1
|
Zhang Z, Huang H, Tao Y, Liu H, Fan Y. Sirt6 ameliorates high glucose-induced podocyte cytoskeleton remodeling via the PI3K/AKT signaling pathway. Ren Fail 2024; 46:2410396. [PMID: 39378103 PMCID: PMC11463017 DOI: 10.1080/0886022x.2024.2410396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Podocyte injury plays an important role in the occurrence and progression of diabetic kidney disease (DKD), which leads to albuminuria. Cytoskeletal remodeling is an early manifestation of podocyte injury in DKD. However, the underlying mechanism of cytoskeletal remodeling has not been clarified. Histone deacetylase sirtuin6 (Sirt6) has been found to play a key role in DKD progression, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) pathway directly regulates the cytoskeletal structure of podocytes. Whereas, the relationship between Sirt6, the PI3K/AKT pathway and DKD progression remains unclear. METHODS Renal injury of db/db mice was observed by PAS staining and transmission electron microscope. Expression of Sirt6 in the glomeruli of db/db mice was detected by immunofluorescence. UBCS039, a Sirt6 activator, was used to explore the renal effects of Sirt6 activation on diabetic mouse kidneys. We also downregulating Sirt6 expression in podocytes using the Sirt6 inhibitor, OSS_128167, and induced upregulation of Sirt6 using a recombinant plasmid, after which the effects of Sirt6 on high glucose (HG)-induced podocyte damage were assessed in vitro. Podocyte cytoskeletal structures were observed by phalloidin staining. The podocyte apoptotic rate was assessed by flow cytometry, and PI3K/AKT signaling activation was measured by Western blotting. RESULTS Db/db mice exhibited renal damage including elevated urine albumin-to-creatinine ratio (ACR), increased mesangial matrix, fused podocyte foot processes, and thickened glomerular basement membrane. The expression of Sirt6 and PI3K/AKT pathway components was decreased in db/db mice. UBCS039 increased the expressions of Sirt6 and PI3K/AKT pathway components and ameliorated renal damage in db/db mice. We also observed consistent Sirt6 expression was in HG-induced podocytes in vitro. Activation of the PI3K/AKT pathway via a Sirt6 recombinant plasmid ameliorated podocyte cytoskeletal remodeling and apoptosis in HG-treated immortalized human podocytes in vitro, whereas Sirt6 inhibition by OSS_128167 accelerated HG-induced podocyte damage in vitro. CONCLUSIONS Sirt6 protects podocytes against HG-induced cytoskeletal remodeling and apoptosis through activation of the PI3K/AKT signaling pathway. These findings provide evidence supporting the potential efficacy of Sirt6 activation as a promising therapeutic strategy for addressing podocyte injury in DKD.
Collapse
Affiliation(s)
- Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Huang
- Division of Rehabilitation, Tianmen First People’s Hospital, Tianmen, Hubei, China
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, USA
| | - Hongyan Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wang H, Liu H, Cheng H, Xue X, Ge Y, Wang X, Yuan J. Klotho Stabilizes the Podocyte Actin Cytoskeleton in Idiopathic Membranous Nephropathy through Regulating the TRPC6/CatL Pathway. Am J Nephrol 2024; 55:345-360. [PMID: 38330925 PMCID: PMC11152006 DOI: 10.1159/000537732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION The aim of this study was to explore the renoprotective effects of Klotho on podocyte injury mediated by complement activation and autoantibodies in idiopathic membranous nephropathy (IMN). METHODS Rat passive Heymann nephritis (PHN) was induced as an IMN model. Urine protein levels, serum biochemistry, kidney histology, and podocyte marker levels were assessed. In vitro, sublytic podocyte injury was induced by C5b-9. The expression of Klotho, transient receptor potential channel 6 (TRPC6), and cathepsin L (CatL); its substrate synaptopodin; and the intracellular Ca2+ concentration were detected via immunofluorescence. RhoA/ROCK pathway activity was measured by an activity quantitative detection kit, and the protein expression of phosphorylated-LIMK1 (p-LIMK1) and p-cofilin in podocytes was detected via Western blotting. Klotho knockdown and overexpression were performed to evaluate its role in regulating the TRPC6/CatL pathway. RESULTS PHN rats exhibited proteinuria, podocyte foot process effacement, decreased Klotho and Synaptopodin levels, and increased TRPC6 and CatL expression. The RhoA/ROCK pathway was activated by the increased phosphorylation of LIMK1 and cofilin. Similar changes were observed in C5b-9-injured podocytes. Klotho knockdown exacerbated podocyte injury, while Klotho overexpression partially ameliorated podocyte injury. CONCLUSION Klotho may protect against podocyte injury in IMN patients by inhibiting the TRPC6/CatL pathway. Klotho is a potential target for reducing proteinuria in IMN patients.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei University of Chinese Medicine, Wuhan, China
| | - Hongyan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Cheng
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xue Xue
- Hubei University of Chinese Medicine, Wuhan, China
| | - Yamei Ge
- Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Schömig T, Diefenhardt P, Plagmann I, Trinsch B, Merz T, Crispatzu G, Unnersjö-Jess D, Nies J, Pütz D, Sierra Gonzalez C, Schermer B, Benzing T, Brinkkoetter PT, Brähler S. The podocytes' inflammatory responses in experimental GN are independent of canonical MYD88-dependent toll-like receptor signaling. Sci Rep 2024; 14:2292. [PMID: 38280906 PMCID: PMC10821883 DOI: 10.1038/s41598-024-52565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024] Open
Abstract
Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling.
Collapse
Affiliation(s)
- Thomas Schömig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bastian Trinsch
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Tim Merz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Jasper Nies
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - David Pütz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Claudio Sierra Gonzalez
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Hirayama R, Toyohara K, Watanabe K, Otsuki T, Araoka T, Mae SI, Horinouchi T, Yamamura T, Okita K, Hotta A, Iijima K, Nozu K, Osafune K. iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome. Commun Biol 2023; 6:854. [PMID: 37770589 PMCID: PMC10539496 DOI: 10.1038/s42003-023-05203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/02/2023] [Indexed: 09/30/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerulonephritis caused by COL4A3, COL4A4 or COL4A5 gene mutations and characterized by abnormalities of glomerular basement membranes (GBMs). Due to a lack of curative treatments, the condition proceeds to end-stage renal disease even in adolescents. Hampering drug discovery is the absence of effective in vitro methods for testing the restoration of normal GBMs. Here, we aimed to develop kidney organoid models from AS patient iPSCs for this purpose. We established iPSC-derived collagen α5(IV)-expressing kidney organoids and confirmed that kidney organoids from COL4A5 mutation-corrected iPSCs restore collagen α5(IV) protein expression. Importantly, our model recapitulates the differences in collagen composition between iPSC-derived kidney organoids from mild and severe AS cases. Furthermore, we demonstrate that a chemical chaperone, 4-phenyl butyric acid, has the potential to correct GBM abnormalities in kidney organoids showing mild AS phenotypes. This iPSC-derived kidney organoid model will contribute to drug discovery for AS.
Collapse
Affiliation(s)
- Ryuichiro Hirayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kei Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takeya Otsuki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, 650-0047, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Molecular landscapes of glioblastoma cell lines revealed a group of patients that do not benefit from WWOX tumor suppressor expression. Front Neurosci 2023; 17:1260409. [PMID: 37781246 PMCID: PMC10540236 DOI: 10.3389/fnins.2023.1260409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. Methods U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. Results Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. Conclusion Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.
Collapse
Affiliation(s)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
7
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
8
|
Tao Y, Mallet RT, Mathis KW, Ma R. Store-operated Ca 2+ channel signaling: Novel mechanism for podocyte injury in kidney disease. Exp Biol Med (Maywood) 2022; 248:425-433. [PMID: 36533574 DOI: 10.1177/15353702221139187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies over the last decade have markedly broadened our understanding of store-operated Ca2+ channels (SOCs) and their roles in kidney diseases and podocyte dysfunction. Podocytes are terminally differentiated glomerular visceral epithelial cells which are tightly attached to the glomerular capillary basement membrane. Podocytes and their unique foot processes (pedicels) constitute the outer layer of the glomerular filtration membrane and the final barrier preventing filtration of albumin and other plasma proteins. Diabetic nephropathy and other renal diseases are associated with podocyte injury and proteinuria. Recent evidence demonstrates a pivotal role of store-operated Ca2+ entry (SOCE) in maintaining structural and functional integrity of podocytes. This article reviews the current knowledge of SOCE and its contributions to podocyte physiology. Recent studies of the contributions of SOC dysfunction to podocyte injury in both cell culture and animal models are discussed, including work in our laboratory. Several downstream signaling pathways mediating SOC function in podocytes also are examined. Understanding the pivotal roles of SOC in podocyte health and disease is essential, as SOCE-activated signaling pathways are potential treatment targets for podocyte injury-related kidney diseases.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Jiang S, Alisafaei F, Huang YY, Hong Y, Peng X, Qu C, Puapatanakul P, Jain S, Miner JH, Genin GM, Suleiman HY. An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. SCIENCE ADVANCES 2022; 8:eabn6027. [PMID: 36044576 PMCID: PMC9432837 DOI: 10.1126/sciadv.abn6027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Chronic kidney diseases are widespread and incurable. The biophysical mechanisms underlying them are unclear, in part because material systems for reconstituting the microenvironment of relevant kidney cells are limited. A critical question is how kidney podocytes (glomerular epithelial cells) regenerate foot processes of the filtration apparatus following injury. Recently identified sarcomere-like structures (SLSs) with periodically spaced myosin IIA and synaptopodin appear in injured podocytes in vivo. We hypothesized that SLSs template synaptopodin in the initial stages of recovery in response to microenvironmental stimuli and tested this hypothesis by developing an ex vivo culture system that allows control of the podocyte microenvironment. Results supported our hypothesis. SLSs in podocytes that migrated from isolated kidney glomeruli presented periodic synaptopodin-positive clusters that nucleated peripheral, foot process-like extensions. SLSs were mechanoresponsive to actomyosin inhibitors and substrate stiffness. Results suggest SLSs as mechanobiological mediators of podocyte recovery and as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shumeng Jiang
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yin-Yuan Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangjun Peng
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengqing Qu
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani Y. Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Morris T, Sue E, Geniesse C, Brieher WM, Tang VW. Synaptopodin stress fiber and contractomere at the epithelial junction. J Cell Biol 2022; 221:e202011162. [PMID: 35416930 PMCID: PMC9011326 DOI: 10.1083/jcb.202011162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.
Collapse
Affiliation(s)
- Timothy Morris
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Eva Sue
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Caleb Geniesse
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
11
|
Kaseda S, Sannomiya Y, Horizono J, Kuwazuru J, Suico MA, Ogi S, Sasaki R, Sunamoto H, Fukiya H, Nishiyama H, Kamura M, Niinou S, Koyama Y, Nara F, Shuto T, Onuma K, Kai H. Novel Keap1-Nrf2 Protein-Protein Interaction Inhibitor UBE-1099 Ameliorates Progressive Phenotype in Alport Syndrome Mouse Model. KIDNEY360 2022; 3:687-699. [PMID: 35721612 PMCID: PMC9136903 DOI: 10.34067/kid.0004572021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bardoxolone methyl activates nuclear factor erythroid 2-related factor 2 (Nrf2) via covalent binding and irreversible inhibition of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator of Nrf2. Ongoing clinical trials of bardoxolone methyl show promising effects for patients with CKD. However, the direct inhibition of Keap1-Nrf2 protein-protein interaction (PPI) as an approach to activate Nrf2 is less explored. METHODS We developed a noncovalent Nrf2 activator UBE-1099, which highly selectively inhibits Keap1-Nrf2 PPI, and evaluated its efficacy on the progressive phenotype in an Alport syndrome mouse model (Col4a5-G5X). RESULTS Similar to bardoxolone methyl, UBE-1099 transiently increased proteinuria and reduced plasma creatinine in Alport mice. Importantly, UBE-1099 improved the glomerulosclerosis, renal inflammation, and fibrosis, and prolonged the life span of Alport mice. UBE-1099 ameliorated the dysfunction of Nrf2 signaling in the renal tissue of Alport mice. Moreover, transcriptome analysis in the glomerulus showed that UBE-1099 induced the expression of genes associated with the cell cycle and cytoskeleton, which may explain its unique mechanism of improvement such as glomerular morphologic change. CONCLUSIONS UBE-1099 significantly ameliorates the progressive phenotype in Alport mice. Our results revealed the efficacy of Keap1-Nrf2 PPI inhibitor for glomerulosclerosis and present a potential therapeutic drug for CKD.
Collapse
Affiliation(s)
- Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sayaka Ogi
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Ryoko Sasaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Sunamoto
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hirohiko Fukiya
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hayato Nishiyama
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Saki Niinou
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Futoshi Nara
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Onuma
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Chen J, Wang X, He Q, Harris RC. TAZ is important for maintenance of the integrity of podocytes. Am J Physiol Renal Physiol 2022; 322:F419-F428. [PMID: 35157550 PMCID: PMC8934679 DOI: 10.1152/ajprenal.00426.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The podocyte is an important component of the glomerular filtration barrier, and maintenance of the integrity of its highly specified structure and function is critical for normal kidney function. Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are two crucial effectors of the Hippo signaling pathway, and recent studies have shown that podocyte-specific YAP deletion causes podocyte apoptosis and the development of focal segmental glomerulosclerosis followed by progressive renal failure. In the present study, we investigated a potential role of the YAP paralog TAZ in podocytes. TAZ was found to be constitutively active in podocytes, and mice with podocyte-specific deletion of TAZ (TazpodKO) developed proteinuria starting at 4 wk of age and had increased podocyte apoptosis. Using primary cultured podocytes or immortalized mouse podocytes from Tazflox/flox mice, we found that TAZ is a transcriptional activator for TEAD-dependent expression of synaptopodin, zonula occludens-1, and zonula occludens-2. This is the first study to determine that TAZ plays an important role in the maintenance of the structure and function of podocytes.NEW & NOTEWORTHY Podocytes play an important role in maintaining the integrity of the structure and function of the kidney. We observed that mice with selective deletion of transcriptional coactivator with PDZ-binding motif (TAZ) in podocytes developed proteinuria. TAZ is constitutively active and critical for expression of synaptopodin, zonula occludens-1, and zonula occludens-2 in podocytes. The findings of this study implicate TAZ as an important mediator of podocyte structural integrity and provide further insights into the role of Hippo-Yes-associated protein/TAZ in podocyte biology.
Collapse
Affiliation(s)
- Jianchun Chen
- United States Department of Veterans Affairs, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaoyong Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qian He
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Raymond C Harris
- United States Department of Veterans Affairs, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|