1
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
2
|
Lipid Rafts and Dopamine Receptor Signaling. Int J Mol Sci 2020; 21:ijms21238909. [PMID: 33255376 PMCID: PMC7727868 DOI: 10.3390/ijms21238909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The renal dopaminergic system has been identified as a modulator of sodium balance and blood pressure. According to the Centers for Disease Control and Prevention, in 2018 in the United States, almost half a million deaths included hypertension as a primary or contributing cause. Renal dopamine receptors, members of the G protein-coupled receptor family, are divided in two groups: D1-like receptors that act to keep the blood pressure in the normal range, and D2-like receptors with a variable effect on blood pressure, depending on volume status. The renal dopamine receptor function is regulated, in part, by its expression in microdomains in the plasma membrane. Lipid rafts form platforms within the plasma membrane for the organization and dynamic contact of molecules involved in numerous cellular processes such as ligand binding, membrane sorting, effector specificity, and signal transduction. Understanding all the components of lipid rafts, their interaction with renal dopamine receptors, and their signaling process offers an opportunity to unravel potential treatment targets that could halt the progression of hypertension, chronic kidney disease (CKD), and their complications.
Collapse
|
3
|
Barati MT, Ketchem CJ, Merchant ML, Kusiak WB, Jose PA, Weinman EJ, LeBlanc AJ, Lederer ED, Khundmiri SJ. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats. Am J Physiol Cell Physiol 2017; 313:C197-C206. [PMID: 28515088 DOI: 10.1152/ajpcell.00219.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.
Collapse
Affiliation(s)
- Michelle T Barati
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Michael L Merchant
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Walter B Kusiak
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, and Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amanda J LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Eleanor D Lederer
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky.,Department of Physiology, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky; and
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, District of Columbia
| |
Collapse
|
4
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
5
|
Ennis RC, Asico LD, Armando I, Yang J, Feranil JB, Jurgens JA, Escano CS, Yu P, Wang X, Sibley DR, Jose PA, Villar VAM. Dopamine D₁-like receptors regulate the α₁A-adrenergic receptor in human renal proximal tubule cells and D₁-like dopamine receptor knockout mice. Am J Physiol Renal Physiol 2014; 307:F1238-48. [PMID: 25339698 DOI: 10.1152/ajprenal.00119.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D₁-like dopamine receptors [dopamine D₁ and D₅ receptors (D₁Rs and D₅Rs, respectively)] and the α₁A-adrenergic receptor (α₁A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D₁Rs and D5Rs) or antinatriuresis (via α₁A-ARs). We tested the hypothesis that the D₁R/D₅R regulates the α₁A-AR. D₁-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with α₁A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D₁R/D₅R agonist fenoldopam resulted in decreased D₁R and D₅R expression but increased α₁A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na(+)-K(+)-ATPase from the plasma membrane to the cytosol that was partially reversed by an α₁A-AR agonist, which by itself induced Na(+)-K(+)-ATPase translocation from the cytosol to the plasma membrane. The α₁A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na(+)-K(+)-ATPase activity. To determine the interaction among D₁Rs, D₅Rs, and α₁A-ARs in vivo, we used phenylephrine and A610603 to decrease Na(+) excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na(+) excretion in wild-type mice and its abolition in D1R knockout, D₅R knockout, and D₁R-D₅R double-knockout mice. Our results demonstrate the ability of the D₁-like dopamine receptors to regulate the expression and activity of α₁A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems.
Collapse
Affiliation(s)
- Riley Charles Ennis
- Thomas Jefferson High School for Science and Technology, Alexandria, Virgina
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jun B Feranil
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julie A Jurgens
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Crisanto S Escano
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peiying Yu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
| |
Collapse
|
6
|
Xie P, Joladarashi D, Dudeja P, Sun L, Kanwar YS. Modulation of angiotensin II-induced inflammatory cytokines by the Epac1-Rap1A-NHE3 pathway: implications in renal tubular pathobiology. Am J Physiol Renal Physiol 2014; 306:F1260-74. [PMID: 24553435 DOI: 10.1152/ajprenal.00069.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Besides the glomerulus, the tubulointerstitium is often concomitantly affected in certain diseases, e.g., diabetic nephropathy, and activation of the renin-angiotensin system, to a certain extent, worsens its outcome because of perturbations in hemodynamics and possibly tubuloglomerular feedback. Certain studies suggest that pathobiology of the tubulointerstitium is influenced by small GTPases, e.g., Rap1. We investigated the effect of ANG II on inflammatory cytokines, while at the same time focusing on upstream effector of Rap1, i.e., Epac1, and some of the downstream tubular transport molecules, i.e., Na/H exchanger 3 (NHE3). ANG II treatment of LLC-PK1 cells decreased Rap1a GTPase activity in a time- and dose-dependent manner. ANG II treatment led to an increased membrane translocation of NHE3, which was reduced with Epac1 and PKA activators. ANG II-induced NHE3 translocation was notably reduced with the transfection of Rap1a dominant positive mutants, i.e., Rap1a-G12V or Rap1a-T35A. Transfection of cells with dominant negative Rap1a mutants, i.e., Rap1a-S17A, or Epac1 mutant, i.e., EPAC-ΔcAMP, normalized ANG II-induced translocation of NHE3. In addition, ANG II treatment led to an increased expression of inflammatory cytokines, i.e., IL-1β, IL-6, IL-8, and TNF-α, which was reduced with Rap1a-G12V or Rap1a-T35A transfection, while it reverted to previous comparable levels following transfection of Rap1a-S17A or EPAC-ΔcAMP. ANG II-induced expression of cytokines was reduced with the treatment with NHE3 inhibitor S3226 or with Epac1 and PKA activators. These data suggest that this novel Epac1-Rap1a-NHE3 pathway conceivably modulates ANG II-induced expression of inflammatory cytokines, and this information may yield the impetus for developing strategies to reduce tubulointertstitial inflammation in various renal diseases.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| | | | - Pradeep Dudeja
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Lin Sun
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
7
|
Babich V, Vadnagara K, Di Sole F. The biophysical and molecular basis of intracellular pH sensing by Na+/H+ exchanger-3. FASEB J 2013; 27:4646-58. [PMID: 23934281 DOI: 10.1096/fj.12-225466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Epithelial Na(+)/H(+) exchanger-3 (NHE3) transport is fundamental for renal and intestinal sodium reabsorption. Cytoplasmic protons are thought to serve as allosteric modifiers of the exchanger and to trigger its transport through protein conformational change. This effect presupposes an intracellular pH (pHi) dependence of NHE3 activity, although the biophysical and molecular basis of NHE3 pHi sensitivity have not been defined. NHE3, when complexed with the calcineurin homologous protein-1 (CHP1), had a shift in pHi sensitivity (0.4 units) toward the acidic side in comparison with NHE3 alone, as measured by oscillating pH electrodes combined with whole-cell patch clamping. Indeed, CHP1 interaction with NHE3 inhibited NHE3 transport in a pHi -dependent manner. CHP1 binding to NHE3 also affected its acute regulation. Intracellular perfusion of peptide from the CHP1 binding region (or pHi modification to reduce the CHP1 amount bound to NHE3) was permissive and cooperative for dopamine inhibition of NHE3 but reversed that of adenosine. Thus, CHP1 interaction with NHE3 apparently establishes the exchanger set point for pHi, and modification in this set point is effective in the hormonal stimuli-mediated regulation of NHE3. CHP1 may serve as a regulatory cofactor for NHE3 conformational change, dependent on intracellular protonation.
Collapse
Affiliation(s)
- Victor Babich
- 1Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSFII, Suite S005, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
8
|
Liu S, Jia Z, Zhou L, Liu Y, Ling H, Zhou SF, Zhang A, Du Y, Guan G, Yang T. Nitro-oleic acid protects against adriamycin-induced nephropathy in mice. Am J Physiol Renal Physiol 2013; 305:F1533-41. [PMID: 23486011 DOI: 10.1152/ajprenal.00656.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Adriamycin (ADR) administration in susceptible rodents such as the BALB/c mouse strain produces injury to the glomerulus mimicking human focal glomerular sclerosis. The goal of the present study was to use this model to investigate antiproteinuric action of nitro-oleic acid (OA-NO2), a nitric oxide-derived endogenous lipid product, which has exhibited multiple attractive signaling properties particularly in the kidney. BALB/c mice were pretreated for 2 days with OA-NO2 at 5 mg·kg(-1)·day(-1) via an osmotic minipump, followed by a single injection of vehicle or adriamycin (10 mg/kg) via the tail vein. Albuminuria and renal function were analyzed at 1 wk post-ADR treatment. ADR mice developed prominent albuminuria, hypoalbuminemia, hyperlipidemia, and severe ascites. In contrast, the symptoms of nephrotic syndrome were greatly improved by OA-NO2 treatment. In parallel, plasma creatinine and plasma urea nitrogen were elevated in the ADR group, and the severity was less in the ADR+OA-NO2 group. OA-NO2 attenuates ADR-induced glomerulosclerosis, podocyte loss, and tubulointerstitial fibrosis. Indices of oxidative stress, including plasma and urinary thiobarbituric acid-reactive substances and renal expression of NAD(P)H oxidase p47(phox) and gp91(phox), and inflammation, including renal expression of TNF-α, IL-1β, and MCP-1 in response to ADR, were all similarly suppressed. Together, these findings suggest that OA-NO2 exerts renoprotective action against ADR nephropathy likely via its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Shanshan Liu
- Univ. of Utah and Veterans Affairs Medical Center, Div. of Nephrology and Hypertension, 30N 1900E, RM 4C224, Salt Lake City, UT 84132.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hu MC, Di Sole F, Zhang J, McLeroy P, Moe OW. Chronic regulation of the renal Na(+)/H(+) exchanger NHE3 by dopamine: translational and posttranslational mechanisms. Am J Physiol Renal Physiol 2013; 304:F1169-80. [PMID: 23427139 DOI: 10.1152/ajprenal.00630.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
The intrarenal autocrine/paracrine dopamine (DA) system contributes to natriuresis in response to both acute and chronic Na(+) loads. While the acute DA effect is well described, how DA induces natriuresis chronically is not known. We used an animal and a cell culture model to study the chronic effect of DA on a principal renal Na(+) transporter, Na(+)/H(+) exchanger-3 (NHE3). Intraperitoneal injection of Gludopa in rats for 2 days elevated DA excretion and decreased total renal cortical and apical brush-border NHE3 antigen. Chronic treatment of an opossum renal proximal cell line with DA decreased NHE3 activity, cell surface and total cellular NHE3 antigen, but not NHE3 transcript. The decrease in NHE3 antigen was dose and time dependent with maximal inhibition at 16-24 h and half maximal effect at 3 × 10(-7) M. This is in contradistinction to the acute effect of DA on NHE3 (half maximal at 2 × 10(-6) M), which was not associated with changes in total cellular NHE3 protein. The DA-induced decrease in total NHE3 protein was associated with decrease in NHE3 translation and mediated by cis-sequences in the NHE3 5'-untranslated region. DA also decreased cell surface and total cellular NHE3 protein half-life. The DA-induced decrease in total cellular NHE3 was partially blocked by proteasome inhibition but not by lysosome inhibition, and DA increased ubiquitylation of total and surface NHE3. In summary, chronic DA inhibits NHE3 with mechanisms distinct from its acute action and involves decreased NHE3 translation and increased NHE3 degradation, which are novel mechanisms for NHE3 regulation.
Collapse
Affiliation(s)
- Ming Chang Hu
- Dept. of Internal Medicine, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA
| | | | | | | | | |
Collapse
|
10
|
Lin TW, Kuo YM. Exercise benefits brain function: the monoamine connection. Brain Sci 2013; 3:39-53. [PMID: 24961306 PMCID: PMC4061837 DOI: 10.3390/brainsci3010039] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2012] [Revised: 10/29/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022] Open
Abstract
The beneficial effects of exercise on brain function have been demonstrated in animal models and in a growing number of clinical studies on humans. There are multiple mechanisms that account for the brain-enhancing effects of exercise, including neuroinflammation, vascularization, antioxidation, energy adaptation, and regulations on neurotrophic factors and neurotransmitters. Dopamine (DA), noradrenaline (NE), and serotonin (5-HT) are the three major monoamine neurotransmitters that are known to be modulated by exercise. This review focuses on how these three neurotransmitters contribute to exercise affecting brain function and how it can work against neurological disorders.
Collapse
Affiliation(s)
- Tzu-Wei Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
11
|
Banday AA, Lokhandwala MF. Angiotensin II-mediated biphasic regulation of proximal tubular Na+/H+ exchanger 3 is impaired during oxidative stress. Am J Physiol Renal Physiol 2011; 301:F364-70. [PMID: 21593187 DOI: 10.1152/ajprenal.00121.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Angiotensin (ANG) II via AT1 receptors (AT1Rs) maintains sodium homeostasis by regulating renal sodium transporters including Na(+)/H(+) exchanger 3 (NHE3) in a biphasic manner. Low-ANG II concentration stimulates whereas high concentrations inhibit NHE3 activity. Oxidative stress has been shown to upregulate AT1R function that could modulate the ANG II-mediated NHE3 regulation. This study was designed to identify the signaling pathways responsible for ANG II-mediated biphasic regulation of proximal tubular NHE3 and the effect of oxidative stress on this phenomenon. Male Sprague-Dawley rats were chronically treated with a pro-oxidant L-buthionine sulfoximine (BSO) with and without an antioxidant tempol in tap water for 3 wk. BSO-treated rats exhibited oxidative stress and high blood pressure. At low concentration (1 pM) ANG II increased NHE3 activity in proximal tubules from all animals. However, in BSO-treated rats, the stimulation was more robust and was normalized by tempol treatment. ANG II (1 pM)-mediated NHE3 activation was abolished by AT1R blocker, intracellular Ca(2+) chelator, and inhibitors of phospholipase C (PLC) and Ca(2+)-dependent calmodulin (CaM) but it was insensitive to Giα and protein kinase C inhibitors or AT2R antagonist. A high concentration of ANG II (1 μM) inhibited NHE3 activity in control and tempol-treated rats. However, in BSO-treated rats, ANG II (1 μM) continued to induce NHE3 stimulation. Tempol restored the inhibitory effect of ANG II (1 μM) in BSO-treated rats. The inhibitory effect of ANG II (1 μM) involved AT1R-dependent, cGMP-dependent protein kinase (PKG) activation and was independent of AT2 receptor and nitric oxide signaling. We conclude that ANG II stimulates NHE3 via AT1R-PLC-CaM pathway and inhibits NHE3 by AT1R-PKG activation. Oxidative stress impaired ANG II-mediated NHE3 biphasic response in that stimulation was observed at both high- and low-ANG II concentration.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Texas 77204, USA.
| | | |
Collapse
|
12
|
Banday AA, Lokhandwala MF. Oxidative Stress Causes Renal Angiotensin II Type 1 Receptor Upregulation, Na
+
/H
+
Exchanger 3 Overstimulation, and Hypertension. Hypertension 2011; 57:452-9. [DOI: 10.1161/hypertensionaha.110.162339] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anees A. Banday
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX
| | - Mustafa F. Lokhandwala
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX
| |
Collapse
|
13
|
Zhang Y, Fu C, Ren H, He D, Wang X, Asico LD, Jose PA, Zeng C. Impaired stimulatory effect of ETB receptor on D₃ receptor in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Blood Press Res 2011; 34:75-82. [PMID: 21228598 DOI: 10.1159/000323135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of renal D₃ receptor induces natriuresis and diuresis in Wistar-Kyoto (WKY) rats; in the presence of ETB receptor antagonist, the natriuretic effect of D₃ receptor in WKY rats is reduced. We hypothesize that ETB receptor activation may regulate D₃ receptor expression in renal proximal tubule (RPT) cells from WKY rats, which is impaired in RPT cells from spontaneously hypertensive rats (SHRs). METHODS D₃ receptor expression was determined by immunoblotting; the D₃/ETB receptor linkage was checked by coimmunoprecipitation; Na(+)-K(+)-ATPase activity was determined as the rate of inorganic phosphate released in the presence or absence of ouabain. RESULTS In RPT cells from WKY rats, the ETB receptor agonist BQ3020 increased D₃ receptor protein. In contrast, in RPT cells from SHRs, BQ3020 did not increase D₃ receptor. There was coimmunoprecipitation between D₃ and ETB receptors in RPT cells from WKY and SHRs. Activation of ETB receptor increased D₃/ETB coimmunoprecipitation in RPT cells from WKY rats, but not from SHRs. The basal levels of D₃/ETB receptor coimmunoprecipitation were greater in RPT cells from WKY rats than in those from SHRs. Stimulation of D₃ receptor inhibited Na(+)-K(+)-ATPase activity, which was augmented by the pretreatment with the ETB receptor agonist BQ3020 in WKY RPT cells, but not in SHR RPT cells. CONCLUSION ETB receptors regulate and physically interact with D₃ receptors differently in WKY rats and SHRs. The impaired natriuretic effect in SHRs may be, in part, related to impaired ETB and D₃ receptor interactions.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jose PA, Soares-da-Silva P, Eisner GM, Felder RA. Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1259-67. [PMID: 20153824 DOI: 10.1016/j.bbadis.2010.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 12/11/2022]
Abstract
Complex interactions between genes and environment result in a sodium-induced elevation in blood pressure (salt sensitivity) and/or hypertension that lead to significant morbidity and mortality affecting up to 25% of the middle-aged adult population worldwide. Determining the etiology of genetic and/or environmentally-induced high blood pressure has been difficult because of the many interacting systems involved. Two main pathways have been implicated as principal determinants of blood pressure since they are located in the kidney (the key organ responsible for blood pressure regulation), and have profound effects on sodium balance: the dopaminergic and renin-angiotensin systems. These systems counteract or modulate each other, in concert with a host of intracellular second messenger pathways to regulate sodium and water balance. In particular, the G protein-coupled receptor kinase type 4 (GRK4) appears to play a key role in regulating dopaminergic-mediated natriuresis. Constitutively activated GRK4 gene variants (R65L, A142V, and A486V), by themselves or by their interaction with other genes involved in blood pressure regulation, are associated with essential hypertension and/or salt-sensitive hypertension in several ethnic groups. GRK4γ 142Vtransgenic mice are hypertensive on normal salt intake while GRK4γ 486V transgenic mice develop hypertension only with an increase in salt intake. GRK4 gene variants have been shown to hyperphosphorylate, desensitize, and internalize two members of the dopamine receptor family, the D(1) (D(1)R) and D(3) (D(3)R) dopamine receptors, but also increase the expression of a key receptor of the renin-angiotensin system, the angiotensin type 1 receptor (AT(1)R). Knowledge of the numerous blood pressure regulatory pathways involving angiotensin and dopamine may provide new therapeutic approaches to the pharmacological regulation of sodium excretion and ultimately blood pressure control.
Collapse
Affiliation(s)
- Pedro A Jose
- Children's National Medical Center, George Washington University for the Health Sciences, Washington, DC, USA.
| | | | | | | |
Collapse
|
15
|
Wang X, Armando I, Upadhyay K, Pascua A, Jose PA. The regulation of proximal tubular salt transport in hypertension: an update. Curr Opin Nephrol Hypertens 2009; 18:412-420. [PMID: 19654544 PMCID: PMC3722593 DOI: 10.1097/mnh.0b013e32832f5775] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Renal proximal tubular sodium reabsorption is regulated by sodium transporters, including the sodium glucose transporter, sodium amino acid transporter, sodium hydrogen exchanger isoform 3 and sodium phosphate cotransporter type 2 located at the luminal/apical membrane, and sodium bicarbonate cotransporter and Na+/K+ATPase located at the basolateral membrane. This review summarizes recent studies on sodium transporters that play a major role in the increase in blood pressure in essential/polygenic hypertension. RECENT FINDINGS Sodium transporters and Na+/K+ATPase are segregated in membrane lipid and nonlipid raft microdomains that regulate their activities and trafficking via cytoskeletal proteins. The increase in renal proximal tubule ion transport in polygenic hypertension is primarily due to increased activity of NHE3 and Cl/HCO3 exchanger at the luminal/apical membrane and a primary or secondary increase in Na+/K+ATPase activity. SUMMARY The increase in renal proximal tubule ion transport in hypertension is due to increased actions by prohypertensive factors that are unopposed by antihypertensive factors.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
16
|
Li H, Han W, Villar VAM, Keever LB, Lu Q, Hopfer U, Quinn MT, Felder RA, Jose PA, Yu P. D1-like receptors regulate NADPH oxidase activity and subunit expression in lipid raft microdomains of renal proximal tubule cells. Hypertension 2009; 53:1054-61. [PMID: 19380616 DOI: 10.1161/hypertensionaha.108.120642] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
NADPH oxidase (Nox)-dependent reactive oxygen species production is implicated in the pathogenesis of cardiovascular diseases, including hypertension. We tested the hypothesis that oxidase subunits are differentially regulated in renal proximal tubules from normotensive and spontaneously hypertensive rats. Basal Nox2 and Nox4, but not Rac1, in immortalized renal proximal tubule cells and brush border membranes were greater in hypertensive than in normotensive rats. However, more Rac1 was expressed in lipid rafts in cells from hypertensive rats than in cells from normotensive rats; the converse was observed with Nox4, whereas Nox2 expression was similar. The D(1)-like receptor agonist fenoldopam decreased Nox2 and Rac1 protein in lipid rafts to a greater extent in hypertensive than in normotensive rats. Basal oxidase activity was 3-fold higher in hypertensive than in normotensive rats but was inhibited to a greater extent by fenoldopam in normotensive (58+/-3.3%) than in hypertensive rats (31+/-5.2%; P<0.05; n=6 per group). Fenoldopam decreased the amount of Nox2 that coimmunoprecipitated with p67(phox) in cells from normotensive rats. D(1)-like receptors may decrease oxidase activity by disrupting the distribution and assembly of oxidase subunits in cell membrane microdomains. The cholesterol-depleting reagent methyl-beta-cyclodextrin decreased oxidase activity and cholesterol content to a greater extent in hypertensive than in normotensive rats. The greater basal levels of Nox2 and Nox4 in cell membranes and Nox2 and Rac1 in lipid rafts in hypertensive rats than in normotensive rats may explain the increased basal oxidase activity in hypertensive rats.
Collapse
Affiliation(s)
- Hewang Li
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang X, Villar VAM, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol 2008; 23:2131-46. [PMID: 18615257 PMCID: PMC3724362 DOI: 10.1007/s00467-008-0901-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/21/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Ines Armando
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Gilbert M. Eisner
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A. Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
18
|
Banday AA, Lokhandwala MF. Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension. Am J Physiol Renal Physiol 2008; 295:F698-706. [PMID: 18614617 DOI: 10.1152/ajprenal.90308.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species have emerged as important molecules in cardiovascular dysfunction such as diabetes and hypertension. Recent work has shown that oxidative stress and angiotensin II signaling mutually regulate each other by multiple mechanisms and contribute to the development of hypertension. Most of the known biological actions of angiotensin II can be attributed to AT1 receptors. The present study was carried out to investigate the role of renal AT1 receptor signaling in oxidative stress-mediated hypertension. Male Sprague-Dawley rats received tap water (control) or 30 mM L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mM tempol (an antioxidant) for 2 wk. Compared with control rats, BSO-treated rats exhibited increased oxidative stress and reduced antioxidant levels and developed hypertension. BSO treatment also caused increased renal proximal tubular AT1 receptor protein abundance, message levels, and ligand binding. In these rats, angiotensin II caused significantly higher accumulation of inositol trisphosphate (IP3) and phospholipase C (PLC) activation which was sensitive to blockade by AT1 but not to AT2 antagonist. Also, angiotensin II-mediated, AT1-dependent MAP kinase, Na-K-ATPase, and Na/H exchanger 3 activation was higher in BSO-treated rats than in control rats. Tempol supplementation of BSO-treated rats restored redox status, normalized AT1 receptor expression, and decreased blood pressure. Tempol also normalized the angiotensin II-mediated, AT1-dependent IP3 accumulation and PLC, MAP kinase, Na-K-ATPase, and Na/H exchanger 3 stimulation. These data suggest that oxidative stress leads to AT1 receptor upregulation, which in turn causes overstimulation of sodium transporters and subsequently contributes to sodium retention and hypertension. Tempol, while reducing oxidative stress, normalizes AT1 receptor signaling and decreases blood pressure.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, 4800 Calhoun, Houston, TX 77204, USA.
| | | |
Collapse
|
19
|
Zeng C, Asico LD, Yu C, Villar VAM, Shi W, Luo Y, Wang Z, He D, Liu Y, Huang L, Yang C, Wang X, Hopfer U, Eisner GM, Jose PA. Renal D3 dopamine receptor stimulation induces natriuresis by endothelin B receptor interactions. Kidney Int 2008; 74:750-9. [PMID: 18547994 DOI: 10.1038/ki.2008.247] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Dopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats. The D(3) receptor agonist (PD128907) caused natriuresis in WKY rats which was partially blocked by the ETB receptor antagonist. In contrast, PD128907 blunted sodium excretion in the SHRs. We found using laser confocal microscopy that the ETB receptor was mainly located in the cell membrane in control WKY cells. Treatment with the D(3) receptor antagonist caused its internalization into intracellular compartments that contained the D(3) receptors. Combined use of D(3) and ETB antagonists failed to internalize ETB receptors in cells from WKY rats. In contrast in SHR cells, ETB receptors were found mainly in internal compartments under basal condition and thus were likely prevented from interacting with the agonist-stimulated, membrane-bound D(3) receptors. Our studies suggest that D(3) receptors physically interact with proximal tubule ETB receptors and that the blunted natriuretic effect of dopamine in SHRs may be explained, in part, by abnormal D(3)/ETB receptor interactions.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
21
|
Banday AA, Fazili FR, Lokhandwala MF. Oxidative Stress Causes Renal Dopamine D1 Receptor Dysfunction and Hypertension via Mechanisms That Involve Nuclear Factor-κB and Protein Kinase C. J Am Soc Nephrol 2007; 18:1446-57. [PMID: 17409305 DOI: 10.1681/asn.2006121373] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Renal dopamine, via activation of D1 receptors, plays a role in maintaining sodium homeostasis and BP. There exists a defect in renal D1 receptor function in hypertension, diabetes, and aging, conditions that are associated with oxidative stress. However, the exact underlying mechanism of the oxidative stress-mediated impaired D1 receptor signaling and hypertension is not known. The effect of oxidative stress on renal D1 receptor function was investigated in healthy animals. Male Sprague-Dawley rats received tap water (vehicle) and 30 mM L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mM tempol for 2 wk. Compared with vehicle, BSO treatment caused oxidative stress and increase in BP, which was accompanied by defective D1 receptor G-protein coupling and loss of natriuretic response to SKF38393. BSO treatment also increased NF-kappaB nuclear translocation, protein kinase C (PKC) activity and expression, G-protein-coupled receptor kinase-2 (GRK-2) membranous translocation, and D1 receptor serine phosphorylation. In BSO-treated rats' supplementation of tempol decreased oxidative stress, normalized BP, and restored D1 receptor G-protein coupling and natriuretic response to SKF38393. Tempol also normalized NF-kappaB translocation, PKC activity and expression, GRK-2 sequestration, and D1 receptor serine phosphorylation. In conclusion, these results show that oxidative stress activates NF-kappaB, causing an increase in PKC activity, which leads to GRK-2 translocation and subsequent D1 receptor hyper-serine phosphorylation and uncoupling. The functional consequence of this phenomenon was the inability of SKF38393 to inhibit Na/K-ATPase activity and promote sodium excretion, which may have contributed to increase in BP. Tempol reduced oxidative stress and thereby restored D1 receptor function and normalized BP.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Buthionine Sulfoximine
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Diuresis/drug effects
- Enzyme Activation/drug effects
- G-Protein-Coupled Receptor Kinase 2
- Hypertension/chemically induced
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/ultrastructure
- Male
- Models, Biological
- NF-kappa B/metabolism
- NF-kappa B/physiology
- Nerve Tissue Proteins/metabolism
- Oxidative Stress
- Protein Kinase C/metabolism
- Protein Kinase C/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- beta-Adrenergic Receptor Kinases/metabolism
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas , USA
| | | | | |
Collapse
|
22
|
Zhang YL, Zhang HQ, Liu XY, Hua SN, Zhou LB, Yu J, Tan XH. Identification of human dopamine receptors agonists from Chinese herbs. Acta Pharmacol Sin 2007; 28:132-9. [PMID: 17184593 DOI: 10.1111/j.1745-7254.2007.00460.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
AIM To find human dopamine receptors, especially D1-like receptor specific agonists from Chinese herbs as potential antihypertension drug leads. METHODS Two D1-like receptor cell lines carrying a beta-lactamase reporter gene, and a D2 receptor cell line coexpressing a promiscuous G protein G15 were constructed using HEK293 cells. A natural compound library made from fractionated samples of herbal extracts was used for high-throughput screening (HTS) against one of the cell lines, HEK/D5R/CRE-blax. The interested hits were evaluated for their activities against various dopamine receptors. RESULTS Fourteen hits were identified from primary screening, of which 2 of the better hit samples, HD0522 and HD0059, were selected for further material and activity analysis, and to obtain 2 compounds that appeared as 2 single peaks in HPLC, HD0522H01 and HD0059H01. HD0059H01 could activate D1, D2, and D5 receptors, with EC(50 ) values of 2.28 microg/mL, 0.85 microg/mL, and 1.41 microg/mL, respectively. HD0522H01 could only activate D1R and D5R with EC(50 ) values of 2.95 microg/mL and 8.38 microg/mL. CONCLUSION We established cellbased assays for 3 different human dopamine receptors and identified specific agonists HD0522H01 and HD0059H01 through HTS. The specific agonist to D1-like receptors, HD0522H01, may become a new natural product-based drug lead for antihypertension treatment.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Evaluation, Preclinical/methods
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Genes, Tumor Suppressor
- Humans
- Plants, Medicinal/chemistry
- Plasmids/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/metabolism
- Transfection
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- beta-Lactamases/genetics
- beta-Lactamases/metabolism
Collapse
Affiliation(s)
- Yi-Lin Zhang
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Banday AA, Fazili FR, Marwaha A, Lokhandwala MF. Mitogen-activated protein kinase upregulation reduces renal D1 receptor affinity and G-protein coupling in obese rats. Kidney Int 2006; 71:397-406. [PMID: 17191082 DOI: 10.1038/sj.ki.5002055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species play a key role in pathophysiology of cardiovascular diseases by modulating G-protein-coupled receptor signaling. We have shown that treatment of animal models of diabetes and aging with tempol decreases oxidative stress and restores renal dopamine D1 receptor (D1R) function. In present study, we determined whether oxidation of D1R and upregulation of mitogen-activated protein kinases (MAPK) were responsible for decreased D1R signaling in obese animals. Male lean and obese Zucker rats were supplemented with antioxidants tempol or lipoic acid for 2 weeks. Compared to lean, obese animals were hyperglycemic and hyperinsulinemic with increased oxidative stress, D1R oxidation and decreased glutathione levels. These animals had decreased renal D1R affinity and basal coupling to G-proteins. SKF-38393, a D1R agonist failed to stimulate G-proteins and adenylyl cyclase. Obese animals showed marked increase in renal MAPK activities. Treatment of obese rats with tempol or lipoic acid decreased blood glucose, reduced oxidative stress, and restored the basal D1R G-protein coupling. Antioxidants also normalized MAPK activities and restored D1R affinity and SKF-38393 induced D1R G-protein coupling and adenylyl cyclase stimulation. These studies show that D1R oxidation and MAPK upregulation contribute to D1R dysfunction in obese animals. Consequently, antioxidants while reducing the oxidative stress normalize the MAPK activities and restore D1R signaling.
Collapse
Affiliation(s)
- A A Banday
- Department of Phamacological and Pharmaceutical Sciences, College of Pharmacy, Heart and Kidney Institute, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
24
|
Yu P, Asico LD, Luo Y, Andrews P, Eisner GM, Hopfer U, Felder RA, Jose PA. D1 dopamine receptor hyperphosphorylation in renal proximal tubules in hypertension. Kidney Int 2006; 70:1072-9. [PMID: 16850019 DOI: 10.1038/sj.ki.5001708] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
A defect in the coupling of the D(1) receptor (D(1)R) to its G protein/effector complex in renal proximal tubules plays a role in the pathogenesis of spontaneous hypertension. As there is no mutation of the D(1)R gene in the spontaneously hypertensive rat (SHR), we tested the hypothesis that the coupling defect is associated with constitutive desensitization/phosphorylation of the D(1)R. The following experiments were performed: (1) Cell culture and membrane preparations from rat kidneys and immortalized rat renal proximal tubule cells (RPTCs); (2) immunoprecipitation and immunoblotting; (3) cyclic adenosine 3',5' monophosphate and adenylyl cyclase assays; (4) immunofluorescence and confocal microscopy; (5) biotinylation of cell surface proteins; and (6) in vitro enzyme dephosphorylation. Basal serine-phosphorylated D(1)Rs in renal proximal tubules, brush border membranes, and membranes from immortalized RPTCs were greater in SHRs (21.0+/-1.5 density units, DU) than in normotensive rats (7.4+/-2.9 DU). The increased basal serine phosphorylation of D(1)Rs in SHRs was accompanied by decreased expression of D(1)R at the cell surface, and decreased ability of a D(1)-like receptor agonist (fenoldopam) to stimulate cyclic adenosine 3',5' monophosphate (cAMP) production. Increasing protein phosphatase 2A activity with protamine enhanced the ability of fenoldopam to stimulate cAMP accumulation (17+/-4%) and alter D(1)R cell surface expression in intact cells from SHRs. Alkaline phosphatase treatment of RPTC membranes decreased D(1)R phosphorylation and enhanced fenoldopam stimulation of adenylyl cyclase activity (26+/-6%) in SHRs. Uncoupling of the D(1)R from its G protein/effector complex in renal proximal tubules in SHRs is caused, in part, by increased D(1)R serine phosphorylation.
Collapse
Affiliation(s)
- P Yu
- Georgetown University Medical Center, Washington, Distr. Columbia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The regulation of volume is fundamental to life. There exist numerous conditions that can produce perturbations of cell volume. The cell has developed mechanisms to directly counteract these perturbations so as to maintain its physiological volume. Directed influx of the major extracellular cation, sodium, serves to counteract a decreased cell volume through the subsequent osmotically coupled movement of water to the intracellular space. This process, termed regulatory volume increase is often mediated by the ubiquitous sodium/hydrogen ion exchanger, NHE1. Similarly, the maintenance of intravascular volume is essential for the maintenance of blood pressure and consequently the proper perfusion of vital organs. Numerous mechanisms exist to counterbalance alterations in intravascular volume, not the least of which is the renal absorption of sodium filtered at the glomerulus. Two-thirds of filtered sodium and water are absorbed in the renal proximal tubule, a mechanism that intimately involves the apical sodium/hydrogen ion exchanger, NHE3. This isoform is fundamental to the maintenance and regulation of intravascular volume and blood pressure. In this article, the effects of cell volume on the activity of these different isoforms, NHE1 and NHE3, will be described and the consequences of their activity on intracellular and intravascular volume will be explored.
Collapse
Affiliation(s)
- R T Alexander
- Department of Pediatrics, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, ON, Canada
| | | |
Collapse
|
26
|
Zeng C, Wang Z, Li H, Yu P, Zheng S, Wu L, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. D3 dopamine receptor directly interacts with D1 dopamine receptor in immortalized renal proximal tubule cells. Hypertension 2006; 47:573-9. [PMID: 16401764 DOI: 10.1161/01.hyp.0000199983.24674.83] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
D3 receptors act synergistically with D1 receptors to inhibit sodium transport in renal proximal tubules; however, the mechanism by which this occurs is not known. Because dopamine receptor subtypes can regulate and interact with each other, we studied the interaction of D3 and D1 receptors in rat renal proximal tubule (RPT) cells. The D3 agonist PD128907 increased the immunoreactive expression of D1 receptors in a concentration- and time-dependent manner; these effects were blocked by the D3 antagonist U99194A. PD128907 also transiently (15 minutes) increased the amount of cell surface membrane D1 receptors. Laser confocal immunofluorescence microscopy showed that D3 receptor and D1 receptor colocalized in RPT cells more distinctly in Wistar-Kyoto rats than in spontaneously hypertensive rats (SHRs). In addition, D3 and D1 receptors could be coimmunoprecipitated, and this interaction was increased after D3 receptor agonist stimulation for 24 hours in Wistar-Kyoto rats but not in SHRs. We propose that the synergistic effects of D3 and D1 receptors may be caused by a D3 receptor-mediated increase in total, as well as cell surface membrane D1 receptor expression, and direct D3 and D1 receptor interaction, both of which are impaired in SHRs.
Collapse
MESH Headings
- Animals
- Benzopyrans/pharmacology
- Cell Line, Transformed
- Cell Membrane/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Drug Interactions
- Hypertension/metabolism
- Immunoprecipitation
- Indans/pharmacology
- Kidney Tubules, Proximal/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Oxazines/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zeng C, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Altered AT
1
Receptor Regulation of ETB Receptors in Renal Proximal Tubule Cells of Spontaneously Hypertensive Rats. Hypertension 2005; 46:926-31. [PMID: 16144989 DOI: 10.1161/01.hyp.0000174595.41637.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin and endothelin systems regulate blood pressure, in part, by affecting renal tubular sodium transport. In rodents, ETB receptors decrease proximal tubular reabsorption, whereas AT
1
receptors produce the opposite effect. We hypothesize that ETB and AT
1
receptors interact at the receptor level, and that the interaction is altered in spontaneously hypertensive rats (SHRs). In immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto (WKY) rats, angiotensin II, via AT
1
receptors, increased ETB receptor protein in a time- and concentration-dependent manner. In contrast, in SHR RPT cells, angiotensin II (10
−8
M/24 hours) had no effect on ETB receptor protein. AT
1
/ETB receptors colocalized and co-immunoprecipitated in both rat strains but long-term angiotensin II (10
−8
M/24 hours) treatment increased AT
1
/ETB co-immunoprecipitation in WKY but not in SHR cells. Short-term angiotensin II (10
−8
M/15 minutes) treatment decreased ETB receptor phosphorylation in both WKY and SHR cells, and increased ETB receptors in RPT cell surface membranes of RPT cells in WKY but not SHRs. Basal cell surface membrane ETB receptor expression was also higher in WKY than in SHRs. We conclude that AT
1
receptors regulate ETB receptors by receptor interaction and modulation of receptor expression. The altered AT
1
receptor regulation of ETB receptors in SHRs may play a role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | |
Collapse
|
28
|
Zeng C, Wang Z, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension 2005; 46:799-805. [PMID: 16172423 DOI: 10.1161/01.hyp.0000184251.01159.72] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
The dopaminergic and renin-angiotensin systems regulate blood pressure, in part, by affecting sodium transport in renal proximal tubules (RPTs). We have reported that activation of a D1-like receptor decreases AT1 receptor expression in the mouse kidney and in immortalized RPT cells from Wistar-Kyoto (WKY) rats. The current studies were designed to test the hypothesis that activation of the AT1 receptor can also regulate the D1 receptor in RPT cells, and this regulation is aberrant in spontaneously hypertensive rats (SHRs). Long-term (24 hours) stimulation of RPT cells with angiotensin II, via AT1 receptors increased total cellular D1 receptor protein in a time- and concentration-dependent manner in WKY but not in SHR cells. Short-term stimulation (15 minutes) with angiotensin II did not affect total cellular D1 receptor protein in either rat strain. However, in the short-term experiments, angiotensin II decreased cell surface membrane D1 receptor protein in WKY but not in SHR cells. D1 and AT1 receptors colocalized (confocal microscopy) and their coimmunoprecipitation was greater in WKY than in SHRs. However, AT1/D1 receptor coimmunoprecipitation was decreased by angiotensin II (10(-8) M/24 hours) to a similar extent in WKY (-22+/-8%) and SHRs (-22+/-12%). In summary, these studies show that AT1 and D1 receptors interact differently in RPT cells from WKY and SHRs. It is possible that an angiotensin II-mediated increase in D1 receptors and dissociation of AT1 from D1 receptors serve to counter regulate the long-term action of angiotensin II in WKY rats; different effects are seen in SHRs.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 2005; 19:233-46. [PMID: 15548830 DOI: 10.1152/physiolgenomics.00127.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. Under normal conditions, D(1)-like receptors (D(1) and D(5)) inhibit sodium transport in the kidney and intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats (SHRs) and in humans with essential hypertension, the D(1)-like receptor-mediated inhibition of epithelial sodium transport is impaired because of an uncoupling of the D(1)-like receptor from its G protein/effector complex. The uncoupling is receptor specific, organ selective, nephron-segment specific, precedes the onset of hypertension, and cosegregates with the hypertensive phenotype. The defective transduction of the renal dopaminergic signal is caused by activating variants of G protein-coupled receptor kinase type 4 (GRK4: R65L, A142V, A486V). The GRK4 locus is linked to and GRK4 gene variants are associated with human essential hypertension, especially in salt-sensitive hypertensive subjects. Indeed, the presence of three or more GRK4 variants impairs the natriuretic response to dopaminergic stimulation in humans. In genetically hypertensive rats, renal inhibition of GRK4 expression ameliorates the hypertension. In mice, overexpression of GRK4 variants causes hypertension either with or without salt sensitivity according to the variant. GRK4 gene variants, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic factors (e.g., angiotensin II type 1 receptor) to predominate, may be responsible for salt sensitivity. Subclasses of hypertension may occur because of additional perturbations caused by variants of other genes, the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Zeng C, Wang Z, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Aberrant ETB receptor regulation of AT1 receptors in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Int 2005; 68:623-31. [PMID: 16014039 DOI: 10.1111/j.1523-1755.2005.00440.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The renin-angiotensin and endothelin systems interact to regulate blood pressure, in part, by affecting sodium transport in the kidney. Because angiotensin II type 1 (AT(1)) receptor activation increases ETB receptor expression in renal proximal tubule cells from Wistar-Kyoto (WKY) rat, we hypothesize that ETB receptor activation may also regulate AT(1) receptor expression. Furthermore, ETB receptor regulation of the AT(1) receptor may be different in the WKY and spontaneously hypertensive rat (SHR). METHOD AT(1) and ETB receptors were studied in immortalized renal proximal tubule cells from WKY and SHRs, using immunoblotting, confocal microscopic colocalization, and immunoprecipitation. RESULTS In WKY renal proximal tubule cells, an ETB receptor agonist, BQ3020, decreased AT(1) receptor protein in a time- and concentration-dependent manner [median effective concentration (EC(50)) = 3.2 x 10(-10) mol/L, t(1/2)= 15 hours]. The inhibitory effect of BQ3020 (10(-8) mol/L/24 hours) on AT(1) receptor protein was blocked by an ETB receptor antagonist (BQ788). However, BQ3020 (10(-8) mol/L/24 hours) increased ETB receptor protein in WKY renal proximal tubule cells. In contrast, in SHR renal proximal tubule cells, BQ3020 (10(-8) mol/L/24 hours) no longer affected AT(1) or ETB receptor protein. AT(1)/ETB receptors colocalized and coimmunoprecipitated in WKY and SHRs. BQ3020 (10(-8) mol/L/15 minutes) treatment had no effect on AT(1)/ETB coimmunoprecipitation in WKY but decreased it in SHRs. BQ3020 (10(-8) mol/L/15 minutes) treatment increased AT(1) receptor phosphorylation in WKY, but decreased it in SHRs. CONCLUSION ETB receptors regulate AT(1) receptors by direct physical receptor interaction and receptor expression. An impaired ETB receptor regulation of the AT(1) receptor may participate in the pathogenesis of high blood pressure in the SHR.
Collapse
MESH Headings
- Animals
- Cell Line, Transformed
- Endothelins/pharmacology
- Hypertension, Renal/metabolism
- Immunoprecipitation
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Peptide Fragments/pharmacology
- Phosphorylation/drug effects
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Endothelin B/metabolism
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yu P, Yang Z, Jones JE, Wang Z, Owens SA, Mueller SC, Felder RA, Jose PA. D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells. Kidney Int 2005; 66:2167-80. [PMID: 15569306 DOI: 10.1111/j.1523-1755.2004.66007.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dopamine receptors in the kidney, especially those belonging to the D1-like receptor family, are important in the regulation of renal function and blood pressure. Because of increasing evidence that G protein-coupled receptors (GPCRs) are associated with caveolae and lipid rafts, we tested the hypothesis that the D1 dopamine receptor (D1R) and signaling molecules are regulated by caveolin in caveolae or lipid rafts. METHODS Six experimental approaches were used: (1) construction of tagged human D1Rs (hD1Rs) and transfectants; (2) cell culture [human embryonic kidney (HEK)-293 and immortalized rat renal proximal tubule cells] and biotinylation; (3) cell fractionation by sucrose gradient centrifugation; (4) immunoprecipitation and immunoblotting; (5) immunofluorescence and confocal microscopy; and (6) adenylyl cyclase assays. RESULTS hD1Rs, heterologously expressed in HEK-293 cells, formed protein species with molecular mass ranging from 50 to 250 kD, and were localized in lipid rafts and nonraft plasma membranes. The hD1Rs cofractionated with caveolin-2, G protein subunits, and several signaling molecules. Both exogenously expressed hD1Rs and endogenously expressed rat D1Rs colocalized and coimmunoprecipitated with caveolin-2. A D1R agonist (fenoldopam) increased the amount of caveolin-2beta associated with hD1Rs and activated adenylyl cyclase to a greater extent in lipid rafts than in nonraft plasma membranes. Reduction in the expression of caveolin-2 with antisense oligonucleotides attenuated the stimulatory effect of fenoldopam on cyclic adenosine monophosphate (cAMP) accumulation. CONCLUSION The majority of hD1Rs are distributed in lipid rafts. Heterologously and endogenously expressed D1Rs in renal cells are associated with and regulated by caveolin-2.
Collapse
Affiliation(s)
- Peiying Yu
- Department of Pediatrics, Georgetown University School of Medicine, Washington, D.C., USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, Mangrum AJ, Hopfer U, Sibley DR, Eisner GM, Felder RA, Jose PA. Interaction of Angiotensin II Type 1 and D
5
Dopamine Receptors in Renal Proximal Tubule Cells. Hypertension 2005; 45:804-10. [PMID: 15699451 DOI: 10.1161/01.hyp.0000155212.33212.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 1 (AT
1
) receptor and D
1
and D
3
dopamine receptors directly interact in renal proximal tubule (RPT) cells from normotensive Wistar-Kyoto rats (WKY). There is indirect evidence for a D
5
and AT
1
receptor interaction in WKY and spontaneously hypertensive rats (SHR). Therefore, we sought direct evidence of an interaction between AT
1
and D
5
receptors in RPT cells. D
5
and AT
1
receptors colocalized in WKY cells. Angiotensin II decreased D
5
receptors in WKY cells in a time- and concentration-dependent manner (EC
50
=2.7×10
−9
M; t
1/2
=4.9 hours), effects that were blocked by an AT
1
receptor antagonist (losartan). In SHR, angiotensin II (10
−8
M/24 hours) also decreased D
5
receptors (0.96±0.08 versus 0.72±0.08; n=12) and to the same degree as in WKY cells (1.44±0.07 versus 0.92±0.08). However, basal D
5
receptors were decreased in SHR RPT cells (SHR 0.96±0.08; WKY 1.44±0.07; n=12 per strain;
P
<0.05) and renal brush border membranes of SHR compared with WKY (SHR 0.54±0.16 versus WKY 1.46±0.10; n=5 per strain;
P
<0.05). Angiotensin II decreased AT
1
receptor expression in WKY (1.00±0.04 versus 0.72±0.08; n=8;
P
<0.05) but increased it in SHR (0.96±0.04 versus 1.32±0.08; n=8;
P
<0.05). AT
1
and D
5
receptors also interacted in vivo; renal D
5
receptor protein was higher in mice lacking the AT
1A
receptor (AT
1A
−/−; 1.61±0.31; n=6) than in wild-type littermates used as controls (AT
1A
+/+; 0.81±0.08; n=6;
P
<0.05), and renal cortical AT
1
receptor protein was higher in D
5
receptor null mice than in wild-type littermates (1.18±0.08 versus 0.84±0.07; n=4;
P
<0.05). We conclude that D
5
and AT
1
receptors interact with each other. Altered interactions between AT
1
and dopamine receptors may play a role in the pathogenesis of hypertension.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cells, Cultured
- Drug Interactions
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/deficiency
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D5
- Tissue Distribution
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pedrosa R, Gomes P, Hopfer U, Jose PA, Soares-da-Silva P. Gialpha3 protein-coupled dopamine D3 receptor-mediated inhibition of renal NHE3 activity in SHR proximal tubular cells is a PLC-PKC-mediated event. Am J Physiol Renal Physiol 2004; 287:F1059-66. [PMID: 15265766 DOI: 10.1152/ajprenal.00139.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the transduction pathway associated with type 3 Na(+)/H(+) exchanger (NHE3) activity-induced inhibition during dopamine D(3) receptor activation in immortalized renal proximal tubular epithelial cells from the spontaneously hypertensive rat. The dopamine D(3) receptor agonist 7-OH-DPAT decreased NHE3 activity, which was prevented by the D(2)-like receptor antagonist S-sulpiride, pertussis toxin (PTX; overnight treatment), and the PKC inhibitor chelerythrine, but not by cholera toxin (overnight treatment), the MAPK inhibitor PD-098059, or the p38 inhibitor SB-203580. The PKA inhibitor H-89 abolished the inhibitory effects of forskolin on NHE3 activity, but not that of 7-OH-DPAT. The phospholipase C (PLC) inhibitor U-73122 prevented the inhibitory effects of 7-OH-DPAT, whereas PDBu and 7-OH-DPAT increased PLC activity and reduced NHE3 activity; downregulation of PKC abolished the inhibitory effects of both PDBu and 7-OH-DPAT on NHE activity. The inhibition of NHE3 activity by GTPgammaS and the prevention of the effect of 7-OH-DPAT by PTX suggest an involvement of a G(i/o) protein coupled to the dopamine D(3) receptor. Indeed, the 7-OH-DPAT-induced decrease in NHE3 activity was abolished in cells treated overnight with the anti-G(i)alpha3 antibody, but not in cells treated with antibodies against G(q/11), G(s)alpha, G(beta), and G(i)alpha1,2 proteins. The calcium ionophore A-23187 and the Ca(2+)-ATPase inhibitor thapsigargin increased intracellular Ca(2+) but did not affect NHE3 activity. However, the inhibitory effects of PDBu and 7-OH-DPAT on NHE3 activity were completely abolished by A-23287 and thapsigargin. It is concluded that inhibition of NHE3 activity by dopamine D(3) receptors coupled to G(i)alpha3 proteins is a PLC-PKC-mediated event, modulated by intracellular Ca(2+).
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|
34
|
Dixit MP, Xu L, Xu H, Bai L, Collins JF, Ghishan FK. Effect of angiotensin-II on renal Na+/H+ exchanger-NHE3 and NHE2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:38-44. [PMID: 15238256 DOI: 10.1016/j.bbamem.2004.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/24/2003] [Revised: 03/22/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
The purpose of the present study was to determine the effect of angiotensin II (A-II) on membrane expression of Na+/H+ exchange isoforms NHE3 and NHE2 in the rat renal cortex. A-II (500 ng/kg per min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. Arterial pressure and circulating plasma A-II level were significantly increased in A-II rats as compared to control rats. pH-dependent uptake of 22Na+ study in the presence of 50 microM HOE-694 revealed that Na+ uptake mediated by NHE3 was increased approximately 88% in the brush border membrane from renal cortex of A-II-treated rats. Western blotting showed that A-II increased NHE3 immunoreactive protein levels in the brush border membrane of the proximal tubules by 31%. Northern blotting revealed that A-II increased NHE3 mRNA abundance in the renal cortex by 42%. A-II treatment did not alter brush border NHE2 protein abundance in the renal proximal tubules. In conclusion, chronic A-II treatment increases NHE3-mediated Na+ uptake by stimulating NHE3 mRNA and protein content.
Collapse
Affiliation(s)
- Mehul P Dixit
- Department of Pediatrics and Physiology, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Zeng C, Wang D, Asico LD, Welch WJ, Wilcox CS, Hopfer U, Eisner GM, Felder RA, Jose PA. Aberrant D1 and D3 dopamine receptor transregulation in hypertension. Hypertension 2004; 43:654-60. [PMID: 14732731 DOI: 10.1161/01.hyp.0000114601.30306.bf] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Dopamine plays a role in the regulation of blood pressure by inhibition of sodium transport in renal proximal tubules (RPTs) and relaxation of vascular smooth muscles. Because dopamine receptors can regulate and interact with each other, we studied the interaction of D(1) and D(3) receptors in immortalized RPT cells and mesenteric arteries from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), and in human coronary artery smooth muscle cells (CASMCs). In WKY rats, the D(1)-like agonist, fenoldopam, increased D(3) receptor protein in a time-dependent and concentration-dependent manner (EC(50)=4.5x10(-9) M, t(1/2)=15.8 hours). In SHRs, fenoldopam (10(-5) M) actually decreased the expression of D(3) receptors. D(1) and D(3) receptor co-immunoprecipitation was increased by fenoldopam (10(-7) M/24 h) in WKY rats but not in SHRs. The effects of fenoldopam in CASMCs were similar as those in WKY RPT cells (ie, fenoldopam increased D(1) and D(3) receptor proteins). Both D(3) (PD128907, Emax=80%+/-6%, pED(50)=5+/-0.1) and D(1)-like receptor (fenoldopam, Emax=81%+/-8%, pED(50)=5+/-0.2, n=12) agonists relaxed mesenteric arterial rings. Co-stimulation of D(1) and D(3) receptors led to additive vasorelaxation in WKY rats, but not in SHRs. D(1) and D(3) receptors interact differently in WKY and SHRs. Altered interactions between D(1) and D(3) receptors may play a role in the pathogenesis of genetic hypertension, including human hypertension, because these receptors also interact in human vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Cell Line
- Coronary Vessels/cytology
- Dopamine Agonists/pharmacology
- Fenoldopam/pharmacology
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Mesenteric Arteries/physiopathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Vasodilation
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, PHC-2, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bacic D, Kaissling B, McLeroy P, Zou L, Baum M, Moe OW. Dopamine acutely decreases apical membrane Na/H exchanger NHE3 protein in mouse renal proximal tubule. Kidney Int 2003; 64:2133-41. [PMID: 14633135 PMCID: PMC4114392 DOI: 10.1046/j.1523-1755.2003.00308.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dopamine is a principal natriuretic hormone in mammalian Na+ homeostasis. Dopamine acutely alters glomerular filtration rate (GFR) and decreases Na+ absorption in both the proximal and distal nephron. Proximal tubule natriuresis is effected through inhibition of the apical membrane Na/H exchanger NHE3. METHODS We examined whether dopamine directly and acutely decreases apical membrane NHE3 protein using renal tissue in two in vitro systems: renal cortical slices and in vitro perfused single tubules. After incubation with dopamine, NHE3 activity was measured by 22Na flux and NHE3 antigen was measured by immunoblot in apical membrane and total cellular membranes. RESULTS Direct application of dopamine to either cortical slices or microperfused tubules acutely decreases NHE3 activity and antigen at the apical membrane of the proximal tubule. No change in total cellular NHE3 was detected. CONCLUSION One mechanism by which dopamine causes natriuresis is via direct and acute reduction of NHE3 protein at the apical membrane via changes in NHE3 protein trafficking.
Collapse
Affiliation(s)
- Desa Bacic
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Zeng C, Luo Y, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension 2003; 42:787-92. [PMID: 12900438 DOI: 10.1161/01.hyp.0000085334.34963.4e] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Because this interaction may be perturbed in genetic hypertension, we studied D1 dopamine and AT1 angiotensin receptors in immortalized renal proximal tubule (RPT) and A10 aortic vascular smooth muscle cells. In normotensive Wistar-Kyoto (WKY) rats, the D1-like agonist fenoldopam increased D1 receptors but decreased AT1 receptors. These effects were blocked by the D1-like antagonist SCH 23390 (10(-7) mol/L per 24 hours). In spontaneously hypertensive rat (SHR) RPT cells, fenoldopam also decreased AT1 receptors but no longer stimulated D1 receptor expression. Basal levels of AT1/D1 receptor coimmunoprecipitation were greater in WKY RPT cells (29+/-2 density units, DU) than in SHR RPT cells (21+/-2 DU, n=7 per group, P<0.05). The coimmunoprecipitation of D1 and AT1 receptors was increased by fenoldopam (10(-7) mol/L per 24 hours) in WKY RPT cells but decreased in SHR RPT cells. The effects of fenoldopam in RPT cells from WKY rats were similar in aortic vascular smooth muscle cells from normotensive BD IX rats, that is, fenoldopam decreased AT1 receptors and increased D1 receptors. Our studies show differential regulation of the expression of D1 and AT1 receptors in RPT cells from WKY and SHR. This regulation and D1/AT1 receptor interaction are different in RPT cells of WKY and SHR. An altered interaction of D1 and AT1 receptors may play a role in the impaired sodium excretion and enhanced vasoconstriction in hypertension.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Fenoldopam/pharmacology
- Hypertension/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/metabolism
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Zheng S, Yu P, Zeng C, Wang Z, Yang Z, Andrews PM, Felder RA, Jose PA. Galpha12- and Galpha13-protein subunit linkage of D5 dopamine receptors in the nephron. Hypertension 2003; 41:604-10. [PMID: 12623966 DOI: 10.1161/01.hyp.0000057422.75590.d7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The roles of the G-protein alpha-subunits, Gs, Gi, and Gq/11, in the signal transduction of the D1-like dopamine receptors, D1 and D5, have been deciphered. Galpha12 and Galpha13, members of the 4th family of G protein subunits, are not linked with D1 receptors, and their linkage to D5 receptors is not known. Therefore, we studied the expression of Galpha12 and Galpha13 and interaction with D5 dopamine receptors in the kidney from normotensive Wistar-Kyoto (WKY) rats and D5 receptor-transfected HEK293 cells. Galpha12 and Galpha13 were found in the proximal tubule, distal convoluted tubule, and artery and vein in the WKY rat kidney. Whereas Galpha12 was expressed in the ascending limb of Henle, Galpha13 was expressed in the collecting duct and juxtaglomerular cells. In renal proximal tubules, Galpha12 and Galpha13, as with D5 receptors, were expressed in brush border membranes. Laser confocal microscopy revealed the colocalization of D5 receptors with Galpha12 and Galpha13 in rat renal brush border membranes, immortalized rat renal proximal tubule cells, and D5 receptor-transfected HEK293 cells. In these cells, a D1-like agonist, fenoldopam, increased the association of Galpha12 and Galpha13 with D5 receptors, results that were corroborated by immunoprecipitation experiments. We conclude that although both D1 and D5 receptors are linked to Galphas, they are differentially linked to Galpha12 and Galpha13. The consequences of the differential G-protein subunit linkage on D1- and D5-mediated sodium transport remains to be determined.
Collapse
Affiliation(s)
- Shaopeng Zheng
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zeng C, Asico LD, Wang X, Hopfer U, Eisner GM, Felder RA, Jose PA. Angiotensin II regulation of AT1 and D3 dopamine receptors in renal proximal tubule cells of SHR. Hypertension 2003; 41:724-9. [PMID: 12623987 DOI: 10.1161/01.hyp.0000047880.78462.0e] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Dopamine and angiotensin II negatively interact to regulate sodium excretion and blood pressure. D3 dopamine receptors downregulate angiotensin type 1 (AT1) receptors in renal proximal tubule cells from normotensive Wistar-Kyoto rats. We determined whether AT1 receptors regulate D3 receptors and whether the regulation is different in cultured renal proximal tubule cells from normotensive and spontaneously hypertensive rats. Angiotensin II (10(-8)M/24 hours) decreased D3 receptors in both normotensive (control, 36+/-3; angiotensin II, 24+/-3 U) and hypertensive (control, 30+/-3; angiotensin II, 11+/-3 U; n=9 per group) rats; effects that were blocked by the AT1 receptor antagonist, losartan (10(-8)M/24 hours). However, the reduction in D3 expression was greater in hypertensive (60+/-10%) than in normotensive rats (32+/-9%). In normotensive rats, angiotensin II (10(-8)M/24hr) also decreased AT1 receptors. In contrast, in cells from hypertensive rats, angiotensin II increased AT1 receptors. AT1 and D3 receptors co-immunoprecipitated in renal proximal tubule cells from both strains. Angiotensin II decreased D3/AT1 receptor co-immunoprecipitation similarly in both rat strains, but basal D3/AT1 co-immunoprecipitation was 6 times higher in normotensive than in hypertensive rats. Therefore, AT1 and D3 receptor interaction is qualitatively and quantitatively different between normotensive and hypertensive rats; angiotensin II decreases AT1 expression in normotensive but increases it in hypertensive rats. In addition, angiotensin II decreases D3 expression to a greater extent in hypertensive than in normotensive rats. Aberrant interactions between D3 and AT1 receptors may play a role in the pathogenesis of hypertension.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Antibody Specificity
- Cells, Cultured
- Hypertension/metabolism
- Immunoblotting
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Precipitin Tests
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/immunology
- Receptors, Angiotensin/metabolism
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Dopamine synthesized in non-neural tissues, eg, renal proximal tubule, functions in an autocrine or paracrine manner. The effects of dopamine are transduced by two classes of receptors (D1- and D2-like) that belong to the superfamily of G protein-coupled receptors. In genetic hypertension, the D1 receptor, a member of the D1-like receptor family, is uncoupled from its G protein complex, resulting in a decreased ability to regulate renal sodium transport. The impaired D1 receptor/G protein coupling in renal proximal tubules in genetic hypertension is secondary to abnormal phosphorylation and desensitization of the D1 receptor caused by activating single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK type 4.
Collapse
Affiliation(s)
- Pedro A Jose
- Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
41
|
Carey RM. Theodore Cooper Lecture: Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 2001; 38:297-302. [PMID: 11566894 DOI: 10.1161/hy0901.096422] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
All of the components of a complete dopamine system are present within the kidney, where dopamine acts as a paracrine substance in the control of sodium excretion. Dopamine receptors can be divided into D(1)-like (D(1) and D(5)) receptors that stimulate adenylyl cyclase and D(2)-like (D(2), D(3), and D(4)) receptors that inhibit adenylyl cyclase. All 5 receptor subtypes are expressed in the kidney, albeit in low copy. Dopamine is synthesized extraneuronally in proximal tubule cells, exported from these cells largely into the tubule lumen, and interacts with D(1)-like receptors to inhibit the Na(+)-H(+) exchanger and Na(+),K(+)-ATPase, decreasing tubule sodium reabsorption. During moderate sodium surfeit, dopamine tone at D(1)-like receptors accounts for approximately 50% of sodium excretion. In experimental and human hypertension, 2 renal dopaminergic defects have been described: (1) decreased renal generation of dopamine and (2) a D(1) receptor-G protein coupling defect. Both defects lead to renal sodium retention, and each may play an important role in the pathophysiology of essential hypertension.
Collapse
Affiliation(s)
- R M Carey
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, USA
| |
Collapse
|
42
|
Li XX, Xu J, Zheng S, Albrecht FE, Robillard JE, Eisner GM, Jose PA. D1 dopamine receptor regulation of NHE3 during development in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1650-6. [PMID: 11353667 DOI: 10.1152/ajpregu.2001.280.6.r1650] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
To determine if the defective interactions among D1-like receptors, G proteins, and Na+/H+ exchanger 3 (NHE3) are consequences of hypertension, we studied these interactions in rats, before (2–3 wk) and after (12 wk) the establishment of hypertension. To eliminate the confounding influence of second messenger action on D1 receptor-NHE3 interaction, studies were performed in renal brush-border membranes (BBM) devoid of cytoplasmic second messengers. NHE3 activity increased with age in Wistar-Kyoto (WKY) rats (3 wk = 1.48 ± 0.39, n = 13; 12 wk = 2.83 ± 0.15, n = 16, P < 0.05) but not in spontaneously hypertensive rats (SHRs; 3 wk = 2.52 ± 0.37, n = 11; 12 wk = 2.81 ± 0.20, n = 16). D1 receptor protein tended to decrease, whereas NHE3 protein tended to increase with age in both WKY and SHRs. However, the inhibitory effect of a D1-like agonist, SKF-81297, on NHE3 activity increased with age in WKY rats (3 wk = −40.7 ± 5.3%, n = 10, 12 wk = −58.7 ± 4.6%, n = 12, P < 0.05) but not in SHRs (3 wk = −27.6 ± 5.9%, n = 11, 12 wk = −25.1 ± 3.2%, n = 11). The decreased inhibitory effect of another D1-like agonist, fenoldopam, on NHE3 activity in SHRs was not caused by increased activity and binding of Gβγ to NHE3 as has been reported in young WKY rats. Gsα mediates, in part, the inhibitory effect of D1-like agonists on NHE3 activity. In WKY rats, fenoldopam increased Gsα/NHE3 binding to the same extent in 2-wk-old (1.5-fold, n = 4) and adult (1.5-fold, n = 4) rats. In contrast, in SHRs, fenoldopam decreased the amount of Gsα bound to NHE3 in 2-wk-old SHRs and had no effect in 4-wk-old and adult SHRs. These studies indicate that the decreased inhibitory effect of D1-like agonists on NHE3 activity in SHRs (compared with WKY rats) precedes the development of hypertension. This may be caused, in part, by a decreased interaction between Gsα and NHE3 in BBM secondary to impaired D1-like receptor function.
Collapse
Affiliation(s)
- X X Li
- Department of Pediatrics, Georgetown University Medical Center, Washington, District of Columbia 20007, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Xu J, Li XX, Albrecht FE, Hopfer U, Carey RM, Jose PA. Dopamine(1) receptor, G(salpha), and Na(+)-H(+) exchanger interactions in the kidney in hypertension. Hypertension 2000; 36:395-9. [PMID: 10988271 DOI: 10.1161/01.hyp.36.3.395] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
The ability of dopamine(1) (D(1)) receptors to inhibit luminal Na(+)-H(+) exchanger (NHE) activity in renal proximal tubules and induce a natriuresis is impaired in spontaneously hypertensive rats (SHR). However, it is not clear whether the defect is at the level of the D(1) receptor, G(salpha), or effector proteins. The coupling of the D(1) receptor to G(salpha) and NHE3 was studied in renal brush border membranes (BBM), devoid of cytoplasmic second messengers. D(1) receptor, G(salpha), and NHE3 expressions were similar in SHR and their normotensive controls, Wistar-Kyoto rats (WKY). Guanosine-5'-O:-(3-thiotriphosphate) (GTPgammaS) decreased NHE activity and increased NHE3 linked with G(salpha) similarly in WKY and SHR, indicating normal G(salpha) and NHE3 regulation in SHR. However, D(1) agonists increased NHE3 linked with G(salpha) in WKY but not in SHR, and the inhibitory effects of D(1) agonists on NHE activity were less in SHR than in WKY. Moreover, GTPgammaS enhanced the inhibitory effect of D(1) agonist on NHE activity in WKY but not in SHR, suggesting an uncoupling of the D(1) receptor from G(salpha)/NHE3 in SHR. Similar results were obtained with the use of immortalized renal proximal tubule cells from WKY and SHR. We conclude that the defective D(1) receptor function in renal proximal tubules in SHR is proximal to G(salpha)/effectors and presumably at the receptor level. The mechanism(s) responsible for the uncoupling of the D(1) receptor from G proteins remains to be determined. Because the primary structure of the D(1) receptor is not different between normotensive and hypertensive rats, differences in D(1) receptor posttranslational modification are possible.
Collapse
Affiliation(s)
- J Xu
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of fluid and electrolyte balance and blood pressure. Dopamine exerts its actions through two families of dopamine receptors, designated D1-like and D2-like, which are identical in the brain and in peripheral tissues. The two D1-like receptors--D1 and D5 receptors--expressed in mammals are linked to stimulation of adenylyl cyclase. The three D2-like receptors--D2, D3, and D4,--are linked to inhibition of adenylyl cyclase. Dopamine affects fluid and electrolyte balance by regulation of renal excretion of electrolytes and water through actions on renal hemodynamics and tubular epithelial transport and by modulation of the secretion and/or action of vasopressin, renin, aldosterone, catecholamines, and endothelin B receptors (ETB) receptors. It also affects fluid and sodium intake by way of "appetite" centers in the brain and alterations of gastrointestinal tract transport. The production of dopamine in neural and non-neural tissues and the presence of receptors in these tissues suggest that dopamine can act in an autocrine or paracrine fashion. This renal autocrine-paracrine function, which becomes most evident during extracellular fluid volume expansion, is lost in essential hypertension and in some animal models of genetic hypertension. This deficit may be caused by abnormalities in renal dopamine production and polymorphisms or abnormal post-translational modification and regulation of dopamine receptor subtypes.
Collapse
Affiliation(s)
- P A Jose
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | | | | |
Collapse
|