1
|
Wang Y, Zeng Y, Fu Y, Liu Z, Hu X, Tang C, Cai J, Dong Z. Repression of peroxisome proliferation-activated receptor γ coactivator-1α by p53 after kidney injury promotes mitochondrial damage and maladaptive kidney repair. Kidney Int 2025:S0085-2538(25)00161-9. [PMID: 40010492 DOI: 10.1016/j.kint.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Maladaptive kidney repair after injury is associated with a loss of mitochondrial homeostasis, but the underlying mechanism is largely unknown. Moreover, it remains unclear whether this mitochondrial change contributes to maladaptive kidney repair or the development of chronic kidney problems after injury. Here, we report that the transcriptional coactivator peroxisome proliferation-activated receptor γ coactivator-1α (PGC1α), a master regulator of mitochondrial biogenesis, was persistently downregulated during maladaptive kidney repair after repeated low-dose cisplatin nephrotoxicity or unilateral ischemia/reperfusion injury. Administration of the PGC1α activator ZLN005 after either kidney injury not only preserved mitochondria but also attenuated kidney dysfunction, tubular damage, interstitial fibrosis, and inflammation. PGC1α downregulation in these models was associated with p53 activation. Notably, knockout of p53 from proximal tubules prevented PGC1α downregulation, attenuated chronic kidney pathologies and minimized functional decline. Inhibition of p53 with pifithrin-α, a cell permeable p53 inhibitor, had similar effects. Mechanistically, p53 bound to the PGC1α gene promoter during maladaptive kidney repair and this binding was suppressed by pifithrin-α. Together, our results indicate that p53 is induced during maladaptive kidney repair to repress PGC1α transcriptionally, resulting in mitochondrial dysfunction for the development of chronic kidney problems. Activation of PGC1α and inhibition of p53 may improve kidney repair after injury and prevent the development of chronic kidney problems.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Nephrology, The Third Xiangya Hospital at Central South University, Changsha, Hunan, China; Postdoctoral Station of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
2
|
Hariri G, Legrand M. New drugs for acute kidney injury. JOURNAL OF INTENSIVE MEDICINE 2025; 5:3-11. [PMID: 39872831 PMCID: PMC11763585 DOI: 10.1016/j.jointm.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 01/30/2025]
Abstract
Acute kidney injury (AKI) presents a significant challenge in the management of critically ill patients, as it is associated with increased mortality, prolonged hospital stays, and increased healthcare costs. In certain conditions, such as during sepsis or after cardiac surgery, AKI is one of the most frequent complications, affecting 30%-50% of patients. Over time, even after the resolution of AKI, it can evolve into chronic kidney disease, a leading global cause of mortality, and cardiovascular complications. Despite significant improvement in the care of critically ill patients over the past two decades, the incidence of AKI remains stable, and novel approaches aiming at reducing its occurrence or improving AKI outcomes are still mostly lacking. However, recent insights into the pathophysiology of AKI within critical care settings have shed light on new pathways for both prevention and treatment, providing various new therapeutic targets aimed to mitigating kidney injury. These advancements highlight the intricate and multifaceted nature of the mechanisms underlying AKI, which could explain the challenge of identifying an effective treatment. Among these targets, modulation of the inflammatory responses and the cellular metabolism, hemodynamic regulation and enhancement of cellular repair mechanisms, have emerged as promising options. These multifaceted approaches offer renewed hope for limiting the incidence and severity of AKI in critically ill patients. Several ongoing clinical trials are evaluating the efficacy of these different strategies and we are facing an exiting time with multiple therapeutic interventions being tested to prevent or treat AKI. In this review, we aim to provide a summary of the new drugs evaluated for preventing or treating AKI in critical care and surgical settings.
Collapse
Affiliation(s)
- Geoffroy Hariri
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, UCSF, San Francisco, CA, USA
- Sorbonne Université, GRC 29, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU DREAM, Département d'anesthésie et réanimation, Institut de Cardiologie, Hôpital La Pitié-Salpêtrière, Paris, France
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, UCSF, San Francisco, CA, USA
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialist Network, Nancy, France
| |
Collapse
|
3
|
Kadry MO, Abdel-Megeed RM. Necroptosis and autophagy in cisplatinum-triggered nephrotoxicity: Novel insights regarding their prognostic and diagnostic potential. Toxicol Rep 2024; 13:101807. [PMID: 39606774 PMCID: PMC11600652 DOI: 10.1016/j.toxrep.2024.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Necroptosis is an innovative class of programmed autophagy (Atg) and necrosis; considered as a type of homeostatic housekeeping machinery that have observed an escalating concern due to its power in alleviating Cisplatinum-induced nephrotoxicity. This article elucidated in details the prospective role of both autophagy and necroptosis on Cisplatinum-triggered nephrotoxicity and investigating more potent therapy via lactoferrin and Ti-NPS conjugation. Cisplatinum is a commonly used chemotherapeutic drug; one of the limiting adverse actions of cisplatinum is renal toxicity. Upon cisplatinum administration, autophagy is highly stimulated in the kidney to shield against nephrotoxicity. Atg is a lysosomal degradation process which discards detorirated proteins to retain cell homeostasis. This article summarizes necroptosis progress in reconizing cisplatinum nephrotoxicity and debates how this progress can help in discovering more potent therapy via lactoferrin and Ti-NPS conjugation via monitoring autophagy and apoptotic biomarkers X-box-binding protein 1 (XBP), C/EBP homologous protein (CHOP), hypoxanthine phosphoribosyltransferase-1 (HPRT), FKBP prolyl isomerase 1B (FKBP), Cellular myelocytomatosis oncogene (C-myc), tumor suppressor gene (P53) and tumor necrosis factor (TNF-α). Cisplatinum nephrotoxicity was conducted in rat model via an oral dose of (2 mg/kg BW) for one month furthermore a comparative study was conducted among TiNPs-loaded Cisplatinum and Lactoferrin loaded Cisplatinum. Loaded drug delivery system counteracted Cisplatinum triggered nephrotoxicity via controlling autophagy and apoptotic XBP, CHOP, HPRT, FKBP, C-myc, P53 and TNF-α signaling pathway.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic chemistry deparment, Al Buhouth Street, Cairo, Egypt
| | - Rehab M. Abdel-Megeed
- National Research Center, Therapeutic chemistry deparment, Al Buhouth Street, Cairo, Egypt
| |
Collapse
|
4
|
Lee MM, Chou YX, Huang SH, Cheng HT, Liu CH, Huang GJ. Renoprotective Effects of Brown-Strain Flammulina velutipes Singer in Chronic Kidney Disease-Induced Mice Through Modulation of Oxidative Stress and Inflammation and Regulation of Renal Transporters. Int J Mol Sci 2024; 25:12096. [PMID: 39596166 PMCID: PMC11593982 DOI: 10.3390/ijms252212096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Cisplatin, widely used in chemotherapy, acts through mechanisms such as oxidative stress to damage the DNA and cause the apoptosis of cancer cells. Although effective, cisplatin treatment is associated with considerable side effects including chronic kidney disease (CKD). Studies on brown-strain Flammulina velutipes Singer (FVB) have shown its significant antioxidant and immunomodulatory effects. High-performance liquid chromatography (HPLC) confirmed that the FVB extract contained gallic acid and quercetin. This study investigated whether FVB extract can improve and protect against cisplatin-induced CKD in mice. C57BL/6 mice were used as an animal model, and CKD was induced through intraperitoneal cisplatin injection. FVB was orally administered to the mice for 14 consecutive days. N-acetylcysteine (NAC) was administered in the positive control group. Organ pathology and serum biochemical analyses were conducted after the mice were sacrificed. Significant dose-dependent differences were discovered in body mass, kidney mass, histopathology, renal function, inflammatory factors, and antioxidant functions among the different groups. FVB extract reduced the severity of cisplatin-induced CKD in pathways related to inflammation, autophagy, apoptosis, fibrosis, oxidative stress, and organic ion transport proteins; FVB extract, thus, displays protective physiological activity in kidney cells. Additionally, orally administered high doses of the FVB extract resulted in significantly superior renal function, inflammatory factors, antioxidative activity, and fibrotic pathways. This study establishes a strategy for future clinical adjunctive therapy using edible-mushroom-derived FVB extract to protect kidney function.
Collapse
Affiliation(s)
- Min-Min Lee
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Yun-Xuan Chou
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Sheng-Hsiung Huang
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan;
| | - Hsu-Tang Cheng
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Surgery, Asia University Hospital, Taichung 413, Taiwan
| | - Chung-Hsiang Liu
- Department of Neurology, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
5
|
Ming WH, Wen L, Hu WJ, Qiao RF, Zhou Y, Su BW, Bao YN, Gao P, Luan ZL. The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease. Kidney Res Clin Pract 2024; 43:724-738. [PMID: 39558651 PMCID: PMC11615452 DOI: 10.23876/j.krcp.23.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 11/20/2024] Open
Abstract
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
Collapse
Affiliation(s)
- Wen-Hua Ming
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Rong-Fang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Beijing Institute of Medical Device Testing, Beijing, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Jogdeo CM, Panja S, Kumari N, Tang W, Kapoor E, Siddhanta K, Das A, Boesen EI, Foster KW, Oupický D. Inulin-based nanoparticles for targeted siRNA delivery in acute kidney injury. J Control Release 2024; 376:577-592. [PMID: 39419450 DOI: 10.1016/j.jconrel.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
RNA interference has emerged as a promising therapeutic strategy to tackle acute kidney injury (AKI). Development of targeted delivery systems is highly desired for selective renal delivery of RNA and improved therapeutic outcomes in AKI. Inulin is a plant polysaccharide traditionally employed to measure glomerular filtration rate. Here, we describe the synthesis of inulin modified with α-cyclam-p-toluic acid (CPTA) to form a novel renal-targeted polymer, Inulin-CPTA (IC), which is capable of selective siRNA delivery to the injured kidneys. We show that conjugating CPTA to inulin imparts IC with targeting properties for cells that overexpress the C-X-C chemokine receptor 4 (CXCR4). Self-assembled IC/siRNA nanoparticles (polyplexes) demonstrated rapid accumulation in the injured kidneys with selective uptake and prolonged retention in injured renal tubules overexpressing the CXCR4 receptor. Tumor-suppressor protein p53 contributes significantly to the pathogenesis of AKI. siRNA-induced silencing of p53 has shown therapeutic potential in several preclinical studies, making it an important target in the treatment of AKI. Systemically administered nanoparticles formulated using IC and siRNA against p53 selectively accumulated in the injured kidneys and potently silenced p53 expression. Selective p53 knockdown led to positive therapeutic outcomes in mice with cisplatin-induced AKI, as seen by reduced tubular cell death, renal injury, inflammation, and overall improved renal function. These findings indicate that IC is a promising new carrier for renal-targeted delivery of RNA for the treatment of AKI.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashish Das
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, Wahyuningsih ES, Dewi Y, Winarti SA, Dinita ST. Potential Nephroprotective Effect of Kaempferol: Biosynthesis, Mechanisms of Action, and Clinical Prospects. Adv Pharmacol Pharm Sci 2024; 2024:8907717. [PMID: 39377015 PMCID: PMC11458287 DOI: 10.1155/2024/8907717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Kidney is an essential organ that is highly susceptible to cellular injury caused by various toxic substances in the blood. Several studies have shown that untreated injuries to this organ can cause glomerulosclerosis, tubulointerstitial fibrosis, and tubular cell apoptosis, leading to kidney failure. Despite significant advancements in modern treatment, there is no fully effective drug for repairing its function, providing complete protection, and assisting in cell regeneration. Furthermore, some available medications have been reported to exacerbate injuries, showing the need to explore alternative treatments. Natural drugs are currently being explored as a new therapeutic strategy for managing kidney diseases. Kaempferol, a polyphenol found in plants, including vegetables, legumes, and fruits, has been extensively studied in various nephrotoxicity protocols. The compound has been reported to have potential as a nephroprotective agent with beneficial effects on various physiological pathways, such as CPL-induced kidney injury, DOX, LPO, ROS, RCC, and diabetic nephropathy. Therefore, this study aims to provide a brief overview of the current nephroprotective effects of kaempferol, as well as its molecular mechanisms of action, biosynthesis pathways, and clinical prospects.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Asman Sadino
- Department of PharmacyFaculty of Mathematics and Natural ScienceUniversitas Garut, Garut, West Java, Indonesia
| | - Barolym Tri Pamungkas
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Zulpakor Oktoba
- Department of PharmacyFaculty of MedicineUniversitas Lampung, Bandar Lampung, Indonesia
| | - Maya Arfania
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Nia Yuniarsih
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Eko Sri Wahyuningsih
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Yuliani Dewi
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Ayu Winarti
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Tantia Dinita
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| |
Collapse
|
8
|
El-Dessouki AM, Alzokaky AA, Raslan NA, Ibrahim S, Salama LA, Yousef EH. Piracetam mitigates nephrotoxicity induced by cisplatin via the AMPK-mediated PI3K/Akt and MAPK/JNK/ERK signaling pathways. Int Immunopharmacol 2024; 137:112511. [PMID: 38909496 DOI: 10.1016/j.intimp.2024.112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
AIMS Cisplatin (CDDP) is commonly employed as an antineoplastic agent, but its use is significantly limited by the occurrence of dose-dependent nephrotoxicity, the detailed mechanisms of which remain unclear. This research is aimed to explore the molecular mechanisms of Piracetam (PIR)'s protective effects on nephrotoxicity resulting from CDDP exposure and to elucidate the mechanisms responsible for these effects. MAIN METHODS PIR was given in dosages of 100 and 300 mg/kg body weight for a duration of 15 days; concurrently, on the last day, a single 10 mg/kg dose of CDDP was delivered via intraperitoneal injection. Forty-eight hours post-CDDP injection, the animals were sacrificed to assess nephrotoxicity. Blood samples and renal tissues were taken for biochemical and histopathological investigations. Serum creatinine and blood urea nitrogen (BUN) were measured. AMP-activated protein kinase (AMPK), caspase-9 and nuclear factor kappa b p65 (NF-κB p65) were assessed by immunohistochemistry method. Enzyme-linked immunosorbent assay (ELISA) analysis was employed to determine cytochrome c (Cyt. c), Bcl-2-associated X-protein (BAX), caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), myeloperoxidase (MPO), and interleukin-1β (IL-1β) levels in renal tissue homogenates. The mRNA levels of tumor protein P53 (TP53), phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK) were tested by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, histopathological evaluations of the renal tissues and the binding affinity of PIR to AMPK by molecular docking were also performed. KEY FINDINGS Pre-treatment with PIR enhanced renal function markers such as urea and creatinine, mitigated histological damage, and diminished inflammatory cell presence in renal tubules. PIR demonstrated antioxidant effects by reestablishing the equilibrium between pro-oxidants and antioxidants such as MPO, HO-1, Nrf2, as well as SOD. Furthermore, PIR inhibited the inflammatory pathways through the MAPK/NF-κB pathway. Additionally, PIR counteracted the CDDP-induced decline in PI3K/Akt activity and hindered caspase-dependent apoptotic processes. SIGNIFICANCE In summary, PIR appears to be an effective therapeutic strategy for reducing CDDP-induced nephrotoxicity, attributed to its antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Consequently, PIR may serve as a complementary treatment alongside CDDP to alleviate nephrotoxicity associated with CDDP.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 12566, Giza, Egypt
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Nahed A Raslan
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Madina, Saudi Arabia
| | - Samar Ibrahim
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Galala University, Ataka, Egypt
| | - Lamiaa A Salama
- Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Eman H Yousef
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
9
|
Lim JKM, Samiei A, Delaidelli A, de Santis JO, Brinkmann V, Carnie CJ, Radiloff D, Hruby L, Kahler A, Cran J, Leprivier G, Sorensen PH. The eEF2 kinase coordinates the DNA damage response to cisplatin by supporting p53 activation. Cell Death Dis 2024; 15:501. [PMID: 39003251 PMCID: PMC11246425 DOI: 10.1038/s41419-024-06891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a stress-responsive hub that inhibits the translation elongation factor eEF2, and consequently mRNA translation elongation, in response to hypoxia and nutrient deprivation. EEF2K is also involved in the response to DNA damage but its role in response to DNA crosslinks, as induced by cisplatin, is not known. Here we found that eEF2K is critical to mediate the cellular response to cisplatin. We uncovered that eEF2K deficient cells are more resistant to cisplatin treatment. Mechanistically, eEF2K deficiency blunts the activation of the DNA damage response associated ATM and ATR pathways, in turn preventing p53 activation and therefore compromising induction of cisplatin-induced apoptosis. We also report that loss of eEF2K delays the resolution of DNA damage triggered by cisplatin, suggesting that eEF2K contributes to DNA damage repair in response to cisplatin. In support of this, our data shows that eEF2K promotes the expression of the DNA repair protein ERCC1, critical for the repair of cisplatin-caused DNA damage. Finally, using Caenorhabditis elegans as an in vivo model, we find that deletion of efk-1, the worm eEF2K ortholog, mitigates the induction of germ cell death in response to cisplatin. Together, our data highlight that eEF2K represents an evolutionary conserved mediator of the DNA damage response to cisplatin which promotes p53 activation to induce cell death, or alternatively facilitates DNA repair, depending on the extent of DNA damage.
Collapse
Affiliation(s)
- Jonathan K M Lim
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arash Samiei
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Jessica Oliveira de Santis
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanessa Brinkmann
- Institute of Toxicology, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher J Carnie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Daniel Radiloff
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Laura Hruby
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alisa Kahler
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jordan Cran
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gabriel Leprivier
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Mohtadi S, Salehcheh M, Tabandeh MR, Khorsandi L, Khodayar MJ. Ketotifen counteracts cisplatin-induced acute kidney injury in mice via targeting NF-κB/NLRP3/Caspase-1 and Bax/Bcl2/Caspase-3 signaling pathways. Biomed Pharmacother 2024; 175:116797. [PMID: 38776675 DOI: 10.1016/j.biopha.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Cisplatin (CIS) stands as one of the most effective chemotherapy drugs currently available. Despite its anticancer properties, the clinical application of CIS is restricted due to nephrotoxicity. Our research aimed to specify the impact of ketotifen fumarate (KET) against nephrotoxicity induced by CIS in mice. Male NMRI mice were treated with KET (0.4, 0.8, and 1.6 mg/kg, ip) for seven days. On the fourth day of the study, a single dose of CIS (13 mg/kg, ip) was administered, and the mice were sacrificed on the eighth day. The results indicated that administration of KET attenuated CIS-induced elevation of BUN and Cr in the serum, as well as renal KIM-1 levels. This improvement was accompanied by a significant reduction in kidney tissue damage, which was supported by histopathological examinations. Likewise, the decrease in the ratio of GSH to GSSG and antioxidant enzyme activities (CAT, SOD, and GPx), and the increase in lipid peroxidation marker (TBARS) were reversed in KET-treated mice. The ELISA results revealed that KET-treated mice ameliorated CIS-induced elevation in the renal levels of TNF-α, IL-1β, and IL-18. Western blot analysis exhibited that KET suppressed the activation of the transcription factor NF-κB and the NLRP3 inflammasome in the kidney of CIS-treated mice. Moreover, KET treatment reversed the changes in the protein expression of markers related to apoptosis (Bax, Bcl2, Caspase-3, and p53). Interestingly, KET significantly enhanced the cytotoxicity of CIS in HeLa cells. In conclusion, this study provides valuable insights into the promising effects of KET in mitigating CIS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shokooh Mohtadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Salehcheh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Patel S, Sathyanathan V, Salaman SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue Cell 2024; 88:102377. [PMID: 38626527 DOI: 10.1016/j.tice.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Since the Middle Ages, essential oils (EO) have been widely used for bactericidal, virucidal, fungicidal, insecticidal, medicinal and cosmetic applications, nowadays in pharmaceutical, agricultural and food industries. Recently, EO have emerged as promising adjuvant therapies to mitigate the toxicities induced by anti - cancerous drugs; among them cisplatin induced renal damage amelioration remain remarkable. Cisplatin (cis-diaminedichloroplatinum II, CDDP) is renowned as one of the most effective anti-neoplastic agents, widely used as a broad-spectrum anti-tumor agent for various solid tumors. However, its clinical use is hampered by several side effects, notably nephrotoxicity and acute kidney injury, which arise from the accumulation of CDDP in the proximal tubular epithelial cells (PTECs). To better understand and analyze the molecular mechanisms of CDDP-induced renal damage, it is crucial to investigate potential interventions to protect against cisplatin-mediated nephrotoxicity. These EO have shown the ability to counteract oxidative stress, reduce inflammation, prevent apoptosis, and exert estrogenic effects, all contributing to renal protection. In this review, we have made an effort to summarize the molecular mechanisms and exploring new interventions by which we can pave the way for safer and more effective cancer management in the future.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - V Sathyanathan
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| | - Samsi D Salaman
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
12
|
Wu JJ, Zhang TY, Qi YH, Zhu MY, Fang Y, Qi CJ, Cao LO, Lu JF, Lu BH, Tang LM, Shen JX, Mou S. Efficacy and safety of Yiqi Peiyuan granules for improving the short-term prognosis of patients with acute kidney injury: A multicenter, double-blind, placebo-controlled, randomized trial. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:279-285. [PMID: 38688809 DOI: 10.1016/j.joim.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/12/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Yiqi Peiyuan (YQPY) prescription, a composite prescription of traditional Chinese medicine, has been used to prevent or delay the continued deterioration of renal function after acute kidney injury (AKI) in some institutions and has shown considerable efficacy. OBJECTIVE This is the first randomized controlled trial to assess efficacy and safety of YQPY for improving short-term prognosis in adult patients with AKI. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS This is a prospective, double-blind, multicenter, randomized, and placebo-controlled clinical trial. A total of 144 enrolled participants were randomly allocated to two groups according to a randomization schedule. Participants, caregivers and investigators assessing the outcomes were blinded to group assignment. Patients in the YQPY group received 36 g YQPY granules twice a day for 28 days. Patients in the placebo group received a placebo in the same dose as the YQPY granules. MAIN OUTCOME MEASURES The primary outcome was the change in the estimated glomerular filtration rate (eGFR) between baseline and after 4 and 24 weeks of treatment. The secondary outcomes were the change of serum creatinine (Scr) level between baseline and after treatment, and the incidence of endpoint events, defined as eGFR increasing by more than 25% above baseline, eGFR >75 mL/min per 1.73 m2 or the composite endpoint, which was defined as the sum of patients meeting either of the above criteria. RESULTS Data from a total of 114 patients (59 in the YQPY group and 55 in the control group) were analyzed. The mean changes in eGFR and Scr in weeks 4 and 24 had no difference between the two groups. In further subgroup analysis (22 in the YQPY group and 31 in the control group), the mean change in eGFR after treatment for 4 weeks was 27.39 mL/min per 1.73 m2 in the YQPY group and 5.78 mL/min per 1.73 m2 in the placebo group, and the mean difference between groups was 21.61 mL/min per 1.73 m2 (P < 0.001). Thirteen (59.1%) patients in the YQPY group and 5 (16.1%) in the placebo group reached the composite endpoints (P = 0.002). During the intervention, 2 and 4 severe adverse events were reported in the YQPY and placebo groups, respectively. CONCLUSION The YQPY granules can effectively improve the renal function of patients 4 weeks after the onset of AKI, indicating that it has good efficacy for improving short-term renal outcomes in patients with AKI. The YQPY granules may be a promising therapy for adults with AKI. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100051723. Please cite this article as: Wu JJ, Zhang TY, Qi YH, Zhu MY, Fang Y, Qi CJ, Cao LO, Lu JF, Lu BH, Tang LM, Shen JX, Mou S. Efficacy and safety of Yiqi Peiyuan granules for improving the short-term prognosis of patients with acute kidney injury: a multicenter, double-blind, placebo-controlled, randomized trial. J Integr Med. 2024; 22(3): 279-285.
Collapse
Affiliation(s)
- Jia-Jia Wu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Tian-Yi Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Ying-Hui Qi
- Department of Nephrology, Shanghai Pudong New Area Punan Hospital, Shanghai 200125, China
| | - Min-Yan Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yan Fang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Chao-Jun Qi
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Li-Ou Cao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Ji-Fang Lu
- Department of Nephrology, Ningbo Hangzhou Bay Hospital, Ningbo 315336, Zhejiang Province, China
| | - Bo-Han Lu
- Department of Nephrology, Ningbo Hangzhou Bay Hospital, Ningbo 315336, Zhejiang Province, China
| | - Lu-Min Tang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Jian-Xiao Shen
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
13
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Motwani SS, Kaur SS, Kitchlu A. Cisplatin Nephrotoxicity: Novel Insights Into Mechanisms and Preventative Strategies. Semin Nephrol 2023; 42:151341. [PMID: 37182407 DOI: 10.1016/j.semnephrol.2023.151341] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cisplatin is a highly effective chemotherapeutic agent that has been used for more than 50 years for a variety of cancers; however, its use is limited by toxicity, including nephrotoxicity. In this in-depth review, we discuss the incidence of cisplatin-associated acute kidney injury, as well as common risk factors for its development. Cisplatin accumulates in the kidney tubules and causes AKI through various mechanisms, including DNA damage, oxidative stress, and apoptosis. We also discuss the spectrum of nephrotoxicity, including acute and chronic impairment of kidney function, electrolyte disturbances, and thrombotic microangiopathy. We discuss the limited options for the diagnosis, prevention, and management of these complications, along with factors that may impact future therapy with or without cisplatin. We conclude with directions for future research in this expanding and important area.
Collapse
Affiliation(s)
- Shveta S Motwani
- Division of Nephrology, Lahey Hospital and Medical Center, Burlington, MA.
| | - Sharneet Sandhu Kaur
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Erichsen L, Thimm C, Wruck W, Kaierle D, Schless M, Huthmann L, Dimski T, Kindgen-Milles D, Brandenburger T, Adjaye J. Secreted Cytokines within the Urine of AKI Patients Modulate TP53 and SIRT1 Levels in a Human Podocyte Cell Model. Int J Mol Sci 2023; 24:ijms24098228. [PMID: 37175937 PMCID: PMC10179415 DOI: 10.3390/ijms24098228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease with a poor clinical outcome. It is a common complication, with an incidence of 10-15% of patients admitted to hospital. This rate even increases for patients who are admitted to the intensive care unit, with an incidence of >50%. AKI is characterized by a rapid increase in serum creatinine, decrease in urine output, or both. The associated symptoms include feeling sick or being sick, diarrhoea, dehydration, decreased urine output (although occasionally the urine output remains normal), fluid retention causing swelling in the legs or ankles, shortness of breath, fatigue and nausea. However, sometimes acute kidney injury causes no signs or symptoms and is detected by lab tests. Therefore, the identification of cytokines for the early detection and diagnosis of AKI is highly desirable, as their application might enable the prevention of the progression from AKI to chronic kidney disease (CKD). In this study, we analysed the secretome of the urine of an AKI patient cohort by employing a kidney-biomarker cytokine assay. Based on these results, we suggest ADIPOQ, EGF and SERPIN3A as potential cytokines that might be able to detect AKI as early as 24 h post-surgery. For the later stages, as common cytokines for the detection of AKI in both male and female patients, we suggest VEGF, SERPIN3A, TNFSF12, ANPEP, CXCL1, REN, CLU and PLAU. These cytokines in combination might present a robust strategy for identifying the development of AKI as early as 24 h or 72 h post-surgery. Furthermore, we evaluated the effect of patient and healthy urine on human podocyte cells. We conclude that cytokines abundant in the urine of AKI patients trigger processes that are needed to repair the damaged nephron and activate TP53 and SIRT1 to maintain the balance between proliferation, angiogenesis, and cell cycle arrest.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniela Kaierle
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Manon Schless
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Laura Huthmann
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Dimski
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women's Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
17
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
18
|
Wen L, Wei Q, Livingston MJ, Dong G, Li S, Hu X, Li Y, Huo Y, Dong Z. PFKFB3 mediates tubular cell death in cisplatin nephrotoxicity by activating CDK4. Transl Res 2023; 253:31-40. [PMID: 36243313 PMCID: PMC10416729 DOI: 10.1016/j.trsl.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Nephrotoxicity is a major side effect of cisplatin, a widely used cancer therapy drug. However, the mechanism of cisplatin nephrotoxicity remains unclear and no effective kidney protective strategies are available. Here, we report the induction of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in both in vitro cell culture and in vivo mouse models of cisplatin nephrotoxicity. Notably, PFKFB3 was mainly induced in the nucleus of kidney tubular cells, suggesting a novel function other than its canonical role in glycolysis. Both pharmacological inhibition and genetic silencing of PFKFB3 led to the suppression of cisplatin-induced apoptosis in cultured renal proximal tubular cells (RPTCs). Moreover, cisplatin-induced kidney injury or nephrotoxicity was ameliorated in renal proximal tubule-specific PFKFB3 knockout mice. Mechanistically, we demonstrated the interaction of PFKFB3 with cyclin-dependent kinase 4 (CDK4) during cisplatin treatment, resulting in CDK4 activation and consequent phosphorylation and inactivation of retinoblastoma tumor suppressor (Rb). Inhibition of CDK4 reduced cisplatin-induced apoptosis in RPTCs and kidney injury in mice. Collectively, this study unveils a novel pathological role of PFKFB3 in cisplatin nephrotoxicity through the activation of the CDK4/Rb pathway, suggesting a new kidney protective strategy for cancer patients by blocking PFKFB3.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
19
|
Su J, He T, You J, Cao J, Wang Q, Cao S, Mei Q, Zeng J, Liu L. Therapeutic effect and underlying mechanism of Shenkang injection against cisplatin-induced acute kidney injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115805. [PMID: 36216195 DOI: 10.1016/j.jep.2022.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenkang injection (SKI), a Chinese patent medicine injection, has been approved for the treatment of chronic kidney disease (CKD) due to its definite clinical therapeutic efficacy. However, the effect and associated underlying mechanism of Shenkang injection against cisplatin (CDDP)-induced acute kidney injury (AKI) has not yet been well elucidated. AIM OF THE STUDY This study aims to investigate the therapeutic effect and associated underlying mechanism of Shenkang injection against CDDP-induced AKI. MATERIALS AND METHODS We established a CDDP-induced AKI mouse model to evaluate renal function by biochemical markers measurement and to observe histopathological alterations by haemotoxylin and eosin (HE)-staining sections of renal. In addition, the distribution of representative components of SKI in the kidneys of mice was evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS). Furthermore, the degree of oxidative stress and inflammation were assessed by detecting the levels of inflammatory cytokines and oxidants, while the related mechanisms were elucidated by network pharmacology. RESULTS CDDP could induce excessive inflammation and severe injury to the kidneys of mice. However, SKI significantly ameliorated the kidney damages and improved the renal function by reducing the levels of renal function markers (SCr, BUN and urine protein), and inhibiting the production of inflammatory cytokines IL-34, IL-6 and TNF-α. SKI repaired oxidative balance through up-regulation of antioxidants SOD and GSH and down-regulated oxidants MDA. Moreover, 4 components from SKI were detected in the kidney by LC-MS/MS quantification. In addition, pharmacology network indicated the PI3K/AKT, TNF, MAPK, and p53 were the possible signaling pathways for the therapeutic effect of SKI against CDDP-induced AKI, which were related to inflammation, oxidative stress and apoptosis. CONCLUSION In the present study, we for the first time demonstrated that SKI alleviates CDDP-induced nephrotoxicity by antioxidant and anti-inflammation via regulating PI3K/AKT, MAPK, TNF, and p53 signaling pathways. The study may provide a scientific rationale for the clinical indication of SKI.
Collapse
Affiliation(s)
- Jiahan Su
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou New Drug Evaluation and Research Center, Luzhou, Sichuan, 646000, China
| | - Tingting He
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou New Drug Evaluation and Research Center, Luzhou, Sichuan, 646000, China
| | - Jing You
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; The People's Hospital of DaZhu, Dazhou, Sichuan, 635000, China
| | - Jingjie Cao
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qianru Wang
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shousong Cao
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qibing Mei
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou New Drug Evaluation and Research Center, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Li Liu
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
20
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Zhang J, Luan ZL, Huo XK, Zhang M, Morisseau C, Sun CP, Hammock BD, Ma XC. Direct targeting of sEH with alisol B alleviated the apoptosis, inflammation, and oxidative stress in cisplatin-induced acute kidney injury. Int J Biol Sci 2023; 19:294-310. [PMID: 36594097 PMCID: PMC9760444 DOI: 10.7150/ijbs.78097] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, K D = 1.32 μM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3β-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.
Collapse
Affiliation(s)
- Juan Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Zhi-Lin Luan
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Min Zhang
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Cheng-Peng Sun
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.,✉ Corresponding authors: College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: (C.P. Sun); (X.C. Ma). Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States. E-mail: (B.D. Hammock)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States.,✉ Corresponding authors: College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: (C.P. Sun); (X.C. Ma). Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States. E-mail: (B.D. Hammock)
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.,✉ Corresponding authors: College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian, China. E-mail: (C.P. Sun); (X.C. Ma). Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States. E-mail: (B.D. Hammock)
| |
Collapse
|
22
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
23
|
Tang W, Panja S, Jogdeo CM, Tang S, Ding L, Yu A, Foster KW, Dsouza DL, Chhonker YS, Jensen-Smith H, Jang HS, Boesen EI, Murry DJ, Padanilam B, Oupický D. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials 2022; 285:121562. [PMID: 35552115 PMCID: PMC9133205 DOI: 10.1016/j.biomaterials.2022.121562] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/02/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decrease in renal function and impacts growing number of people worldwide. RNA interference (RNAi) showed potential to treat diseases with no or limited conventional therapies, including AKI. Suitable carriers are needed to protect and selectively deliver RNAi to target cells to fully explore this therapeutic modality. Here, we report on the synthesis of chitosan modified with α-cyclam-p-toluic acid (C-CS) as a novel siRNA carrier for targeted delivery to injured kidneys. We demonstrate that conjugation of the α-cyclam-p-toluic acid to chitosan imparts the C-CS polymer with targeting and antagonistic properties to cells overexpressing chemokine receptor CXCR4. In contrast, the parent α-cyclam-p-toluic acid showed no such properties. Self-assembled C-CS/siRNA nanoparticles rapidly accumulate in the injured kidneys and show long retention in renal tubules. Apoptosis and metabolic and inflammatory pathways induced by p53 are important pathological mechanisms in the development of AKI. Nanoparticles with siRNA against p53 (sip53) were formulated and intravenously injected for attenuation of IRI-AKI. Due to the favorable accumulation in injured kidneys, the treatment with C-CS/sip53 decreased renal injury, extent of renal apoptosis, macrophage and neutrophil infiltration, and improved renal function. Overall, our study suggests that C-CS/siRNA nanoparticles have the potential to effectively accumulate and deliver therapeutic siRNAs to injured kidneys through CXCR4 binding, providing a novel way for AKI therapy.
Collapse
Affiliation(s)
- Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Del L Dsouza
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Heather Jensen-Smith
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hee-Seong Jang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Babu Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
24
|
Wang X, Liu W, Jin G, Wu Z, Zhang D, Bao Y, Shi W. Salvia miltiorrhiza polysaccharides alleviates florfenicol induced kidney injury in chicks via inhibiting oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113339. [PMID: 35219255 DOI: 10.1016/j.ecoenv.2022.113339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Florfenicol (FFC) is a commonly used antibiotic in animal husbandry, which is easy to cause organs damage in a variety of animals. It has been proved to have nephrotoxicity and affect the yield and quality of meat products. Salvia miltiorrhiza polysaccharides (SMPs) have been proved to have the pharmacological effects of regulating immunity and protecting the liver of animals, and its alleviative effect on renal injury is unclear. In order to investigate the alleviating effect of SMPs on drug nephrotoxicity and determine its potential molecular mechanism, we took chicks as the research object, FFC as the induced drug, and established the model by adding SMPs in drinking water. The chicks were randomly divided into control group, FFC model group (0.15 g/L FFC), FFC + low, medium and high dose of SMPs groups (0.15 g/L FFC + 1.25, 2.5, 5 g/L SMPs) and SMPs group (5 g/L SMPs). The results showed that, SMPs increased the average weight gain and renal index of chicks, alleviated the pathological changes of renal structure induced by FFC, decreased the contents of uric acid, blood urea nitrogen and creatinine in serum and malondialdehyde in renal tissue, increased the levels of glutathione, superoxide dismutase and catalase in renal tissue, up-regulated the relative expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1 (NQO-1) mRNA and protein, and down-regulated the relative expression levels of p53, Caspase-3 and Caspase-6 mRNA and protein and the apoptosis rate of renal histiocytes. It is concluded that SMPs could significantly alleviate the renal injury induced by FFC, and its mechanism may be related to improving renal antioxidant capacity and inhibiting abnormal apoptosis of renal histiocytes.
Collapse
Affiliation(s)
- Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Guozhong Jin
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zhanjun Wu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Di Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| |
Collapse
|
25
|
Chen G, Xue H, Zhang X, Ding D, Zhang S. p53 inhibition attenuates cisplatin-induced acute kidney injury through microRNA-142-5p regulating SIRT7/NF-κB. Ren Fail 2022; 44:368-380. [PMID: 35220863 PMCID: PMC8890533 DOI: 10.1080/0886022x.2022.2039195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Renal tubular epithelial cell apoptosis is the main mechanism of cisplatin-induced acute kidney injury. The role of microRNAs (miRNAs) in the apoptosis of renal tubular epithelial cells has been suggested, but the underlying mechanism has not been fully elucidated. We used microarray analysis to identify miR-142-5p involved in cisplatin-induced acute kidney injury. miR-142-5p was down-regulated in human renal tubular epithelial (HK-2) cells with cisplatin treatment. Notably, the overexpression of miR-142-5p attenuated the cisplatin-induced HK-2 cell apoptosis and inhibition of miR-142-5p aggravated cisplatin-induced HK-2 cell apoptosis. During cisplatin treatment, p53 was activated. The inhibition of p53 by pifithrin-α attenuated the cisplatin-induced kidney injury and up-regulated miR-142-5p expression. We also identified the Sirtuin7 (SIRT7) as a target of miR-142-5p. Furthermore, we demonstrated that the inhibition of SIRT7 prevented cisplatin-induced HK-2 cell apoptosis and decreased the expression of nuclear factor kappa B (NF-κB). Our data revealed that p53 inhibition could attenuate cisplatin-induced acute kidney injury by up-regulating miR-142-5p to repress SIRT7/NF-κB. These findings may provide a novel therapeutic target of cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Guoxiao Chen
- Department of Urology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huanzhou Xue
- Department of Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiangsheng Zhang
- Department of Urology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Degang Ding
- Department of Urology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shilong Zhang
- Department of Urology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
26
|
p53 in Proximal Tubules Mediates Chronic Kidney Problems after Cisplatin Treatment. Cells 2022; 11:cells11040712. [PMID: 35203361 PMCID: PMC8870044 DOI: 10.3390/cells11040712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Nephrotoxicity is a major side-effect of cisplatin in chemotherapy, which can occur acutely or progress into chronic kidney disease (CKD). The protein p53 plays an important role in acute kidney injury induced by cisplatin, but its involvement in CKD following cisplatin exposure is unclear. Here, we address this question by using experimental models of repeated low-dose cisplatin (RLDC) treatment. In mouse proximal tubular BUMPT cells, RLDC treatment induced p53 activation, apoptosis, and fibrotic changes, which were suppressed by pifithrin-α, a pharmacologic inhibitor of p53. In vivo, chronic kidney problems following RLDC treatment were ameliorated in proximal tubule-specific p53-knockout mice (PT-p53-KO mice). Compared with wild-type littermates, PT-p53-KO mice showed less renal damage (KIM-1 positive area: 0.97% vs. 2.5%), less tubular degeneration (LTL positive area: 15.97% vs. 10.54%), and increased proliferation (Ki67 positive area: 2.42% vs. 0.45%), resulting in better renal function after RLDC treatment. Together, these results indicate that p53 in proximal tubular cells contributes significantly to the development of chronic kidney problems following cisplatin chemotherapy.
Collapse
|
27
|
Zhang B, Xue Y, Zhao J, Jiang H, Zhu J, Yin H, Qiu Y, Hu A, Xu L, Song Y, Wang X. Shionone Attenuates Sepsis-Induced Acute Kidney Injury by Regulating Macrophage Polarization via the ECM1/STAT5 Pathway. Front Med (Lausanne) 2022; 8:796743. [PMID: 35141243 PMCID: PMC8818860 DOI: 10.3389/fmed.2021.796743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Backgrounds To date, there are no specific drugs approved for the treatment of sepsis associated acute kidney injury (AKI). Shionone is a natural component with anti-inflammatory activity. In this study, we sought to determine the functional role of Shionone in sepsis-induced AKI. Methods Animal models of AKI were constructed by cecum ligation and puncture (CLP) surgery. C57BL/6 mice were randomly assigned to the Sham, CLP, 10 mg/kg DXM, 50 mg/kg Shionone and 100 mg/kg Shionone groups. RAW264.7 treated with lipopolysaccharides (LPS) was used as an in vitro sepsis model and cells were divided into control, LPS, 1 μg/mL Shionone and 2 μg/mL Shionone groups. The pathological status was assessed by Hematoxylin-Eosin (HE) staining assay, protein expressions were detected by immunofluorescence staining and Western blot, macrophage typing was detected by flow, and the levels of pro-inflammatory factors (IL-6, IL-12, IL-1β, TNF-α) and anti-inflammatory factors (IL-10 and TGF-β) were measured using the corresponding kits. Results ECM1 is highly expressed in tissue-infiltrating macrophages under inflammatory conditions. It has been observed that Shionone inhibits the expression of ECM1 and attenuates sepsis-induced injury in kidney and inflammatory factor levels in serum. In addition, Shionone may reduce inflammatory factor levels through the promotion of M2 macrophages by GM-CSF/STAT5/Arg1 pathway to alleviate sepsis induced inflammation in vitro. Conclusion These findings demonstrate that Shionone can alleviate sepsis-induced AKI by promoting M2 macrophage polarization through regulating the ECM1/STAT5 pathway.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Xue
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Jin Zhao
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Huojun Jiang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Jiaoli Zhu
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Hao Yin
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional and Western Medicine, Suzhou, China
| | - Yizhen Qiu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Aihao Hu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Lingqi Xu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Song
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
- Yi Song
| | - Xin Wang
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional and Western Medicine, Suzhou, China
- *Correspondence: Xin Wang
| |
Collapse
|
28
|
Xiang X, Dong G, Zhu J, Zhang G, Dong Z. Inhibition of HDAC3 protects against kidney cold storage/transplantation injury and allograft dysfunction. Clin Sci (Lond) 2022; 136:45-60. [PMID: 34918039 DOI: 10.1042/cs20210823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Cold storage/rewarming is an inevitable process for kidney transplantation from deceased donors, which correlates closely with renal ischemia-reperfusion injury (IRI) and the occurrence of delayed graft function. Histone deacetylases (HDAC) are important epigenetic regulators, but their involvement in cold storage/rewarming injury in kidney transplantation is unclear. In the present study, we showed a dynamic change of HDAC3 in a mouse model of kidney cold storage followed by transplantation. We then demonstrated that the selective HDAC3 inhibitor RGFP966 could reduce acute tubular injury and cell death after prolonged cold storage with transplantation. RGFP966 also improved renal function, kidney repair and tubular integrity when the transplanted kidney became the sole life-supporting graft in the recipient mouse. In vitro, cold storage of proximal tubular cells followed by rewarming induced remarkable cell death, which was suppressed by RGFP966 or knockdown of HDAC3 with shRNA. Inhibition of HDAC3 decreased the mitochondrial pathway of apoptosis and preserved mitochondrial membrane potential. Collectively, HDAC3 plays a pathogenic role in cold storage/rewarming injury in kidney transplantation, and its inhibition may be a therapeutic option.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| |
Collapse
|
29
|
Preferential siRNA delivery to injured kidneys for combination treatment of acute kidney injury. J Control Release 2022; 341:300-313. [PMID: 34826532 PMCID: PMC8776616 DOI: 10.1016/j.jconrel.2021.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023]
Abstract
Acute kidney injury (AKI) is characterized by a sudden loss of renal function and is associated with high morbidity and mortality. Tumor suppressor p53 and chemokine receptor CXCR4 were both implicated in the AKI pathology. Here, we report on the development and evaluation of polymeric CXCR4 antagonist (PCX) siRNA carrier for selective delivery to injured kidneys in AKI. Our results show that PCX/siRNA nanoparticles (polyplexes) provide protection against cisplatin injury to tubule cells in vitro when both CXCR4 and p53 are inhibited. The polyplexes selectively accumulate and are retained in the injured kidneys in cisplatin and bilateral ischemia reperfusion injury models of AKI. Treating AKI with the combined CXCR4 inhibition and p53 gene silencing with the PCX/sip53 polyplexes improves kidney function and decreases renal damage. Overall, our results suggest that the PCX/sip53 polyplexes have a significant potential to enhance renal accumulation in AKI and deliver therapeutic siRNA.
Collapse
|
30
|
Wu YS, Liang S, Li DY, Wen JH, Tang JX, Liu HF. Cell Cycle Dysregulation and Renal Fibrosis. Front Cell Dev Biol 2021; 9:714320. [PMID: 34900982 PMCID: PMC8660570 DOI: 10.3389/fcell.2021.714320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Precise regulation of cell cycle is essential for tissue homeostasis and development, while cell cycle dysregulation is associated with many human diseases including renal fibrosis, a common process of various chronic kidney diseases progressing to end-stage renal disease. Under normal physiological conditions, most of the renal cells are post-mitotic quiescent cells arrested in the G0 phase of cell cycle and renal cells turnover is very low. Injuries induced by toxins, hypoxia, and metabolic disorders can stimulate renal cells to enter the cell cycle, which is essential for kidney regeneration and renal function restoration. However, more severe or repeated injuries will lead to maladaptive repair, manifesting as cell cycle arrest or overproliferation of renal cells, both of which are closely related to renal fibrosis. Thus, cell cycle dysregulation of renal cells is a potential therapeutic target for the treatment of renal fibrosis. In this review, we focus on cell cycle regulation of renal cells in healthy and diseased kidney, discussing the role of cell cycle dysregulation of renal cells in renal fibrosis. Better understanding of the function of cell cycle dysregulation in renal fibrosis is essential for the development of therapeutics to halt renal fibrosis progression or promote regression.
Collapse
Affiliation(s)
- Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
31
|
Hui Z, Dong QQ, Shu HP, Tu YC, Liao QQ, Yao LJ. Mechanistic insights into the renoprotective role of curcumin in cisplatin-induced acute kidney injury: network pharmacology analysis and experimental validation. Bioengineered 2021; 12:11041-11056. [PMID: 34802380 PMCID: PMC8810021 DOI: 10.1080/21655979.2021.2005916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a severe complication in patients receiving CP chemotherapy. However, effective therapies for CP-AKI are currently lacking. Curcumin (CUR), a natural polyphenol, is extracted from the rhizome of turmeric and has been reported to have nephroprotective activity. However, the role of CUR in CP-AKI remains unclear. This study aimed to explore the mechanism of CUR in CP-AKI by combining a network pharmacology approach with experimental validations. The analysis revealed 176 potential targets of CUR based on the HERB database and 1,286 related targets of CP-AKI from the GeneCards, DrugBank, and OMIM databases. Further, 106 common targets of CUR against CP-AKI were obtained, and these common targets constructed a protein-protein interaction (PPI) network. In addition, the core targets were screened from the PPI network using Cytoscape. Molecular docking revealed that CUR displayed the best binding to AKT1. Gene Ontology (GO) analysis indicated that the primary biological processes of CUR against CP-AKI included cellular response to chemical stress and apoptotic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the PI3K-Akt signaling pathway was most significantly enriched in CUR against CP-AKI. Western blotting and flow cytometry showed that CUR inhibited apoptosis induced by CP by activating the Akt signaling pathway in human kidney tubular epithelial cells (HK-2). Altogether, our findings demonstrated that CUR alleviated apoptosis by activating the Akt signaling pathway in CP-AKI in vitro. These data provide a scientific basis for future investigations into the clinical application of CUR against CP-AKI.
Collapse
Affiliation(s)
- Zhang Hui
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing-Qing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Pan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Qian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Hu X, Ma Z, Wen L, Li S, Dong Z. Autophagy in Cisplatin Nephrotoxicity during Cancer Therapy. Cancers (Basel) 2021; 13:5618. [PMID: 34830772 PMCID: PMC8616020 DOI: 10.3390/cancers13225618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent but its clinical use is often limited by nephrotoxicity. Autophagy is a lysosomal degradation pathway that removes protein aggregates and damaged or dysfunctional cellular organelles for maintaining cell homeostasis. Upon cisplatin exposure, autophagy is rapidly activated in renal tubule cells to protect against acute cisplatin nephrotoxicity. Mechanistically, the protective effect is mainly related to the clearance of damaged mitochondria via mitophagy. The role and regulation of autophagy in chronic kidney problems after cisplatin treatment are currently unclear, despite the significance of research in this area. In cancers, autophagy may prevent tumorigenesis, but autophagy may reduce the efficacy of chemotherapy by protecting cancer cells. Future research should focus on developing drugs that enhance the anti-tumor effects of cisplatin while protecting kidneys during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
33
|
Xiang X, Zhu J, Zhang G, Ma Z, Livingston MJ, Dong Z. Proximal Tubule p53 in Cold Storage/Transplantation-Associated Kidney Injury and Renal Graft Dysfunction. Front Med (Lausanne) 2021; 8:746346. [PMID: 34746182 PMCID: PMC8569378 DOI: 10.3389/fmed.2021.746346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Kidney injury associated with cold storage/transplantation is a primary factor for delayed graft function and poor outcome of renal transplants. p53 contributes to both ischemic and nephrotoxic kidney injury, but its involvement in kidney cold storage/transplantation is unclear. Here, we report that p53 in kidney proximal tubules plays a critical role in cold storage/transplantation kidney injury and inhibition of p53 can effectively improve the histology and function of transplanted kidneys. In a mouse kidney cold storage/transplantation model, we detected p53 accumulation in proximal tubules in a cold storage time-dependent manner, which correlated with tubular injury and cell death. Pifithrin-α, a pharmacologic p53 inhibitor, could reduce acute tubular injury, apoptosis and inflammation at 24 h after cold storage/transplantation. Similar effects were shown by the ablation of p53 from proximal tubule cells. Notably, pifithrin-α also ameliorated kidney injury and improved the function of transplanted kidneys in 6 days when it became the sole life-supporting kidney in recipient mice. in vitro, cold storage followed by rewarming induced cell death in cultured proximal tubule cells, which was accompanied by p53 activation and suppressed by pifithrin-α and dominant-negative p53. Together, these results support a pathogenic role of p53 in cold storage/transplantation kidney injury and demonstrate the therapeutic potential of p53 inhibitors.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| |
Collapse
|
34
|
Yang Y, Zhu X, Yu G, Ma J. Protective Effect of Pyxinol, One Active Ingredient of Lichenes on Cisplatin-Induced Nephrotoxicity via Ameliorating DNA Damage Response. Front Pharmacol 2021; 12:735731. [PMID: 34552492 PMCID: PMC8450395 DOI: 10.3389/fphar.2021.735731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cisplatin is a valuable chemotherapeutic agent against malignant tumors. However, the clinical use of cisplatin is limited by its side effects such as renal injury. Pyxinol is an active constituent of Lichenes and its effects on cisplatin-induced nephrotoxicity is currently unknown. This study aims to examine the potential protective effects of pyxinol on cisplatin-induced renal injury and explore the underlying mechanisms. Methods:In vivo rat model of cisplatin-induced nephrotoxicity was induced by intraperitoneal (i.p) administration of cisplatin. The blood urea nitrogen and creatinine levels were measured and renal histological analysis was conducted to evaluate the renal function; The TUNEL staining, western blotting and real-time PCR assays were conducted to examine related molecular changes. Finally, the in vivo anti-tumor efficacy was examined in the xenograft tumor model using nude mice. Results: Pretreatment with pyxinol attenuated cisplatin-induced increase in blood urea nitrogen, creatinine and urinary protein excretion and the magnitude of injury in the renal tubules. Pyxinol ameliorated the activation of p53 via attenuating the DNA damage response, which then attenuated the tubular cell apoptosis. Finally, pyxinol could potentiate the in vivo anti-tumor efficacy of cisplatin against the xenograft tumor of cervical cancer cells in nude mice. Conclusions: Combining pyxinol with cisplatin could alleviate cisplatin-induced renal injury without decreasing its therapeutic efficacy, which might represent a beneficial adjunct therapy for cisplatin-based chemotherapeutic regimens in the clinic.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Xiuhong Zhu
- People's Hospital of Jimo District, Qingdao, China
| | - Guohua Yu
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China.,Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Jinbo Ma
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
35
|
Zhao S, Wang X, Zheng X, Liang X, Wang Z, Zhang J, Zhao X, Zhuang S, Pan Q, Sun F, Shang W, Barasch J, Qiu A. Iron deficiency exacerbates cisplatin- or rhabdomyolysis-induced acute kidney injury through promoting iron-catalyzed oxidative damage. Free Radic Biol Med 2021; 173:81-96. [PMID: 34298093 PMCID: PMC9482792 DOI: 10.1016/j.freeradbiomed.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
Iron deficiency is the most common micronutrient deficiency worldwide. While iron deficiency is known to suppress embryonic organogenesis, its effect on the adult organ in the context of clinically relevant damage has not been considered. Here we report that iron deficiency is a risk factor for nephrotoxic intrinsic acute kidney injury of the nephron (iAKI). Iron deficiency exacerbated cisplatin-induced iAKI by markedly increasing non-heme catalytic iron and Nox4 protein which together catalyze production of hydroxyl radicals followed by protein and DNA oxidation, apoptosis and ferroptosis. Crosstalk between non-heme catalytic iron/Nox4 and downstream oxidative damage generated a mutual amplification cycle that facilitated rapid progression of cisplatin-induced iAKI. Iron deficiency also exacerbated a second model of iAKI, rhabdomyolysis, via increasing catalytic heme-iron. Heme-iron induced lipid peroxidation and DNA oxidation by interacting with Nox4-independent mechanisms, promoting p53/p21 activity and cellular senescence. Our data suggests that correcting iron deficiency and/or targeting specific catalytic iron species are strategies to mitigate iAKI in a wide range of patients with diverse forms of kidney injury.
Collapse
Affiliation(s)
- Shifeng Zhao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xueqiao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Zheng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiu Liang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanlian Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Zhao
- Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shougang Zhuang
- Division of Nephrology, Department of Medicine, Brown University, Providence, USA
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA.
| | - Andong Qiu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
36
|
Hussein RM, Al-Dalain SM. Betaine downregulates microRNA 34a expression via a p53-dependent manner in cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2021; 35:e22856. [PMID: 34318554 DOI: 10.1002/jbt.22856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023]
Abstract
Cisplatin-induced nephrotoxicity limits its wide application as a chemotherapeutic drug. Betaine is a natural trimethylglycine compound involved in several biological reactions. In this study, the protective effect of betaine against cisplatin-induced nephrotoxicity through modulating the expression of microRNA 34a (miRNA 34a), p53, apoptosis, and inflammation was investigated. Adult Wistar rats were divided into normal group (received vehicle); betaine group (received 250 mg betaine/kg BW/day via oral gavage from Day 1 to Day 25); cisplatin group (received a single intraperitoneal dose of cisplatin at 5 mg/kg BW on Day 21) and betaine + cisplatin group (received the same doses of betaine and cisplatin). The results demonstrated that the cisplatin group exhibited severe kidney tissue damage and an increase in blood creatinine and urea levels. Furthermore, the cisplatin group showed a significant upregulation of miRNA 34a and higher levels of phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β compared to the normal group. Remarkably, the betaine + cisplatin group showed significantly decreased blood creatinine and urea concentrations, decreased levels of miRNA 34a, phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β as well as improved kidney tissue integrity compared to the cisplatin group. In conclusion, cisplatin-induced nephrotoxicity in rats was associated with upregulation of miRNA 34a expression, apoptosis, and inflammation in p53-dependent manner. These effects were reversed by betaine administration that ultimately improved the kidney function and tissue integrity.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Saed M Al-Dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
37
|
Hsing CH, Tsai CC, Chen CL, Lin YH, Tseng PC, Satria RD, Lin CF. Pharmacologically Inhibiting Glycogen Synthase Kinase-3β Ameliorates Renal Inflammation and Nephrotoxicity in an Animal Model of Cisplatin-Induced Acute Kidney Injury. Biomedicines 2021; 9:887. [PMID: 34440091 PMCID: PMC8389561 DOI: 10.3390/biomedicines9080887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
The adverse effect of cisplatin administration causes acute kidney injury (AKI) following renal inflammation and nephrotoxicity, characterized by proximal tubular cell apoptosis and necrosis. Pro-apoptotic and pro-inflammatory roles of glycogen synthase kinase (GSK)-3β have been reported. This study investigated the therapeutic blockade of GSK-3β in cisplatin-induced AKI. A renal cisplatin nephrotoxicity model showed activation of GSK-3β in vivo, particularly in proximal tubular epithelial cells. Pharmacologically inhibiting GSK-3β abolished cisplatin nephrotoxicity, including proximal tubular injury, cell cytotoxicity, and biochemical dysfunction. Additionally, GSK-3β inhibitor treatment ameliorated renal inflammation by reducing immune cell infiltration, cell adhesion molecule expression, and pro-inflammatory cytokine/chemokine production. Cisplatin treatment caused GSK-3β activation in vitro in the human renal proximal tubular epithelial cell line HK-2, whereas either pharmacological administration of GSK-3β inhibitors or genetic transduction of GSK-3β short-hairpin RNA impeded cisplatin-induced cytotoxicity. These results indicate that cisplatin activates GSK-3β followed by GSK-3β-mediated renal inflammation and nephrotoxicity, contributing to AKI.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 710, Taiwan;
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 703, Taiwan;
- Department of Long Term Care Management, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yu-Hui Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (R.D.S.)
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
| | - Rahmat Dani Satria
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (R.D.S.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (R.D.S.)
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
38
|
Wang S, Zhuang S, Dong Z. IFT88 deficiency in proximal tubular cells exaggerates cisplatin-induced injury by suppressing autophagy. Am J Physiol Renal Physiol 2021; 321:F269-F277. [PMID: 34251272 DOI: 10.1152/ajprenal.00672.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are widely regarded as specialized sensors in differentiated cells that have been implicated in the regulation of cell proliferation, differentiation, and viability. We have previously shown that shortening of primary cilia sensitizes cultured kidney tubular cells to cisplatin-induced apoptosis. Intraflagellar transport 88 (IFT88) is an essential component for ciliogenesis and maintenance. Here, we have further examined the effect of proximal tubule-specific IFT88 ablation on cisplatin-induced acute kidney injury (AKI). In this study, more severe AKI occurred in IFT88 knockout mice than age- and sex-matched wild-type mice. Mechanistically, cisplatin stimulated autophagy in kidney tubular cells as an intrinsic protective mechanism. However, renal autophagy was severely impaired in IFT88 knockout mice. In cultured HK-2 cells, cisplatin induced more apoptosis when IFT88 was knocked down. Tat-beclin 1 peptide, a specific autophagy activator, could partially prevent IFT88-associated cell death during cisplatin treatment, although cilium length was not improved significantly. Reexpression of IFT88 partially restored autophagy in IFT88 knockdown cells and suppressed apoptosis during cisplatin treatment. Taken together, these results indicate that defective autophagy in IFT88-deficient kidney cells and tissues contributes to the exaggerated AKI following cisplatin exposure.NEW & NOTEWORTHY Almost every cell has one hair-like, nonmotile antenna projecting from the cell surface, named the primary cilium. In kidney tubular cells, the primary cilium has a protective role, but the underlying mechanism is unclear. This study shows that a short cilium leads to the suppression of autophagy, which is responsible for the heightened injury sensitivity. These findings provide the clues of how to manipulate primary cilium and autophagy to save kidneys.
Collapse
Affiliation(s)
- Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
39
|
Lee D, Yamabe N, Lee H, Lim Lee H, Kim DW, Wook Lee J, Sung Kang K. Necrostatins regulate apoptosis, necroptosis, and inflammation in cisplatin-induced nephrotoxicity in LLC-PK1 cells. Bioorg Med Chem Lett 2021; 48:128256. [PMID: 34256117 DOI: 10.1016/j.bmcl.2021.128256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Acute kidney injury (AKI) is a common clinical problem that is associated with high mortality due to multiple complex mechanisms. Cisplatin is the most important and highly effective chemotherapeutic agent used for the treatment of various solid tumors; however, it is associated with dose-dependent adverse effects, particularly in the kidney where it can cause severe nephrotoxicity. The pathophysiological basis of cisplatin-induced nephrotoxicity has been investigated over the last few decades, and the key pathological occurrences in cisplatin nephrotoxicity include renal tubular cell injury and death. Necrostatin-1 (Nec-1) has been confirmed to act as a specific and potent small-molecule inhibitor of necroptosis. However, the effects of three structurally distinct necrostatins on cisplatin-induced nephrotoxicity remain ambiguous. The aim of this study was to determine if three types of necrostatins (Nec-1, Nec-3-A, and/or Nec-3-B) can exert protective effects in regard to the AKI induced by cisplatin. Our results indicated that necrostatins can prevent cisplatin induced nephrotoxicity via modulating apoptotic pathways through the suppression of cleaved caspase-3 and also by influencing the function of mitogen-activated protein kinase pathway members, including extracellular signal-regulated kinases, c-Jun N-terminal kinases, and p38, in the renal tubular epithelial cell line LLC-PK1. These findings suggest that necrostatins exert beneficial anti-apoptotic effects in the context of AKI induced by cisplatin.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seonngman 13120, Republic of Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seonngman 13120, Republic of Korea
| | - Heesu Lee
- Department of Oral Anatomy, College of Dentistry, Gangneung Wonju National University, Gangneung, Republic of Korea
| | - Hye Lim Lee
- Department of Pediatrics, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28530, Republic of Korea
| | - Jae Wook Lee
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; Convergent Research Center for Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seonngman 13120, Republic of Korea.
| |
Collapse
|
40
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
41
|
Lee K, Gusella GL, He JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney Int 2021; 100:67-78. [PMID: 33831367 PMCID: PMC8855879 DOI: 10.1016/j.kint.2021.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Various cellular insults and injury to renal epithelial cells stimulate repair mechanisms to adapt and restore the organ homeostasis. Renal tubular epithelial cells are endowed with regenerative capacity, which allows for a restoration of nephron function after acute kidney injury. However, recent evidence indicates that the repair is often incomplete, leading to maladaptive responses that promote the progression to chronic kidney disease. The dysregulated cell cycle and proliferation is also a key feature of renal tubular epithelial cells in polycystic kidney disease and HIV-associated nephropathy. Therefore, in this review, we provide an overview of cell cycle regulation and the consequences of dysregulated cell proliferation in acute kidney injury, polycystic kidney disease, and HIV-associated nephropathy. An increased understanding of these processes may help define better targets for kidney repair and combat chronic kidney disease progression.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - G Luca Gusella
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
42
|
Sears SM, Siskind LJ. Potential Therapeutic Targets for Cisplatin-Induced Kidney Injury: Lessons from Other Models of AKI and Fibrosis. J Am Soc Nephrol 2021; 32:1559-1567. [PMID: 34049962 PMCID: PMC8425641 DOI: 10.1681/asn.2020101455] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
The effectiveness of cisplatin, a mainstay in the treatment of many solid organ cancers, is hindered by dose-limiting nephrotoxicity. Cisplatin causes AKI in 30% of patients. Patients who do not develop AKI by clinical standards during treatment are still at risk for long-term decline in kidney function and the development of CKD. The connection between AKI and CKD has become increasingly studied, with renal fibrosis a hallmark of CKD development. To prevent both the short- and long-term effects of cisplatin, researchers must use models that reflect both types of pathology. Although a lot is known about cisplatin-induced AKI, very little is known about the mechanisms by which repeated low levels of cisplatin lead to fibrosis development. In this review, strategies used in various rodent models to prevent kidney injury, its progression to fibrosis, or both, are examined to gain mechanistic insights and identify potential therapeutic targets for cisplatin-induced kidney pathologies. Reviewing the results from these models highlights the diverse and highly complex role of cell death, cell senescence, endoplasmic reticulum stress, autophagy, and immune cell activation in acute and chronic kidney injuries. The use of several models of kidney injury is needed for development of agents that will prevent all aspects of cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
43
|
Wu W, Fu Y, Liu Z, Shu S, Wang Y, Tang C, Cai J, Dong Z. NAM protects against cisplatin-induced acute kidney injury by suppressing the PARP1/p53 pathway. Toxicol Appl Pharmacol 2021; 418:115492. [PMID: 33722665 DOI: 10.1016/j.taap.2021.115492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Cisplatin is a commonly used anti-cancer drug, but it induces nephrotoxicity. As a water-soluble vitamin B family member, nicotinamide (NAM) was recently demonstrated to have beneficial effects for renal injury, but its underlying mechanism remains largely unclear. Here, we suggest that NAM may exert protective effects against cisplatin-induced acute kidney injury (AKI) mainly via suppressing the poly ADP-ribose polymerase 1 (PARP1)/p53 pathway. In our experiment, NAM protected against cisplatin-induced apoptosis both in cultured renal proximal tubular cells and AKI in mice. Mechanistically, NAM suppressed the expression and activation of p53, a known mediator of cisplatin-induced AKI. Upstream of p53, NAM attenuated the induction of γ-H2AX, a hallmark of DNA damage response. Interestingly, PARP1 was activated in cisplatin AKI and this activation was inhibited by NAM. Pharmacological inhibition of PARP1 with PJ34 significantly ameliorated p53 activation and cisplatin-induced cell death in RPTCs and AKI in mice. Thus, NAM may protect against cisplatin-induced AKI by suppressing the PARP1/p53 pathway.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA..
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To describe recent advances in the development of therapeutic agents for acute kidney injury (AKI). RECENT FINDINGS Traditional care for AKI is mostly supportive. At present, no specific therapy has been developed to prevent or treat AKI. However, based on a better understanding of the pathophysiology of AKI, various potential compounds have been recently identified and tested. A variety of pathways has been targeted, including oxidative and mitochondrial stress, cellular metabolism and repair, inflammation, apoptosis and hemodynamics. Many of these potential agents are currently ongoing early-phase clinical trials, and the purpose of this review is to provide a summary of those with the most potential. SUMMARY Despite the lack of therapies specifically approved for AKI, many interesting potential agents are entering clinical trials, with the potential to transform the care of patients with AKI.
Collapse
|
45
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
46
|
Ma S, Xu H, Huang W, Gao Y, Zhou H, Li X, Zhang W. Chrysophanol Relieves Cisplatin-Induced Nephrotoxicity via Concomitant Inhibition of Oxidative Stress, Apoptosis, and Inflammation. Front Physiol 2021; 12:706359. [PMID: 34658905 PMCID: PMC8514135 DOI: 10.3389/fphys.2021.706359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Cisplatin (CDDP) is one of the most frequently prescribed chemotherapy medications. However, its nephrotoxicity which often leads to acute kidney injury (AKI), greatly limits its clinical application. Chrysophanol (CHR), a mainly active anthraquinone ingredient, possesses various biological and pharmacological activities. In this study, we aimed to investigate the underlying protective mechanisms of CHR against CDDP-induced AKI (CDDP-AKI) using C57BL/6 mouse and human proximal tubule epithelial cells. In vivo, we found that pre-treatment with CHR greatly relieved CDDP-AKI and improved the kidney function and morphology. The mechanistic studies indicated that it might alleviate CDDP-AKI by inhibiting oxidative stress, apoptosis, and IKKβ/IκBα/p65/transcription factor nuclear kappa B (NF-κB) inflammation signaling pathway induced by CDDP. Moreover, we found that the cell viability of HK2 cells reduced by CDDP was partially rescued by CHR pre-incubation. Flow cytometry results further indicated that CHR pre-incubation suppressed CDDP induced cellular reactive oxygen species (ROS) generation and inhibited cell apoptosis in a dose-dependent manner. In summary, our results suggested that CHR might be a novel therapy for CDDP-induced AKI.
Collapse
Affiliation(s)
- Siqing Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiong Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
- Xiong Li,
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics. Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- *Correspondence: Wei Zhang,
| |
Collapse
|
47
|
Luan Z, Wei Y, Huo X, Sun X, Zhang C, Ming W, Luo Z, Du C, Li Y, Xu H, Lu H, Zheng F, Guan Y, Zhang X. Pregnane X receptor (PXR) protects against cisplatin-induced acute kidney injury in mice. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165996. [PMID: 33127475 DOI: 10.1016/j.bbadis.2020.165996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin-induced acute kidney injury (CAKI) has been recognized as one of the most serious side effects of cisplatin. Pregnane X receptor (PXR) is a ligand-dependent nuclear receptor and serves as a master regulator of xenobiotic detoxification. Increasing evidence also suggests PXR has many other functions including the regulation of cell proliferation, inflammatory response, and glucose and lipid metabolism. In this study, we aimed to investigate the role of PXR in cisplatin-induced nephrotoxicity in mice. CAKI model was performed in wild-type or PXR knockout mice. Pregnenolone 16α‑carbonitrile (PCN), a mouse PXR specific agonist, was used for PXR activation. The renal function, biochemical, histopathological and molecular alterations were examined in mouse blood, urine or renal tissues. Whole transcriptome analysis was performed by RNA sequencing. We found that PXR activation significantly attenuated CAKI as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative and endoplasmic reticulum stress, and suppressed inflammatory gene expression. RNA sequencing analysis revealed that the renoprotective effect of PXR was associated with multiple crucial signaling pathways, especially the PI3K/AKT pathway. In vitro study further revealed that PXR protected against cisplatin-induced apoptosis of cultured proximal tubule cells in a PI3K-dependent manner. Our results demonstrate that PXR activation can preserve renal function in cisplatin-induced AKI and suggest a possibility of PXR as a novel protective target for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yuanyi Wei
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoxiao Huo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaowan Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Wenhua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Zhaokang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Heyuan Lu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
48
|
Jin X, An C, Jiao B, Safirstein RL, Wang Y. AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F1073-F1080. [PMID: 33103444 DOI: 10.1152/ajprenal.00354.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin, a commonly used anticancer drug, has been shown to induce acute kidney injury, which limits its clinical use in cancer treatment. Emerging evidence has suggested that AMP-activated protein kinase (AMPK), which functions as a cellular energy sensor, is activated by various cellular stresses that deplete cellular ATP. However, the potential role of AMPK in cisplatin-induced apoptosis of renal tubular epithelial cells has not been studied. In this study, we demonstrated that cisplatin activates AMPK (Thr172 phosphorylation) in cultured renal tubular epithelial cells in a time-dependent manner, which was associated with p53 phosphorylation. Compound C, a selective AMPK inhibitor, suppressed cisplatin-induced AMPK activation, p53 phosphorylation, Bax induction, and caspase 3 activation. Furthermore, silencing AMPK expression by siRNA attenuated cisplatin-induced p53 phosphorylation, Bax induction, and caspase 3 activation. In a mouse model of cisplatin-induced kidney injury, compound C inhibited p53 phosphorylation, Bax expression, caspase 3 activation, and apoptosis, protecting the kidney from injury and dysfunction. Taken together, these results suggest that the AMPK-p53-Bax signaling pathway plays a crucial role in cisplatin-induced tubular epithelial cell apoptosis.
Collapse
Affiliation(s)
- Xiaogao Jin
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Changlong An
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Robert L Safirstein
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
49
|
Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12102945. [PMID: 33065960 PMCID: PMC7599787 DOI: 10.3390/cancers12102945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Balkan endemic nephropathy (BEN) is chronic kidney disease caused by intoxication with Aristolochia plant. Apart from subtle decline of renal function that eventually results in kidney failure, the patients are at increased risk for urothelial carcinoma (UC) development. Based on the observed UC markers, the aim of this study was to examine urinary and plasma levels of some these markers in BEN patients without carcinoma, in order to potentially identify those with predictive value. Our study revealed either plasma or urinary survivin levels as a potential predictors of future malignant transformation of urothelium. Abstract Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial disease frequently accompanied by urothelial carcinoma (UC). In light of the increased UC incidence and the markers observed in BEN patients with developed UC, the aim of the current case–control study is to assess survivin, p53 protein, growth factors and receptors (VEGF, VEGFR1, IGF I, IGF-1R and IGFBP5), tumor marker (TF)/CD142, circulating soluble Fas receptor and neopterin, as potentially predictive markers for UC in patients with BEN (52 patients), compared to healthy, age-matched subjects (40). A threefold increase was registered in both circulating and urinary survivin level in BEN patients. Especially noticeable was the ratio of U survivin/U Cr level five times the ratio of BEN patients associated with standard renal markers in multivariate regression models. The concentrations of VEGF, VEGFR1, (TF)/CD142, (sFas) were not significantly different in BEN patients, while urinary/plasma level demonstrated a significant decrease for VEGF. The levels of IGF I, IGFBP5 and IGF-1R were significantly reduced in the urine of BEN patients. Plasma concentration of neopterin was significantly higher, while urinary neopterin value was significantly lower in BEN patients compared to healthy controls, which reflected a significantly lower urine/plasma ratio and low local predictive value. As BEN is a slow-progressing chronic kidney disease, early detection of survivin may be proposed as potential predictor for malignant alteration and screening tool in BEN patients without the diagnosis of UC.
Collapse
|
50
|
Tsuchida M, Yokosawa T, Noguchi T, Shimada T, Yamada M, Sekiguchi Y, Hirata Y, Matsuzawa A. Pro-apoptotic functions of TRAF2 in p53-mediated apoptosis induced by cisplatin. J Toxicol Sci 2020; 45:219-226. [PMID: 32238696 DOI: 10.2131/jts.45.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is an essential component of tumor necrosis factor-α (TNF-α) signaling that regulates nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, and compelling evidence has demonstrated that TRAF2 suppresses TNF-α-induced cytotoxicity. On the other hand, it has been reported that oxidative stress-induced cytotoxicity is potentiated by TRAF2, indicating that TRAF2 both positively and negatively regulates stress-induced cytotoxicity in a context-specific manner. However, the causal role of TRAF2 in DNA damage response (DDR) remains to be explored. In this study, we assessed the function of TRAF2 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that TRAF2 exerts pro-apoptotic activity through p53-dependent mechanisms at least in human fibrosarcoma cell line HT1080. TRAF2 deficient cells exhibit significant resistance to cell death induced by cisplatin, accompanied by the reduction of both p53 protein level and caspase-3 activation. Moreover, cisplatin-induced JNK activation was attenuated in TRAF2-deficient cells, and pharmacological inhibition of JNK signaling suppressed p53 stabilization. These results suggest that TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in HT1080 cells. Thus, our data demonstrate a novel function of TRAF2 in cisplatin-induced DDR as a pro-apoptotic protein.
Collapse
Affiliation(s)
- Mei Tsuchida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|