.080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tamara J. Varcoe
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Kathryn L. Gatford
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Athena Voultsios
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Mark D. Salkeld
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Michael J. Boden
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Leewen Rattanatray
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - David J. Kennaway
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
15
|
Zhou L, Bryant CD, Loudon A, Palmer AA, Vitaterna MH, Turek FW. The circadian clock gene Csnk1e regulates rapid eye movement sleep amount, and nonrapid eye movement sleep architecture in mice. Sleep 2014; 37:785-93, 793A-793C. [PMID: 24744456 DOI: 10.5665/sleep.3590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Efforts to identify the genetic basis of mammalian sleep have included quantitative trait locus (QTL) mapping and gene targeting of known core circadian clock genes. We combined three different genetic approaches to identify and test a positional candidate sleep gene - the circadian gene casein kinase 1 epsilon (Csnk1e), which is located in a QTL we identified for rapid eye movement (REM) sleep on chromosome 15. MEASUREMENTS AND RESULTS Using electroencephalographic (EEG) and electromyographic (EMG) recordings, baseline sleep was examined in a 12-h light:12-h dark (LD 12:12) cycle in mice of seven genotypes, including Csnk1e(tau/tau) and Csnk1e(-/-) mutant mice, Csnk1e (B6.D2) and Csnk1e (D2.B6) congenic mice, and their respective wild-type littermate control mice. Additionally, Csnk1e(tau/tau) and wild-type mice were examined in constant darkness (DD). Csnk1e(tau/tau) mutant mice and both Csnk1e (B6.D2) and Csnk1e (D2.B6) congenic mice showed significantly higher proportion of sleep time spent in REM sleep during the dark period than wild-type controls - the original phenotype for which the QTL on chromosome 15 was identified. This phenotype persisted in Csnk1e(tau/tau) mice while under free-running DD conditions. Other sleep phenotypes observed in Csnk1e(tau/tau) mice and congenics included a decreased number of bouts of nonrapid eye movement (NREM) sleep and an increased average NREM sleep bout duration. CONCLUSIONS These results demonstrate a role for Csnk1e in regulating not only the timing of sleep, but also the REM sleep amount and NREM sleep architecture, and support Csnk1e as a causal gene in the sleep QTL on chromosome 15.
Collapse
Affiliation(s)
- Lili Zhou
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL ; Department of Neurobiology, Northwestern University, Evanston, IL
| | - Camron D Bryant
- Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA
| | - Andrew Loudon
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL ; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL ; Department of Neurobiology, Northwestern University, Evanston, IL
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL ; Department of Neurobiology, Northwestern University, Evanston, IL
| |
Collapse
|
16
|
Abstract
In most species, endogenous circadian clocks regulate 24-h rhythms of behavior and physiology. Clock disruption has been associated with decreased cognitive performance and increased propensity to develop obesity, diabetes, and cancer. Many hormonal factors show robust diurnal secretion rhythms, some of which are involved in mediating clock output from the brain to peripheral tissues. In this review, we describe the mechanisms of clock-hormone interaction in mammals, the contribution of different tissue oscillators to hormonal regulation, and how changes in circadian timing impinge on endocrine signalling and downstream processes. We further summarize recent findings suggesting that hormonal signals may feed back on circadian regulation and how this crosstalk interferes with physiological and metabolic homeostasis.
Collapse
Affiliation(s)
- Anthony H Tsang
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Chronophysiology Group, Medical Department I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
17
|
Maury E, Hong HK, Bass J. Circadian disruption in the pathogenesis of metabolic syndrome. DIABETES & METABOLISM 2014; 40:338-46. [PMID: 24433933 DOI: 10.1016/j.diabet.2013.12.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022]
Abstract
Metabolic syndrome is a multifactorial process induced by a combination of genetic and environmental factors and recent evidence has highlighted that circadian disruption and sleep loss contribute to disease pathogenesis. Emerging work in experimental genetic models has provided insight into the mechanistic basis for clock disruption in disease. Indeed, disruption of the clock system perturbs both neuroendocrine pathways within the hypothalamus important in feeding and energetics, in addition to peripheral tissues involved in glucose and lipid metabolism. This review illustrates the impact of molecular clock disruptions at the level of both brain and behavior and peripheral tissues, with a focus on how such dysregulation in turn impacts lipid and glucose homeostasis, inflammation and cardiovascular function. New insight into circadian biology may ultimately lead to improved therapeutics for metabolic syndrome and cardiovascular disease in humans.
Collapse
Affiliation(s)
- E Maury
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Lurie 7-220, Chicago, Illinois 60611, USA.
| | - H K Hong
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Lurie 7-220, Chicago, Illinois 60611, USA
| | - J Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Lurie 7-220, Chicago, Illinois 60611, USA.
| |
Collapse
|
18
|
Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS One 2013; 8:e65255. [PMID: 23750248 PMCID: PMC3672145 DOI: 10.1371/journal.pone.0065255] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/24/2013] [Indexed: 12/15/2022] Open
Abstract
The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight). Bmal1 null mice aged 2 months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice displayed increased adiposity (1.8 fold and 2.3 fold respectively) on the normal diet, but the high fat diet did not exaggerate these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines involved in the cellular control of glucose metabolism.
Collapse
Affiliation(s)
- David John Kennaway
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Tamara Jayne Varcoe
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Athena Voultsios
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael James Boden
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Warthen DM, Provencio I. The role of intrinsically photosensitive retinal ganglion cells in nonimage-forming responses to light. Eye Brain 2012; 4:43-48. [PMID: 28539780 DOI: 10.2147/eb.s27839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Light exerts many effects on behavior and physiology. These effects can be characterized as either image-forming or nonimage-forming (NIF) visual processes. Image-forming vision refers to the process of detecting objects and organisms in the environment and distinguishing their physical characteristics, such as size, shape, and direction of motion. NIF vision, in contrast, refers to effects of light that are independent of fine spatiotemporal vision. NIF effects are many and varied, ranging from modulation of basal physiology, such as heart rate and body temperature, to changes in higher functions, such as mood and cognitive performance. In mammals, many NIF effects of light are dependent upon the inner retinal photopigment melanopsin and the cells in which melanopsin is expressed, the intrinsically photosensitive retinal ganglion cells (ipRGCs). The ipRGCs project broadly throughout the brain. Many of these projections terminate in areas known to mediate NIF effects, while others terminate in regions whose link to photoreception remains to be established. Additionally, the presence of ipRGC projections to areas of the brain with no known link to photoreception suggests the existence of additional ipRGC-mediated NIF effects. This review summarizes the known NIF effects of light and the role of melanopsin and ipRGCs in driving these effects, with an eye toward stimulating further investigation of the many and varied effects of light on physiology and behavior.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
20
|
Ferreira DS, Amaral FG, Mesquita CC, Barbosa APL, Lellis-Santos C, Turati AO, Santos LR, Sollon CS, Gomes PR, Faria JA, Cipolla-Neto J, Bordin S, Anhê GF. Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. PLoS One 2012; 7:e38795. [PMID: 22719949 PMCID: PMC3373595 DOI: 10.1371/journal.pone.0038795] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Background Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. Methodology/Principal Findings Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX). The PINX rats were divided into two groups and received either melatonin (PM) or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT), a pyruvate tolerance test (PTT) and an insulin tolerance test (ITT). Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. Conclusions/Significance The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.
Collapse
Affiliation(s)
- Danilo S. Ferreira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Fernanda G. Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline C. Mesquita
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Ana Paula L. Barbosa
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Camilo Lellis-Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ariane O. Turati
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Laila R. Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina S. Sollon
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Patricia R. Gomes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana A. Faria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel F. Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
- * E-mail:
| |
Collapse
|
21
|
Kennaway DJ, Boden MJ, Varcoe TJ. Circadian rhythms and fertility. Mol Cell Endocrinol 2012; 349:56-61. [PMID: 21872642 DOI: 10.1016/j.mce.2011.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/28/2023]
Abstract
Circadian rhythms impact on a wide range of physiological systems and this impact extends to fertility, such that disruptions to timing systems can impact upon reproductive capacity. This is highlighted most obviously in mutant mouse models whereby deletion or mutation of single genes results not only in disrupted circadian rhythmicity, but also compromised male and female reproductive function. In this review, we discuss the presence of circadian clocks in female and male reproductive tissues and the role these clocks play in the generation of oestrus cycles, ovulation, sperm generation, implantation and the maintenance of pregnancy. Given the increased incidence of shiftwork and international travel which disrupt circadian rhythmicity, and the increasing prevalence of reproductive technologies whereby early embryo development occurs without external time cues, it is important for us to consider the role of circadian rhythms in fertility.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
22
|
Kennaway DJ, Owens JA, Voultsios A, Wight N. Adipokines and adipocyte function in Clock mutant mice that retain melatonin rhythmicity. Obesity (Silver Spring) 2012; 20:295-305. [PMID: 21918578 DOI: 10.1038/oby.2011.276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clock(δ19)+MEL mutant mice, which retain melatonin rhythmicity, but lack peripheral tissue rhythmicity have impaired glucose tolerance, but reduced plasma free fatty acids, increased plasma adiponectin, and improved insulin sensitivity. Here, we report their response to a high-fat diet and adipocyte rhythmicity and function. The diet increased epigonadal fat weight similarly (twofold) in both wild-type and Clock(δ19)+MEL mice. The Clock(δ19) mutation abolished rhythmicity of Per2, Rev erbα and peroxisome proliferator-activated receptor-γ (Pparγ ) mRNA in epigonadal fat, but not Bmal1 mRNA, and reduced Rev erbα mRNA by 59 and 70% compared to the wild-type mice on the control and high-fat diets, respectively. The mutants had increased Adipoq mRNA expression in epigonadal fat (22%; P < 0.05) on a control diet, but showed no further change on a high-fat diet, and no change in Lep, Nampt or Retn mRNA on either diet. The Clock(δ19) mutation abolished rhythmicity of genes in epigonadal fat that contribute to plasma free fatty acids for mice on both diets, and increased Lipe mRNA expression in those on the high-fat diet. The persistent melatonin rhythm and reduced plasma free fatty acids in Clock(δ19)+MEL mutants may contribute to their enhanced insulin sensitivity, ameliorate the extent of impaired glucose homeostasis, and protect against the adverse effects of a high-fat diet.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Institute, Research Centre for Reproductive Health Discipline of Obstetrics and Gynaecology, University of Adelaide, Medical School, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
23
|
Yu EA, Weaver DR. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging (Albany NY) 2011; 3:479-93. [PMID: 21566258 PMCID: PMC3156599 DOI: 10.18632/aging.100323] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The circadian clock imparts 24-hour rhythmicity on gene expression and cellular physiology in virtually all cells. Disruption of the genes necessary for the circadian clock to function has diverse effects, including aging-related phenotypes. Some circadian clock genes have been described as tumor suppressors, while other genes have less clear functions in aging and cancer. In this Review, we highlight a recent study [Dubrovsky et al., Aging 2: 936-944, 2010] and discuss the much larger field examining the relationship between circadian clock genes, circadian rhythmicity, aging-related phenotypes, and cancer.
Collapse
Affiliation(s)
- Elizabeth A Yu
- Department of Neurobiology, MD/PhD Program, University of Massachusetts Medical School, Worcester, 01605, USA
| | | |
Collapse
|
24
|
Yamanaka Y, Suzuki Y, Todo T, Honma KI, Honma S. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Genes Cells 2010; 15:1063-71. [PMID: 20825493 DOI: 10.1111/j.1365-2443.2010.01443.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cryptochrome 1 and 2 (Cry1 and Cry2) are considered essential for generating circadian rhythms in mammals. The role of Cry1 and Cry2 in circadian rhythm expression and acute light-induced suppression of pineal melatonin was assessed using Cry1 and Cry2 double-deficient mice (Cry1(-/-) /Cry2(-/-) ) developed from the C3H strain that synthesizes melatonin. We examined the circadian variation of pineal melatonin under a 12:12-h light-dark (LD) cycle and constant darkness (DD). Light suppression of pineal melatonin concentration was analyzed by subjecting a 30-min light pulse at the peak phase of melatonin concentration. Wild-type mice showed significant rhythmicity in pineal melatonin concentration with the highest level at Zeitgeber time 22 (ZT22, where time of light on was defined as ZT0) under LD or ZT18 on the first day of DD. In contrast, Cry1(-/-) /Cry2(-/-) mice did not show significant circadian rhythmicity, with only a small peak observed at ZT22 in LD. Nevertheless, a significant daily variation could be observed under DD, with a small increase at ZT6 and ZT18 h. Melatonin concentration was significantly suppressed by acute light pulse at ZT22 in wild-type mice but not in Cry1(-/-) /Cry2(-/-) mice. The present results suggest that Cry genes are required for regulating pineal melatonin synthesis via circadian and photic signals from the suprachiasmatic nucleus of the hypothalamus (SCN).
Collapse
Affiliation(s)
- Yujiro Yamanaka
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | |
Collapse
|
25
|
Welp A, Manz B, Peschke E. Development and validation of a high throughput direct radioimmunoassay for the quantitative determination of serum and plasma melatonin (N-acetyl-5-methoxytryptamine) in mice. J Immunol Methods 2010; 358:1-8. [DOI: 10.1016/j.jim.2010.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
26
|
Genetic variation of melatonin productivity in laboratory mice under domestication. Proc Natl Acad Sci U S A 2010; 107:6412-7. [PMID: 20308563 DOI: 10.1073/pnas.0914399107] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pineal hormone produced at night; however, many strains of laboratory mice are deficient in melatonin. Strangely enough, the gene encoding HIOMT enzyme (also known as ASMT) that catalyzes the last step of melatonin synthesis is still unidentified in the house mouse (Mus musculus) despite the completion of the genome sequence. Here we report the identification of the mouse Hiomt gene, which was mapped to the pseudoautosomal region (PAR) of sex chromosomes. The gene was highly polymorphic, and nonsynonymous SNPs were found in melatonin-deficient strains. In C57BL/6 strain, there are two mutations, both of which markedly reduce protein expression. Mutability of the Hiomt likely due to a high recombination rate in the PAR could be the genomic basis for the high prevalence of melatonin deficiency. To understand the physiologic basis, we examined a wild-derived strain, MSM/Ms, which produced melatonin more under a short-day condition than a long-day condition, accompanied by increased Hiomt expression. We generated F2 intercrosses between MSM/Ms and C57BL/6 strains and N2 backcrosses to investigate the role of melatonin productivity on the physiology of mice. Although there was no apparent effect of melatonin productivity on the circadian behaviors, testis development was significantly promoted in melatonin-deficient mice. Exogenous melatonin also had the antigonadal action in mice of a melatonin-deficient strain. These findings suggest a favorable impact of melatonin deficiency due to Hiomt mutations on domestic mice in breeding colonies.
Collapse
|
27
|
Abstract
The incidence of the metabolic syndrome represents a spectrum of disorders that continue to increase across the industrialized world. Both genetic and environmental factors contribute to metabolic syndrome and recent evidence has emerged to suggest that alterations in circadian systems and sleep participate in the pathogenesis of the disease. In this review, we highlight studies at the intersection of clinical medicine and experimental genetics that pinpoint how perturbations of the internal clock system, and sleep, constitute risk factors for disorders including obesity, diabetes mellitus, cardiovascular disease, thrombosis and even inflammation. An exciting aspect of the field has been the integration of behavioral and physiological approaches, and the emerging insight into both neural and peripheral tissues in disease pathogenesis. Consideration of the cell and molecular links between disorders of circadian rhythms and sleep with metabolic syndrome has begun to open new opportunities for mechanism-based therapeutics.
Collapse
Affiliation(s)
- Eleonore Maury
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, 2200 Campus Drive, Evanston, Illinois 60208
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, 2200 Campus Drive, Evanston, Illinois 60208
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, 2200 Campus Drive, Evanston, Illinois 60208
| |
Collapse
|
28
|
Abstract
Histone deacetylases (HDAC) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDAC, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation, and cancer.
Collapse
Affiliation(s)
- Brittney Jung-Hynes
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
| | - Russel J. Reiter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
- The University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Address correspondence to: Nihal Ahmad, Ph.D., Department of Dermatology, University of Wisconsin, 1300 University Avenue, MSC 423, Madison, Wisconsin, 53706; Phone: (608) 263-5359; Fax: (608) 263-5223;
| |
Collapse
|
29
|
Ratajczak CK, Boehle KL, Muglia LJ. Impaired steroidogenesis and implantation failure in Bmal1-/- mice. Endocrinology 2009; 150:1879-85. [PMID: 19056819 PMCID: PMC5393263 DOI: 10.1210/en.2008-1021] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 11/21/2008] [Indexed: 11/19/2022]
Abstract
Evidence in humans and rodents suggests that normal circadian rhythmicity is important for supporting reproductive function. A molecular clock underlies circadian rhythmicity. Impaired fertility is observed in some genetically altered mice with deficiencies in genes of the molecular clock, suggesting a critical role for these genes in reproduction. Here we systematically characterize the reproductive phenotype of females deficient in the clock gene Bmal1. Bmal1(-/-) females are infertile. They exhibit progression through the estrous cycle, although these cycles are prolonged. Normal follicular development occurs in Bmal1(-/-) females, and healthy embryos of the expected developmental stage are found in the reproductive tract of Bmal1(-/-) females 3.5 d after mating to wild-type males. However, serum progesterone levels are significantly lower in Bmal1(-/-) vs. Bmal1(+/+/-) females on d 3.5 of gestation. Low progesterone levels in Bmal1(-/-) females are accompanied by decreased expression of steroidogenic acute regulatory protein in corpora lutea of Bmal1(-/-) vs. Bmal1(+/+/-) females. Whereas implantation of embryos is not observed in untreated or vehicle-treated Bmal1(-/-) females, exogenous administration of progesterone to Bmal1(-/-) females is able to reinstitute implantation. These data suggest that implantation failure due to impaired steroidogenesis causes infertility of Bmal1(-/-) females.
Collapse
Affiliation(s)
- Christine K Ratajczak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators. Mol Cell Biol 2008; 28:3070-5. [PMID: 18316400 DOI: 10.1128/mcb.01931-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock(-/-); Npas2(-/-) mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2(-/-) and Clock(Delta19/Delta19) mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes.
Collapse
|
31
|
Kennaway DJ, Owens JA, Voultsios A, Boden MJ, Varcoe TJ. Metabolic homeostasis in mice with disruptedClockgene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1528-37. [PMID: 17686888 DOI: 10.1152/ajpregu.00018.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of peripheral vs. central circadian rhythms and Clock in the maintenance of metabolic homeostasis and with aging was examined by using ClockΔ19+MEL mice. These have preserved suprachiasmatic nucleus and pineal gland rhythmicity but arrhythmic Clock gene expression in the liver and skeletal muscle. ClockΔ19+MEL mice showed fasting hypoglycemia in young-adult males, fasting hyperglycemia in older females, and substantially impaired glucose tolerance overall. ClockΔ19+MEL mice had substantially reduced plasma insulin and plasma insulin/glucose nocturnally in males and during a glucose tolerance test in females, suggesting impaired insulin secretion. ClockΔ19+MEL mice had reduced hepatic expression and loss of rhythmicity of gck, pfkfb3, and pepck mRNA, which is likely to impair glycolysis and gluconeogenesis. ClockΔ19+MEL mice also had reduced glut4 mRNA in skeletal muscle, and this may contribute to poor glucose tolerance. Whole body insulin tolerance was enhanced in ClockΔ19+MEL mice, however, suggesting enhanced insulin sensitivity. These responses occurred although the ClockΔ19mutation did not cause obesity and reduced plasma free fatty acids while increasing plasma adiponectin. These studies on clock-gene disruption in peripheral tissues and metabolic homeostasis provide compelling evidence of a relationship between circadian rhythms and the glucose/insulin and adipoinsular axes. It is, however, premature to declare that clock-gene disruption causes the full metabolic syndrome.
Collapse
Affiliation(s)
- David J Kennaway
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Univ. of Adelaide, Medical School, Frome Road, Adelaide, South Australia, 5005.
| | | | | | | | | |
Collapse
|
32
|
Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 2007; 25:3195-216. [PMID: 17552989 DOI: 10.1111/j.1460-9568.2007.05581.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level.
Collapse
Affiliation(s)
- Clare Guilding
- 3.614 Stopford Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
33
|
Oishi K, Ohkura N, Kadota K, Kasamatsu M, Shibusawa K, Matsuda J, Machida K, Horie S, Ishida N. Clock mutation affects circadian regulation of circulating blood cells. J Circadian Rhythms 2006; 4:13. [PMID: 17014730 PMCID: PMC1592512 DOI: 10.1186/1740-3391-4-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/02/2006] [Indexed: 11/17/2022] Open
Abstract
Background Although the number of circulating immune cells is subject to high-amplitude circadian rhythms, the underlying mechanisms are not fully understood. Methods To determine whether intact CLOCK protein is required for the circadian changes in peripheral blood cells, we examined circulating white (WBC) and red (RBC) blood cells in homozygous Clock mutant mice. Results Daytime increases in total WBC and lymphocytes were suppressed and slightly phase-delayed along with plasma corticosterone levels in Clock mutant mice. The peak RBC rhythm was significantly reduced and phase-advanced in the Clock mutants. Anatomical examination revealed hemoglobin-rich, swollen red spleens in Clock mutant mice, suggesting RBC accumulation. Conclusion Our results suggest that endogenous clock-regulated circadian corticosterone secretion from the adrenal gland is involved in the effect of a Clock mutation on daily profiles of circulating WBC. However, intact CLOCK seems unnecessary for generating the rhythm of corticosterone secretion in mice. Our results also suggest that CLOCK is involved in discharge of RBC from the spleen.
Collapse
Affiliation(s)
- Katsutaka Oishi
- Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
| | - Naoki Ohkura
- Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Tsukui, Kanagawa 199–0195, Japan
| | - Koji Kadota
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Manami Kasamatsu
- Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
| | - Kentaro Shibusawa
- Department of Hygiene and Public Health, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359–1192, Japan
| | - Juzo Matsuda
- Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Tsukui, Kanagawa 199–0195, Japan
| | - Kazuhiko Machida
- Department of Hygiene and Public Health, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359–1192, Japan
| | - Shuichi Horie
- Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Tsukui, Kanagawa 199–0195, Japan
| | - Norio Ishida
- Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8502, Japan
| |
Collapse
|
34
|
Kennaway DJ, Owens JA, Voultsios A, Varcoe TJ. Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1172-80. [PMID: 16709646 DOI: 10.1152/ajpregu.00223.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian rhythmicity of hormone secretion, body temperature, and sleep/wakefulness results from an endogenous rhythm of neural activity generated by clock genes in the suprachiasmatic nucleus (SCN). One of these genes, Clock, has been considered essential for the generation of cellular rhythmicity centrally and in the periphery; however, melatonin-proficient Clock(Delta19) + MEL mutant mice retain melatonin rhythmicity, suggesting that their central rhythmicity is intact. Here we show that melatonin production in these mutants was rhythmic in constant darkness and could be entrained by brief single daily light pulses. Under normal light-dark conditions, per2 and prokineticin2 (PK2) mRNA expression was rhythmic in the SCN of Clock(Delta19) + MEL mice. Expression of Bmal1 and npas2 was not altered, whereas per1 expression was arrhythmic. In contrast to the SCN, per1 and per2 expression, as well as Bmal1 expression in liver and skeletal muscle, together with plasma corticosterone, was arrhythmic in Clock(Delta19) + MEL mutant mice in normal light-dark conditions. npas2 mRNA was also arrhythmic in liver but rhythmic in muscle. The Clock(Delta19) mutation does not abolish central rhythmicity and light entrainment, suggesting that a functional Clock homolog, possibly npas2, exists in the SCN. Nevertheless, the SCN of Clock(Delta19) + MEL mutant mice cannot maintain liver and muscle rhythmicity through rhythmic outputs, including melatonin secretion, in the absence of functional Clock expression in the tissues. Therefore, liver and muscle, but not SCN, have an absolute requirement for CLOCK, with as yet unknown Clock-independent factors able to generate the latter.
Collapse
Affiliation(s)
- David J Kennaway
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, Medical School, University of Adelaide, Frome Rd., Adelaide, South Australia 5000, Australia.
| | | | | | | |
Collapse
|
35
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
36
|
Fukuhara C, Yamazaki S, Liang J. Pineal circadian clocks gate arylalkylamine N-acetyltransferase gene expression in the mouse pineal gland. J Neurochem 2005; 93:156-62. [PMID: 15773915 DOI: 10.1111/j.1471-4159.2004.03008.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In mammals it has been thought that the circadian clock localizes only in the suprachiasmatic nucleus of the hypothalamus. Recent studies have revealed that certain brain regions and peripheral tissues may also have intrinsic circadian clocks. However, the roles played by 'peripheral circadian clocks' have not been fully elucidated. In this study, we investigated their function using mouse pineal glands, and found that expression of the arylalkylamine N-acetyltransferase (Aa-Nat, EC 2.3.1.87, the rate-limiting enzyme of melatonin synthesis) gene after adrenergic receptor stimulation depended on the time of day even in vitro (gating). Phase-dependent Aa-Nat responses were observed in both melatonin-proficient and melatonin-deficient mouse pineal glands. Phosphodiesterases are unlikely to suppress Aa-Nat induction because a phosphodiesterase inhibitor itself had no effect on the mRNA levels. Puromycin was ineffective in inducing Aa-Nat mRNA levels in either the presence or absence of isoproterenol, suggesting that newly synthesized proteins may not be necessary to gate the Aa-Nat responses. We also discovered circadian dependence of the expression of Period1-luminescence in Period1-luciferase transgenic mouse pineal glands: circadian clocks may be functional in culture. Aa-Nat mRNA levels showed no significant circadian rhythms in the absence of isoproterenol, thus suggesting that Aa-Nat mRNA levels are induced by adrenergic mechanisms, not by a pineal circadian clock. Our results suggest that the pineal circadian clock may determine timing when Aa-Nat gene expression can respond to inputs from the master circadian clock in the suprachiasmatic nucleus, e.g. adrenergic stimulation.
Collapse
Affiliation(s)
- Chiaki Fukuhara
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA.
| | | | | |
Collapse
|
37
|
Kennaway DJ, Boden MJ, Voultsios A. Reproductive performance in female ClockΔ19 mutant mice. Reprod Fertil Dev 2004; 16:801-10. [PMID: 15740704 DOI: 10.1071/rd04023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 11/02/2004] [Indexed: 12/18/2022] Open
Abstract
The relationship between circadian rhythmicity and rodent reproductive cyclicity is well established, but the impact of disrupted clock gene function on reproduction has not been well established. The present study evaluated the reproductive performance of mice carrying the ClockΔ19 mutation that were either melatonin deficient (ClockΔ19/Δ19) or had the capacity to synthesise melatonin reinstated (ClockΔ19/Δ19+MEL). The ClockΔ19/Δ19 mice took 2–3 days longer to mate, and to subsequently deliver pups, than their control line. The melatonin-competent mutants had a smaller, but still significant (P < 0.05), delay. The ClockΔ19 mutation resulted in smaller median litter sizes compared with control lines (seven v. eight pups; P < 0.05), whereas melatonin proficiency reversed this difference. Survival to weaning was 84% and 80% for the ClockΔ19/Δ19 and ClockΔ19/Δ19+MEL lines, respectively, compared with 94–96% for the two control lines. The ClockΔ19/Δ19 mutants became behaviourally arrhythmic in constant darkness but, despite this, seven of seven became pregnant when paired with males after at least 14 days of constant darkness (five of seven within 4 days of pairing). In the ClockΔ19/Δ19+MEL mice, seven of 15 became arrhythmic in constant darkness but still became pregnant. The seven mice that free ran for at least 14 days in constant darkness with a period of 27.1 h also became pregnant. The present study has demonstrated that the ClockΔ19 mutation has significant, but subtle, effects on reproductive performance. The reintroduction of melatonin competency and/or other genes as a result of crosses with CBA mice reduced the impact of the mutation further. It would appear that redundancy in genes in the circadian system allows the reproductive cyclicity to persist in mice, albeit at a suboptimal level.
Collapse
Affiliation(s)
- David J Kennaway
- Department of Obstetrics and Gynaecology, University of Adelaide, Medical School, Adelaide, SA, Australia.
| | | | | |
Collapse
|