1
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Li J, Hou F, Lv N, Zhao R, Zhang L, Yue C, Nie M, Chen L. From Rare Disorders of Kidney Tubules to Acute Renal Injury: Progress and Prospective. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:153-166. [PMID: 38751796 PMCID: PMC11095595 DOI: 10.1159/000536423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is a severe condition marked by rapid renal function deterioration and elevated mortality, with traditional biomarkers lacking sensitivity and specificity. Rare tubulointerstitial diseases encompass a spectrum of disorders, primarily including monogenic diseases, immune-related conditions, and drug-induced tubulointerstitial diseases. The clinical manifestations vary from electrolyte and acid-base imbalances to kidney function insufficiency, which is associated with AKI in up to 20% of cases. Evidence indicated that rare tubulointerstitial diseases might provide new conceptual insights and perspectives for novel biomarkers and potential therapeutic strategies for AKI. Summary Autosomal dominant tubulointerstitial kidney disease (ADTKD) and Fanconi syndrome (FS) are rare tubulointerstitial diseases. In ADTKD, UMOD and REN are closely related to AKI by affecting oxidative stress and tubuloglomerular feedback, which provide potential new biomarkers for AKI. Both rare tubulointerstitial diseases and AKI share etiologies and treatment responses. From the mechanism standpoint, rare tubulointerstitial diseases and AKI involve tubular transporter injury, initially manifesting as tubular dysfunction in tubulointerstitial disorder and progressing to AKI because of the programmed cell death with apoptosis, pyroptosis, or necroptosis of proximal tubule cells. Additionally, mitochondrial dysfunction has been identified as a common mechanism in both tubulointerstitial diseases and AKI induced by drugs, pSS, or monoclonal diseases. In the end, both AKI and FS patients and animal models responded well to the therapy of the primary diseases. Key Messages In this review, we describe an overview of ADTKD and FS to identify their associations with AKI. Mitochondrial dysfunction contributes to rare tubulointerstitial diseases and AKI, which might provide a potential therapeutic target.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fangxing Hou
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruohuan Zhao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cai Yue
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Albuquerque ALB, Dos Santos Borges R, Conegundes AF, Dos Santos EE, Fu FMM, Araujo CT, Vaz de Castro PAS, Simões E Silva AC. Inherited Fanconi syndrome. World J Pediatr 2023; 19:619-634. [PMID: 36729281 DOI: 10.1007/s12519-023-00685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Fanconi-Debré-de Toni syndrome (also known as Fanconi renotubular syndrome, or FRST) profoundly increased the understanding of the functions of the proximal convoluted tubule (PCT) and provided important insights into the pathophysiology of several kidney diseases and drug toxicities. DATA SOURCES We searched Pubmed and Scopus databases to find relevant articles about FRST. This review article focuses on the physiology of the PCT, as well as on the physiopathology of FRST in children, its diagnosis, and treatment. RESULTS FRST encompasses a wide variety of inherited and acquired PCT alterations that lead to impairment of PCT reabsorption. In children, FRST often presents as a secondary feature of systemic disorders that impair energy supply, such as Lowe's syndrome, Dent's disease, cystinosis, hereditary fructose intolerance, galactosemia, tyrosinemia, Alport syndrome, and Wilson's disease. Although rare, congenital causes of FRST greatly impact the morbidity and mortality of patients and impose diagnostic challenges. Furthermore, its treatment is diverse and considers the ability of the clinician to identify the correct etiology of the disease. CONCLUSION The early diagnosis and treatment of pediatric patients with FRST improve the prognosis and the quality of life.
Collapse
Affiliation(s)
- Anna Luiza Braga Albuquerque
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael Dos Santos Borges
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Flávia Conegundes
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erika Emmylaine Dos Santos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frederico Moreira Man Fu
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Clara Tavares Araujo
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- Department of Pediatrics, Faculty of Medicine, UFMG, Alfredo Balena Avenue, 190, 2Nd Floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
4
|
Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Wang YT, Chen L, Wassertheil-Smoller S, Cai J, Isakson BE, Franceschini N, Le TH. Collectrin ( Tmem27) deficiency in proximal tubules causes hypertension in mice and a TMEM27 variant associates with blood pressure in males in a Latino cohort. Am J Physiol Renal Physiol 2023; 324:F30-F42. [PMID: 36264884 PMCID: PMC9762972 DOI: 10.1152/ajprenal.00176.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 02/04/2023] Open
Abstract
Collectrin (Tmem27), an angiotensin-converting enzyme 2 homologue, is a chaperone of amino acid transporters in the kidney and endothelium. Global collectrin knockout (KO) mice have hypertension, endothelial dysfunction, exaggerated salt sensitivity, and diminished renal blood flow. This phenotype is associated with altered nitric oxide and superoxide balance and increased proximal tubule (PT) Na+/H+ exchanger isoform 3 (NHE3) expression. Collectrin is located on the X chromosome where genome-wide association population studies have largely been excluded. In the present study, we generated PT-specific collectrin KO (PT KO) mice to determine the precise contribution of PT collectrin in blood pressure homeostasis. We also examined the association of human TMEM27 single-nucleotide polymorphisms with blood pressure traits in 11,926 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Hispanic/Latino participants. PT KO mice exhibited hypertension, and this was associated with increased baseline NHE3 expression and diminished lithium excretion. However, PT KO mice did not display exaggerated salt sensitivity or a reduction in renal blood flow compared with control mice. Furthermore, PT KO mice exhibited enhanced endothelium-mediated dilation, suggesting a compensatory response to systemic hypertension induced by deficiency of collectrin in the PT. In HCHS/SOL participants, we observed sex-specific single-nucleotide polymorphism associations with diastolic blood pressure. In conclusion, loss of collectrin in the PT is sufficient to induce hypertension, at least in part, through activation of NHE3. Importantly, our model supports the notion that altered renal blood flow may be a determining factor for salt sensitivity. Further studies are needed to investigate the role of the TMEM27 locus on blood pressure and salt sensitivity in humans.NEW & NOTEWORTHY The findings of our study are significant in several ways: 1) loss of an amino acid chaperone in the proximal tubule is sufficient to cause hypertension, 2) the results in global and proximal tubule-specific collectrin knockout mice support the notion that vascular dysfunction is required for salt sensitivity or that impaired renal tubule function causes hypertension but is not sufficient to cause salt sensitivity, and 3) our study is the first to implicate a role of collectrin in human hypertension.
Collapse
Affiliation(s)
- Pei-Lun Chu
- Division of Nephrology, Fu Jen Catholic University Hospital, and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph C Gigliotti
- Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
| | - Sylvia Cechova
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Gabor Bodonyi-Kovacs
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia Health System, Charlottesville, Virginia
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| |
Collapse
|
5
|
Rodionova K, Hindermann M, Hilgers K, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Ditting T. AT II Receptor Blockade and Renal Denervation: Different Interventions with Comparable Renal Effects? Kidney Blood Press Res 2021; 46:331-341. [PMID: 34034251 DOI: 10.1159/000515616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) and the renal sympathetic nervous system exert a strong influence on renal sodium and water excretion. We tested the hypothesis that already low doses of an Ang II inhibitor (candesartan) will result in similar effects on tubular sodium and water reabsorption in congestive heart failure (CHF) as seen after renal denervation (DNX). METHODS Measurement of arterial blood pressure, heart rate (HR), renal sympathetic nerve activity (RSNA), glomerular filtration rate (GFR), renal plasma flow (RPF), urine volume, and urinary sodium. To assess neural control of volume homeostasis, 21 days after the induction of CHF via myocardial infarction rats underwent volume expansion (0.9% NaCL; 10% body weight) to decrease RSNA. CHF rat and controls with or without DNX or pretreated with the Ang II type-1 receptor antagonist candesartan (0.5 ug i.v.) were studied. RESULTS CHF rats excreted only 68 + 10.2% of the volume load (10% body weight) in 90 min. CHF rats pretreated with candesartan or after DNX excreted from 92 to 103% like controls. Decreases of RSNA induced by volume expansion were impaired in CHF rats but unaffected by candesartan pointing to an intrarenal drug effect. GFR and RPF were not significantly different in controls or CHF. CONCLUSION The prominent function of increased RSNA - retaining salt and water - could no longer be observed after renal Ang II receptor blockade in CHF rats.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Martin Hindermann
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Karl Hilgers
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Tilmann Ditting
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
- Department of Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
6
|
Lins BB, Casare FAM, Fontenele FF, Gonçalves GL, Oliveira-Souza M. Long-Term Angiotensin II Infusion Induces Oxidative and Endoplasmic Reticulum Stress and Modulates Na + Transporters Through the Nephron. Front Physiol 2021; 12:642752. [PMID: 33868007 PMCID: PMC8046928 DOI: 10.3389/fphys.2021.642752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
High plasma angiotensin II (Ang II) levels are related to many diseases, including hypertension, and chronic kidney diseases (CKDs). Here, we investigated the relationship among prolonged Ang II infusion/AT1 receptor (AT1R) activation, oxidative stress, and endoplasmic reticulum (ER) stress in kidney tissue. In addition, we explored the chronic effects of Ang II on tubular Na+ transport mechanisms. Male Wistar rats were subjected to sham surgery as a control or prolonged Ang II treatment (200 ng⋅kg–1⋅min–1, 42 days) with or without losartan (10 mg⋅kg–1⋅day–1) for 14 days. Ang II/AT1R induced hypertension with a systolic blood pressure of 173.0 ± 20 mmHg (mmHg, n = 9) compared with 108.0 ± 7 mmHg (mmHg, n = 7) in sham animals. Under these conditions, gene and protein expression levels were evaluated. Prolonged Ang II administration/AT1R activation induced oxidative stress and ER stress with increased Nox2, Nox4, Cyba and Ncf1 mRNA expression, phosphorylated PERK and eIF2α protein expression as well as Atf4 mRNA expression. Ang II/AT1R also raised Il1b, Nfkb1 and Acta2 mRNA expression, suggesting proinflammatory, and profibrotic effects. Regarding Na+ tubular handling, Ang II/AT1R enhanced cortical non-phosphorylated and phospho/S552/NHE3, NHE1, ENaC β, NKCC2, and NCC protein expression. Our results also highlight the therapeutic potential of losartan, which goes beyond the antihypertensive effect, playing an important role in kidney tissue. This treatment reduced oxidative stress and ER stress signals and recovered relevant parameters of the maintenance of renal function, preventing the progression of Ang II-induced CKD.
Collapse
Affiliation(s)
- Bruna Bezerra Lins
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Augusto Malavazzi Casare
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávia Ferreira Fontenele
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Klug NR, Chechneva OV, Hung BY, O'Donnell ME. High glucose-induced effects on Na +-K +-2Cl - cotransport and Na +/H + exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 2021; 320:C619-C634. [PMID: 33406028 DOI: 10.1152/ajpcell.00177.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCβII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCβII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCβII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCβII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCβII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.
Collapse
Affiliation(s)
- Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Olga V Chechneva
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Benjamin Y Hung
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
8
|
Patinha D, Carvalho C, Persson P, Pihl L, Fasching A, Friederich-Persson M, O'Neill J, Palm F. Determinants of renal oxygen metabolism during low Na + diet: effect of angiotensin II AT 1 and aldosterone receptor blockade. J Physiol 2020; 598:5573-5587. [PMID: 32857872 DOI: 10.1113/jp280481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Reducing Na+ intake reduces the partial pressure of oxygen in the renal cortex and activates the renin-angiotensin-aldosterone system. In the absence of high blood pressure, these consequences of dietary Na+ reduction may be detrimental for the kidney. In a normotensive animal experimental model, reducing Na+ intake for 2 weeks increased renal oxygen consumption, which was normalized by mineralocorticoid receptor blockade. Furthermore, blockade of the angiotensin II AT1 receptor restored cortical partial pressure of oxygen by improving oxygen delivery. This shows that increased activity of the renin-angiotensin-aldosterone system contributes to increased oxygen metabolism in the kidney after 2 weeks of a low Na+ diet. The results provide insights into dietary Na+ restriction in the absence of high blood pressure, and its consequences for the kidney. ABSTRACT Reduced Na+ intake reduces the P O 2 (partial pressure of oxygen) in the renal cortex. Upon reduced Na+ intake, reabsorption along the nephron is adjusted with activation of the renin-angiotensin-aldosterone system (RAAS). Thus, we studied the effect of reduced Na+ intake on renal oxygen homeostasis and function in rats, and the impact of intrarenal angiotensin II AT1 receptor blockade using candesartan and mineralocorticoid receptor blockade using canrenoic acid potassium salt (CAP). Male Sprague-Dawley rats were fed standard rat chow containing normal (0.25%) and low (0.025%) Na+ for 2 weeks. The animals were anaesthetized (thiobutabarbital 120 mg kg-1 ) and surgically prepared for kidney oxygen metabolism and function studies before and after acute intrarenal arterial infusion of candesartan (4.2 μg kg-1 ) or intravenous infusion of CAP (20 mg kg-1 ). Baseline mean arterial pressure and renal blood flow were similar in both dietary groups. Fractional Na+ excretion and cortical oxygen tension were lower and renal oxygen consumption was higher in low Na+ groups. Neither candesartan nor CAP affected arterial pressure. Renal blood flow and cortical oxygen tension increased in both groups after candesartan in the low Na+ group. Fractional Na+ excretion was increased and oxygen consumption reduced in the low Na+ group after CAP. These results suggest that blockade of angiotensin II AT1 receptors has a major impact upon oxygen delivery during normal and low Na+ conditions, while aldosterone receptors mainly affect oxygen metabolism following 2 weeks of a low Na+ diet.
Collapse
Affiliation(s)
- Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK.,Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Carla Carvalho
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Liselotte Pihl
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Angelica Fasching
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Malou Friederich-Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Julie O'Neill
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Aoyagi Y, Furuyama T, Inoue K, Matsuda D, Matsubara Y, Okahara A, Ago T, Nakashima Y, Mori M, Matsumoto T. Attenuation of Angiotensin II-Induced Hypertension in BubR1 Low-Expression Mice Via Repression of Angiotensin II Receptor 1 Overexpression. J Am Heart Assoc 2019; 8:e011911. [PMID: 31787052 PMCID: PMC6912983 DOI: 10.1161/jaha.118.011911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Angiotensin II (Ang II) can cause hypertension and tissue impairment via AGTR1 (Ang II receptor type 1), particularly in renal proximal tubule cells, and can cause DNA damage in renal cells via nicotinamide adenine dinucleotide phosphate oxidase. BubR1 (budding uninhibited by benzimidazole-related 1) is a multifaceted kinase that functions as a mitotic checkpoint. BubR1 expression can be induced by Ang II in smooth muscle cells in vitro, but the relationship between systemic BubR1 expression and the Ang II response is unclear. Methods and Results Twenty 24-week-old male BubR1 low-expression mice (BubR1L/L mice) and age-matched BubR1+/+ mice were used in this study. We investigated how Ang II stimulation affects BubR1L/L mice. The elevated systolic blood pressure caused by Ang II stimulation in BubR1+/+ mice was significantly attenuated in BubR1L/L mice. Additionally, an attenuated level of Ang II-induced perivascular fibrosis was observed in the kidneys of BubR1L/L mice. Immunohistochemistry revealed that the overexpression of AGTR1 induced by Ang II stimulation was repressed in BubR1L/L mice. We evaluated AGTR1 and Nox-4 (nicotinamide adenine dinucleotide phosphate oxidase-4) levels to determine the role of BubR1 in the Ang II response. Results from in vitro assays of renal proximal tubule cells suggest that treatment with small interfering RNA targeting BubR1 suppressed Ang II-induced overexpression of AGTR1. Similarly, the upregulation in Nox4 and Jun N-terminal kinase induced by Ang II administration was repressed by treatment with small interfering RNA targeting BubR1. Conclusions Ang II-induced hypertension is caused by AGTR1 overexpression in the kidneys via the upregulation of BubR1 and Nox4.
Collapse
Affiliation(s)
- Yukihiko Aoyagi
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Tadashi Furuyama
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Kentaro Inoue
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Daisuke Matsuda
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yutaka Matsubara
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Arihide Okahara
- Departments of Cardiovascular Medicine Kyushu University Graduate School of Medical Sciences Fukuoka Japan
| | - Tetsuro Ago
- Innovation Center for Medical Redox Navigation Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yutaka Nakashima
- Division of Pathology Japanese Red Cross Fukuoka Hospital Fukuoka Japan
| | - Masaki Mori
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takuya Matsumoto
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan.,Department of Vascular Surgery Graduate School of Medical Sciences International University of Health and Welfare Chiba Japan
| |
Collapse
|
10
|
Eren OC, Ortiz A, Afsar B, Covic A, Kuwabara M, Lanaspa MA, Johnson RJ, Kanbay M. Multilayered Interplay Between Fructose and Salt in Development of Hypertension. Hypertension 2019; 73:265-272. [PMID: 30595116 DOI: 10.1161/hypertensionaha.118.12150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ozgur C Eren
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey (O.C.E., M. Kanbay)
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Spain (A.O.)
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey (B.A.)
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, and 'Grigore T. Popa' University of Medicine, Iasi, Romania (A.C.)
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan (M. Kuwabara)
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora (M.A.L., R.J.J.)
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora (M.A.L., R.J.J.)
| | - Mehmet Kanbay
- From the Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey (M. Kanbay).,Department of Medicine, Koç University School of Medicine, Istanbul, Turkey (O.C.E., M. Kanbay)
| |
Collapse
|
11
|
Banday AA, Diaz AD, Lokhandwala M. Kidney dopamine D 1-like receptors and angiotensin 1-7 interaction inhibits renal Na + transporters. Am J Physiol Renal Physiol 2019; 317:F949-F956. [PMID: 31411069 DOI: 10.1152/ajprenal.00135.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.
Collapse
Affiliation(s)
- Anees A Banday
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| | - Andrea Diaz Diaz
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Mustafa Lokhandwala
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| |
Collapse
|
12
|
Li XC, Zhu D, Chen X, Zheng X, Zhao C, Zhang J, Soleimani M, Rubera I, Tauc M, Zhou X, Zhuo JL. Proximal Tubule-Specific Deletion of the NHE3 (Na +/H + Exchanger 3) in the Kidney Attenuates Ang II (Angiotensin II)-Induced Hypertension in Mice. Hypertension 2019; 74:526-535. [PMID: 31352824 DOI: 10.1161/hypertensionaha.119.13094] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study directly tested the hypothesis that the NHE3 (Na+/H+ exchanger 3) in the proximal tubules of the kidney is required for the development of Ang II (angiotensin II)-induced hypertension using PT-Nhe3-/- (proximal tubule-specific NHE3 knockout) mice. Specifically, PT-Nhe3-/- mice were generated using the SGLT2-Cre/Nhe3loxlox approach, whereas Ang II-induced hypertension was studied in 12 groups (n=5-12 per group) of adult male and female wild-type (WT) and PT-Nhe3-/- mice. Under basal conditions, systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure were significantly lower in male and female PT-Nhe3-/- than WT mice (P<0.01). A high pressor, 1.5 mg/kg per day, intraperitoneal or a slow pressor dose of Ang II, 0.5 mg/kg per day, intraperitoneal for 2 weeks significantly increased systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure in male and female WT mice (P<0.01), but the hypertensive response to Ang II was markedly attenuated in male and female PT-Nhe3-/- mice (P<0.01). Ang II impaired the pressure-natriuresis response in WT mice, whereas proximal tubule-specific deletion of NHE3 improved the pressure-natriuresis response in Ang II-infused PT-Nhe3-/- mice (P<0.01). AT1 receptor blocker losartan completely blocked Ang II-induced hypertension in both WT and PT-Nhe3-/- mice (P<0.01). However, inhibition of nitric oxide synthase with L-NG-Nitroarginine methyl ester had no effect on Ang II-induced hypertension in WT or PT-Nhe3-/- mice (not significant). Furthermore, Ang II-induced hypertension was significantly attenuated by an orally absorbable NHE3 inhibitor AVE0657. In conclusion, NHE3 in the proximal tubules of the kidney may be a therapeutical target in hypertension induced by Ang II or with increased NHE3 expression in the proximal tubules.
Collapse
Affiliation(s)
- Xiao C Li
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
- Division of Nephrology, Department of Medicine (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| | - Dongmin Zhu
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
- Department of Anesthesiology, Shenzhen Far East Obstetrics and Gynecology Hospital, China (D.Z.)
| | - Xu Chen
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
| | - Xiaowen Zheng
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
- Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X. Zheng, C.Z., J.Z.)
| | - Chunling Zhao
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
- Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X. Zheng, C.Z., J.Z.)
| | - Jianfeng Zhang
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
- Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X. Zheng, C.Z., J.Z.)
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, The University of Cincinnati College of Medicine, OH (M.S.)
| | - Isabelle Rubera
- Laboratoire de Physiomédecine Moléculaire, LP2M, UMR-CNRS 7370, Université Côte d'Azur, Nice Cedex 2, France (I.R., M.T.)
| | - Michel Tauc
- Laboratoire de Physiomédecine Moléculaire, LP2M, UMR-CNRS 7370, Université Côte d'Azur, Nice Cedex 2, France (I.R., M.T.)
| | - Xinchun Zhou
- Department of Pathology (X. Zhou), University of Mississippi Medical Center, Jackson
| | - Jia L Zhuo
- From the Department of Pharmacology and Toxicology (X.C.L., D.Z., X.C., X. Zheng, C.Z., J.Z., J.L.Z.), University of Mississippi Medical Center, Jackson
- Division of Nephrology, Department of Medicine (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
13
|
Gonzalez-Vicente A, Hong N, Garvin JL. Effects of reactive oxygen species on renal tubular transport. Am J Physiol Renal Physiol 2019; 317:F444-F455. [PMID: 31215804 DOI: 10.1152/ajprenal.00604.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in regulating nephron transport both via transcellular and paracellular pathways under physiological and pathological circumstances. Here, we review the progress made in the past ~10 yr in understanding how ROS regulate solute and water transport in individual nephron segments. Our knowledge in this field is still rudimentary, with basic information lacking. This is most obvious when looking at the reported disparate effects of superoxide ([Formula: see text]) and H2O2 on proximal nephron transport, where there are no easy explanations as to how to reconcile the data. Similarly, we know almost nothing about the regulation of transport in thin descending and ascending limbs, information that is likely critical to understanding the urine concentrating mechanism. In the thick ascending limb, there is general agreement that ROS enhance transcellular reabsorption of NaCl, but we know very little about their effects on the paracellular pathway and therefore Ca2+ and Mg2+ transport. In the distal convoluted tubule, precious little is known. In the collecting duct, there is general agreement that ROS stimulate the epithelial Na+ channel.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio
| | - Nancy Hong
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, Ohio
| |
Collapse
|
14
|
Bashir SO. Concomitant administration of resveratrol and insulin protects against diabetes mellitus type-1-induced renal damage and impaired function via an antioxidant-mediated mechanism and up-regulation of Na +/K +-ATPase. Arch Physiol Biochem 2019; 125:104-113. [PMID: 29436859 DOI: 10.1080/13813455.2018.1437752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study investigated if a combination of resveratrol (RES) and insulin could reverse type 1 diabetic mellitus-induced (T1DM) nephropathy and illustrates mechanism of action. Rats were divided into six groups (n = 10/group) as follows: control, control + RES (20 mg/kg), T1DM, T1DM + RES, T1DM + insulin (1 U/g), and T1DM + RES + insulin and treated for eight weeks. While individual administrations of both drugs significantly but partially restored renal function and cortex architectures, combination therapy of both RES and insulin produced the maximum improvements. Mechanism of actions revealed a synergist effect of both drugs due to hypoglycaemic effect of insulin and the ability of both drugs to increase renal cortex antioxidant enzymes activities, inhibit lipid peroxidation, and up-regulate Na+/K+-ATPase, independent of each others. In conclusion, these data suggest the combined therapy with insulin and RES could provide an excellent combined drug therapy against T1DM-induced nephropathy.
Collapse
Affiliation(s)
- Salah O Bashir
- a Department of Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
15
|
Packer M. Role of the sodium-hydrogen exchanger in mediating the renal effects of drugs commonly used in the treatment of type 2 diabetes. Diabetes Obes Metab 2018; 20:800-811. [PMID: 29227582 DOI: 10.1111/dom.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/19/2023]
Abstract
Diabetes is characterized by increased activity of the sodium-hydrogen exchanger (NHE) in the glomerulus and renal tubules, which contributes importantly to the development of nephropathy. Despite the established role played by the exchanger in experimental studies, it has not been specifically targeted by those seeking to develop novel pharmacological treatments for diabetes. This review demonstrates that many existing drugs that are commonly prescribed to patients with diabetes act on the NHE1 and NHE3 isoforms in the kidney. This action may explain their effects on sodium excretion, albuminuria and the progressive decline of glomerular function in clinical trials; these responses cannot be readily explained by the influence of these drugs on blood glucose. Agents that may affect the kidney in diabetes by virtue of an action on NHE include: (1) insulin and insulin sensitizers; (2) incretin-based agents; (3) sodium-glucose cotransporter 2 inhibitors; (4) antagonists of the renin-angiotensin system (angiotensin converting-enzyme inhibitors, angiotensin receptor blockers and angiotensin receptor neprilysin inhibitors); and (5) inhibitors of aldosterone action and cholesterol synthesis (spironolactone, amiloride and statins). The renal effects of each of these drug classes in patients with type 2 diabetes may be related to a single shared biological mechanism.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Rashid S, Idris-Khodja N, Auger C, Kevers C, Pincemail J, Alhosin M, Boehm N, Oswald-Mammosser M, Schini-Kerth VB. Polyphenol-Rich Blackcurrant Juice Prevents Endothelial Dysfunction in the Mesenteric Artery of Cirrhotic Rats with Portal Hypertension: Role of Oxidative Stress and the Angiotensin System. J Med Food 2018; 21:390-399. [DOI: 10.1089/jmf.2017.0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sherzad Rashid
- UMR CNRS 7213 Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Noureddine Idris-Khodja
- UMR CNRS 7213 Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Cyril Auger
- UMR CNRS 7213 Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Claire Kevers
- Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, University of Liège, Liège, Belgium
| | - Joël Pincemail
- Department of Cardiovascular Surgery and CREDEC, University of Liège, Liège, Belgium
| | - Mahmoud Alhosin
- UMR CNRS 7213 Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Nelly Boehm
- Faculty of Medicine, Institute of Histology and Federation of Translational Medicine in Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Monique Oswald-Mammosser
- UMR CNRS 7213 Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
- Department of Physiology and Pulmonary Function Tests, Chest Diseases, University Hospitals of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Valérie B. Schini-Kerth
- UMR CNRS 7213 Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Effects of Nitric Oxide on Renal Proximal Tubular Na + Transport. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6871081. [PMID: 29181400 PMCID: PMC5664255 DOI: 10.1155/2017/6871081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles. Animal studies have showed the biphasic effect of angiotensin II (Ang II) and the overall inhibitory effect of NO on the activity of proximal tubular Na+ transporters, the apical Na+/H+ exchanger isoform 3, basolateral Na+/K+ ATPase, and the Na+/HCO3− cotransporter. However, whether these effects could be reproduced in humans remained unclear. Notably, our recent functional analysis of isolated proximal tubules demonstrated that Ang II dose-dependently stimulated human proximal tubular Na+ transport through the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) pathway, confirming the human-specific regulation of proximal tubular transport via NO and Ang II. Of particular importance for this newly identified pathway is its possibility of being a human-specific therapeutic target for hypertension. In this review, we focus on NO-mediated regulation of proximal tubular Na+ transport, with emphasis on the interaction with individual Na+ transporters and the crosstalk with Ang II signalling.
Collapse
|
18
|
Li XC, Zhuo JL. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep 2017; 18:63. [PMID: 27372447 DOI: 10.1007/s11906-016-0668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
19
|
Fenton RA, Poulsen SB, de la Mora Chavez S, Soleimani M, Dominguez Rieg JA, Rieg T. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int 2017; 92:397-414. [PMID: 28385297 DOI: 10.1016/j.kint.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 11/30/2022]
Abstract
The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified.
Collapse
Affiliation(s)
- Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren B Poulsen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark; VA San Diego Healthcare System, San Diego, California, USA
| | | | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
20
|
Xu C, Lu A, Lu X, Zhang L, Fang H, Zhou L, Yang T. Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity. Hypertension 2016; 69:339-348. [PMID: 27993957 DOI: 10.1161/hypertensionaha.116.08240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/09/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
A high-fructose diet is shown to induce salt-sensitive hypertension, but the underlying mechanism largely remains unknown. The major goal of the present study was to test the role of renal (pro)renin receptor (PRR) in this model. In Sprague-Dawley rats, high-fructose intake increased renal expression of full-length PRR, which were attenuated by allopurinol. High-fructose intake also upregulated renal mRNA and protein expression of sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, as well as in vivo Na/K/2Cl cotransporter activity, all of which were nearly completely blocked by a PRR decoy inhibitor PRO20 or allopurinol treatment. Parallel changes were observed for indices of intrarenal renin-angiotensin-system including renal and urinary renin and angiotensin II levels. Radiotelemetry demonstrated that high-fructose or a high-salt diet alone did not affect mean arterial pressure, but the combination of the 2 maneuvers induced a ≈10-mm Hg increase of mean arterial pressure, which was blunted by PRO20 or allopurinol treatment. In cultured human kidney 2 cells, both fructose and uric acid increased protein expression of soluble PRR in a time- and dose-dependent manner; fructose-induced PRR upregulation was inhibited by allopurinol. Taken together, our data suggest that fructose via uric acid stimulates renal expression of PRR/soluble PRR that stimulate sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter expression and intrarenal renin-angiotensin system to induce salt-sensitive hypertension.
Collapse
Affiliation(s)
- Chuanming Xu
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.)
| | - Aihua Lu
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.)
| | - Xiaohan Lu
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.)
| | - Linlin Zhang
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.)
| | - Hui Fang
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.)
| | - Li Zhou
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.)
| | - Tianxin Yang
- From the Institute of Hypertension, Sun Yat-Sen University School of Medicine, Guangzhou, China (C.X., A.L., X.L., L.Z., H.F., L.Z., T.Y.); Internal Medicine, University of Utah, Salt Lake City (C.X., X.L., T.Y.); and Veterans Affairs Medical Center, Salt Lake City, Utah (X.L., T.Y.).
| |
Collapse
|
21
|
Chang SY, Lo CS, Zhao XP, Liao MC, Chenier I, Bouley R, Ingelfinger JR, Chan JS, Zhang SL. Overexpression of angiotensinogen downregulates aquaporin 1 expression via modulation of Nrf2-HO-1 pathway in renal proximal tubular cells of transgenic mice. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316668737. [PMID: 27638854 PMCID: PMC5843896 DOI: 10.1177/1470320316668737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction: We aimed to examine the regulation of aquaporin 1 expression in an angiotensinogen transgenic mouse model, focusing on underlying mechanisms. Methods: Male transgenic mice overexpressing rat angiotensinogen in their renal proximal tubular cells (RPTCs) and rat immortalised RPTCs stably transfected with rat angiotensinogen cDNA were used. Results: Angiotensinogen-transgenic mice developed hypertension and nephropathy, changes that were either partially or completely attenuated by treatment with losartan or dual renin–angiotensin system blockade (losartan and perindopril), respectively, while hydralazine prevented hypertension but not nephropathy. Decreased expression of aquaporin 1 and heme oxygenase-1 and increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and sodium–hydrogen exchanger 3 were observed in RPTCs of angiotensinogen-transgenic mice and in angiotensinogen-transfected immortalised RPTCs. These parameters were normalised by dual renin–angiotensin system blockade. Both in vivo and in vitro studies identified a novel mechanism in which angiotensinogen overexpression in RPTCs enhances the cytosolic accumulation of Nrf2 via the phosphorylation of pGSK3β Y216. Consequently, lower intranuclear Nrf2 levels are less efficient to trigger heme oxygenase-1 expression as a defence mechanism, which subsequently diminishes aquaporin 1 expression in RPTCs. Conclusions: Angiotensinogen-mediated downregulation of aquaporin 1 and Nrf2 signalling may play an important role in intrarenal renin–angiotensin system-induced hypertension and kidney injury.
Collapse
Affiliation(s)
- Shiao-Ying Chang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Xin-Ping Zhao
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Min-Chun Liao
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Richard Bouley
- Division of Nephology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, USA
| | - John Sd Chan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| |
Collapse
|
22
|
Shah PT, Martin R, Yan Y, Shapiro JI, Liu J. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis. Front Physiol 2016; 7:256. [PMID: 27445847 PMCID: PMC4923243 DOI: 10.3389/fphys.2016.00256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023] Open
Abstract
Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).
Collapse
Affiliation(s)
- Preeya T Shah
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Rebecca Martin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Yanling Yan
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Jiang Liu
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| |
Collapse
|
23
|
Javkhedkar AA, Banday AA. Antioxidant resveratrol restores renal sodium transport regulation in SHR. Physiol Rep 2015; 3:3/11/e12618. [PMID: 26603454 PMCID: PMC4673646 DOI: 10.14814/phy2.12618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Previously we have shown that in spontaneously hypertensive rats (SHR) renal angiotensin (Ang) II receptor (AT1R) upregulation leads to overstimulation of Na/K-ATPase by Ang II. There are reports that antioxidants can reduce oxidative stress and blood pressure (BP) in SHR, however the effect of these compounds on AT1R function remains to be determined. Therefore, we hypothesized that polyphenol antioxidant resveratrol would mitigate oxidative stress, normalize renal AT1R signaling, and reduce BP in SHR. SHR and wistar-kyoto (WKY) rats were treated with resveratrol for 8 weeks. Untreated SHR exhibited oxidative stress and enhanced renal proximal tubular Ang II-induced G-protein activation and Na/K-ATPase stimulation. Treatment of SHR with resveratrol mitigated oxidative stress, reduced BP, and normalized renal AT1R signaling. In SHR, nuclear expression of transcription factor NF-κB was increased while expression of Nrf2 was reduced. SHR also exhibited a significant decrease in renal antioxidant capacity and activities of phase II antioxidant enzymes. Resveratrol treatment of SHR abolished renal NF-κB activation, restored Nrf2-phase II antioxidant signaling and Ang II-mediated Na/K-ATPase regulation. These data show that in SHR, oxidative stress via activation of NF-κB upregulates AT1R–G-protein signaling resulting in overstimulation Na/K-ATPase which contributes to hypertension. Resveratrol, via Nrf2, activates phase II antioxidant enzymes, mitigates oxidative stress, normalizes AT1R–G-protein signaling and Na/K-ATPase regulation, and decreases BP in SHR.
Collapse
Affiliation(s)
- Apurva A Javkhedkar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| | - Anees A Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
24
|
Li XC, Shull GE, Miguel-Qin E, Chen F, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension in NHE3-deficient mice with transgenic rescue of NHE3 in small intestines. Physiol Rep 2015; 3:3/11/e12605. [PMID: 26564064 PMCID: PMC4673635 DOI: 10.14814/phy2.12605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of Na(+/)H(+) exchanger 3 (NHE3) in the kidney in angiotensin II (ANG II)-induced hypertension remains unknown. The present study used global NHE3-deficient mice with transgenic rescue of the Nhe3 gene in small intestines (tgNhe3(-/-)) to test the hypothesis that genetic deletion of NHE3 selectively in the kidney attenuates ANG II-induced hypertension. Six groups of wild-type (tgNhe3(+/+)) and tgNhe3(-/-) mice were infused with either vehicle or ANG II (1.5 mg/kg/day, i.p., 2 weeks, or 10 nmol/min, i.v., 30 min), treated with or without losartan (20 mg/kg/day, p.o.) for 2 weeks. Basal systolic blood pressure (SBP) and mean intra-arterial blood pressure (MAP) were significantly lower in tgNhe3(-/-) mice (P < 0.01). Basal glomerular filtration rate, 24 h urine excretion, urinary Na(+) excretion, urinary K(+) excretion, and urinary Cl(-) excretion were significantly lower in tgNhe3(-/-) mice (P < 0.01). These responses were associated with significantly elevated plasma ANG II and aldosterone levels, and marked upregulation in aquaporin 1, the Na(+)/HCO3 cotransporter, the α1 subunit isoform of Na(+)/K(+)-ATPase, protein kinase Cα, MAP kinases ERK1/2, and glycogen synthase kinase 3 α/β in the renal cortex of tgNhe3(-/-) mice (P < 0.01). ANG II infusion markedly increased SBP and MAP and renal cortical transporter and signaling proteins in tgNhe3(+/+), as expected, but all of these responses to ANG II were attenuated in tgNhe3(-/-) mice (P < 0.01). These results suggest that NHE3 in the kidney is necessary for maintaining normal blood pressure and fully developing ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gary E Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elisa Miguel-Qin
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fang Chen
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
25
|
Carneiro de Morais CP, Polidoro JZ, Ralph DL, Pessoa TD, Oliveira-Souza M, Barauna VG, Rebouças NA, Malnic G, McDonough AA, Girardi ACC. Proximal tubule NHE3 activity is inhibited by beta-arrestin-biased angiotensin II type 1 receptor signaling. Am J Physiol Cell Physiol 2015; 309:C541-50. [DOI: 10.1152/ajpcell.00072.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/03/2015] [Indexed: 01/13/2023]
Abstract
Physiological concentrations of angiotensin II (ANG II) upregulate the activity of Na+/H+ exchanger isoform 3 (NHE3) in the renal proximal tubule through activation of the ANG II type I (AT1) receptor/G protein-coupled signaling. This effect is key for maintenance of extracellular fluid volume homeostasis and blood pressure. Recent findings have shown that selective activation of the beta-arrestin-biased AT1 receptor signaling pathway induces diuresis and natriuresis independent of G protein-mediated signaling. This study tested the hypothesis that activation of this AT1 receptor/beta-arrestin signaling inhibits NHE3 activity in proximal tubule. To this end, we determined the effects of the compound TRV120023, which binds to the AT1R, blocks G-protein coupling, and stimulates beta-arrestin signaling on NHE3 function in vivo and in vitro. NHE3 activity was measured in both native proximal tubules, by stationary microperfusion, and in opossum proximal tubule (OKP) cells, by Na+-dependent intracellular pH recovery. We found that 10−7 M TRV120023 remarkably inhibited proximal tubule NHE3 activity both in vivo and in vitro. Additionally, stimulation of NHE3 by ANG II was completely suppressed by TRV120023 both in vivo as well as in vitro. Inhibition of NHE3 activity by TRV120023 was associated with a decrease in NHE3 surface expression in OKP cells and with a redistribution from the body to the base of the microvilli in the rat proximal tubule. These findings indicate that biased signaling of the beta-arrestin pathway through the AT1 receptor inhibits NHE3 activity in the proximal tubule at least in part due to changes in NHE3 subcellular localization.
Collapse
Affiliation(s)
| | - Juliano Z. Polidoro
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Donna L. Ralph
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Thaissa D. Pessoa
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Valério G. Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Espírito Santo, Brazil
| | - Nancy A. Rebouças
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Alicia A. McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | | |
Collapse
|
26
|
Li XC, Shull GE, Miguel-Qin E, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension. Physiol Genomics 2015; 47:479-87. [PMID: 26242933 PMCID: PMC4593829 DOI: 10.1152/physiolgenomics.00056.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
The renal mechanisms responsible for angiotensin II (ANG II)-induced hypertension remain incompletely understood. The present study tested the hypothesis that the Na(+)/H(+) exchanger 3 (NHE3) is required for ANG II-induced hypertension in mice. Five groups of wild-type (Nhe3(+/+)) and Nhe3(-/-) mice were treated with vehicle or high pressor doses of ANG II (1.5 mg/kg/day ip, via minipump for 2 wk, or 10 pmol/min iv for 30 min). Under basal conditions, Nhe3(-/-) mice had significantly lower systolic blood pressure (SBP) and mean intra-arterial pressure (MAP) (P < 0.01), 24 h urine (P < 0.05), urinary Na(+) (P < 0.01) and urinary K(+) excretion (P < 0.01). In response to ANG II, SBP and MAP markedly increased in Nhe3(+/+) mice in a time-dependent manner, as expected (P < 0.01). However, these acute and chronic pressor responses to ANG II were significantly attenuated in Nhe3(-/-) mice (P < 0.01). Losartan blocked ANG II-induced hypertension in Nhe3(+/+) mice but induced marked mortality in Nhe3(-/-) mice. The attenuated pressor responses to ANG II in Nhe3(-/-) mice were associated with marked compensatory humoral and renal responses to genetic loss of intestinal and renal NHE3. These include elevated basal plasma ANG II and aldosterone and kidney ANG II levels, salt wasting from the intestines, increased renal AQP1, Na(+)/HCO3 (-), and Na(+)/K(+)-ATPase expression, and increased PKCα, mitogen-activated protein kinases ERK1/2, and glycogen synthase kinase 3αβ signaling proteins in the proximal tubules (P < 0.01). We concluded that NHE3 in proximal tubules of the kidney, along with NHE3 in intestines, is required for maintaining basal blood pressure as well as the full development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Department of Medicine; University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Gary E Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elisa Miguel-Qin
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Department of Medicine; University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Department of Medicine; University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
27
|
Patki G, Salvi A, Liu H, Atrooz F, Alkadhi I, Kelly M, Salim S. Tempol treatment reduces anxiety-like behaviors induced by multiple anxiogenic drugs in rats. PLoS One 2015; 10:e0117498. [PMID: 25793256 PMCID: PMC4367986 DOI: 10.1371/journal.pone.0117498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/25/2014] [Indexed: 01/05/2023] Open
Abstract
We have published that pharmacological induction of oxidative stress (OS) causes anxiety-like behavior in rats. Using animal models, we also have established that psychological stress induces OS and leads to anxiety-like behaviors. All evidence points towards the causal role of OS in anxiety-like behaviors. To fully ascertain the role of OS in anxiety-like behaviors, it is reasonable to test whether the pro-anxiety effects of anxiogenic drugs caffeine or N-methyl-beta-carboline-3-carboxamide (FG-7142) can be mitigated using agents that minimize OS. In this study, osmotic pumps were either filled with antioxidant tempol or saline. The pumps were attached to the catheter leading to the brain cannula and inserted into the subcutaneous pocket in the back pocket of the rat. Continuous i.c.v. infusion of saline or tempol in the lateral ventricle of the brain (4.3 mmol/day) was maintained for 1 week. Rats were intraperitoneally injected either with saline or an anxiogenic drug one at a time. Two hours later all groups were subjected to behavioral assessments. Anxiety-like behavior tests (open-field, light-dark and elevated plus maze) suggested that tempol prevented anxiogenic drug-induced anxiety-like behavior in rats. Furthermore, anxiogenic drug-induced increase in stress examined via plasma corticosterone and increased oxidative stress levels assessed via plasma 8-isoprostane were prevented with tempol treatment. Protein carbonylation assay also suggested preventive effect of tempol in the prefrontal cortex brain region of rats. Antioxidant protein expression and pro-inflammatory cytokine levels indicate compromised antioxidant defense as well as an imbalance of inflammatory response.
Collapse
Affiliation(s)
- Gaurav Patki
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| | - Ankita Salvi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| | - Hesong Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| | - Isam Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| | - Matthew Kelly
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, United States of America
| |
Collapse
|
28
|
Ko B, Mistry A, Hanson L, Mallick R, Hoover RS. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells. Am J Physiol Renal Physiol 2015; 308:F720-7. [PMID: 25651566 DOI: 10.1152/ajprenal.00465.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
Angiotensin II (ANG II) increases thiazide-sensitive sodium-chloride cotransporter (NCC) activity both acutely and chronically. ANG II has been implicated as a switch that turns WNK4 from an inhibitor of NCC into an activator of NCC, and ANG II's effect on NCC appears to require WNK4. Chronically, ANG II stimulation of NCC results in an increase in total and phosphorylated NCC, but the role of NCC phosphorylation in acute ANG II actions is unclear. Here, using a mammalian cell model with robust native NCC activity, we corroborate the role that ANG II plays in WNK4 regulation and clarify the role of Ste20-related proline alanine-rich kinase (SPAK)-induced NCC phosphorylation in ANG II action. ANG II was noted to have a biphasic effect on NCC, with a peak increase in NCC activity in the physiologic range of 10(-11) M ANG II. This effect was apparent as early as 15 min and remained sustained through 120 min. These changes correlated with significant increases in NCC surface protein expression. Knockdown of WNK4 expression sharply attenuated the effect of ANG II. SPAK knockdown did not affect ANG II action at early time points (15 and 30 min), but it did attenuate the response at 60 min. Correspondingly, NCC phosphorylation did not increase at 15 or 30 min, but increased significantly at 60 min. We therefore conclude that within minutes of an increase in ANG II, NCC is rapidly trafficked to the cell surface in a phosphorylation-independent but WNK4-dependent manner. Then, after 60 min, ANG II induces SPAK-dependent phosphorylation of NCC.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Abinash Mistry
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Lauren Hanson
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and Atlanta Veteran's Administration Medical Center, Decatur, Georgia
| |
Collapse
|
29
|
Horita S, Nakamura M, Shirai A, Yamazaki O, Satoh N, Suzuki M, Seki G. Regulatory roles of nitric oxide and angiotensin II on renal tubular transport. World J Nephrol 2014; 3:295-301. [PMID: 25374825 PMCID: PMC4220364 DOI: 10.5527/wjn.v3.i4.295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/05/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Renal tubules regulate blood pressure and humoral homeostasis. Mediators that play a significant role in regulating the transport of solutes and water include angiotensin II (AngII) and nitric oxide (NO). AngIIcan significantly raise blood pressure via effects on the heart, vasculature, and renal tubules. AngII generally stimulates sodium reabsorption by triggering sodium and fluid retention in almost all segments of renal tubules. Stimulation of renal proximal tubule (PT) transport is thought to be essential for AngII-mediated hypertension. However, AngII has a biphasic effect on in vitro PT transport in mice, rats, and rabbits: stimulation at low concentrations and inhibition at high concentrations. On the other hand, NO is generally thought to inhibit renal tubular transport. In PTs, NO seems to be involved in the inhibitory effect of AngII. A recent study reports a surprising finding: AngII has a monophasic stimulatory effect on human PT transport. Detailed analysis of signalling mechanisms indicates that in contrast to other species, the human NO/guanosine 3’,5’-cyclic monophosphate/extracellular signal-regulated kinase pathway seems to mediate this effect of Ang II on PT transport. In this review we will discuss recent progress in understanding the effects of AngII and NO on renal tubular transport.
Collapse
|
30
|
Nistala R, Habibi J, Lastra G, Manrique C, Aroor AR, Hayden MR, Garro M, Meuth A, Johnson M, Whaley-Connell A, Sowers JR. Prevention of obesity-induced renal injury in male mice by DPP4 inhibition. Endocrinology 2014; 155:2266-76. [PMID: 24712875 PMCID: PMC4020930 DOI: 10.1210/en.2013-1920] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Therapies to prevent renal injury in obese hypertensive individuals are being actively sought due to the obesity epidemic arising from the Western diet (WD), which is high in fructose and fat. Recently, activation of the immune system and hyperuricemia, observed with high fructose intake, have been linked to the pathophysiology of hypertension and renal injury. Because dipeptidyl peptidase 4 (DPP4) is a driver of maladaptive T-cell/macrophage responses, renal-protective benefits of DPP4 inhibition in the WD-fed mice were examined. Mice fed a WD for 16 weeks were given the DPP4 inhibitor MK0626 in their diet beginning at 4 weeks of age. WD-fed mice were obese, hypertensive, and insulin-resistant and manifested proteinuria and increased plasma DPP4 activity and uric acid levels. WD-fed mice also had elevated kidney DPP4 activity and monocyte chemoattractant protein-1 and IL-12 levels and suppressed IL-10 levels in the kidney, suggesting macrophage-driven inflammation, glomerular and tubulointerstitial injury. WD-induced increases in DPP4 activation in the plasma and kidney and proteinuria in WD mice were abrogated by MK0626, although blood pressure and systemic insulin sensitivity were not improved. Contemporaneously, MK0626 reduced serum uric acid levels, renal oxidative stress, and IL-12 levels and increased IL-10 levels, suggesting that suppression of DPP4 activity leads to suppression of renal immune/inflammatory injury responses to a WD. Taken together, these results demonstrate that DPP4 inhibition prevents high-fructose/high-fat diet-induced glomerular and tubular injury independent of blood pressure/insulin sensitivity and offers a potentially novel therapy for diabetic and obesity-related kidney disease.
Collapse
|
31
|
Xie P, Joladarashi D, Dudeja P, Sun L, Kanwar YS. Modulation of angiotensin II-induced inflammatory cytokines by the Epac1-Rap1A-NHE3 pathway: implications in renal tubular pathobiology. Am J Physiol Renal Physiol 2014; 306:F1260-74. [PMID: 24553435 DOI: 10.1152/ajprenal.00069.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides the glomerulus, the tubulointerstitium is often concomitantly affected in certain diseases, e.g., diabetic nephropathy, and activation of the renin-angiotensin system, to a certain extent, worsens its outcome because of perturbations in hemodynamics and possibly tubuloglomerular feedback. Certain studies suggest that pathobiology of the tubulointerstitium is influenced by small GTPases, e.g., Rap1. We investigated the effect of ANG II on inflammatory cytokines, while at the same time focusing on upstream effector of Rap1, i.e., Epac1, and some of the downstream tubular transport molecules, i.e., Na/H exchanger 3 (NHE3). ANG II treatment of LLC-PK1 cells decreased Rap1a GTPase activity in a time- and dose-dependent manner. ANG II treatment led to an increased membrane translocation of NHE3, which was reduced with Epac1 and PKA activators. ANG II-induced NHE3 translocation was notably reduced with the transfection of Rap1a dominant positive mutants, i.e., Rap1a-G12V or Rap1a-T35A. Transfection of cells with dominant negative Rap1a mutants, i.e., Rap1a-S17A, or Epac1 mutant, i.e., EPAC-ΔcAMP, normalized ANG II-induced translocation of NHE3. In addition, ANG II treatment led to an increased expression of inflammatory cytokines, i.e., IL-1β, IL-6, IL-8, and TNF-α, which was reduced with Rap1a-G12V or Rap1a-T35A transfection, while it reverted to previous comparable levels following transfection of Rap1a-S17A or EPAC-ΔcAMP. ANG II-induced expression of cytokines was reduced with the treatment with NHE3 inhibitor S3226 or with Epac1 and PKA activators. These data suggest that this novel Epac1-Rap1a-NHE3 pathway conceivably modulates ANG II-induced expression of inflammatory cytokines, and this information may yield the impetus for developing strategies to reduce tubulointertstitial inflammation in various renal diseases.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| | | | - Pradeep Dudeja
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Lin Sun
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
32
|
Shirai A, Yamazaki O, Horita S, Nakamura M, Satoh N, Yamada H, Suzuki M, Kudo A, Kawakami H, Hofmann F, Nishiyama A, Kume H, Enomoto Y, Homma Y, Seki G. Angiotensin II dose-dependently stimulates human renal proximal tubule transport by the nitric oxide/guanosine 3',5'-cyclic monophosphate pathway. J Am Soc Nephrol 2014; 25:1523-32. [PMID: 24511122 DOI: 10.1681/asn.2013060596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stimulation of renal proximal tubule (PT) transport by angiotensin II (Ang II) is critical for regulation of BP. Notably, in rats, mice, and rabbits, the regulation of PT sodium transport by Ang II is biphasic: transport is stimulated by picomolar to nanomolar concentrations of Ang II but inhibited by nanomolar to micromolar concentrations of Ang II. However, little is known about the effects of Ang II on human PT transport. By functional analysis with isolated PTs obtained from nephrectomy surgery, we found that Ang II induces a dose-dependent profound stimulation of human PT transport by type 1 Ang II receptor (AT1)-dependent phosphorylation of extracellular signal-regulated kinase (ERK). In PTs of wild-type mice, the nitric oxide (NO) /cGMP/cGMP-dependent kinase II (cGKII) pathway mediated the inhibitory effect of Ang II. In PTs of cGKII-deficient mice, the inhibitory effect of Ang II was lost, but activation of the NO/cGMP pathway failed to phosphorylate ERK. Conversely, in human PTs, the NO/cGMP pathway mediated the stimulatory effect of Ang II by phosphorylating ERK independently of cGKII. These contrasting responses to the NO/cGMP pathway may largely explain the different modes of PT transport regulation by Ang II, and the unopposed marked stimulation of PT transport by high intrarenal concentrations of Ang II may be an important factor in the pathogenesis of human hypertension. Additionally, the previously unrecognized stimulatory effect of the NO/cGMP pathway on PT transport may represent a human-specific therapeutic target in hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Franz Hofmann
- Forschergruppe 923, Institut für Pharmakologie und Toxikologie der Technischen Universität München, München, Germany; and
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Haruki Kume
- Urology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Urology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Urology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
33
|
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2013; 466:61-76. [PMID: 24337822 DOI: 10.1007/s00424-013-1408-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na(+) and HCO3(-) and thus for whole body volume and acid-base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology and Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland,
| | | |
Collapse
|
34
|
Abstract
The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | |
Collapse
|
35
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Persson P, Hansell P, Palm F. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1443-9. [PMID: 22552796 DOI: 10.1152/ajpregu.00502.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustained hyperglycemia is associated with increased oxidative stress resulting in decreased intrarenal oxygen tension (Po(2)) due to increased oxygen consumption (Qo(2)). Chronic blockade of the main superoxide radicals producing system, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, normalizes Qo(2) by isolated proximal tubular cells (PTC) and reduces proteinuria in diabetes. The aim was to investigate the effects of acute NADPH oxidase inhibition on tubular Na(+) transport and kidney Po(2) in vivo. Glomerular filtration rate (GFR), renal blood flow (RBF), filtration fraction (FF), Na(+) excretion, fractional Li(+) excretion, and intrarenal Po(2) was measured in control and streptozotocin-diabetic rats during baseline and after acute NADPH oxidase inhibition using apocynin. The effects on tubular transporters were investigated using freshly isolated PTC. GFR was increased in diabetics compared with controls (2.2 ± 0.3 vs. 1.4 ± 0.1 ml·min(-1)·kidney(-1)). RBF was similar in both groups, resulting in increased FF in diabetics. Po(2) was reduced in cortex and medulla in diabetic kidneys compared with controls (34.4 ± 0.7 vs. 42.5 ± 1.2 mmHg and 15.7 ± 1.2 vs. 25.5 ± 2.3 mmHg, respectively). Na(+) excretion was increased in diabetics compared with controls (24.0 ± 4.7 vs. 9.0 ± 2.0 μm·min(-1)·kidney(-1)). In controls, all parameters were unaffected. However, apocynin increased Na(+) excretion (+112%) and decreased fractional lithium reabsorption (-10%) in diabetics, resulting in improved cortical (+14%) and medullary (+28%) Po(2). Qo(2) was higher in PTC isolated from diabetic rats compared with control. Apocynin, dimethylamiloride, and ouabain reduced Qo(2), but the effects of combining apocynin with either dimethylamiloride or ouabain were not additive. In conclusion, NADPH oxidase inhibition reduces tubular Na(+) transport and improves intrarenal Po(2) in diabetes.
Collapse
Affiliation(s)
- Patrik Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
37
|
Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling. Int J Nephrol 2012; 2012:381320. [PMID: 22518311 PMCID: PMC3299271 DOI: 10.1155/2012/381320] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/07/2011] [Indexed: 01/11/2023] Open
Abstract
The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption.
Collapse
|
38
|
Zhu X, Cha B, Zachos NC, Sarker R, Chakraborty M, Chen TE, Kovbasnjuk O, Donowitz M. Elevated calcium acutely regulates dynamic interactions of NHERF2 and NHE3 proteins in opossum kidney (OK) cell microvilli. J Biol Chem 2011; 286:34486-96. [PMID: 21799002 DOI: 10.1074/jbc.m111.230219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The brush border (BB) Na(+)/H(+) exchanger NHE3 is rapidly activated or inhibited by changes in trafficking, which mimics renal and intestinal physiology. However, there is a paradox in that NHE3 has limited mobility in the BB due to its binding to the multi-PDZ domain containing the NHERF family. To allow increased endocytosis, as occurs with elevated intracellular Ca(2+), we hypothesized that NHE3 had to be, at least transiently, released from the BB cytoskeleton. Because NHERF1 and -2 are localized at the BB, where they bind NHE3 as well as the cytoskeleton, we tested whether either or both might dynamically interact with NHE3 as part of Ca(2+) signaling. We employed FRET to study close association of NHE3 and these NHERFs and fluorescence recovery after photobleaching to monitor NHE3 mobility in the apical domain in polarized opossum kidney cells. Under basal conditions, NHERF2 and NHE3 exhibited robust FRET signaling. Within 1 min of A23187 (0.5 μm) exposure, the NHERF2-NHE3 FRET signal was abolished, and BB NHE3 mobility was transiently increased. The dynamics in FRET signal and NHE3 mobility correlated well with a change in co-precipitation of NHE3 and NHERF2 but not NHERF1. We conclude the following. 1) Under basal conditions, NHE3 closely associates with NHERF2 in opossum kidney cell microvilli. 2) Within 1 min of elevated Ca(2+), the close association of NHE3-NHERF2 is abolished but is re-established in ∼60 min. 3) The change in NHE3-NHERF2 association is accompanied by an increased BB mobile fraction of NHE3, which contributes to inhibition of NHE3 transport activity via increased endocytosis.
Collapse
Affiliation(s)
- Xinjun Zhu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|