1
|
Sun C, Zhao X, Wang X, Yu Y, Shi H, Tang J, Sun S, Zhu S. Astragalus Polysaccharide Mitigates Rhabdomyolysis-Induced Acute Kidney Injury via Inhibition of M1 Macrophage Polarization and the cGAS-STING Pathway. J Inflamm Res 2024; 17:11505-11527. [PMID: 39735897 PMCID: PMC11675321 DOI: 10.2147/jir.s494819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose This study aimed to examine the impact of APS on acute kidney injury induced by rhabdomyolysis (RIAKI), exploring its association with macrophage M1 polarization and elucidating the underlying mechanisms. Methods C57BL/6J mice were randomly assigned to one of three groups: a normal control group, a RIAKI model group, and an APS treatment group. Techniques such as flow cytometry and immunofluorescence were employed to demonstrate that APS can inhibit the transition of renal macrophages to the M1 phenotype in RIAKI. Furthermore, the raw264.7 macrophage cell line was chosen and induced into the M1 phenotype to further examine the impact of APS on this model and elucidate the underlying mechanism. Results Administration of APS led to a significant decrease in UREA levels by 25.2% and CREA levels by 60.9% within the model group. Also, APS exhibited an inhibitory effect on the infiltration of M1 macrophages and the cGAS-STING pathway in kidneys within the RIAKI, subsequently leading to decreased serum concentrations of IL-1β, IL-6 and TNF-α by 44.5%, 12.9%, and 10.3%, respectively, consistent with the results of in vitro experiments. Furthermore, APS exhibited an anti-apoptotic effect on MPC5 cells when co-cultured with M1 macrophages. Conclusion Astragalus polysaccharide (APS) potentially mitigated rhabdomyolysis-induced renal damage by impeding the M1 polarization of macrophages. This inherent mechanism might involve the suppression of the cGAS-STING pathway activation within macrophages. Furthermore, APS could endow protective effects on podocytes through the inhibition of apoptosis.
Collapse
Affiliation(s)
- Chuanchuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, People’s Republic of China
| | - Yeye Yu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Heng Shi
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang, People’s Republic of China
| | - Jun Tang
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai(Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Kulow VA, Labes R, Czopek CS, Rosenberger C, Fähling M. Galectin-3 protects distal convoluted tubules in rhabdomyolysis-induced kidney injury. Pflugers Arch 2024; 476:1571-1585. [PMID: 39042141 PMCID: PMC11381487 DOI: 10.1007/s00424-024-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Advanced glycation endproducts (AGEs) contribute to cellular damage of various pathologies, including kidney diseases. Acute kidney injury (AKI) represents a syndrome seldom characterized by a single, distinct pathophysiological cause. Rhabdomyolysis-induced acute kidney injury (RIAKI) constitutes roughly 15% of AKI cases, yet its underlying pathophysiology remains poorly understood. Using a murine model of RIAKI induced by muscular glycerol injection, we observed elevated levels of AGEs and the AGE receptor galectin-3 (LGALS3) in the kidney. Immunofluorescence localized LGALS3 to distal nephron segments. According to transcriptomic profiling via next-generation sequencing, RIAKI led to profound changes in kidney metabolism, oxidative stress, and inflammation. Cellular stress was evident in both proximal and distal tubules, as shown by kidney injury markers KIM-1 and NGAL. However, only proximal tubules exhibited overt damage and apoptosis, as detected by routine morphology, active Caspase-3, and TUNEL assay, respectively. In vitro, distal convoluted tubule (DCT) cells challenged with AGEs underwent apoptosis, which was markedly enhanced by Lgals3 siRNA treatment. Thus, in RIAKI, the upregulation of LGALS3 may protect the distal nephron from AGE-mediated damage, while proximal tubules lacking LGALS3 stay at risk. Thus, stimulating LGALS3 in the proximal nephron, if achievable, may attenuate RIAKI.
Collapse
Affiliation(s)
- Vera A Kulow
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Robert Labes
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudia S Czopek
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Rosenberger
- Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Fähling
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Forni L, Aucella F, Bottari G, Büttner S, Cantaluppi V, Fries D, Kielstein J, Kindgen-Milles D, Krenn C, Kribben A, Meiser A, Mitzner S, Ostermann M, Premuzic V, Rolfes C, Scharf C, Schunk S, Molnar Z, Zarbock A. Hemoadsorption therapy for myoglobin removal in rhabdomyolysis: consensus of the hemoadsorption in rhabdomyolysis task force. BMC Nephrol 2024; 25:247. [PMID: 39085790 PMCID: PMC11293130 DOI: 10.1186/s12882-024-03679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Rhabdomyolysis describes a syndrome characterized by muscle necrosis and the subsequent release of creatine kinase and myoglobin into the circulation. Myoglobin elimination with extracorporeal hemoadsorption has been shown to effectively remove myoglobin from the circulation. Our aim was to provide best practice consensus statements developed by the Hemoadsorption in Rhabdomyolysis Task Force (HRTF) regarding the use of hemadsorption for myoglobin elimination. METHODS A systematic literature search was performed until 11th of January 2023, after which the Rhabdomyolysis RTF was assembled comprising international experts from 6 European countries. Online conferences were held between 18th April - 4th September 2023, during which 37 consensus questions were formulated and using the Delphi process, HRTF members voted online on an anonymised platform. In cases of 75 to 90% agreement a second round of voting was performed. RESULTS Using the Delphi process on the 37 questions, strong consensus (> 90% agreement) was achieved in 12, consensus (75 to 90% agreement) in 10, majority (50 to 74%) agreement in 13 and no consensus (< 50% agreement) in 2 cases. The HRTF formulated the following recommendations: (1) Myoglobin contributes to the development of acute kidney injury; (2) Patients with myoglobin levels of > 10,000 ng/ml should be considered for extracorporeal myoglobin removal by hemoadsorption; (3) Hemoadsorption should ideally be started within 24 h of admission; (4) If myoglobin cannot be measured then hemoadsorption may be indicated based on clinical picture and creatinine kinase levels; (5) Cartridges should be replaced every 8-12 h until myoglobin levels < 10,000 ng/ml; (6) In patients with acute kidney injury, hemoadsorption can be discontinued before dialysis is terminated and should be maintained until the myoglobin concentration values are consistently < 5000 ng/ml. CONCLUSIONS The current consensus of the HRTF support that adjuvant hemoadsorption therapy in severe rhabdomyolysis is both feasible and safe and may be an effective method to reduce elevated circulating levels of myoglobin.
Collapse
Affiliation(s)
- Lui Forni
- Critical Care Unit, Royal Surrey Hospital, Guildford, Surrey, UK.
- School of Medicine, University of Surrey, Kate Granger Building, Guildford, UK.
| | - Filippo Aucella
- "Casa Sollievo della Sofferenza" Foundation, Scientific Institut for Research and Health Care, Viale Cappuccini, 1, San Giovanni Rotondo (FG), 71013, Italy
| | - Gabriella Bottari
- Pediatric Intensive Care Unit, Bambino Gesu Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Stefan Büttner
- Cardiology, Pulmonology, Nephrology and Intensive Care Medicine, Klinikum Aschaffenburg- Alzenau, Academic Teaching Hospital of Julius-Maximilians-University Würzburg, Aschaffenburg, Germany
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- "Maggiore della Carità" University Hospital, via Gen. P. Solaroli 17, Novara, 28100, Italy
| | - Dietmar Fries
- Department for Anaesthesia and Critical Care Medicine, Medical University, Christoph-Probst- Platz 1, Innrain 52 A, Fritz-Pregl-Straße 3, Innsbruck, 6020, Austria
| | - Jan Kielstein
- Medical Clinic V, Nephrology, Rheumatology, Blood Purification, Academic Teaching Hospital Braunschweig, Naumburgstraße 15, D-38124, Braunschweig, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Duesseldorf, Heinrich-Heine University, Moorenstr.5, D-40225, Duesseldorf, Germany
| | - Claus Krenn
- Clinic for Anaesthesia, General Intensive Care Medicine and Pain Therapy, Medical University of Vienna, Wahringer Gurtel 18-20, Vienna, 1090, Austria
| | - Andreas Kribben
- Universitätsklinikum Essen (AöR) Nephrology Clinic, Medizinisches Zentrum, 2.104 Hufelandstraße 55, D-45147, Essen, Germany
| | - Andreas Meiser
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Saarland University Hospital, D-66424, Homburg, Germany
| | - Steffen Mitzner
- Fraunhofer IZI Rostock, Schillingallee 68, 18057, Rostock, Germany
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St. Thomas' Hospital, London, SE1 9RT, UK
| | - Vedran Premuzic
- Department for Nephrology, Hypertension, Dialysis and Transplantation, School of Medicine, UHC Zagreb Croatia, University of Zagreb, Šalata ul. 2, Zagreb, 10000, Croatia
| | - Caroline Rolfes
- Department for Anesthesiology, Intensive Care Medicine, Pain Therapy and Emergency Medicine, GNH Klinikum Kassel, Mönchebergstraße 41-43, D-34125, Kassel, Germany
| | - Christina Scharf
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Geschwister-Scholl- Platz 1, D-80539, München, Germany
| | - Stefan Schunk
- Department of Internal Medicine 4, Nephrology and Hypertension, Saarland University Hospital, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Zsolt Molnar
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78, Budapest, H-1082, Hungary
- Department of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Collegium Maius, Fredry 10, Poznan, 61-701, Poland
- CytoSorbents Europe, Müggelseedamm 131, D-12587, Berlin, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| |
Collapse
|
4
|
Goto S, Hosojima M, Kabasawa H, Arai K, Takemoto K, Aoki H, Komochi K, Kobayashi R, Sugita N, Endo T, Kaseda R, Yoshida Y, Narita I, Hirayama Y, Saito A. Megalin-related mechanism of hemolysis-induced acute kidney injury and the therapeutic strategy. J Pathol 2024; 263:315-327. [PMID: 38721910 DOI: 10.1002/path.6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 06/12/2024]
Abstract
Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α1-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α1-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α1-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α1-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α1-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sawako Goto
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaho Arai
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Takemoto
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Aoki
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Komochi
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryota Kobayashi
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nanako Sugita
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taeko Endo
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
5
|
Chen H, Liu J, Wan X, Zhang M, Luo L, Qiu X, Yang C. Research on the Mechanism of Metaldehyde on Pomacea canaliculata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14152-14164. [PMID: 38869049 DOI: 10.1021/acs.jafc.3c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Golden apple snail (Pomacea canaliculata), a major alien invasive organism in China, affects food production and poses a threat to human health. Metaldehyde is a highly effective, commonly used snail killer with low toxicity. Virulence determination, tissue section, iTRAQ and RNA interference were used to systematically study the toxicity of metaldehyde on P. canaliculata. The molluscicidal activity tests showed that metaldehyde exhibits strong toxicity against P. canaliculata. Physiological and biochemical data indicate that metaldehyde can cause damage to the gills, liver, pancreas, and kidneys of snails, also reduce the oxygen consumption rate and ammonia excretion rate of golden apple snails, and cause neurological diseases. The proteome of the gill region of the golden apple snail after exposure to metaldehyde was analyzed by using iTRAQ technology. A total of 360 differential proteins were identified, and four target proteins were screened, namely, alpha-protein kinase 1 (ALPK1), cubilin (CUBN), sodium- and chloride-dependent GABA transporter 2 (GAT2), and acetylcholinesterase (AChE). RNAi was used to target the four proteins. After the ALPK1 and CUBN protein genes were interfered with by metaldehyde treatment, it was found that the mortality rate of the golden apple snail significantly increased. However, interference of GAT2 and AChE protein genes by metaldehyde led to no significant change in the mortality rates of the snails. The histopathological observation of the gill showed that the rate of cilia shedding in the gill decreased after the interference of ALPK1 and CUBN protein genes.
Collapse
Affiliation(s)
- Huabao Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingxiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuanwu Wan
- The Plant Protection Station of Sichuan Agriculture and Rural Department, Chengdu 610041, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Liya Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Qiu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunping Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Hebert JF, Funahashi Y, Emathinger JM, Nickerson MN, Groat T, Andeen NK, Gurley SB, Hutchens MP. Parental recovered acute kidney injury causes prenatal renal dysfunction and fetal growth restriction with sexually dimorphic implications for adult offspring. Front Physiol 2024; 15:1357932. [PMID: 38681142 PMCID: PMC11045984 DOI: 10.3389/fphys.2024.1357932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is rapidly increasing in global incidence and a healthcare burden. Prior maternal AKI diagnosis correlates with later pregnancy complications. As pregnancy influences developmental programming, we hypothesized that recovered parental AKI results in poor pregnancy outcomes, impaired fetal growth, and adult offspring disease. Methods: Using a well-characterized model of rhabdomyolysis-induced acute kidney injury (RIAKI), a form of AKI commonly observed in young people, we confirmed functional renal recovery by assessing glomerular filtration rate (GFR) 2 weeks following RIAKI. We bred sham and recovered RIAKI sires and dams in timed, matched matings for gestational day (GD) 16.5 and offspring (birth-12 weeks, 6 months) study. Results: Despite a normal GFR pre-pregnancy, recovered RIAKI dams at GD16.5 had impaired renal function, resulting in reduced fetoplacental ratios and offspring survival. Pregnant RIAKI dams also had albuminuria and less renal megalin in the proximal tubule brush border than shams, with renal subcapsular fibrosis and higher diastolic blood pressure. Growth-restricted offspring had a reduced GFR as older adults, with evidence of metabolic inefficiency in male offspring; this correlated with reduced renal AngII levels in female offspring from recovered RIAKI pairings. However, the blood pressures of 6-month-old offspring were unaffected by parental RIAKI. Conclusions: Our mouse model demonstrated a causal relationship among RIAKI, gestational risk, and developmental programming of the adult-onset offspring GFR and metabolic dysregulation despite parental recovery.
Collapse
Affiliation(s)
- Jessica F. Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Yoshio Funahashi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | | | - Megan N. Nickerson
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR, United States
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Nicole K. Andeen
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Susan B. Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Keck School Medicine of University of Southern California, Los Angeles, CA, United States
| | - Michael P. Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR, United States
| |
Collapse
|
7
|
Huang D, Tan Y, Tang J, He K, Zhou Y, Liu J. Transcytosis-Based Renal Tubular Reabsorption of Luminescent Gold Nanoparticles for Enhanced Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202316900. [PMID: 38258485 DOI: 10.1002/anie.202316900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Transcytosis-based tubular reabsorption of endogenous proteins is a well-known energy-saving pathway that prevents nutrient loss. However, utilization of this well-known reabsorption pathway for the delivery of exogenous nanodrugs remains a challenge. In this study, using the surface mimic strategy of a specific PEPT1/2-targeted Gly-Sar peptide as a ligand, renal-clearable luminescent gold nanoparticles (P-AuNPs) were developed as protein mimics to investigate the transcytosis-based tubular reabsorption of exogenous substances. By regulating the influential factors (H+ content in tubular lumens and PEPT1/2 transporter counts in tubular cells) of Gly-Sar-mediated transcytosis, the specific and efficient interaction between P-AuNPs and renal tubular cells was demonstrated both in vitro and in vivo. Efficient transcellular transportation significantly guided the reabsorption of P-AuNPs back into the bloodstream, which enhanced the blood concentration and bioavailability of nanoparticles, contributing to high-contrast tumor imaging.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology., Guangzhou, 510640, P. R. China
| | - Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology., Guangzhou, 510640, P. R. China
| | - Jiahao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology., Guangzhou, 510640, P. R. China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology., Guangzhou, 510640, P. R. China
| | - Yuxuan Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology., Guangzhou, 510640, P. R. China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology., Guangzhou, 510640, P. R. China
| |
Collapse
|
8
|
Qiao O, Wang X, Wang Y, Li N, Gong Y. Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. J Adv Res 2023; 54:211-222. [PMID: 36702249 PMCID: PMC10703611 DOI: 10.1016/j.jare.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. AIM OF REVIEW This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. KEY SCIENTIFIC CONCEPTS OF REVIEW One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI.
Collapse
Affiliation(s)
- Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
9
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris RC, Gewin L, Brooks CR, Davidson AJ, de Caestecker M. Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury. JCI Insight 2023; 8:e173144. [PMID: 37698919 PMCID: PMC10619506 DOI: 10.1172/jci.insight.173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.
Collapse
Affiliation(s)
- Min Yang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren N. Lopez
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Brewer
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Delgado
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly Clouthier
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuantee Zhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie Gewin
- Washington University in St. Louis School of Medicine and the St. Louis Veterans Affairs Hospital, St. Louis, Missouri, USA
| | - Craig R. Brooks
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Gagliano Taliun SA, Dinsmore IR, Mirshahi T, Chang AR, Paterson AD, Barua M. GWAS for the composite traits of hematuria and albuminuria. Sci Rep 2023; 13:18084. [PMID: 37872228 PMCID: PMC10593773 DOI: 10.1038/s41598-023-45102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Our GWAS of hematuria in the UK Biobank identified 6 loci, some of which overlap with loci for albuminuria suggesting pleiotropy. Since clinical syndromes are often defined by combinations of traits, generating a combined phenotype can improve power to detect loci influencing multiple characteristics. Thus the composite trait of hematuria and albuminuria was chosen to enrich for glomerular pathologies. Cases had both hematuria defined by ICD codes and albuminuria defined as uACR > 3 mg/mmol. Controls had neither an ICD code for hematuria nor an uACR > 3 mg/mmol. 2429 cases and 343,509 controls from the UK Biobank were included. eGFR was lower in cases compared to controls, with the exception of the comparison in females using CKD-EPI after age adjustment. Variants at 4 loci met genome-wide significance with the following nearest genes: COL4A4, TRIM27, ETV1 and CUBN. TRIM27 is part of the extended MHC locus. All loci with the exception of ETV1 were replicated in the Geisinger MyCode cohort. The previous GWAS of hematuria reported COL4A3-COL4A4 variants and HLA-B*0801 within MHC, which is in linkage disequilibrium with the TRIM27 variant (D' = 0.59). TRIM27 is highly expressed in the tubules. Additional loci included a coding sequence variant in CUBN (p.Ala2914Val, MAF = 0.014 (A), p = 3.29E-8, OR = 2.09, 95% CI = 1.61-2.72). Overall, GWAS for the composite trait of hematuria and albuminuria identified 4 loci, 2 of which were not previously identified in a GWAS of hematuria.
Collapse
Affiliation(s)
- Sarah A Gagliano Taliun
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
| | - Ian R Dinsmore
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | | | - Alexander R Chang
- Department of Population Health Sciences, Center for Kidney Health Research, Geisinger, Danville, PA, USA
- Department of Nephrology, Geisinger, Danville, PA, USA
| | - Andrew D Paterson
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, Toronto, ON, Canada.
- Genetics and Genome Biology, Research Institute at the Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Moumita Barua
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Division of Nephrology, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, 8NU-855, 200 Elizabeth Street, Toronto, ON, M5G2C4, Canada.
| |
Collapse
|
11
|
Yu F, Wang L, Yuan H, Gao Z, He L, Hu F. Wasp venom-induced acute kidney injury: current progress and prospects. Ren Fail 2023; 45:2259230. [PMID: 38376456 PMCID: PMC10512847 DOI: 10.1080/0886022x.2023.2259230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 02/21/2024] Open
Abstract
Wasp venom can trigger local and systemic reactions, with the kidneys being commonly affected, potentially causing acute kidney injury (AKI). Despite of the recent advances, our knowledge on the underlying mechanisms of toxicity and targeted therapies remain poor. AKI can result from direct nephrotoxic effects of the wasp venom or secondary rhabdomyolysis and intravascular hemolysis, which will release myoglobin and free hemoglobin. Inflammatory responses play a central role in these pathological mechanisms. Noteworthily, the successful establishment of a suitable experimental model can assist in basic research and clinical advancements related to wasp venom-induced AKI. The combination of therapeutic plasma exchange and continuous renal replacement therapy appears to be the preferred treatment for wasp venom-induced AKI. In addition, studies on cilastatin and varespladib for wasp venom-induced AKI treatment have shown their potential as therapeutic agents. This review summarizes the available evidence on the mechanisms and treatment of wasp venom-induced AKI, with a particular focus on the role of inflammatory responses and potential targets for therapeutic drugs, and, therefore, aiming to support the development of clinical treatment against wasp venom-induced AKI.
Collapse
Affiliation(s)
- Fanglin Yu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Wang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Li He
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
12
|
Harris AS, Aratani S, Johmura Y, Suzuki N, Dan L, Nakanishi M. In vivo dynamics of senescence in rhabdomyolysis-induced acute kidney injury. Biochem Biophys Res Commun 2023; 673:121-130. [PMID: 37385006 DOI: 10.1016/j.bbrc.2023.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is involved in the pathogenesis of various diseases, including acute kidney injury (AKI). AKI is defined as a sudden loss of kidney function. In severe AKI, irreversible loss of kidney cells can occur. Cellular senescence might contribute to this maladaptive tubular repair, though, its pathophysiological role in vivo is incompletely understood. In this study, we used p16-CreERT2-tdTomato mice in which cells with high p16 expression, a prototypical senescent marker, are labeled with tdTomato fluorescence. Then, we induced AKI by rhabdomyolysis and traced the cells with high p16 expression following AKI. We proved that the induction of senescence was observed predominantly in proximal tubular epithelial cells (PTECs) and occurred in a relatively acute phase within 1-3 days after AKI. These acute senescent PTECs were spontaneously eliminated by day 15. On the contrary, the generation of senescence in PTECs persisted during the chronic recovery phase. We also confirmed that the kidney function did not fully recover on day 15. These results suggest that the chronic generation of senescent PTECs might contribute to maladaptive recovery from AKI and lead to chronic kidney disease progression.
Collapse
Affiliation(s)
- Alexander S Harris
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sae Aratani
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Li Dan
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
13
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris R, Gewin L, Brooks C, Davidson A, de Caestecker MP. Inhibition of Retinoic Acid Signaling in Proximal Tubular Epithelial cells Protects against Acute Kidney Injury by Enhancing Kim-1-dependent Efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545113. [PMID: 37398101 PMCID: PMC10312711 DOI: 10.1101/2023.06.15.545113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development, but in the adult kidney is restricted to occasional collecting duct epithelial cells. We now show there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI), and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protects against experimental AKI but is associated with increased expression of the PTEC injury marker, Kim-1. However, Kim-1 is also expressed by de-differentiated, proliferating PTECs, and protects against injury by increasing apoptotic cell clearance, or efferocytosis. We show that the protective effect of inhibiting PTEC RAR signaling is mediated by increased Kim-1 dependent efferocytosis, and that this is associated with de-differentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate a novel functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI. Graphical abstract
Collapse
|
14
|
Williams JD, Kumar R, Afolabi JM, Park F, Adebiyi A. Rhabdomyolysis aggravates renal iron accumulation and acute kidney injury in a humanized mouse model of sickle cell disease. Free Radic Res 2023; 57:404-412. [PMID: 37840281 PMCID: PMC11259575 DOI: 10.1080/10715762.2023.2269313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Individuals with sickle cell disease (SCD) are at greater risk of rhabdomyolysis, a potentially life-threatening condition resulting from the breakdown of skeletal muscle fibers. Acute kidney injury (AKI) is one of the most severe complications of rhabdomyolysis. Chronic kidney and cardiovascular disease, which account for SCD mortality, are long-term consequences of AKI. Although SCD elevates the risks of rhabdomyolysis-induced sudden death, the mechanisms that underlie rhabdomyolysis-induced AKI in SCD are unclear. In the present study, we show that, unlike their control non-sickling (AA) counterparts, transgenic homozygous SCD (SS; Townes model) mice exhibited 100% mortality 8-24 h after intramuscular glycerol injection. Five hours after glycerol injection, SS mice showed a more significant increase in myoglobinuria and plasma creatine kinase levels than AA mice. Basal plasma heme and kidney tissue iron levels were significantly higher in SS than in AA mice. In contrast to AA, glycerol-induced rhabdomyolysis aggravated these parameters in SS mice. Rhabdomyolysis also amplified oxidative stress in SS compared to AA mice. Glycerol-treated SS mice exhibited worse renal function, exemplified by a reduction in GFR with a corresponding increase in plasma and urinary biomarkers of early AKI and renal tubular damage. The free radical scavenger and Fenton chemistry inhibitor, TEMPOL, ameliorated rhabdomyolysis-induced AKI in the SS mice. These findings demonstrate that oxidative stress driven by renal iron accumulation amplifies rhabdomyolysis-induced AKI in SCD mice.
Collapse
Affiliation(s)
- Jada D. Williams
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ravi Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jeremiah M. Afolabi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol 2023; 14:1162546. [PMID: 37089416 PMCID: PMC10117683 DOI: 10.3389/fphys.2023.1162546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
The prevalence of renal diseases including acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing worldwide. However, the pathogenesis of most renal diseases is still unclear and effective treatments are still lacking. DNA damage and the related DNA damage response (DDR) have been confirmed as common pathogenesis of acute kidney injury and chronic kidney disease. Reactive oxygen species (ROS) induced DNA damage is one of the most common types of DNA damage involved in the pathogenesis of acute kidney injury and chronic kidney disease. In recent years, several developments have been made in the field of DNA damage. Herein, we review the roles and developments of DNA damage and DNA damage response in renal tubular epithelial cell injury in acute kidney injury and chronic kidney disease. In this review, we conclude that focusing on DNA damage and DNA damage response may provide valuable diagnostic biomarkers and treatment strategies for renal diseases including acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Han J, Cui L, Yu F, Wang R, Yuan H, Hu F. Megalin blockade with cilastatin ameliorates multiple wasp sting-induced acute kidney injury in rats. Toxicon 2022; 220:106960. [DOI: 10.1016/j.toxicon.2022.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
17
|
Guo W, Wang Y, Wu Y, Liu J, Li Y, Wang J, Ou S, Wu W. Integration of transcriptomics and metabolomics reveals the molecular mechanisms underlying the effect of nafamostat mesylate on rhabdomyolysis-induced acute kidney injury. Front Pharmacol 2022; 13:931670. [PMID: 36532745 PMCID: PMC9748812 DOI: 10.3389/fphar.2022.931670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/17/2022] [Indexed: 11/09/2023] Open
Abstract
Objective: To investigate the role and mechanisms of action of nafamostat mesylate (NM) in rhabdomyolysis-induced acute kidney injury (RIAKI). Methods: RIAKI rats were assigned into control group (CN), RIAKI group (RM), and NM intervention group (NM). Inflammatory cytokines and proenkephalin a 119-159 (PENKID) were assessed. Cell apoptosis and glutathione peroxidase-4 (GPX4) were detected using TUNEL assay and immunohistochemical staining. Mitochondrial membrane potential (MMP) was detected by JC-1 dye. The expression of genes and metabolites after NM intervention was profiled using transcriptomic and metabolomic analysis. The differentially expressed genes (DEGs) were validated using qPCR. The KEGG and conjoint analysis of transcriptome and metabolome were used to analyze the enriched pathways and differential metabolites. The transcription factors were identified based on the animal TFDB 3.0 database. Results: Serum creatinine, blood urea nitrogen, and PENKID were remarkably higher in the RM group and lower in the NM group compared to the CN group. Pro-inflammatory cytokines increased in the RM group and notably decreased following NM treatment compared to the CN group. Tubular pathological damages were markedly attenuated and renal cell apoptosis was reduced significantly in the NM group compared to the RM group. The expression of GPX4 was lower in the RM group compared to the CN group, and it increased significantly after NM treatment. A total of 294 DEGs were identified in the RM group compared with the NM group, of which 192 signaling pathways were enriched, and glutathione metabolism, IL-17 signaling, and ferroptosis-related pathways were the top-ranking pathways. The transcriptional levels of Anpep, Gclc, Ggt1, Mgst2, Cxcl13, Rgn, and Akr1c1 were significantly different between the NM and RM group. Gclc was the key gene contributing to NM-mediated renal protection in RIAKI. Five hundred and five DEGs were annotated. Compared with the RM group, most of the upregulated DEGs in the NM group belonged to Glutathione metabolism, whereas most of the downregulated DEGs were related to the transcription factor Cytokine-cytokine receptor interaction. Conclusion: NM protects the kidneys against RIAKI, which is mainly associated with NM mediated regulation of glutathione metabolism, inflammatory response, ferroptosis-related pathways, and the related key DEGs. Targeting these DEGs might emerge as a potential molecular therapy for RIAKI.
Collapse
Affiliation(s)
- Wenli Guo
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Nephrology and Rheumatology, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital Of Qionglai City. Chengdu, Sichuan, China
| | - Yu Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxuan Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiang Liu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Wang
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Santao Ou
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Weihua Wu
- Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Hebert JF, Burfeind KG, Malinoski D, Hutchens MP. Molecular Mechanisms of Rhabdomyolysis-Induced Kidney Injury: From Bench to Bedside. Kidney Int Rep 2022; 8:17-29. [PMID: 36644345 PMCID: PMC9831947 DOI: 10.1016/j.ekir.2022.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Rhabdomyolysis-induced acute kidney injury (RIAKI) occurs following damage to the muscular sarcolemma sheath, resulting in the leakage of myoglobin and other metabolites that cause kidney damage. Currently, the sole recommended clinical treatment for RIAKI is aggressive fluid resuscitation, but other potential therapies, including pretreatments for those at risk for developing RIAKI, are under investigation. This review outlines the mechanisms and clinical significance of RIAKI, investigational treatments and their specific targets, and the status of ongoing research trials.
Collapse
Affiliation(s)
- Jessica F. Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA,Correspondence: Jessica F. Hebert, Oregon Health and Science University, Department of Anesthesiology and Perioperative Medicine, Portland, Oregon, USA.
| | - Kevin G. Burfeind
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Darren Malinoski
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA,Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| | - Michael P. Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA,Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| |
Collapse
|
19
|
Carboxyl Group-Modified Myoglobin Induces TNF-α-Mediated Apoptosis in Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15091066. [PMID: 36145287 PMCID: PMC9501283 DOI: 10.3390/ph15091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that chemical modification may increase the activity of proteins or confer novel activity to proteins. Some studies have indicated that myoglobin (Mb) is cytotoxic; however, the underlying mechanisms remain unclear. In this study, we investigated whether chemical modification of the carboxyl group by semicarbazide could promote the Mb cytotoxicity in human leukemia U937 cells and the underlying mechanism of semicarbazide-modified myoglobin (SEM-Mb)-induced U937 cell death. The semicarbazide-modified Mb (SEM-Mb) induced U937 cell apoptosis via the production of cleaved caspase-8 and t-Bid, while silencing of FADD abolished this effect. These findings suggest that SEM-Mb can induce U937 cell death by activating the death receptor-mediated pathway. The SEM-Mb inhibited miR-99a expression, leading to increased NOX4 mRNA and protein expression, which promoted SIRT3 degradation, and, in turn, induced ROS-mediated p38 MAPK phosphorylation. Activated p38 MAPK stimulated miR-29a-dependent tristetraprolin (TTP) mRNA decay. Downregulation of TTP slowed TNF-α mRNA turnover, thereby increasing TNF-α protein expression. The SEM-Mb-induced decrease in cell viability and TNF-α upregulation were alleviated by abrogating the NOX4/SIRT3/ROS/p38 MAPK axis or ectopic expression of TTP. Taken together, our results demonstrated that the NOX4/SIRT3/p38 MAPK/TTP axis induces TNF-α-mediated apoptosis in U937 cells following SEM-Mb treatment. A pathway regulating p38 MAPK-mediated TNF-α expression also explains the cytotoxicity of SEM-Mb in the human leukemia cell lines HL-60, THP-1, K562, Jurkat, and ABT-199-resistant U937. Furthermore, these findings suggest that the carboxyl group-modified Mb is a potential structural template for the generation of tumoricidal proteins.
Collapse
|
20
|
Hall AM, de Seigneux S. Metabolic mechanisms of acute proximal tubular injury. Pflugers Arch 2022; 474:813-827. [PMID: 35567641 PMCID: PMC9338906 DOI: 10.1007/s00424-022-02701-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Damage to the proximal tubule (PT) is the most frequent cause of acute kidney injury (AKI) in humans. Diagnostic and treatment options for AKI are currently limited, and a deeper understanding of pathogenic mechanisms at a cellular level is required to rectify this situation. Metabolism in the PT is complex and closely coupled to solute transport function. Recent studies have shown that major changes in PT metabolism occur during AKI and have highlighted some potential targets for intervention. However, translating these insights into effective new therapies still represents a substantial challenge. In this article, in addition to providing a brief overview of the current state of the field, we will highlight three emerging areas that we feel are worthy of greater attention. First, we will discuss the role of axial heterogeneity in cellular function along the PT in determining baseline susceptibility to different metabolic hits. Second, we will emphasize that elucidating insult specific pathogenic mechanisms will likely be critical in devising more personalized treatments for AKI. Finally, we will argue that uncovering links between tubular metabolism and whole-body homeostasis will identify new strategies to try to reduce the considerable morbidity and mortality associated with AKI. These concepts will be illustrated by examples of recent studies emanating from the authors' laboratories and performed under the auspices of the Swiss National Competence Center for Kidney Research (NCCR Kidney.ch).
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| | - Sophie de Seigneux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
21
|
Madkour AH, Helal MG, Said E, Salem HA. Dose-dependent renoprotective impact of Lactoferrin against glycerol-induced rhabdomyolysis and acute kidney injury. Life Sci 2022; 302:120646. [PMID: 35595070 DOI: 10.1016/j.lfs.2022.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Acute kidney injury (AKI) is a clinical disorder with a serious impact on the quality of patients' lives. Considering its increased worldwide prevalence, investigating novel therapeutic approaches for the management of AKI has been inevitable. Lactoferrin (LF), a glycoprotein belonging to the transferrin family, is known to play an important role in regulating iron homeostasis. This study aimed to evaluate the renoprotective effect of LF (30, 100, and 300 mg/kg orally) against glycerol (GLY)-induced rhabdomyolysis (RM) in rats. RM was induced by a single intramuscular injection of GLY 50% (10 mL/kg) after 24-h water deprivation in male Sprague-Dawley rats. LF administration conferred significant dose-dependent renoprotective impact against GLY-induced RM as evidenced by the decreased renal/somatic index and the significant improvement in renal functions as confirmed by the significant increase in creatinine clearance, decrease in serum creatinine and blood urea nitrogen, and improvement in albuminuria and proteinuria. Redox homeostasis was significantly restored in a dose-dependent manner as well. Moreover, serum interleukin-1β (IL-1β) was significantly decreased with a parallel significant decrease in renal NOD-like receptor family pyrin domain containing 3 (NLRP3) and thioredoxin interacting protein (TXNIP), kidney injury molecule-1 (KIM-1), caspase-3 expression, nuclear factor kappa B (NF-κB), cluster of differentiation (CD68) expression, and a significant increase in renal nuclear factor erythroid 2-related factor 2 (NRF2) expression. Ultimately, LF administration was associated with a significant amelioration of GLY-induced renal necrotic and inflammatory alterations. In conclusion, the observed dose-dependent nephroprotective effect of LF can be attributed to its modulatory impact on inflammatory/apoptotic/oxidative signaling.
Collapse
Affiliation(s)
- Ahmed H Madkour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, 7723730 New Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
22
|
Capacity of extracellular globins to reduce liver fibrosis via scavenging reactive oxygen species and promoting MMP-1 secretion. Redox Biol 2022; 52:102286. [PMID: 35334247 PMCID: PMC8956869 DOI: 10.1016/j.redox.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Background & aims Hepatic stellate cells (HSCs) are the primary cell type in liver fibrosis, a significant global health care burden. Cytoglobin (CYGB), a globin family member expressed in HSCs, inhibits HSC activation and reduces collagen production. We studied the antifibrotic properties of globin family members hemoglobin (HB), myoglobin (MB), and neuroglobin (NGB) in comparison with CYGB. Approach & results We characterized the biological activities of globins in cultured human HSCs (HHSteCs) and their effects on carbon tetrachloride (CCl4)-induced cirrhosis in mice. All globins demonstrated greater antioxidant capacity than glutathione in cell-free systems. Cellular fractionation revealed endocytosis of extracellular MB, NGB, and CYGB, but not HB; endocytosed globins localized to intracellular membranous, cytoplasmic, and cytoskeletal fractions. MB, NGB, and CYGB, but not HB, scavenged reactive oxygen species generated spontaneously or stimulated by H2O2 or transforming growth factor β1 in HHSteCs and reduced collagen 1A1 production via suppressing COL1A1 promoter activity. Disulfide bond-mutant NGB displayed decreased heme and superoxide scavenging activity and reduced collagen inhibitory capacity. RNA sequencing of MB- and NGB-treated HHSteCs revealed downregulation of extracellular matrix–encoding and fibrosis-related genes and HSC deactivation markers. Upregulation of matrix metalloproteinase (MMP)-1 was observed following MB and NGB treatment, and MMP-1 knockdown partially reversed globin-mediated effects on secreted collagen. Importantly, administration of MB, NGB, and CYGB suppressed CCl4-induced mouse liver fibrosis. Conclusions These findings revealed unexpected roles for MB and NGB in deactivating HSCs and inhibiting liver fibrosis development, suggesting that globin therapy may represent a new strategy for combating fibrotic liver disease. Myoglobin, neuroglobin, and cytoglobin, but not hemoglobin:Internalize into human hepatic stellate cells via endocytosis pathway. Scavenge intracellular reactive oxidative species. Suppress COL1A1 promoter activity and promote matrix metaloproteinase-1 secretion. Suppress carbon tetrachloride-induced mouse liver fibrosis.
Collapse
|
23
|
Matsushita K, Mori K, Saritas T, Eiwaz MB, Funahashi Y, Nickerson MN, Hebert JF, Munhall AC, McCormick JA, Yanagita M, Hutchens MP. Cilastatin Ameliorates Rhabdomyolysis-induced AKI in Mice. J Am Soc Nephrol 2021; 32:2579-2594. [PMID: 34341182 PMCID: PMC8722809 DOI: 10.1681/asn.2020030263] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/17/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rhabdomyolysis, the destruction of skeletal muscle, is a significant cause of AKI and death in the context of natural disaster and armed conflict. Rhabdomyolysis may also initiate CKD. Development of specific pharmacologic therapy is desirable because supportive care is nearly impossible in austere environments. Myoglobin, the principal cause of rhabdomyolysis-related AKI, undergoes megalin-mediated endocytosis in proximal tubule cells, a process that specifically injures these cells. METHODS To investigate whether megalin is protective in a mouse model of rhabdomyolysis-induced AKI, we used male C57BL/6 mice and mice (14-32 weeks old) with proximal tubule-specific deletion of megalin. We used a well-characterized rhabdomyolysis model, injection of 50% glycerol in normal saline preceded by water deprivation. RESULTS Inducible proximal tubule-specific deletion of megalin was highly protective in this mouse model of rhabdomyolysis-induced AKI. The megalin knockout mice demonstrated preserved GFR, reduced proximal tubule injury (as indicated by kidney injury molecule-1), and reduced renal apoptosis 24 hours after injury. These effects were accompanied by increased urinary myoglobin clearance. Unlike littermate controls, the megalin-deficient mice also did not develop progressive GFR decline and persistent new proteinuria. Administration of the pharmacologic megalin inhibitor cilastatin to wild-type mice recapitulated the renoprotective effects of megalin deletion. This cilastatin-mediated renoprotective effect was dependent on megalin. Cilastatin administration caused selective proteinuria and inhibition of tubular myoglobin uptake similar to that caused by megalin deletion. CONCLUSIONS We conclude that megalin plays a critical role in rhabdomyolysis-induced AKI, and megalin interference and inhibition ameliorate rhabdomyolysis-induced AKI. Further investigation of megalin inhibition may inform translational investigation of a novel potential therapy.
Collapse
Affiliation(s)
- Katsuyuki Matsushita
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Kiyoshi Mori
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Turgay Saritas
- Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, Oregon,Division of Nephrology & Hypertension, University Hospital RWTH Aachen, Aachen, Germany
| | - Mahaba B. Eiwaz
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Yoshio Funahashi
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Megan N. Nickerson
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jessica F. Hebert
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Adam C. Munhall
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - James A. McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan,Institute for Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Michael P. Hutchens
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon,Portland Veterans Affairs Medical Center, Operative Care Division, Portland, Oregon,Correspondence: Dr. Michael P. Hutchens, Operative Care Division, Portland Veterans Affairs Medical Center R&D, 5 3710 SW US Veterans Hospital Road, Portland, OR 97239.
| |
Collapse
|
24
|
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol 2021; 17:335-349. [PMID: 33547418 DOI: 10.1038/s41581-021-00394-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Kidney damage varies according to the primary insult. Different aetiologies of acute kidney injury (AKI), including kidney ischaemia, exposure to nephrotoxins, dehydration or sepsis, are associated with characteristic patterns of damage and changes in gene expression, which can provide insight into the mechanisms that lead to persistent structural and functional damage. Early morphological alterations are driven by a delicate balance between energy demand and oxygen supply, which varies considerably in different regions of the kidney. The functional heterogeneity of the various nephron segments is reflected in their use of different metabolic pathways. AKI is often linked to defects in kidney oxygen supply, and some nephron segments might not be able to shift to anaerobic metabolism under low oxygen conditions or might have remarkably low basal oxygen levels, which enhances their vulnerability to damage. Here, we discuss why specific kidney regions are at particular risk of injury and how this information might help to delineate novel routes for mitigating injury and avoiding permanent damage. We suggest that the physiological heterogeneity of the kidney should be taken into account when exploring novel renoprotective strategies, such as improvement of kidney tissue oxygenation, stimulation of hypoxia signalling pathways and modulation of cellular energy metabolism.
Collapse
|
25
|
Grivei A, Giuliani KTK, Wang X, Ungerer J, Francis L, Hepburn K, John GT, Gois PFH, Kassianos AJ, Healy H. Oxidative stress and inflammasome activation in human rhabdomyolysis-induced acute kidney injury. Free Radic Biol Med 2020; 160:690-695. [PMID: 32942024 DOI: 10.1016/j.freeradbiomed.2020.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a life-threatening complication of rhabdomyolysis. The pathophysiological mechanisms of rhabdomyolysis-induced AKI (RIAKI) have been extensively studied in the murine system, yet clinical translation of this knowledge to humans is lacking. In this study, we investigated the cellular and molecular pathways of human RIAKI. Renal biopsy tissue from a RIAKI patient was examined by quantitative immunohistochemistry (Q-IHC) and compared to healthy kidney cortical tissue. We identified myoglobin casts and uric acid localised to sites of histological tubular injury, consistent with the diagnosis of RIAKI. These pathological features were associated with tubular oxidative stress (4-hydroxynonenal staining), regulated necrosis/necroptosis (phosphorylated mixed-lineage kinase domain-like protein staining) and inflammation (tumour necrosis factor (TNF)-α staining). Expression of these markers was significantly elevated in the RIAKI tissue compared to the healthy control. A tubulointerstitial inflammatory infiltrate accumulated adjacent to these sites of RIAKI oxidative injury, consisting of macrophages (CD68), dendritic cells (CD1c) and T lymphocytes (CD3). Foci of inflammasome activation were co-localised with these immune cell infiltrate, with significantly increased staining for adaptor protein ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain) and active caspase-1 in the RIAKI tissue compared to the healthy control. Our clinical findings identify multiple pathophysiological pathways previously only reported in murine RIAKI, providing first evidence in humans linking deposition of myoglobin and presence of uric acid to tubular oxidative stress/necroptosis, inflammasome activation and necroinflammation.
Collapse
Affiliation(s)
- Anca Grivei
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia
| | - Kurt T K Giuliani
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Xiangju Wang
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia
| | - Jacobus Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia
| | - Kirsten Hepburn
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - George T John
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Pedro F H Gois
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Helen Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
26
|
Longobardi NC, Longobardi Y. Recurrent Exercise-Induced Rhabdomyolysis in a Healthy Adolescent Girl. Cureus 2020; 12:e11462. [PMID: 33329960 PMCID: PMC7733763 DOI: 10.7759/cureus.11462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Female symptomatic carriers of Duchenne muscular dystrophy (DMD) are uncommon findings. Much of this disease has been studied from a male perspective, but female disease presentation and progression are rarely described. This report describes a female adolescent patient with a rare and unconventional presentation of DMD.
Collapse
|
27
|
Adedapo AA, Osaretin ER, Falayi OO, Oyagbemi AA, Ogunpolu BS, Omobowale TO, Oguntibeju OO, Yakubu MA. Ramipril blunts glycerol-induced acute renal failure in rats through its antiapoptosis, anti-inflammatory, antioxidant, and renin-inhibiting properties. J Basic Clin Physiol Pharmacol 2020; 32:225-235. [PMID: 33155993 DOI: 10.1515/jbcpp-2020-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a malady with a sudden onset resulting in buildup of waste matters in the body, but a specific cure hasn't been found as a lasting solution to AKI. In this study, ramipril was evaluated for its potential therapy in glycerol-induced AKI in rats. METHODS Twenty animals were divided into four groups of five animals each. Group I was the control while group II was given glycerol on day 8 only, groups III and IV were administered with pioglitazone (reference drug) and ramipril for seven days respectively and on day 8 received glycerol. On the ninth day, blood and tissue samples were taken to assay for serum indicators of oxidative damage, enzymatic and nonenzymatic antioxidants, and creatinine and blood urea nitrogen. Animals were sacrificed thereafter; kidney was harvested for histological and immunohistochemical analysis. Expressions of caspase 3, renin receptor, NK-KB, and KIM-1 were carried out. RESULTS Ramipril significantly inhibited indicators of oxidative damage while also significantly increasing levels of enzymatic and nonenzymatic antioxidant markers. These drugs also significantly lowered the levels of creatinine and blood urea nitrogen. Histology also indicated that while there were massive infiltration of leucocytes and congestion of the kidney in toxicant group, the ramipril-treated group showed a milder condition. In immunohistochemistry, the two drugs significantly inhibited the expressions of the four proteins, which were highly expressed in the toxicant group. CONCLUSIONS The study showed that ramipril and pioglitazone have nephroprotective effect and thus have the ability to blunt AKI through their anti-inflammatory, antiapoptosis, antirenin, and antioxidant properties.
Collapse
Affiliation(s)
- Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Ehizogie Ruth Osaretin
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
28
|
Bednarz A, Lipiński P, Starzyński RR, Tomczyk M, Kraszewska I, Herman S, Kowalski K, Gruca E, Jończy A, Mazgaj R, Szudzik M, Rajfur Z, Baster Z, Józkowicz A, Lenartowicz M. Exacerbation of Neonatal Hemolysis and Impaired Renal Iron Handling in Heme Oxygenase 1-Deficient Mice. Int J Mol Sci 2020; 21:ijms21207754. [PMID: 33092142 PMCID: PMC7589678 DOI: 10.3390/ijms21207754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Kacper Kowalski
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Ewelina Gruca
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (Z.R.); (Z.B.)
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (Z.R.); (Z.B.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
- Correspondence:
| |
Collapse
|
29
|
Abugomaa A, Elbadawy M. Olive leaf extract modulates glycerol-induced kidney and liver damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22100-22111. [PMID: 32291641 DOI: 10.1007/s11356-020-08371-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to examine the protective effect of olive leaf extract (OLE) against glycerol-induced oxidative stress in rats. Sixty male albino rats were used and allocated randomly into four groups, each of 15 rats. Groups (1) and (2) were administered intraperitoneally (i.p.) a single dose of 500 μL normal saline and hypertonic glycerol solution (10 mL/kg b.wt., 50% v/v, in sterile saline), respectively, followed by a 24-h period of water deprivation. Group (3) was orally given OLE (500 mg/kg b.wt.) for 22 days and glycerol as mentioned above on the 14th day of OLE administration followed by a 24-h period of water deprivation. Group (4) was administered OLE alone. Five rats from each group were sacrificed and samples were collected 1, 5, and 8 days after water deprivation. Alterations in hematobiochemical parameters, renal and hepatic oxidative stress markers, as well as histopathology of the kidney and liver, were evaluated. Glycerol treatment resulted in significant hematological and biochemical alterations as well as significant renal and hepatic oxidative stress. Administration of OLE has significantly ameliorated renal dysfunction, morphological alterations of kidney and liver, and relieved the oxidative stress. These findings show obviously the role of oxidative stress and its relevance to renal dysfunction and suggest the ameliorative impact of OLE in glycerol-induced acute kidney damage in rats, possibly due to its antioxidant properties.
Collapse
Affiliation(s)
- Amira Abugomaa
- Faculty of Veterinary Medicine|, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt.
| |
Collapse
|
30
|
Elsakka EGE, Elsisi AM, Mansour OAAM, Elsadek BEM, Abd Elaziz AI, Salama SA, Allam S. Androgen/androgen receptor affects gentamicin-induced nephrotoxicity through regulation of megalin expression. Life Sci 2020; 251:117628. [PMID: 32247620 DOI: 10.1016/j.lfs.2020.117628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023]
Abstract
AIM Investigation whether androgen/androgen receptor (AR) might regulate megalin expression and/or functionality and thus affecting Gentamicin-induced nephrotoxicity (GIN). MAIN METHODS Male Wistar rats were treated with gentamicin with/out AR ligands (testosterone as agonist and flutamide as antagonist). Megalin expression in the kidney tissues was determined by real-time RT-PCR and western blot. Besides, megalin functionality was assessed using immunofluorescence imaging of fluorescein isothiocyanate (FITC) conjugated bovine serum albumin (BSA) (FITC-BSA). The effects of different treatments on the kidney were assessed at the structural level by histopathological evaluation and the biochemical level by colorimetric assay of blood urea nitrogen (BUN), serum creatinine (SCr) and urinary albumin/creatinine (A/C) ratio, besides, kidney expression of neutrophil gelatinase-associated lipocalin (NGAL) by immunoblotting. KEY FINDINGS Our results revealed that treatment with testosterone either alone or combined with gentamicin increased megalin expression at mRNA and protein levels as well as at the functional level. These effects were paralleled by increased GIN as manifested by increased SCr, BUN, A/C ratio, renal expression of NGAL or histopathological changes. On the other hand, treatment with flutamide ameliorated GIN and megalin expression and functionality. Computational analysis of megalin promotor revealed the presence of multiple response elements that mediate androgen response. SIGNIFICANCE Androgen/AR regulates megalin expression at the transcriptional level and consequently GIN. This may explain the sexual dimorphism in GIN and might represent a druggable target for treatment or prevention of GIN.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ahmad Mohamed Elsisi
- Biochemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni Suef, Egypt
| | | | - Bakheet E M Elsadek
- Biochemistry Department, Faculty of Pharmacy (Boys), Assuit Branch, Al-Azhar University, Assuit, Egypt
| | - Adel I Abd Elaziz
- Pharmacology Department, Faculty of Medicine (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Salama Abdou Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Shady Allam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| |
Collapse
|
31
|
Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D'Agati VD, Tatonetti NP, Barasch J, Devarajan P. Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 2019; 15:599-612. [PMID: 31439924 PMCID: PMC7303545 DOI: 10.1038/s41581-019-0184-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
The acute loss of kidney function has been diagnosed for many decades using the serum concentration of creatinine - a muscle metabolite that is an insensitive and non-specific marker of kidney function, but is now used for the very definition of acute kidney injury (AKI). Fortunately, myriad new tools have now been developed to better understand the relationship between acute tubular injury and elevation in serum creatinine (SCr). These tools include unbiased gene and protein expression analyses in kidney, urine and blood, the localization of specific gene transcripts in pathological biopsy samples by rapid in-situ RNA technology and single-cell RNA-sequencing analyses. However, this molecular approach to AKI has produced a series of unexpected problems, because the expression of specific kidney-derived molecules that are indicative of injury often do not correlate with SCr levels. This discrepancy between kidney injury markers and SCr level can be reconciled by the recognition that many separate subtypes of AKI exist, each with distinct patterning of molecular markers of tubular injury and SCr data. In this Review, we describe the weaknesses of isolated SCr-based diagnoses, the clinical and molecular subtyping of acute tubular injury, and the role of non-invasive biomarkers in clinical phenotyping. We propose a conceptual model that synthesizes molecular and physiological data along a time course spanning from acute cellular injury to organ failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
32
|
Bednarz A, Lipiński P, Starzyński RR, Tomczyk M, Nowak W, Mucha O, Ogórek M, Pierzchała O, Jończy A, Staroń R, Śmierzchalska J, Rajfur Z, Baster Z, Józkowicz A, Lenartowicz M. Role of the kidneys in the redistribution of heme-derived iron during neonatal hemolysis in mice. Sci Rep 2019; 9:11102. [PMID: 31366967 PMCID: PMC6668426 DOI: 10.1038/s41598-019-47414-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Moderate intravascular hemolysis is a common condition in newborns. It is followed by the accumulation of bilirubin, which is a secondary product of the activity of heme oxygenase-1, an enzyme that catalyzes the breakdown of heme released from disrupted erythrocytes and taken up by hepatic macrophages. Although these cells are a major site of enzymatic heme breakdown in adults, we show here that epithelial cells of proximal tubules in the kidneys perform the functions of both heme uptake and catabolism in mouse neonates. A time-course study examining mouse pups during the neonatal period showed a gradual recovery from hemolysis, and concomitant decreases in the expression of heme-related genes and non-heme iron transporters in the proximal tubules. By adjusting the expression of iron-handling proteins in response to the disappearance of hemolysis in mouse neonates, the kidneys may play a role in the detoxification of iron and contribute to its recirculation from the primary urine to the blood.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Witold Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Robert Staroń
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Julia Śmierzchalska
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
33
|
Li YF, Xu BY, An R, Du XF, Yu K, Sun JH, Zhang GH, Wang W, An LP, Wu GL. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury. BMC Nephrol 2019; 20:223. [PMID: 31208365 PMCID: PMC6580578 DOI: 10.1186/s12882-019-1394-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Background Anisodamine is used for the treatment of reperfusion injury in various organs. In this study, we investigated the effectiveness and mechanisms of action of anisodamine in promoting recovery from glycerol-induced acute kidney injury (AKI). Methods We compared the protective effects of atropine and anisodamine in the rat model of glycerol-induced AKI. We examined signaling pathways involved in oxidative stress, inflammation and apoptosis, as well as expression of kidney injury molecule-1 (KIM-1). Renal injury was assessed by measuring serum creatinine and urea, and by histologic analysis. Rhabdomyolysis was evaluated by measuring creatine kinase levels, and oxidative stress was assessed by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) levels in kidney tissues. Inflammation was assessed by quantifying interleukin 6 (IL-6) and CD45 expression. Apoptosis and necrosis were evaluated by measuring caspase-3 (including cleaved caspase 3) and RIP3 levels, respectively. Results Glycerol administration resulted in a higher mean histologic damage score, as well as increases in serum creatinine, urea, creatine kinase, reactive oxygen species (ROS), MDA, IL-6, caspase-3 and KIM-1 levels. Furthermore, glycerol reduced kidney tissue SOD activity. All of these markers were significantly improved by anisodamine and atropine. However, the mean histologic damage score and levels of urea, serum creatinine, creatine kinase, ROS and IL-6 were lower in the anisodamine treatment group compared with the atropine treatment group. Conclusion Pretreatment with anisodamine ameliorates renal dysfunction in the rat model of glycerol-induced rhabdomyolytic kidney injury by reducing oxidative stress, the inflammatory response and cell death.
Collapse
Affiliation(s)
- Yun-Feng Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Bing-Yuan Xu
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ran An
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xin-Fang Du
- Department of Nephrology, Bethune International Peace Hospital of PLA, Shijiazhuang, 050082, China
| | - Kun Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jia-Hua Sun
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Guo-Hong Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Wei Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Li-Ping An
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Guang-Li Wu
- Department of Nephrology, Bethune International Peace Hospital of PLA, Shijiazhuang, 050082, China.
| |
Collapse
|
34
|
Morace I, Pilz R, Federico G, Jennemann R, Krunic D, Nordström V, von Gerichten J, Marsching C, Schießl IM, Müthing J, Wunder C, Johannes L, Sandhoff R, Gröne HJ. Renal globotriaosylceramide facilitates tubular albumin absorption and its inhibition protects against acute kidney injury. Kidney Int 2019; 96:327-341. [PMID: 31101366 DOI: 10.1016/j.kint.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
To elucidate the physiologic function of renal globotriaosylceramide (Gb3/CD77), which up-to-date has been associated exclusively with Shiga toxin binding, we have analyzed renal function in Gb3-deficient mice. Gb3 synthase KO (Gb3S-/-) mice displayed an increased renal albumin and low molecular weight protein excretion compared to WT. Gb3 localized at the brush border and within vesicular structures in WT proximal tubules and has now been shown to be closely associated with the receptor complex megalin/cubilin and with albumin uptake. In two clinically relevant mouse models of acute kidney injury caused by myoglobin as seen in rhabdomyolysis and the aminoglycoside gentamicin, Gb3S-/- mice showed a preserved renal function and morphology, compared to WT. Pharmacologic inhibition of glucosylceramide-based glycosphingolipids, including Gb3, in WT mice corroborated the results of genetically Gb3-deficient mice. In conclusion, our data significantly advance the current knowledge on the physiologic and pathophysiologic role of Gb3 in proximal tubules, showing an involvement in the reabsorption of filtered albumin, myoglobin and the aminoglycoside gentamicin.
Collapse
Affiliation(s)
- Ivan Morace
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | - Robert Pilz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Johanna von Gerichten
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Christian Marsching
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Institute of Pharmacology, University of Marburg, Marburg, Germany.
| |
Collapse
|
35
|
Dynamic changes in Bach1 expression in the kidney of rhabdomyolysis-associated acute kidney injury. PLoS One 2017; 12:e0180934. [PMID: 28704479 PMCID: PMC5509282 DOI: 10.1371/journal.pone.0180934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/24/2017] [Indexed: 12/02/2022] Open
Abstract
Free heme, a pro-oxidant released from myoglobin, is thought to contribute to the pathogenesis of rhabdomyolysis-associated acute kidney injury (RM-AKI), because renal overexpression of heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, confers protection against RM-AKI. BTB and CNC homology 1 (Bach1) is a heme-responsive transcription factor that represses HO-1. Here, we examined the changes with time in the gene expression of Bach1, HO-1, and δ-aminolevulinate synthase (ALAS1, a heme biosynthetic enzyme) in the rat kidney using an RM-AKI model induced by the injection of 50% glycerol (10 mL/kg body weight) into bilateral limbs. We also examined the protein expression of Bach1 in the nucleus and cytosol, and HO-1 in the rat kidney. Glycerol treatment induced significant elevation of serum creatinine kinase and aspartate aminotransferase levels followed by the marked elevation of serum blood urea nitrogen and creatinine levels, which caused serious damage to renal tubules. Following glycerol treatment, HO-1 mRNA and protein levels were significantly up-regulated, while ALAS1 mRNA expression was down-regulated, suggesting an increase in the free renal heme concentration. The Bach1 mRNA level was drastically increased 3 h after glycerol treatment, and the increased level was maintained for 12 h. Nuclear Bach1 protein levels were significantly decreased 3 h after treatment. Conversely, cytosolic Bach1 protein levels abruptly increased after 6 h. In conclusion, we demonstrate the dynamic changes in Bach1 expression in a rat model of RM-AKI. Our findings suggest that the increase in Bach1 mRNA and cytosolic Bach1 protein expression may reflect de novo Bach1 protein synthesis to compensate for the depletion of nuclear Bach1 protein caused by the induction of HO-1 by free heme.
Collapse
|
36
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
37
|
Zorova LD, Pevzner IB, Chupyrkina AA, Zorov SD, Silachev DN, Plotnikov EY, Zorov DB. The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chem Biol Interact 2016; 256:64-70. [PMID: 27329933 DOI: 10.1016/j.cbi.2016.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
The fate of myoglobin in renal cells was explored in an animal model of rhabdomyolysis known as the pathology highly related to oxidative stress resulting in impairment of renal functioning. The working hypothesis was that the proper degradation of myoglobin in rhabdomyolytic kidney can activate the reparative processes in the tissue. We found that incubation of myoglobin with kidney cells causes its accumulation in the cytoplasm. In rhabdomyolytic rats, the level of heme and free iron in cytoplasm and mitochondria of kidney cells is remarkably increased while inhibition of proteolysis results in further elevation of myoglobin content in the renal tissue. Heme oxygenase and ferritin levels were found to be increased in the kidney tissue at rhabdomyolysis and simulating conditions performed by i/v injection of myoglobin. In addition, the level of peroxidized lipids was high in rhabdomyolytic kidney and became even higher after inhibition of proteolysis by aprotinin. Elevated levels of carbonylated proteins were also observed after rhabdomyolysis, however, if prior to induction of rhabdomyolysis the injection of myoglobin was done, the level of carbonylated proteins dropped versus unprimed kidney tissue thus affording protection to the kidney against oxidative stress. Injection of myoglobin to the rat results in impairment of renal functioning and inhibition of myoglobin degradation in the rhabdomyolytic animal aggravates acute renal failure, demonstrating that degradation of myoglobin is somehow beneficial although it may result in undesired release of free iron which can participate in toxic redox cycling.
Collapse
Affiliation(s)
- Ljubava D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 40, Moscow, Russia; International Laser Center, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 62, Moscow, Russia
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 40, Moscow, Russia
| | - Anastasia A Chupyrkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 40, Moscow, Russia
| | - Savva D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 73, Moscow, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 40, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 40, Moscow, Russia.
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Leninskye Gory, House 1, Building 40, Moscow, Russia.
| |
Collapse
|
38
|
Abstract
Treatment of iron overload requires robust estimates of total-body iron burden and its response to iron chelation therapy. Compliance with chelation therapy varies considerably among patients, and individual reporting is notoriously unreliable. Even with perfect compliance, intersubject variability in chelator effectiveness is extremely high, necessitating reliable iron estimates to guide dose titration. In addition, each chelator has a unique profile with respect to clearing iron stores from different organs. This article presents the tools available to clinicians to monitor their patients, focusing on noninvasive magnetic resonance imaging methods because they have become the de facto standard of care.
Collapse
Affiliation(s)
- John C Wood
- Department of Pediatrics, Children's Hospital, Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA; Department of Radiology, Children's Hospital, Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA.
| |
Collapse
|
39
|
Latunde-Dada GO, Laftah AH, Masaratana P, McKie AT, Simpson RJ. Expression of ABCG2 (BCRP) in mouse models with enhanced erythropoiesis. Front Pharmacol 2014; 5:135. [PMID: 25028581 PMCID: PMC4077122 DOI: 10.3389/fphar.2014.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/19/2014] [Indexed: 11/25/2022] Open
Abstract
Haem is a structural component of numerous cellular proteins which contributes significantly to iron metabolic processes in mammals but its toxicity demands that cellular levels must be tightly regulated. Breast Cancer Resistance Protein (BCRP/ABCG2), an ATP Binding Cassette G-member protein has been shown to possess porphyrin/haem efflux function. The current study evaluated the expression and regulation of Abcg2 mRNA and protein levels in mouse tissues involved in erythropoiesis. Abcg2 mRNA expression was enhanced in bone marrow hemopoietic progenitor cells from mice that were treated with phenylhydrazine (PHZ). Abcg2 mRNA expression was increased particularly in the extramedullary haematopoietic tissues from all the mice models with enhanced erythropoiesis. Haem oxygenase (ho1) levels tended to increase in the liver of mice with enhanced erythropoiesis and gene expression patterns differed from those observed in the spleen. Efflux of haem biosynthetic metabolites might be dependent on the relative abundance of Abcg2 or ho1 during erythropoiesis. Abcg2 appears to act principally as a safety valve regulating porphyrin levels during the early stages of erythropoiesis and its role in systemic haem metabolism and erythrophagocytosis, in particular, awaits further clarification.
Collapse
Affiliation(s)
- Gladys O Latunde-Dada
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London London, UK
| | - Abas H Laftah
- Vascular Sciences Unit, Imperial Centre for Translational and Experimental Medicine, Imperial College, NHLI London, UK
| | - Patarabutr Masaratana
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University Thailand
| | - Andrew T McKie
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London London, UK
| | - Robert J Simpson
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London London, UK
| |
Collapse
|
40
|
Blessing MM, Reichard RR, Maleszewski JJ, Alexander MP. Myoglobinuria in Autopsy Pathology: Relevant and Potentially Unrecognized. Acad Forensic Pathol 2014. [DOI: 10.23907/2014.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Myoglobin-related renal injury (MRRI) is a significant cause of acute renal injury and may result in death. Common etiologies in forensic pathology include trauma and drug abuse. This study sought to determine the prevalence and causes of MRRI at autopsy and discuss diagnostic challenges. Methods The institutional autopsy archives were queried for cases in which a myoglobin (MG) immunohistochemical stain was performed or MRRI was diagnosed or considered. The clinicopathological characteristics of this population were described. Results Of 9996 cases over a period of 19.5 years, 17 cases (0.2%) fulfilled the criteria. Patient age ranged from 15 to 74 years; 11 were men. The MG stain was performed in 13 cases. In 11 (65%) cases, MRRI was diagnosed with or without immunohistochemistry. The clinical backgrounds were varied; sepsis and liver injury predominated. Time between original insult and death ranged from seven hours to four months. Patterns of MRRI included cast formation or fine brush border staining in the proximal tubules. Discussion MRRI is infrequently considered in the autopsy setting. Many causes of MRRI identified in this series involved circumstances placing the death into medical examiner jurisdiction; the MG stain contributed to understanding the mechanism of death. Acute tubular injury with cast formation was observed in the majority of cases. Conclusion MRRI is common in a select group of autopsies but may be underappreciated. The MG stain is a useful and inexpensive tool to aid in the diagnosis of MRRI in autopsy pathology.
Collapse
|
41
|
Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol 2014; 90:331-7. [PMID: 24881578 DOI: 10.1016/j.bcp.2014.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022]
Abstract
Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
42
|
Petejova N, Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:224. [PMID: 25043142 PMCID: PMC4056317 DOI: 10.1186/cc13897] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rhabdomyolysis, a clinical syndrome caused by damage to skeletal muscle and release of its breakdown products into the circulation, can be followed by acute kidney injury (AKI) as a severe complication. The belief that the AKI is triggered by myoglobin as the toxin responsible appears to be oversimplified. Better knowledge of the pathophysiology of rhabdomyolysis and following AKI could widen treatment options, leading to preservation of the kidney: the decision to initiate renal replacement therapy in clinical practice should not be made on the basis of the myoglobin or creatine phosphokinase serum concentrations.
Collapse
|
43
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
44
|
Christensen EI, Nielsen R, Birn H. From bowel to kidneys: the role of cubilin in physiology and disease. Nephrol Dial Transplant 2013; 28:274-81. [DOI: 10.1093/ndt/gfs565] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology (Bethesda) 2012; 27:223-36. [DOI: 10.1152/physiol.00022.2012] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Collapse
Affiliation(s)
- Erik I. Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Strotmann J, Breer H. Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol 2011; 136:357-69. [PMID: 21818577 DOI: 10.1007/s00418-011-0850-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
The detection of odorants in vertebrates is mediated by chemosensory neurons that reside in the olfactory epithelium of the nose. In land-living species, the hydrophobic odorous compounds inhaled by the airstream are dissolved in the nasal mucus by means of specialized globular proteins, the odorant-binding proteins (OBPs). To assure the responsiveness to odors of each inhalation, a rapid removal of odorants from the microenvironment of the receptor is essential. In order to follow the fate of OBP/odorant complexes, a recombinant OBP was fluorescently labeled, loaded with odorous compounds, and applied to the nose of a mouse. Very quickly, labeled OBP appeared inside the sustentacular cells of the epithelium. This uptake occurred only when the OBP was loaded with appropriate odorant compounds. A search for candidate transporters that could mediate such an uptake process led to the identification of the low density lipoprotein receptor Lrp2/Megalin. In the olfactory epithelium, megalin was found to be specifically expressed in sustentacular cells and the Megalin protein was located in their microvilli. In vitro studies using a cell line that expresses megalin revealed a rapid internalization of OBP/odorant complexes into lysosomes. The uptake was blocked by a Megalin inhibitor, as was the internalization of OBPs into the sustentacular cells of the olfactory epithelium. The results suggest that a Megalin-mediated internalization of OBP/odorant complexes into the sustentacular cells may represent an important mechanism for a rapid and local clearance of odorants.
Collapse
Affiliation(s)
- Jörg Strotmann
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
47
|
|
48
|
Abstract
Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin-binding haptoglobin and the receptor CD163, and b) the heme-binding hemopexin and the receptor low density lipoprotein receptor-related protein/CD91. Apart from the disclosure of the molecular basis for these important heme scavenging systems by identifying the functional link between the carrier proteins and the respective receptors, research over the last decade has shown how these systems, and the metabolic pathways they represent, closely relate to inflammation and other biological events.
Collapse
|
49
|
Plotnikov EY, Chupyrkina AA, Pevzner IB, Isaev NK, Zorov DB. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochim Biophys Acta Mol Basis Dis 2009; 1792:796-803. [PMID: 19545623 DOI: 10.1016/j.bbadis.2009.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 02/06/2023]
Abstract
Rhabdomyolysis or crush syndrome is a pathology caused by muscle injury resulting in acute renal failure. The latest data give strong evidence that this syndrome caused by accumulation of muscle breakdown products in the blood stream is associated with oxidative stress with primary role of mitochondria. In order to evaluate the significance of oxidative stress under rhabdomyolysis we explored the direct effect of myoglobin on renal tubules and isolated kidney mitochondria while measuring mitochondrial respiratory control, production of reactive oxygen and nitrogen species and lipid peroxidation. In parallel, we evaluated mitochondrial damage under myoglobinurea in vivo. An increase of lipid peroxidation products in kidney mitochondria and release of cytochrome c was detected on the first day of myoglobinuria. In mitochondria incubated with myoglobin we detected respiratory control drop, uncoupling of oxidative phosphorylation, an increase of lipid peroxidation products and stimulated NO synthesis. Mitochondrial pore inhibitor, cyclosporine A, mitochondria-targeted antioxidant (SkQ1) and deferoxamine (Fe-chelator and ferryl-myoglobin reducer) abrogated these events. Similar effects (oxidative stress and mitochondrial dysfunction) were revealed when myoglobin was added to isolated renal tubules. Thus, rhabdomyolysis can be considered as oxidative stress-mediated pathology with mitochondria to be the primary target and possibly the source of reactive oxygen and nitrogen species. We speculate that rhabdomyolysis-induced kidney damage involves direct interaction of myoglobin with mitochondria possibly resulting in iron ions release from myoglobin's heme, which promotes the peroxidation of mitochondrial membranes. Usage of mitochondrial permeability transition blockers, Fe-chelators or mitochondria-targeted antioxidants, may bring salvage from this pathology.
Collapse
Affiliation(s)
- Egor Y Plotnikov
- A.N.Belozersky Institute of Physico-Chemical Biology, and Institute of Mitoingeneering, Moscow State University, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
50
|
Nagamatsu T. [New horizon of glomerulonephritic model]. Nihon Yakurigaku Zasshi 2008; 132:96-99. [PMID: 18689958 DOI: 10.1254/fpj.132.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|