1
|
Fumimoto C, Yamauchi N, Minagawa E, Umeda M. MiR-146a Is Mutually Regulated by High Glucose-Induced Oxidative Stress in Human Periodontal Ligament Cells. Int J Mol Sci 2024; 25:10702. [PMID: 39409031 PMCID: PMC11476635 DOI: 10.3390/ijms251910702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The high-glucose conditions caused by diabetes mellitus (DM) exert several effects on cells, including inflammation. miR-146a, a kind of miRNA, is involved in inflammation and may be regulated mutually with reactive oxygen species (ROS), which are produced under high-glucose conditions. In the present study, we used human periodontal ligament cells (hPDLCs) to determine the effects of the high-glucose conditions of miR-146a and their involvement in the regulation of oxidative stress and inflammatory cytokines using Western blotting, PCR, ELISA and other methods. When hPDLCs were subjected to high glucose (24 mM), cell proliferation was not affected; inflammatory cytokine expression, ROS induction, interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) expression increased, but miR-146a expression decreased. Inhibition of ROS induction with the antioxidant N-acetyl-L-cysteine restored miR-146a expression and decreased inflammatory cytokine expression compared to those under high-glucose conditions. In addition, overexpression of miR-146a significantly suppressed the expression of the inflammatory cytokines IRAK1 and TRAF6, regardless of the glucose condition. Our findings suggest that oxidative stress and miR-146a expression are mutually regulated in hPDLCs under high-glucose conditions.
Collapse
Affiliation(s)
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata 573-1121, Osaka, Japan; (C.F.); (E.M.); (M.U.)
| | | | | |
Collapse
|
2
|
Nosrati S, Gheisari M, Zare S, Dara M, Zolghadri S, Razeghian-Jahromi I. The impact of diabetic glucose concentration on viability and cardiac differentiation of mesenchymal stem cells. Tissue Cell 2024; 88:102361. [PMID: 38502970 DOI: 10.1016/j.tice.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Hyperglycemia may be a stumbling block for delivery of regenerative benefits of mesenchymal stem cells (MSCs) to diabetic patients with cardiovascular diseases. Our study aims to assess the viability and cardiac differentiation potential of MSCs after being exposed to diabetic glucose concentration. METHODS MSCs were extracted from rat bone marrow. Cells were characterized based on morphology, differentiation potential, and expression of mesenchymal specific markers. MTT assay was done to evaluate the viability of MSCs after treatment with different glucose concentrations. Case group was MSCs treated with diabetic concentration of glucose versus cells treated with PBS as the control group. Growth curve and population doubling time were calculated in both groups. Expression of GATA4 and troponin, as the early and late markers during cardiac differentiation, were measured following 5-azacytidine exposure. RESULTS Proliferated cells at passage three had fibroblastic-shape, was able to differentiate into adipocytes or osteocytes, and expressed CD73 and CD90. MSCs viability was gradually decreased by increasing glucose concentration. Irrespective of nicotine concentration, three-day exposure imposed more severe detrimental effects on viability compared with one-day treatment. Proliferation rate of the MSCs was lower in the case group, and they need more time for population doubling. Expression of both cardiac markers were downregulated in the case group at day three. However, their expression became higher at day seven. CONCLUSION Diabetic glucose concentration inhibits normal proliferation and cardiac differentiation of MSCs. This effect should be considered in stem cell therapy of cardiovascular patients who are concurrently affected by hyperglycemia, a common comorbidity in such individuals. Why carry out this study? What was learned from the study? FINDINGS
Collapse
Affiliation(s)
- Shadi Nosrati
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Gheisari
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | |
Collapse
|
3
|
Bravo-Olín J, Martínez-Carreón SA, Francisco-Solano E, Lara AR, Beltran-Vargas NE. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering. Bioprocess Biosyst Eng 2024; 47:767-839. [PMID: 38643271 DOI: 10.1007/s00449-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
Since cardiovascular diseases (CVDs) are globally one of the leading causes of death, of which myocardial infarction (MI) can cause irreversible damage and decrease survivors' quality of life, novel therapeutics are needed. Current approaches such as organ transplantation do not fully restore cardiac function or are limited. As a valuable strategy, tissue engineering seeks to obtain constructs that resemble myocardial tissue, vessels, and heart valves using cells, biomaterials as scaffolds, biochemical and physical stimuli. The latter can be induced using a bioreactor mimicking the heart's physiological environment. An extensive review of bioreactors providing perfusion, mechanical and electrical stimulation, as well as the combination of them is provided. An analysis of the stimulations' mechanisms and modes that best suit cardiac construct culture is developed. Finally, we provide insights into bioreactor configuration and culture assessment properties that need to be elucidated for its clinical translation.
Collapse
Affiliation(s)
- Jorge Bravo-Olín
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Sabina A Martínez-Carreón
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Emmanuel Francisco-Solano
- Natural Science and Engineering Graduate Program, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Nohra E Beltran-Vargas
- Process and Technology Department, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México.
| |
Collapse
|
4
|
Abraham M, Kori I, Vishwakarma U, Goel S. Comprehensive assessment of goat adipose tissue-derived mesenchymal stem cells cultured in different media. Sci Rep 2024; 14:8380. [PMID: 38600175 PMCID: PMC11006890 DOI: 10.1038/s41598-024-58465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Michelle Abraham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Ibraz Kori
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Utkarsha Vishwakarma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Sandeep Goel
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India.
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
5
|
Mateen MA, Alaagib N, Haider KH. High glucose microenvironment and human mesenchymal stem cell behavior. World J Stem Cells 2024; 16:237-244. [PMID: 38577235 PMCID: PMC10989287 DOI: 10.4252/wjsc.v16.i3.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024] Open
Abstract
High glucose (HG) culture conditions in vitro and persistent exposure to hyperglycemia in diabetes patients are detrimental to stem cells, analogous to any other cell type in our body. It interferes with diverse signaling pathways, i.e. mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-Akt signaling, to impact physiological cellular functions, leading to low cell survival and higher cell apoptosis rates. While elucidating the underlying mechanism responsible for the apoptosis of adipose tissue-derived mesenchymal stem cells (MSCs), a recent study has shown that HG culture conditions dysregulate mTOR-PI3K-Akt signaling in addition to mitochondrial malfunctioning due to defective mitochondrial membrane potential (MtMP) that lowers ATP production. This organelle-level dysfunction energy-starves the cells and increases oxidative stress and ultrastructural abnormalities. Disruption of the mitochondrial electron transport chain produces an altered mitochondrial NAD+/NADH redox state as evidenced by a low NAD+/NADH ratio that primarily contributes to the reduced cell survival in HG. Some previous studies have also reported altered mitochondrial membrane polarity (causing hyperpolarization) and reduced mitochondrial cell mass, leading to perturbed mitochondrial homeostasis. The hostile microenvironment created by HG exposure creates structural and functional changes in the mitochondria, altering their bioenergetics and reducing their capacity to produce ATP. These are significant data, as MSCs are extensively studied for tissue regeneration and restoring their normal functioning in cell-based therapy. Therefore, MSCs from hyperglycemic donors should be cautiously used in clinical settings for cell-based therapy due to concerns of their poor survival rates and increased rates of post engraftment proliferation. As hyperglycemia alters the bioenergetics of donor MSCs, rectifying the loss of MtMP may be an excellent target for future research to restore the normal functioning of MSCs in hyperglycemic patients.
Collapse
Affiliation(s)
| | | | - Khawaja Husnain Haider
- Cellular and Molecular Pharmacology, Sulaiman AlRajhi Medical School, Al Bukairiyah 51941, Saudi Arabia.
| |
Collapse
|
6
|
Denoeud C, Luo G, Paquet J, Boisselier J, Wosinski P, Moya A, Diallo A, Larochette N, Marinesco S, Meiller A, Becquart P, Moussi H, Vilquin JT, Logeart-Avramoglou D, Gand A, Larreta-Garde V, Pauthe E, Potier E, Petite H. Enzyme-controlled, nutritive hydrogel for mesenchymal stromal cell survival and paracrine functions. Commun Biol 2023; 6:1266. [PMID: 38092861 PMCID: PMC10719273 DOI: 10.1038/s42003-023-05643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Culture-adapted human mesenchymal stromal cells (hMSCs) are appealing candidates for regenerative medicine applications. However, these cells implanted in lesions as single cells or tissue constructs encounter an ischemic microenvironment responsible for their massive death post-transplantation, a major roadblock to successful clinical therapies. We hereby propose a paradigm shift for enhancing hMSC survival by designing, developing, and testing an enzyme-controlled, nutritive hydrogel with an inbuilt glucose delivery system for the first time. This hydrogel, composed of fibrin, starch (a polymer of glucose), and amyloglucosidase (AMG, an enzyme that hydrolyze glucose from starch), provides physiological glucose levels to fuel hMSCs via glycolysis. hMSCs loaded in these hydrogels and exposed to near anoxia (0.1% pO2) in vitro exhibited improved cell viability and angioinductive functions for up to 14 days. Most importantly, these nutritive hydrogels promoted hMSC viability and paracrine functions when implanted ectopically. Our findings suggest that local glucose delivery via the proposed nutritive hydrogel can be an efficient approach to improve hMSC-based therapeutic efficacy.
Collapse
Affiliation(s)
- Cyprien Denoeud
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Guotian Luo
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Joseph Paquet
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Julie Boisselier
- Biomaterial for Health Group, ERRMECe, University of Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Adrien Moya
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Ahmad Diallo
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | | | | | - Anne Meiller
- Neuroscience Research Center, AniRA-NeuroChem Platform, Lyon, France
| | - Pierre Becquart
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Hilel Moussi
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, CNRS, Centre de Recherche en Myologie, Hôpital Pitié Salpêtrière, Paris, France
| | | | - Adeline Gand
- Biomaterial for Health Group, ERRMECe, University of Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Emmanuel Pauthe
- Biomaterial for Health Group, ERRMECe, University of Cergy-Pontoise, Cergy-Pontoise, France
| | - Esther Potier
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France
| | - Hervé Petite
- University Paris Cité, CNRS, INSERM, ENVA, B3OA, Paris, France.
| |
Collapse
|
7
|
Echeverría-Altamar K, Alvarado-Hernandez BB, Resto-Irizarry P, Romañach RJ. Identification of Four Similar Cell Culture Media According to their Glucose, Glutamine, and Pyruvate Content by Handheld Raman Spectroscopy. Pharm Res 2023; 40:2859-2871. [PMID: 37594593 DOI: 10.1007/s11095-023-03584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE This study describes the first efforts to build a spectral library to identify four cell culture media in powder form with spectra obtained with a handheld Raman spectrometer. These complex mixtures contain over 30 components and are among the most widely used cell culture media. METHODS A total of 32 spectra were collected for the four Dulbecco's Modified Eagle Medium cell culture media and pure materials (glucose and L-glutamine) in powder form. The spectra were preprocessed using standard normal variate with second derivative, and the barcode method before performing principal component analysis (PCA). RESULTS The PCA model differentiated the pure glucose and the cell culture media according to the glucose concentration along the first principal component. The second principal component differentiated the three cell culture media with high glucose content according to the pyruvate concentration. The correlation coefficient showed that powdered cell culture media with high glucose concentration have a higher correlation with pure glucose, when compared with the cell culture media with low glucose. CONCLUSION The Raman spectra made it possible to differentiate the four DMEM in the cell culture media from the majority of the external samples used in the method evaluation. However, sample heterogeneity affected the predictions. Additional studies are needed to improve the method's ability to differentiate the DMEM with high glucose.
Collapse
Affiliation(s)
| | | | - Pedro Resto-Irizarry
- Mechanical Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico
| | | |
Collapse
|
8
|
Li CW, Young TH, Wang MH, Pei MY, Hsieh TY, Hsu CL, Cheng NC. Low-glucose culture environment can enhance the wound healing capability of diabetic adipose-derived stem cells. Stem Cell Res Ther 2023; 14:236. [PMID: 37667384 PMCID: PMC10478288 DOI: 10.1186/s13287-023-03478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Application of autologous adipose-derived stem cells (ASC) for diabetic chronic wounds has become an emerging treatment option. However, ASCs from diabetic individuals showed impaired cell function and suboptimal wound healing effects. We proposed that adopting a low-glucose level in the culture medium for diabetic ASCs may restore their pro-healing capabilities. METHODS ASCs from diabetic humans and mice were retrieved and cultured in high-glucose (HG, 4.5 g/L) or low-glucose (LG, 1.0 g/L) conditions. Cell characteristics and functions were investigated in vitro. Moreover, we applied diabetic murine ASCs cultured in HG or LG condition to a wound healing model in diabetic mice to compare their healing capabilities in vivo. RESULTS Human ASCs exhibited decreased cell proliferation and migration with enhanced senescence when cultured in HG condition in vitro. Similar findings were noted in ASCs derived from diabetic mice. The inferior cellular functions could be partially recovered when they were cultured in LG condition. In the animal study, wounds healed faster when treated with HG- or LG-cultured diabetic ASCs relative to the control group. Moreover, higher collagen density, more angiogenesis and cellular retention of applied ASCs were found in wound tissues treated with diabetic ASCs cultured in LG condition. CONCLUSIONS In line with the literature, our study showed that a diabetic milieu exerts an adverse effect on ASCs. Adopting LG culture condition is a simple and effective approach to enhance the wound healing capabilities of diabetic ASCs, which is valuable for the clinical application of autologous ASCs from diabetic patients.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University and College of Medicine, Keelung, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Ming-Ying Pei
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Hsieh
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Marques CR, Fuzeta MDA, Dos Santos Cunha RM, Pereira-Sousa J, Silva D, Campos J, Teixeira-Castro A, Sousa RA, Fernandes-Platzgummer A, da Silva CL, Salgado AJ. Neurodifferentiation and Neuroprotection Potential of Mesenchymal Stromal Cell-Derived Secretome Produced in Different Dynamic Systems. Biomedicines 2023; 11:biomedicines11051240. [PMID: 37238911 DOI: 10.3390/biomedicines11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta, leading to a loss of DA in the basal ganglia. The presence of aggregates of alpha-synuclein (α-synuclein) is seen as the main contributor to the pathogenesis and progression of PD. Evidence suggests that the secretome of mesenchymal stromal cells (MSC) could be a potential cell-free therapy for PD. However, to accelerate the integration of this therapy in the clinical setting, there is still the need to develop a protocol for the large-scale production of secretome under good manufacturing practices (GMP) guidelines. Bioreactors have the capacity to produce large quantities of secretomes in a scalable manner, surpassing the limitations of planar static culture systems. However, few studies focused on the influence of the culture system used to expand MSC, on the secretome composition. In this work, we studied the capacity of the secretome produced by bone marrow-derived mesenchymal stromal cells (BMSC) expanded in a spinner flask (SP) and in a Vertical-Wheel™ bioreactor (VWBR) system, to induce neurodifferentiation of human neural progenitor cells (hNPCs) and to prevent dopaminergic neuron degeneration caused by the overexpression of α-synuclein in one Caenorhabditis elegans model of PD. Results showed that secretomes from both systems were able to induce neurodifferentiation, though the secretome produced in the SP system had a greater effect. Additionally, in the conditions of our study, only the secretome produced in SP had a neuroprotective potential. Lastly, the secretomes had different profiles regarding the presence and/or specific intensity of different molecules, namely, interleukin (IL)-6, IL-4, matrix metalloproteinase-2 (MMP2), and 3 (MMP3), tumor necrosis factor-beta (TNF-β), osteopontin, nerve growth factor beta (NGFβ), granulocyte colony-stimulating factor (GCSF), heparin-binding (HB) epithelial growth factor (EGF)-like growth factor (HB-EGF), and IL-13. Overall, our results suggest that the culture conditions might have influenced the secretory profiles of cultured cells and, consequently, the observed effects. Additional studies should further explore the effects that different culture systems have on the secretome potential of PD.
Collapse
Affiliation(s)
- Cláudia Raquel Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Raquel Medina Dos Santos Cunha
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Amandi Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa S.A., 4805-017 Barco, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Paensuwan P, Laorob T, Ngoenkam J, Wichai U, Pongcharoen S. Nitro Dihydrocapsaicin, a Non-Pungent Capsaicin Analogue, Inhibits Cellular Senescence of Lens Epithelial Cells via Upregulation of SIRT1. Int J Mol Sci 2022; 23:ijms232213960. [PMID: 36430438 PMCID: PMC9695757 DOI: 10.3390/ijms232213960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic cataracts are a common complication that can cause blindness among patients with diabetes mellitus. A novel nitro dihydrocapsaicin (NDHC), a capsaicin analog, was constructed to have a non-pungency effect. The objective of this research was to study the effect of NDHC on human lens epithelial (HLE) cells that lost function from hyperglycemia. HLE cells were pretreated with NDHC before an exposure to high glucose (HG) conditions. The results show that NDHC promoted a deacceleration of cellular senescence in HLE cells. This inhibition of cellular senescence was characterized by a delayed cell growth and lower production of reactive oxygen species (ROS) as well as decreased SA-β-galactosidase activity. Additionally, the expression of Sirt1 protein sharply increased, while the expression of p21 and phospho-p38 proteins decreased. These findings provide evidence that NDHC could exert a pharmacologically protective effect by inhibiting the senescence program of lens cells during diabetic cataracts.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: (P.P.); (S.P.); Tel.: +66-55-966414 (P.P.); +66-55-965105 (S.P.)
| | - Thanet Laorob
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Uthai Wichai
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: (P.P.); (S.P.); Tel.: +66-55-966414 (P.P.); +66-55-965105 (S.P.)
| |
Collapse
|
11
|
Impact of Microenvironmental Changes during Degeneration on Intervertebral Disc Progenitor Cells: A Comparison with Mesenchymal Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9040148. [PMID: 35447707 PMCID: PMC9025850 DOI: 10.3390/bioengineering9040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc (IVD) degeneration occurs with natural ageing and is linked to low back pain, a common disease. As an avascular tissue, the microenvironment inside the IVD is harsh. During degeneration, the condition becomes even more compromised, presenting a significant challenge to the survival and function of the resident cells, as well as to any regeneration attempts using cell implantation. Mesenchymal stem cells (MSCs) have been proposed as a candidate stem cell tool for IVD regeneration. Recently, endogenous IVD progenitor cells have been identified inside the IVD, highlighting their potential for self-repair. IVD progenitor cells have properties similar to MSCs, with minor differences in potency and surface marker expression. Currently, it is unclear how IVD progenitor cells react to microenvironmental factors and in what ways they possibly behave differently to MSCs. Here, we first summarized the microenvironmental factors presented in the IVD and their changes during degeneration. Then, we analyzed the available studies on the responses of IVD progenitor cells and MSCs to these factors, and made comparisons between these two types of cells, when possible, in an attempt to achieve a clear understanding of the characteristics of IVD progenitor cells when compared to MSCs; as well as, to provide possible clues to cell fate after implantation, which may facilitate future manipulation and design of IVD regeneration studies.
Collapse
|
12
|
Mantripragada VP, Kaplevatsky R, Bova WA, Boehm C, Obuchowski NA, Midura RJ, Muschler GF. Influence of Glucose Concentration on Colony-Forming Efficiency and Biological Performance of Primary Human Tissue-Derived Progenitor Cells. Cartilage 2021; 13:95S-106S. [PMID: 32100548 PMCID: PMC8804831 DOI: 10.1177/1947603520906605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Glucose concentrations used in current cell culture methods are a significant departure from physiological glucose levels. The study focuses on comparing the effects of glucose concentrations on primary human progenitors (connective tissue progenitors [CTPs]) used for cartilage repair. DESIGN Cartilage- (Outerbridge grade 1, 2, 3; superficial and deep zone cartilage), infrapatellar fatpad-, synovium-, and periosteum-derived cells were obtained from 63 patients undergoing total knee arthroplasty and cultured simultaneously in fresh chondrogenic media containing 25 mM glucose (HGL) or 5 mM glucose (NGL) for pairwise comparison. Automated ASTM-based quantitative image analysis was used to determine colony-forming efficiency (CFE), effective proliferation rates (EPR), and sulfated-proteoglycan (GAG-ECM) staining of the CTPs across tissue sources. RESULTS HGL resulted in increased cell cultures with CFE = 0 compared with NGL in all tissue sources (P = 0.049). The CFE in NGL was higher than HGL for superficial cartilage (P < 0.001), and contrary for synovium-derived CTPs (P = 0.046) when CFE > 0. EPR of the CTPs did not differ between the media in the 6-day assay time period (P = 0.082). The GAG-ECM area of the CTPs and their progeny was increased in presence of HGL (P = 0.027). CONCLUSION Glucose concentration is critical to progenitor's physiology and should be taken into account in the setting of protocols for clinical or in vitro cell expansion strategies.
Collapse
Affiliation(s)
- Venkata P. Mantripragada
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Venkata P. Mantripragada, Department of
Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid
Avenue, ND3-30, Cleveland, OH 44195, USA.
| | | | - Wes A. Bova
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nancy A. Obuchowski
- Department of Quantitative Health
Science, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald J. Midura
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George F. Muschler
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Orthopedic Surgery,
Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Rogals MJ, Yang JY, Williams RV, Moremen KW, Amster IJ, Prestegard JH. Sparse isotope labeling for nuclear magnetic resonance (NMR) of glycoproteins using 13C-glucose. Glycobiology 2021; 31:425-435. [PMID: 32902634 PMCID: PMC8091466 DOI: 10.1093/glycob/cwaa071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/02/2023] Open
Abstract
Preparation of samples for nuclear magnetic resonance (NMR) characterization of larger proteins requires enrichment with less abundant, NMR-active, isotopes such as 13C and 15N. This is routine for proteins that can be expressed in bacterial culture where low-cost isotopically enriched metabolic substrates can be used. However, it can be expensive for glycosylated proteins expressed in mammalian culture where more costly isotopically enriched amino acids are usually used. We describe a simple, relatively inexpensive procedure in which standard commercial media is supplemented with 13C-enriched glucose to achieve labeling of all glycans plus all alanines of the N-terminal domain of the highly glycosylated protein, CEACAM1. We demonstrate an ability to detect partially occupied N-glycan sites, sites less susceptible to processing by an endoglycosidase, and some unexpected truncation of the amino acid sequence. The labeling of both the protein (through alanines) and the glycans in a single culture requiring no additional technical expertise past standard mammalian expression requirements is anticipated to have several applications, including structural and functional screening of the many glycosylated proteins important to human health.
Collapse
Affiliation(s)
- Monique J Rogals
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Robert V Williams
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
- Department of Chemistry
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology
| | | | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
- Department of Chemistry
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
14
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
15
|
Ammar HI, Shamseldeen AM, Shoukry HS, Ashour H, Kamar SS, Rashed LA, Fadel M, Srivastava A, Dhingra S. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol Heart Circ Physiol 2021; 320:H1290-H1302. [PMID: 33513084 DOI: 10.1152/ajpheart.00317.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have demonstrated potential in treating diabetic cardiomyopathy. However, patients with diabetes are on multiple drugs and there is a lack of understanding of how transplanted stem cells would respond in presence of such drugs. Metformin is an AMP kinase (AMPK) activator, the widest used antidiabetic drug. In this study, we investigated the effect of metformin on the efficacy of stem cell therapy in a diabetic cardiomyopathy animal model using streptozotocin (STZ) in male Wistar rats. To comprehend the effect of metformin on the efficacy of BM-MSCs, we transplanted BM-MSCs (1 million cells/rat) with or without metformin. Our data demonstrate that transplantation of BM-MSCs prevented cardiac fibrosis and promoted angiogenesis in diabetic hearts. However, metformin supplementation downregulated BM-MSC-mediated cardioprotection. Interestingly, both BM-MSCs and metformin treatment individually improved cardiac function with no synergistic effect of metformin supplementation along with BM-MSCs. Investigating the mechanisms of loss of efficacy of BM-MSCs in the presence of metformin, we found that metformin treatment impairs homing of implanted BM-MSCs in the heart and leads to poor survival of transplanted cells. Furthermore, our data demonstrate that metformin-mediated activation of AMPK is responsible for poor homing and survival of BM-MSCs in the diabetic heart. Hence, the current study confirms that a conflict arises between metformin and BM-MSCs for treating diabetic cardiomyopathy. Approximately 10% of the world population is diabetic to which metformin is prescribed very commonly. Hence, future cell replacement therapies in combination with AMPK inhibitors may be more effective for patients with diabetes.NEW & NOTEWORTHY Metformin treatment reduces the efficacy of mesenchymal stem cell therapy for cardiac repair during diabetic cardiomyopathy. Stem cell therapy in diabetics may be more effective in combination with AMPK inhibitors.
Collapse
Affiliation(s)
- Hania Ibrahim Ammar
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Heba Samy Shoukry
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa Samir Kamar
- Department of Medical Histology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mostafa Fadel
- Diagnostic Imaging and Endoscopy Unit, Animal Reproduction Research Institute, Cairo, Egypt
| | - Abhay Srivastava
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Koobotse MO, Schmidt D, Holly JMP, Perks CM. Glucose Concentration in Cell Culture Medium Influences the BRCA1-Mediated Regulation of the Lipogenic Action of IGF-I in Breast Cancer Cells. Int J Mol Sci 2020; 21:E8674. [PMID: 33212987 PMCID: PMC7698585 DOI: 10.3390/ijms21228674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023] Open
Abstract
Hyperglycaemia is a common metabolic alteration associated with breast cancer risk and progression. We have previously reported that BRCA1 restrains metabolic activity and proliferative response to IGF-I anabolic actions in breast cancer cells cultured in high glucose. Here, we evaluated the impact of normal physiological glucose on these tumour suppressive roles of BRCA1. Human breast cancer cells cultured in normal physiological and high glucose were treated with IGF-I (0-500 ng/mL). Cellular responses were evaluated using immunoblotting, co-immunoprecipitation, and cell viability assay. As we previously reported, IGF-I induced ACCA dephosphorylation by reducing the association between BRCA1 and phosphorylated ACCA in high glucose, and upregulated FASN abundance downstream of ACCA. However, these effects were not observed in normal glucose. Normal physiological glucose conditions completely blocked IGF-I-induced ACCA dephosphorylation and FASN upregulation. Co-immunoprecipitation studies showed that normal physiological glucose blocked ACCA dephosphorylation by increasing the association between BRCA1 and phosphorylated ACCA. Compared to high glucose, the proliferative response of breast cancer cells to IGF-I was reduced in normal glucose, whereas no difference was observed in normal mammary epithelial cells. Considering these results collectively, we conclude that normal physiological glucose promotes the novel function of BRCA1 as a metabolic restraint of IGF-I actions. These data suggest that maintaining normal glucose levels may improve BRCA1 function in breast cancer and slow down cancer progression.
Collapse
Affiliation(s)
- Moses O. Koobotse
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
- Faculty of Health Sciences, School of Allied Health Professions, University of Botswana, Gaborone, Plot 4775, Botswana
| | - Dayane Schmidt
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
| | - Jeff M. P. Holly
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS10 5NB, UK; (M.O.K.); (D.S.); (J.M.P.H.)
| |
Collapse
|
17
|
Proteomic study of in vitro osteogenic differentiation of mesenchymal stem cells in high glucose condition. Mol Biol Rep 2020; 47:7505-7516. [PMID: 32918125 DOI: 10.1007/s11033-020-05811-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
Patients with diabetes have been widely reported to be at an increased risk of secondary osteoporosis. Osteoporosis is caused by an imbalance in bone remodeling due to increased bone resorption and/or decreased osteoblast-dependent bone formation. In this study, mesenchymal stem cells (MSCs) were used as a disease model to determine the effects of high glucose levels on MSC-osteoblast development. The results indicated that under high glucose conditions, MSCs had reduced cell viability and increased number of β-galactosidase-positive cells. Furthermore, in vitro osteogenesis was shown to be reduced in MSCs cultured in osteogenic differentiation medium at 10, 25, and 40 mM glucose as demonstrated by Alizarin red S staining and alkaline phosphatase activity assay. Moreover, a proteomic study was performed in MSCs cultured with 25 and 40 mM glucose. The proteomic results demonstrated that 12 proteins were up- and downregulated in bone marrow-derived mesenchymal stem cells cultured with high glucose in a dose-dependent manner. The findings presented here contribute to our understanding of the mechanism of diabetes mellitus responsible for bone loss. However, the exact mechanism of action of hyperglycemia on bone deformability requires additional studies.
Collapse
|
18
|
Roohi A, Nikougoftar M, Montazeri H, Navabi S, Shokri F, Ostad SN, Ghahremani MH. High Glucose Affects the Cytotoxic Potential of Rapamycin, Metformin and Hydrogen Peroxide in Cultured Human Mesenchymal Stem Cells. Curr Mol Med 2020; 19:688-698. [PMID: 31625470 DOI: 10.2174/1566524019666190722115842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment. METHODS Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK. RESULTS The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated. CONCLUSION Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center- Higher Institute for Research and Education in Transfusion Medicine- Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy- International Campus, Iran University of Medical Sciences- Tehran, Iran
| | - Shadisadat Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kichenbrand C, Grossin L, Menu P, Moby V. Behaviour of human dental pulp stem cell in high glucose condition: impact on proliferation and osteogenic differentiation. Arch Oral Biol 2020; 118:104859. [PMID: 32768712 DOI: 10.1016/j.archoralbio.2020.104859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the changes of human dental pulp stem cell (hDPSC) viability, proliferation and osteogenic differentiation in high glucose condition. DESIGN After 21 days of culture in low (5.5 mM) and high (20 mM) glucose medium, hDPSC viability and proliferation were assessed with respectively the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Hoechst assays. To investigate the influence of glucose on osteogenic differentiation hDPSCs were cultured for 28 days in low or high glucose medium with osteoinductive cocktail. Mineralization was examined by alizarin red staining/quantification and the expression of osteogenic-related genes [Runt-related transcription factor 2 (RUNX2), Osteocalcin (OCN), Collagen 1A1 (COL1A1)] analyzed by RT-qPCR. RESULTS We observed no significant difference (p > 0.05) on hDPSC proliferation or cell viability between low or high glucose groups. We did not highlight a significant difference after alizarin red staining and quantification between hDPSCs cultured with high or low glucose concentration in the culture medium. In the same manner, high glucose concentration did not appear to modify osteogenic gene expression: there was no significant difference in osteogenic-related gene expression between high or low glucose groups. CONCLUSION Proliferation, viability, and osteogenic differentiation of hDPSCs were not changed by high glucose environment.
Collapse
Affiliation(s)
- Charlene Kichenbrand
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France; CHRU Nancy, Service Odontologie, F-54000 Nancy, France; Faculté d'Odontologie, Université de Lorraine, F-54000 Nancy, France.
| | - Laurent Grossin
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France.
| | - Patrick Menu
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France; Faculté de Pharmacie, Université de Lorraine, F-54000 Nancy, France.
| | - Vanessa Moby
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France; CHRU Nancy, Service Odontologie, F-54000 Nancy, France; Faculté d'Odontologie, Université de Lorraine, F-54000 Nancy, France.
| |
Collapse
|
20
|
Conditioned medium produced by fibroblasts cultured in low oxygen pressure allows the formation of highly structured capillary-like networks in fibrin gels. Sci Rep 2020; 10:9291. [PMID: 32518266 PMCID: PMC7283357 DOI: 10.1038/s41598-020-66145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering is an emerging and promising concept to replace or cure failing organs, but its clinical translation currently encounters issues due to the inability to quickly produce inexpensive thick tissues, which are necessary for many applications. To circumvent this problem, we postulate that cells secrete the optimal cocktail required to promote angiogenesis when they are placed in physiological conditions where their oxygen supply is reduced. Thus, dermal fibroblasts were cultivated under hypoxia (2% O2) to condition their cell culture medium. The potential of this conditioned medium was tested for human umbilical vein endothelial cell proliferation and for their ability to form capillary-like networks into fibrin gels. The medium conditioned by dermal fibroblasts under hypoxic conditions (DF-Hx) induced a more significant proliferation of endothelial cells compared to medium conditioned by dermal fibroblasts under normoxic conditions (DF-Nx). In essence, doubling time for endothelial cells in DF-Hx was reduced by 10.4% compared to DF-Nx after 1 week of conditioning, and by 20.3% after 2 weeks. The DF-Hx allowed the formation of more extended and more structured capillary-like networks than DF-Nx or commercially available medium, paving the way to further refinements.
Collapse
|
21
|
El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, Van de Wiele T. Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis. Am J Physiol Endocrinol Metab 2020; 318:E742-E749. [PMID: 31935110 DOI: 10.1152/ajpendo.00523.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gut-liver cross talk is an important determinant of human health with profound effects on energy homeostasis. While gut microbes produce a huge range of metabolites, specific compounds such as short-chain fatty acids (SCFAs) can enter the portal circulation and reach the liver (Brandl K, Schnabl B. Curr Opin Gastroenterol 33: 128-133, 2017), a central organ involved in glucose homeostasis and diabetes control. Propionate is a major SCFA involved in activation of intestinal gluconeogenesis (IGN), thereby regulating food intake, enhancing insulin sensitivity, and leading to metabolic homeostasis. Although microbiome-modulating strategies may target the increased microbial production of propionate, it is not clear whether such an effect spreads through to the hepatic cellular level. Here, we designed a propionate-producing consortium using a selection of commensal gut bacteria, and we investigated how their delivered metabolites impact an in vitro enterohepatic model of insulin resistance. Glycogen storage on hepatocyte-like cells and inflammatory markers associated with insulin resistance were evaluated to understand the role of gut metabolites on gut-liver cross talk in a simulated scenario of insulin resistance. The metabolites produced by our consortium increased glycogen synthesis by ~57% and decreased proinflammatory markers such as IL-8 by 12%, thus elucidating the positive effect of our consortium on metabolic function and low-grade inflammation. Our results suggest that microbiota-derived products can be a promising multipurpose strategy to modulate energy homeostasis, with the potential ability to assist in managing metabolic diseases due to their adaptability.
Collapse
Affiliation(s)
- Racha El Hage
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | | | | | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Persian onager (Equus hemionus onager) endometrial explant cryopreservation and in vitro culture. Anim Reprod Sci 2020; 217:106459. [PMID: 32408971 DOI: 10.1016/j.anireprosci.2020.106459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022]
Abstract
Assisted reproduction of endangered equids, such as Persian onagers (Equus hemionus onager), is vital for species conservation. Little is known about Persian onager reproductive functions, including functions of the uterine endometrium. Recently, successful cryopreservation of the domestic mare endometrium was reported, but there is no information on cryo-sensitivity or in vitro culture of endometrial tissues of any non-domestic equid. In the present study, endometrial explants from Persian onagers were cryopreserved and cultured in vitro for 5 days. There was no difference between endometrial explants when 10% and 20% dimethyl sulfoxide (DMSO) was used for cryopreservation. Cell viability and structural integrity were comparable to fresh tissue. Abundance of estrogen receptor-α (ESR1) and progesterone receptor (PGR) mRNA transcript in endometrial explants was less in most treatment groups compared to the fresh tissue control. There was variation in E-cadherin mRNA abundance in endometrial explants among treatment groups with some treatment groups having a lesser abundance compared to the control group. The abundance of Ki67 mRNA transcript of endometrial explants was not different among treatment groups compared to the control group. Results indicate that DMSO is a suitable cryoprotectant for the Persian onager endometrium, and in vitro culture in a liquid-gas interface can maintain Persian onager endometrial explants for as long as 5 days. Findings allow for a greater understanding of reproductive mechanisms in vitro for this endangered species and other domestic equids including donkeys.
Collapse
|
23
|
Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction. GeroScience 2020; 42:547-561. [PMID: 32166556 DOI: 10.1007/s11357-020-00179-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Individuals with diabetes are more susceptible to cerebral vascular aging. However, the underlying mechanisms are not well elucidated. The present study examined whether the myogenic response of the middle cerebral artery (MCA) is impaired in diabetic rats due to high glucose (HG)-induced cerebral vascular smooth muscle cell (CVSMC) dysfunction, and whether this is associated with ATP depletion and changes in mitochondrial dynamics and membrane potential. The diameters of the MCA of diabetic rats increased to 135.3 ± 11.3% when perfusion pressure was increased from 40 to 180 mmHg, while it fell to 85.1 ± 3.1% in non-diabetic controls. The production of ROS and mitochondrial-derived superoxide were enhanced in cerebral arteries of diabetic rats. Levels of mitochondrial superoxide were significantly elevated in HG-treated primary CVSMCs, which was associated with decreased ATP production, mitochondrial respiration, and membrane potential. The expression of OPA1 was reduced, and MFF was elevated in HG-treated CVSMCs in association with fragmented mitochondria. Moreover, HG-treated CVSMCs displayed lower contractile and proliferation capabilities. These results demonstrate that imbalanced mitochondrial dynamics (increased fission and decreased fusion) and membrane depolarization contribute to ATP depletion in HG-treated CVSMCs, which promotes CVSMC dysfunction and may play an essential role in exacerbating the impaired myogenic response in the cerebral circulation in diabetes and accelerating vascular aging.
Collapse
|
24
|
Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Wang JC, Feng XM, Zhang L. The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells. Cell Biochem Funct 2020; 38:130-140. [PMID: 31957071 DOI: 10.1002/cbf.3441] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a dependent risk factor in the progression of intervertebral disc degeneration (IVDD). High glucose supply has negative effects on nucleus pulpous (NP) cell and mesenchymal stem cell (MSC) biology. However, the effect of hyperglycaemia on the biological characterization of nucleus pulpous-derived mesenchymal stem cell (NPMSC) has not been investigated previously. Therefore, further exploration of the effects of DM-associated hyperglycaemia on NPMSC biology is important to better understand and develop endogenous repair strategies of DM patient-associated IVDD. Therefore, the cell biological characteristics were compared between NPMSC cultured in media with low glucose concentration (LG-NPMSC) and high glucose concentration (HG-NPMSC). The results demonstrated that HG-NPMSC showed significantly decreased cell proliferation, colony formation ability, migration and wound-healing capability compared with those of LG-NPMSC. HG-NPMSC also showed significantly decreased expressions of stemness genes and mRNA and protein expressions of silent information regulator protein 1 (SIRT1), SIRT6, hypoxia inducible factor-1α (HIF-1α) and glucose transporter 1 (GLUT-1), whereas increased cell apoptosis, cell senescence and caspase-3 expression. These results suggest that high glucose may decrease proliferation and stemness maintenance ability and increase apoptosis and senescence of NPMSC. SIGNIFICANCE OF THE STUDY: We found that high glucose concentration significantly decreased cell proliferation, colony formation ability, migration and wound-healing capability of nucleus pulposus-derived mesenchymal stem cells. Moreover, high glucose cultured nucleus pulposus-derived mesenchymal stem cells showed significantly decreased expression of stemness genes, related mRNA and protein, whereas increased cell apoptosis, cell senescence and expression of caspase-3. The present study indicated that better control of high concentration glucose in the early stage of diabetes mellitus should be recommended to prevent or limit intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Orthopedics, Dalian Medical University, Dalian, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yan Li
- Department of Internal Medicine, Dalian Medical University, Dalian, China
| | - Li-Ping Nan
- Department of Orthopedics, Dalian Medical University, Dalian, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University, Dalian, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jing-Cheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Shiomi K, Yamawaki I, Taguchi Y, Kimura D, Umeda M. Osteogenic Effects of Glucose Concentration for Human Bone Marrow Stromal Cells after Stimulation with Porphyromonas gingivalis Lipopolysaccharide. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kei Shiomi
- Department of Periodontology, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University
| | | | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
26
|
Al-Qarakhli AMA, Yusop N, Waddington RJ, Moseley R. Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. BMC Mol Cell Biol 2019; 20:51. [PMID: 31752674 PMCID: PMC6873668 DOI: 10.1186/s12860-019-0235-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mesenchymal stromal cells in the endosteal niche lining compact bone (CB-MSCs) represent a heterogeneous population, all of which contribute to bone repair and remodelling. Hyperglycaemia associated with type 2 diabetes mellitus (T2DM) can delay and impair the bone healing process. Therefore, this study investigated the influences of high (25 mM) glucose conditions on CB-MSC populations isolated from male Wistar rats, versus normal (5.5 mM) glucose conditions; in terms of proliferation (population doublings, PDs), senescence characteristics, stem cell marker expression, colony forming efficiencies (CFEs); and osteogenic/adipogenic differentiation, following extended culture in vitro. Results CB-MSCs under both normoglycaemic and hyperglycaemic conditions demonstrated similar morphologies and rapid exponential growth to >300PDs, although high glucose conditions promoted more rapid and persistent proliferation beyond ~50PDs, with few indications of senescence. Limited senescence was confirmed by minimal SA-β-galactosidase staining, low senescence marker (p53, p21waf1, p16INK4a) expression and positive telomere maintenance marker (rTERT, TR) expression. However, telomere lengths varied throughout culture expansion, with hyperglycaemia significantly reducing telomere lengths at PD50 and PD200. Furthermore, CB-MSCs expanded in normal and high glucose conditions remained non-transformed, exhibiting similar MSC (CD73/CD90/CD105), multipotency (CD146) and embryonic (Slug, Snail) markers throughout extended culture, but negligible hematopoietic (CD34/CD45) or pluripotency (Nanog, Oct4) markers. Hyperglycaemia significantly increased CFEs at PD50 and PD100, which decreased at PD200. CB-MSC osteogenic differentiation was also inhibited by hyperglycaemia at PD15, PD100 and PD200, but not at PD50. Hyperglycaemia inhibited CB-MSC adipogenic differentiation to a lesser extent at PD15 and PD50, with reduced adipogenesis overall at PD100 and PD200. Conclusion This study demonstrates the limited negative impact of hyperglycaemia on the proliferative and stem cell characteristics of heterogeneous CB-MSC populations, although minor sub-population(s) appear more susceptible to these conditions leading to impaired osteogenic/adipogenic differentiation capabilities. Such findings potentially highlight the impact of hyperglycaemia on CB-MSC bone repair capabilities in situ.
Collapse
Affiliation(s)
- Ahmed Makki A Al-Qarakhli
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,College of Dentistry, University of Anbar, Anbar, Iraq
| | - Norhayati Yusop
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rachel J Waddington
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Ryan Moseley
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| |
Collapse
|
27
|
Thompson RE, Johnson AK, Prado TM, Premanandan C, Brown ME, Whitlock BK, Pukazhenthi BS. Dimethyl sulfoxide maintains structure and function of cryopreserved equine endometrial explants. Cryobiology 2019; 91:90-96. [PMID: 31626783 DOI: 10.1016/j.cryobiol.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022]
Abstract
Availability of viable frozen-thawed endometrial tissues could facilitate detailed studies into physiologic and disease processes influencing the endometrium. This study was designed to investigate the cryosurvival of equine endometrial tissue. Previous studies in the human and horse have focused on cryopreservation of dissociated endometrial cells. To our knowledge, there are no studies on cryopreservation of endometrial explants. Our objectives were to 1) determine the influence of differing concentrations of the permeating cryoprotectant dimethyl sulfoxide (Me2SO) on viability, structural integrity, and gene expression of cryopreserved equine endometrial tissues prior to and following a 5-day explant culture in vitro and 2) examine the influence of low (1000 mg/L dextrose) vs high (4500 mg/L dextrose) glucose medium during in vitro culture. Both 10% and 20% (v/v) concentrations of Me2SO maintained viability following cryopreservation and in vitro culture. In addition, gene expression remained unaltered following cryopreservation with either 10% or 20% Me2SO. However, tissue structural integrity was slightly reduced compared to the fresh control. Furthermore, there was no difference in structural integrity, cell viability, or gene expression between low and high glucose medium during in vitro culture. Although E-cadherin and Ki67 gene expression was not different among fresh, 10% Me2SO, and 20% Me2SO treatments prior to or following tissue culture, estrogen receptor-α and progesterone receptor gene expression were reduced in all groups after explant culture. This is the first report of successful cryopreservation of equine endometrial explants.
Collapse
Affiliation(s)
- Riley E Thompson
- University of Tennessee College of Veterinary Medicine, Department of Large Animal Clinical Sciences, 2407 River Drive, Knoxville, TN, 37996, USA; Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Aime K Johnson
- Auburn University College of Veterinary Medicine, 1010 Wire Road, Auburn, AL, 36832, USA
| | - Tulio M Prado
- University of Tennessee College of Veterinary Medicine, Department of Large Animal Clinical Sciences, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Christopher Premanandan
- The Ohio State University College of Veterinary Medicine, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Megan E Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Brian K Whitlock
- University of Tennessee College of Veterinary Medicine, Department of Large Animal Clinical Sciences, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Budhan S Pukazhenthi
- Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA.
| |
Collapse
|
28
|
Impact of Serum Source on Human Mesenchymal Stem Cell Osteogenic Differentiation in Culture. Int J Mol Sci 2019; 20:ijms20205051. [PMID: 31614651 PMCID: PMC6834181 DOI: 10.3390/ijms20205051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/05/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) show promise for musculoskeletal repair applications. Animal-derived serum is extensively used for MSC culture as a source of nutrients, extracellular matrix proteins and growth factors. However, the routine use of fetal calf serum (FCS) is not innocuous due to its animal antigens and ill-defined composition, driving the development of alternatives protocols. The present study sought to reduce exposure to FCS via the transient use of human serum. Transient exposure to animal serum had previously proved successful for the osteogenic differentiation of MSCs but had not yet been tested with alternative serum sources. Here, human serum was used to support the proliferation of MSCs, which retained surface marker expression and presented higher alkaline phosphatase activity than those in FCS-based medium. Addition of osteogenic supplements supported strong mineralisation over a 3-week treatment. When limiting serum exposure to the first five days of treatment, MSCs achieved higher differentiation with human serum than with FCS. Finally, human serum analysis revealed significantly higher levels of osteogenic components such as alkaline phosphatase and 25-Hydroxyvitamin D, consistent with the enhanced osteogenic effect. These results indicate that human serum used at the start of the culture offers an efficient replacement for continuous FCS treatment and could enable short-term exposure to patient-derived serum in the future.
Collapse
|
29
|
Expression of glucose transporters in the human amnion derived mesenchymal stromal cells under normoglycemic and hyperglycemic conditions. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Rev Rep 2019; 15:194-217. [DOI: 10.1007/s12015-018-9869-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Caseiro AR, Ivanova G, Pedrosa SS, Branquinho MV, Georgieva P, Barbosa PP, Santos JD, Magalhães R, Teixeira P, Pereira T, Maurício AC. Human umbilical cord blood plasma as an alternative to animal sera for mesenchymal stromal cells in vitro expansion - A multicomponent metabolomic analysis. PLoS One 2018; 13:e0203936. [PMID: 30304014 PMCID: PMC6179201 DOI: 10.1371/journal.pone.0203936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal Stromal cells (MSCs) have a potential role in cell-based therapies. Foetal bovine serum (FBS) is used to supplement the basal cell culture medium but presents several disadvantages and risks. Other alternatives have been studied, including human umbilical cord blood plasma (hUCBP), aiming at the development of xeno-free culturing protocols. A comparative characterization of multicomponent metabolic composition of hUCBP and commercial FBS based on Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate statistical analysis was performed. The analysis of 1H-NMR spectra revealed both similarities and differences between the two proposed supplements. Similar metabolites (amino acids, glucose, lipids and nucleotides) were found in the hUCBP and FBS NMR spectra. The results show that the major difference between the metabolic profiles of the two proposed supplements are due to the significantly higher levels of glucose and lower levels of lactate, glutamate, alanine and branched chain amino acids in hUCBP. Similar or slightly different levels of important proteinogenic amino acids, as well as of nucleotides, lipids were found in the hUCBP and FBS. In order to validate it’s suitability for cell culture, umbilical cord-MSCs (UC-MSCs) and dental pulp stem cells (DPSCs) were expanded using hUCBP. In both hMSCs, in vitro culture with hUCBP supplementation presented similar to improved metabolic performances when compared to FBS. The two cell types tested expressed different optimum hUCBP percentage content. For DPSCs, the optimum hUCBP content was 6% and for UC-MSCs, 4%. Cultured hMSCs displayed no changes in senescence indicators, as well as maintained characteristic surface marker’s expression. FBS substitution was associated with an increase in early apoptosis events, in a dose dependent manner, as well as to slight up- and down-regulation of targeted gene’s expression. Tri-lineage differentiation capacity was also influenced by the substitution of FBS by hUCBP.
Collapse
Affiliation(s)
- A. R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
- REQUIMTE/LAQV–U. Porto–Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, Porto, Portugal
| | - G. Ivanova
- REQUIMTE- LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - S. S. Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - M. V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - P. Georgieva
- Department of Electronics Telecommunications and Informatics, IEETA, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - P. P. Barbosa
- Biosckin, Molecular and Cell Therapies S.A., Laboratório Criovida, TecMaia, Rua Engenheiro Frederico Ulrich 2650, Moreira da Maia, Portugal
| | - J. D. Santos
- REQUIMTE/LAQV–U. Porto–Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, Porto, Portugal
| | - R. Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, Porto, Portugal
| | - P. Teixeira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, Porto, Portugal
| | - T. Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A. C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
- * E-mail: ,
| |
Collapse
|
32
|
Lai AG, Forde D, Chang WH, Yuan F, Zhuang X, Orbegozo Rubio C, Song CX, McKeating JA. Glucose and glutamine availability regulate HepG2 transcriptional responses to low oxygen. Wellcome Open Res 2018; 3:126. [PMID: 30345392 PMCID: PMC6178907 DOI: 10.12688/wellcomeopenres.14839.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Little is known about the impact of nutrients on cellular transcriptional responses, especially in face of environmental stressors such as oxygen deprivation. Hypoxia-inducible factors (HIF) coordinate the expression of genes essential for adaptation to oxygen-deprived environments. A second family of oxygen-sensing genes known as the alpha-ketoglutarate-dependent dioxygenases are also implicated in oxygen homeostasis and epigenetic regulation. The relationship between nutritional status and cellular response to hypoxia is understudied. In vitro cell culture systems frequently propagate cells in media that contains excess nutrients, and this may directly influence transcriptional response in hypoxia. Methods: We studied the effect of glucose and glutamine concentration on HepG2 hepatoma transcriptional response to low oxygen and expression of hypoxia inducible factor-1α (HIF-1α). Mass spectrometry confirmed low oxygen perturbation of dioxygenase transcripts resulted in changes in DNA methylation. Results: Under normoxic conditions, we observed a significant upregulation of both HIF-target genes and oxygen-dependent dioxygenases in HepG2 cells cultured with physiological levels of glucose or glutamine relative to regular DMEM media, demonstrating that excess glutamine/glucose can mask changes in gene expression. Under hypoxic conditions, CA9 was the most upregulated gene in physiological glutamine media while TETs and FTO dioxygenases were downregulated in physiological glucose. Hypoxic regulation of these transcripts did not associate with changes in HIF-1α protein expression. Downregulation of TETs suggests a potential for epigenetic modulation. Mass-spectrometry quantification of modified DNA bases confirmed our transcript data. Hypoxia resulted in decreased DNA hydroxymethylation, which correlated with TETs downregulation. Additionally, we observed that TET2 expression was significantly downregulated in patients with hepatocellular carcinoma, suggesting that tumour hypoxia may deregulate TET2 expression resulting in global changes in DNA hydroxymethylation. Conclusion: Given the dramatic effects of nutrient availability on gene expression, future in vitro experiments should be aware of how excess levels of glutamine and glucose may perturb transcriptional responses.
Collapse
Affiliation(s)
- Alvina G. Lai
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Donall Forde
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Wai Hoong Chang
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Fang Yuan
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Claudia Orbegozo Rubio
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
33
|
A Comparison of the Preservation of Mouse Adipose Tissue-Derived Mesenchymal Stem Cells Using the University of Wisconsin Solution and Hank's Balanced Salt Solution. Stem Cells Int 2018; 2018:1625464. [PMID: 30258463 PMCID: PMC6146634 DOI: 10.1155/2018/1625464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023] Open
Abstract
Preservation of adipose tissue before the isolation of cells is one of the most important steps in maintaining the cell viability of adipose tissue-derived mesenchymal stem cells (ADSCs) for clinical use. Hank's balanced salt solution (HBSS) is one of the main ADSC preservation solutions used clinically. However, this step is known to lead to decreased cell viability. The University of Wisconsin (UW) solution is recognized by transplant physicians as an excellent organ preservation solution. We aimed to investigate the effectiveness of UW solution in preservation of the viability of ADSCs. We collected adipose tissue from the inguinal fat pad of mice and compared preservation in UW solution and HBSS overnight by measuring cell viability after isolation. We found that the number of viable cells harvested per gram of adipose tissue mass was higher in UW solution- than HBSS-preserved tissue.
Collapse
|
34
|
The Effects of Hierarchical Micro/Nano-Structured Titanium Surface on Osteoblast Proliferation and Differentiation Under Diabetic Conditions. IMPLANT DENT 2018; 26:263-269. [PMID: 28301384 DOI: 10.1097/id.0000000000000576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE The aim of the present study was to mimic the hierarchical structure of bone tissues by simple sandblasting/acid-etching and anodization to investigate the effects of such surface characteristics on proliferation and differentiation of osteoblasts in high glucose concentrations. By the way, the effects of high glucose levels on osteoblast functions were tested. METHODS MC3T3-E1 cells cultured on sand-blasted and acid-etched (SLA) surface and nano-modified SLA (NMSLA) surface were subjected to normal serum (NS) and diabetic serum (DS), respectively. The surface characteristics were evaluated by scanning electron microscopy. Cell proliferation was assessed using MTT assay. The levels of alkaline phosphatase (ALP) activity and mineralization were measured and compared. Real-time polymerase chain reaction was applied to detect the expression levels of osteogenic genes. RESULTS NMSLA significantly increased cell proliferation at time points ranging from 3 to 7 days under both serums. Cells cultured on NMSLA surfaces displayed significantly higher ALP activities and mineralization. The expression levels of Runx2 (indicates runt-related protein 2), collagen I (COL1), and osteocalcin (OCN) were notably increased on NMSLA surface compared with SLA surface. Moreover, we found that high glucose increased osteoblast proliferation but decreased differentiation of osteoblast slightly. CONCLUSION The hierarchical micro/nano-structured titanium surface has a favorable biocompatibility on simultaneously improving osteoblast proliferation and differentiation in diabetic serum.
Collapse
|
35
|
Mathew SA, Bhonde R. Mesenchymal stromal cells isolated from gestationally diabetic human placenta exhibit insulin resistance, decreased clonogenicity and angiogenesis. Placenta 2017; 59:1-8. [PMID: 29108631 DOI: 10.1016/j.placenta.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
Pregnancy is known to be a diabetogenic state. With sedentary lifestyle and wrong dietary choices, gestational diabetes mellitus is on the rise. This raises a concern as placenta is becoming an acceptable choice, as a source of Mesenchymal Stromal Cells (MSCs). In our current study we questioned whether there exists a difference between MSCs isolated from normal and diabetic (Gd-P-MSCs) placenta, as the health of the cells used in therapy is of prime importance. We isolated and verified the Gd-P-MSCs based on their surface markers and differentiation potential. We looked at viability and proliferation and did not see a difference between the two. We analysed the glucose uptake potential of these cells by assessing the remnant glucose in the media, glucose within the cells by 2-NBDG and by glycogen storage. Despite only a slight downregulation of mRNA expression levels of glucose transporters, Gd-P-MSCs exhibited decreased glucose uptake even upon insulin stimulation and decreased glycogen storage, indicative of an insulin resistant state. We then assessed the colony forming ability of the cells and found a decreased clonogenicity in Gd-P-MSCs. We also examined the angiogenic potential of the cells by tube formation. Gd-P-MSCs showed decreased angiogenic potential when compared to normal cells. Thus we show for the first time, the effect of gestational diabetes on cells isolated from the chorionic villi of term placenta. Gd-P-MSCs are indeed insulin resistant, exhibit decreased clonogenicity and angiogenic potential. The present investigation is of relevance to the choice of sample for MSC isolation for therapeutic purposes.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, 560 065 Bangalore, India
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, 560 065 Bangalore, India.
| |
Collapse
|
36
|
Zhu M, He X, Wang XH, Qiu W, Xing W, Guo W, An TC, Ao LQ, Hu XT, Li Z, Liu XP, Xiao N, Yu J, Huang H, Xu X. Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications. Diabetologia 2017; 60:1822-1833. [PMID: 28577176 DOI: 10.1007/s00125-017-4316-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Regeneration and repair mediated by mesenchymal stem cells (MSCs) are key self-protection mechanisms against diabetic complications, a reflection of diabetes-related cell/tissue damage and dysfunction. MSC abnormalities have been reported during the progression of diabetic complications, but little is known about whether a deficiency in these cells plays a role in the pathogenesis of this disease. In addition to MSC resident sites, peripheral circulation is a major source of MSCs that participate in the regeneration and repair of damaged tissue. Therefore, we investigated whether there is a deficiency of circulating MSC-like cells in people with diabetes and explored the underlying mechanisms. METHODS The abundance of MSC-like cells in peripheral blood was evaluated by FACS. Selected diabetic and non-diabetic serum (DS and NDS, respectively) samples were used to mimic diabetic and non-diabetic microenvironments, respectively. The proliferation and survival of MSCs under different serum conditions were analysed using several detection methods. The survival of MSCs in diabetic microenvironments was also investigated in vivo using leptin receptor mutant (Lepr db/db ) mice. RESULTS Our data showed a significant decrease in the abundance of circulating MSC-like cells, which was correlated with complications in individuals with type 2 diabetes. DS strongly impaired the proliferation and survival of culture-expanded MSCs through the complement system but not through exposure to high glucose levels. DS-induced MSC apoptosis was mediated, at least in part, by the complement C5a-dependent upregulation of Fas-associated protein with death domain (FADD) and the Bcl-2-associated X protein (BAX)/B cell lymphoma 2 (Bcl-2) ratio, which was significantly inhibited by neutralising C5a or by the pharmacological or genetic inhibition of the C5a receptor (C5aR) on MSCs. Moreover, blockade of the C5a/C5aR pathway significantly inhibited the apoptosis of transplanted MSCs in Lepr db/db recipient mice. CONCLUSIONS/INTERPRETATION C5a-dependent apoptotic death is probably involved in MSC deficiency and in the progression of complications in individuals with type 2 diabetes. Therefore, anticomplement therapy may be a novel intervention for diabetic complications.
Collapse
Affiliation(s)
- Ming Zhu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xiao He
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xiao-Hui Wang
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
- Department of Histology and Embryology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Wei Qiu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Wei Xing
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Wei Guo
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Tian-Chen An
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Luo-Quan Ao
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xue-Ting Hu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhan Li
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Xiao-Ping Liu
- Department of Histology and Embryology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Nan Xiao
- Ninth Department, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hong Huang
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Xiang Xu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, No. 10 Changjiang Branch Road, Daping Street, Yuzhong District, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
37
|
Impaired osteogenesis of T1DM bone marrow-derived stromal cells and periosteum-derived cells and their differential in-vitro responses to growth factor rescue. Stem Cell Res Ther 2017; 8:65. [PMID: 28283030 PMCID: PMC5346267 DOI: 10.1186/s13287-017-0521-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/09/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
Background Poor bone quality, increased fracture risks, and impaired bone healing are orthopedic comorbidities of type 1 diabetes (T1DM). Standard osteogenic growth factor treatments are inadequate in fully rescuing retarded healing of traumatic T1DM long bone injuries where both periosteal and bone marrow niches are disrupted. We test the hypotheses that osteogenesis of bone marrow-derived stromal cells (BMSCs) and periosteum-derived cells (PDCs), two critical skeletal progenitors in long bone healing, are both impaired in T1DM and that they respond differentially to osteogenic bone morphogenetic proteins (BMPs) and/or insulin-like growth factor-1 (IGF-1) rescue. Methods BMSCs and PDCs were isolated from Biobreeding Diabetes Prone/Worcester rats acquiring T1DM and normal Wistar rats. Proliferation, osteogenesis, and adipogenesis of the diabetic progenitors were compared with normal controls. Responses of diabetic progenitors to osteogenesis rescue by rhBMP-2/7 heterodimer (45 or 300 ng/ml) and/or rhIGF-1 (15 or 100 ng/ml) in normal and high glucose cultures were examined by alizarin red staining and qPCR. Results Diabetic BMSCs and PDCs proliferated slower and underwent poorer osteogenesis than nondiabetic controls, and these impairments were exacerbated in high glucose cultures. Osteogenesis of diabetic PDCs was rescued by rhBMP-2/7 or rhBMP-2/7 + rhIGF-1 in both normal and high glucose cultures in a dose-dependent manner. Diabetic BMSCs, however, only responded to 300 ng/nl rhBMP-2/7 with/without 100 ng/ml rhIGF-1 in normal but not high glucose osteogenic culture. IGF-1 alone was insufficient in rescuing the osteogenesis of either diabetic progenitor. Supplementing rhBMP-2/7 in high glucose osteogenic culture significantly enhanced gene expressions of type 1 collagen (Col 1), osteocalcin (OCN), and glucose transporter 1 (GLUT1) while suppressing that of adipogenic marker peroxisome proliferator-activated receptor gamma (PPARγ) in diabetic PDCs. The same treatment in high glucose culture only resulted in a moderate increase in Col 1, but no significant changes in OCN or GLUT1 expressions in diabetic BMSCs. Conclusions This study demonstrates more effective osteogenesis rescue of diabetic PDCs than BMSCs by rhBMP-2/7 with/without rhIGF-1 in a hyperglycemia environment, underscoring the necessity to tailor biochemical therapeutics to specific skeletal progenitor niches. Our data also suggest potential benefits of combining growth factor treatment with blood glucose management to optimize orthopedic therapeutic outcomes for T1DM patients.
Collapse
|
38
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
39
|
Kay AG, Dale TP, Akram KM, Mohan P, Hampson K, Maffulli N, Spiteri MA, El Haj AJ, Forsyth NR. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation. Regen Med 2016; 10:109-25. [PMID: 25835477 DOI: 10.2217/rme.14.67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Human mesenchymal stem cells (hMSC) are multipotent progenitor cells. We propose the optimization of hMSC isolation and recovery using the application of a controlled hypoxic environment. MATERIALS & METHODS We evaluated oxygen, glucose and serum in the recovery of hMSC from bone marrow (BMhMSC). Colony forming units-fibroblastic, cell numbers, tri-lineage differentiation, immunofluorescence and microarray were used to confirm and characterize BMhMSC. RESULTS In an optimized (2% O(2), 4.5 g/l glucose and 5% serum) environment both colony forming units-fibroblastic (p = 0.01) and cell numbers (p = 0.0001) were enhanced over standard conditions. Transcriptional analysis identified differential expression of bone morphogenetic protein 2 (BMP2) and, putatively, chemokine (C-X-C motif) receptor 2 (CXCR2) signaling pathways. CONCLUSION We have detailed a potential milestone in the process of refinement of the BMhMSC isolation process.
Collapse
Affiliation(s)
- Alasdair Gawain Kay
- Institute for Science & Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sequential cultivation of human epidermal keratinocytes and dermal mesenchymal like stromal cells in vitro. Cytotechnology 2015; 68:1009-18. [PMID: 25698160 DOI: 10.1007/s10616-015-9857-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT-PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin-EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing.
Collapse
|
41
|
Different Concentrations of Glucose Regulate Proliferation and Osteogenic Differentiation of Osteoblasts Via the PI3 Kinase/Akt Pathway. IMPLANT DENT 2015; 24:83-91. [DOI: 10.1097/id.0000000000000196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Human adult stem cells maintain a constant phenotype profile irrespective of their origin, Basal media, and long term cultures. Stem Cells Int 2015; 2015:146051. [PMID: 25688272 PMCID: PMC4320880 DOI: 10.1155/2015/146051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/22/2014] [Indexed: 01/22/2023] Open
Abstract
The study aims to identify the phenotypic marker expressions of different human adult stem cells derived from, namely, bone marrow, subcutaneous fat, and omentum fat, cultured in different media, namely, DMEM-Low Glucose, Alpha-MEM, DMEM-F12 and DMEM-KO and under long term culture conditions (>P20). We characterized immunophenotype by using various hematopoietic, mesenchymal, endothelial markers, and cell adhesion molecules in the long term cultures (Passages-P1, P3, P5, P9, P12, P15, and P20.) Interestingly, data revealed similar marker expression profiles irrespective of source, basal media, and extensive culturing. This demonstrates that all adult stem cell sources mentioned in this study share similar phenotypic marker and all media seem appropriate for culturing these sources. However, a disparity was observed in the markers such as CD49d, CD54, CD117, CD29, and CD106, thereby warranting further research on these markers. Besides the aforesaid objective, it is understood from the study that immunophenotyping acts as a valuable tool to identify inherent property of each cell, thereby leading to a valuable cell based therapy.
Collapse
|
43
|
Okuda M, Taguchi Y, Takahashi S, Tanaka A, Umeda M. Effects of High Glucose for Hard Tissue Formation on Type II Diabetes Model Rat Bone Marrow Cells In Vitro. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Makiko Okuda
- Department of Periodontology, Osaka Dental University
| | | | | | - Akio Tanaka
- Department of Oral Pathology, Osaka Dental University
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
44
|
Linxi Z, Guirong Z, Xue W, Gang S. The Effect of High Glucose on Proliferation and Expression of Correlation Factors of MG63 Osteoblasts. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhou Linxi
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University
| | - Zhang Guirong
- Department of Orthodontics, Stomatology Hospital of Shenyang
| | - Wang Xue
- Department of Orthodontics, Stomatology Hospital of Shenyang
| | - Shen Gang
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University
| |
Collapse
|
45
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
46
|
Aoyama E, Watari I, Podyma-Inoue KA, Yanagishita M, Ono T. Expression of glucagon-like peptide-1 receptor and glucose‑dependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J Mol Med 2014; 34:475-82. [PMID: 24866833 DOI: 10.3892/ijmm.2014.1787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/24/2014] [Indexed: 11/06/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide-1 receptor (GLP‑1R) are incretin receptors that play important roles in regulating insulin secretion from pancreatic β cells. Incretin receptors are also thought to play a potential role in bone metabolism. Osteoblasts in animals and humans express GIPR; however, the presence of GLP-1R in these cells has not been reported to date. Thus, the aim of this study was to determine whether GLP-1R and GIPR are expressed in osteoblastic cells, and whether their expression levels are regulated by the extracellular glucose concentration. Mouse osteoblastic MC3T3-E1 cells were cultured in medium containing normal (5.6 mM) or high (10, 20 or 30 mM) glucose concentrations, with or without bone morphogenetic protein-2 (BMP-2). RT-PCR, western blot analysis and immunofluorescence were carried out to determine GIPR and GLP-1R mRNA and protein expression levels. Cell proliferation was also assessed. The GLP-1R and GIPR mRNA expression levels were higher in the MC3T3-E1 cells cultured in medium containing high glucose concentrations with BMP-2 compared with the cells cultured in medium containing normal glucose concentrations with or without BMP-2. GLP-1R protein expression increased following culture in high-glucose medium with BMP-2 compared with culture under normal glucose conditions. However, the cellular localization of GLP-1R was not affected by either glucose or BMP-2. In conclusion, our data demonstrate that the expression of GLP-1R and GIPR is regulated by glucose concentrations in MC3T3-E1 cells undergoing differentiation induced by BMP-2. Our results reveal the potential role of incretins in bone metabolism.
Collapse
Affiliation(s)
- Emina Aoyama
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ippei Watari
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katarzyna Anna Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masaki Yanagishita
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
47
|
Influence of Egr-1 in cardiac tissue-derived mesenchymal stem cells in response to glucose variations. BIOMED RESEARCH INTERNATIONAL 2014; 2014:254793. [PMID: 24967343 PMCID: PMC4054710 DOI: 10.1155/2014/254793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1−/−). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1−/− cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1−/− lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1−/− compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications.
Collapse
|
48
|
Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth. Cells Tissues Organs 2013; 198:198-208. [PMID: 24192068 DOI: 10.1159/000354901] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/25/2022] Open
Abstract
The therapeutic potential of mesenchymal stromal cells depends on their ability to survive and proliferate under adverse in vivo scenarios in a particular disease. In most of the sites of injury, especially in diabetic wounds, there can be hypoxia, hyperglycemia, and ischemia, leading to a lack of nutrients. Hence, the aim of our present study was to investigate the influence of hypoxia, high glucose, and low serum concentrations on the growth kinetics and proliferative potential of human dental pulp stem cells from exfoliated deciduous teeth (SHED) and permanent teeth (DPSC). In this study we isolated two types of specialized stem cells from human dental pulp tissues, which were supposedly of neural crest origin, and cultured them in KO-DMEM medium supplemented with 10% fetal bovine serum (FBS). Both SHED and DPSC were characterized for standard CD surface markers, and their ability to differentiate into adipogenic and osteogenic lineages was tested. SHED and DPSC were exposed to either hypoxia or high glucose or low serum conditions, and their growth kinetics and differentiation potentials were compared with those of normal culture conditions. We found that SHED retained their phenotypic expression and differentiation potential under hypoxia, high-glucose, and low-serum conditions and exhibited a higher proliferation in terms of cell yield and a reduced doubling time compared to DPSC. Our findings clearly demonstrate for the first time that SHED are superior to DPSC as evidenced by their enhanced proliferation under adverse culture conditions.
Collapse
|
49
|
Ferrari C, Olmos E, Balandras F, Tran N, Chevalot I, Guedon E, Marc A. Investigation of growth conditions for the expansion of porcine mesenchymal stem cells on microcarriers in stirred cultures. Appl Biochem Biotechnol 2013; 172:1004-17. [PMID: 24142358 DOI: 10.1007/s12010-013-0586-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022]
Abstract
The extensive use of mesenchymal stem cells (MCS) in tissue engineering and cell therapy increases the necessity to improve their expansion. Among these, porcine MCS are valuable models for tissue engineering and are classically expanded in static T-flasks. In this work, different processes of stirred cultures were evaluated and compared. First, the effect of glucose, glutamine, antioxidant, and growth factors concentrations on porcine MSC expansion were analyzed in a suitable medium by performing kinetic studies. Results showed that a lower glucose concentration (5.5 mM) enabled to increase maximal cell concentration by 40 % compared with a higher one (25 mM), while addition of 2 to 6 mM of glutamine increased maximal cell concentration by more than 25 % compared with no glutamine supplementation. Moreover, supplementation with 1 μM thioctic acid increased maximal cell concentration by 40 % compared with no supplementation. Using this adapted medium, microcarriers cultures were performed and compared with T-flasks expansion. Porcine MSC were shown to be able to proliferate on the five types of microcarriers tested. Moreover, cultures on Cytodex 1, Cytopore 2, and Cultispher G exhibited a MSC growth rate more than 40 % higher compared with expansion in T-flasks, while MSC metabolism was similar.
Collapse
Affiliation(s)
- Caroline Ferrari
- Laboratoire Réactions et Génie des Procédés, CNRS UMR 7274, Université de Lorraine, 2 avenue de la forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhu G, Chai J, Ma L, Duan H, Zhang H. Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2013; 433:526-31. [PMID: 23524257 DOI: 10.1016/j.bbrc.2013.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 01/02/2023]
Abstract
MicroRNAs regulate a host of physiological and pathological processes in mesenchymal stem cells (MSCs), although no published studies describe changes in microRNA expression or function in MSCs under in vitro hyperglycemic conditions. By using a microRNA microarray approach, we have identified that miRNA-32-5p expression is significantly reduced under hyperglycemic conditions in rat bone marrow-derived MSCs. Expression of miRNA-32-5p targets the 3'-untranslated region of the mRNA encoding phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Exposure to high glucose levels reduced miR-32-5p expression, induced PTEN expression, and inhibited activation of the PI3K/Akt signaling pathway of MSCs. Conversely, overexpression of miR-32-5p inhibited the expression of PTEN, ameliorated the inhibitory effect of high glucose levels on the PI3K/Akt signaling pathway, and promoted cell cycle progression from G0/G1 to G2/M and S phases. Our study indicates that exposure of MSCs to hyperglycemic conditions reduces miR-32-5p expression and disturbs cell cycle progression through a PTEN-mediated inhibitory effect on the PI3K/Akt signaling pathway. In summary, MiR-32-5p is a potentially important therapeutic agent for preventing MSC dysfunction under hyperglycemic conditions.
Collapse
Affiliation(s)
- Guiying Zhu
- Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|