1
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
2
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
3
|
Multi-Omics Approach Profiling Metabolic Remodeling in Early Systolic Dysfunction and in Overt Systolic Heart Failure. Int J Mol Sci 2021; 23:ijms23010235. [PMID: 35008662 PMCID: PMC8745344 DOI: 10.3390/ijms23010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023] Open
Abstract
Metabolic remodeling plays an important role in the pathophysiology of heart failure (HF). We sought to characterize metabolic remodeling and implicated signaling pathways in two rat models of early systolic dysfunction (MOD), and overt systolic HF (SHF). Tandem mass tag-labeled shotgun proteomics, phospho-(p)-proteomics, and non-targeted metabolomics analyses were performed in left ventricular myocardium tissue from Sham, MOD, and SHF using liquid chromatography–mass spectrometry, n = 3 biological samples per group. Mitochondrial proteins were predominantly down-regulated in MOD (125) and SHF (328) vs. Sham. Of these, 82% (103/125) and 66% (218/328) were involved in metabolism and respiration. Oxidative phosphorylation, mitochondrial fatty acid β-oxidation, Krebs cycle, branched-chain amino acids, and amino acid (glutamine and tryptophan) degradation were highly enriched metabolic pathways that decreased in SHF > MOD. Glycogen and glucose degradation increased predominantly in MOD, whereas glycolysis and pyruvate metabolism decreased predominantly in SHF. PKA signaling at the endoplasmic reticulum–mt interface was attenuated in MOD, whereas overall PKA and AMPK cellular signaling were attenuated in SHF vs. Sham. In conclusion, metabolic remodeling plays an important role in myocardial remodeling. PKA and AMPK signaling crosstalk governs metabolic remodeling in progression to SHF.
Collapse
|
4
|
Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants (Basel) 2021; 10:antiox10091445. [PMID: 34573077 PMCID: PMC8464661 DOI: 10.3390/antiox10091445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired wound healing often occurs in patients with diabetes and causes great inconvenience to them. Aside from the presence of prolonged inflammation, the accumulation of oxidative stress is also implicated in the delayed wound healing. In the present study, we tested the effect of verbascoside, a caffeoyl phenylethanoid glycoside, on the improvement of cell viability and wound healing capacity of gingival epithelial cells under high glucose condition. We showed that verbascoside attenuated the high glucose-induced cytotoxicity and impaired healing, which may be associated with the downregulation of oxidative stress. Our results demonstrated that verbascoside increased the activity of the antioxidant enzyme SOD and reduced the oxidative stress indicator, 8-OHdG, as well as apoptosis. Moreover, verbascoside upregulated the PGC1-α and NRF1 expression and promoted mitochondrial biogenesis, which was mediated by suppression of PKC/HMGB1/RAGE/NFκB signaling. Likewise, we showed the inhibitory effect of verbascoside on oxidative stress was via repression of PKC/HMGB1/RAGE/NFκB activation. Also, our data suggested that the PKC-mediated oxidative stress may lead to the elevated production of inflammatory cytokines, IL-6 and IL-1β. Collectively, we demonstrated that verbascoside may be beneficial to ameliorate impaired oral wound healing for diabetic patients.
Collapse
|
5
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Kotrasová V, Keresztesová B, Ondrovičová G, Bauer JA, Havalová H, Pevala V, Kutejová E, Kunová N. Mitochondrial Kinases and the Role of Mitochondrial Protein Phosphorylation in Health and Disease. Life (Basel) 2021; 11:life11020082. [PMID: 33498615 PMCID: PMC7912454 DOI: 10.3390/life11020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Collapse
Affiliation(s)
- Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Barbora Keresztesová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
| | - Gabriela Ondrovičová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Henrieta Havalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- Correspondence: (E.K.); (N.K.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
- Correspondence: (E.K.); (N.K.)
| |
Collapse
|
7
|
Hwang HV, Sandeep N, Paige SL, Ranjbarvaziri S, Hu DQ, Zhao M, Lan IS, Coronado M, Kooiker KB, Wu SM, Fajardo G, Bernstein D, Reddy S. 4HNE Impairs Myocardial Bioenergetics in Congenital Heart Disease-Induced Right Ventricular Failure. Circulation 2020; 142:1667-1683. [PMID: 32806952 DOI: 10.1161/circulationaha.120.045470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND In patients with complex congenital heart disease, such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload stress, leading to RV hypertrophy and eventually RV failure. The role of lipid peroxidation, a potent form of oxidative stress, in mediating RV hypertrophy and failure in congenital heart disease is unknown. METHODS Lipid peroxidation and mitochondrial function and structure were assessed in right ventricle (RV) myocardium collected from patients with RV hypertrophy with normal RV systolic function (RV fractional area change, 47.3±3.8%) and in patients with RV failure showing decreased RV systolic function (RV fractional area change, 26.6±3.1%). The mechanism of the effect of lipid peroxidation, mediated by 4-hydroxynonenal ([4HNE] a byproduct of lipid peroxidation) on mitochondrial function and structure was assessed in HL1 murine cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS RV failure was characterized by an increase in 4HNE adduction of metabolic and mitochondrial proteins (16 of 27 identified proteins), in particular electron transport chain proteins. Sarcomeric (myosin) and cytoskeletal proteins (desmin, tubulin) also underwent 4HNE adduction. RV failure showed lower oxidative phosphorylation (moderate RV hypertrophy, 287.6±19.75 versus RV failure, 137.8±11.57 pmol/[sec×mL]; P=0.0004), and mitochondrial structural damage. Using a cell model, we show that 4HNE decreases cell number and oxidative phosphorylation (control, 388.1±23.54 versus 4HNE, 143.7±11.64 pmol/[sec×mL]; P<0.0001). Carvedilol, a known antioxidant did not decrease 4HNE adduction of metabolic and mitochondrial proteins and did not improve oxidative phosphorylation. CONCLUSIONS Metabolic, mitochondrial, sarcomeric, and cytoskeletal proteins are susceptible to 4HNE-adduction in patients with RV failure. 4HNE decreases mitochondrial oxygen consumption by inhibiting electron transport chain complexes. Carvedilol did not improve the 4HNE-mediated decrease in oxygen consumption. Strategies to decrease lipid peroxidation could improve mitochondrial energy generation and cardiomyocyte survival and improve RV failure in patients with congenital heart disease.
Collapse
Affiliation(s)
- HyunTae V Hwang
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Nefthi Sandeep
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Sharon L Paige
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Dong-Qing Hu
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Mingming Zhao
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Ingrid S Lan
- Department of Bioengineering (I.S.L.), Stanford University, Palo Alto, CA
| | | | | | - Sean M Wu
- Department of Medicine (Cardiology) (S.M.W.), Stanford University, Palo Alto, CA
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| |
Collapse
|
8
|
Deletion of VDAC1 Hinders Recovery of Mitochondrial and Renal Functions After Acute Kidney Injury. Biomolecules 2020; 10:biom10040585. [PMID: 32290153 PMCID: PMC7226369 DOI: 10.3390/biom10040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) constitute major transporters mediating bidirectional movement of solutes between cytoplasm and mitochondria. We aimed to determine if VDAC1 plays a role in recovery of mitochondrial and kidney functions after ischemia-induced acute kidney injury (AKI). Kidney function decreased after ischemia and recovered in wild-type (WT), but not in VDAC1-deficient mice. Mitochondrial maximum respiration, activities of respiratory complexes and FoF1-ATPase, and ATP content in renal cortex decreased after ischemia and recovered in WT mice. VDAC1 deletion reduced respiration and ATP content in non-injured kidneys. Further, VDAC1 deletion blocked return of activities of respiratory complexes and FoF1-ATPase, and recovery of respiration and ATP content after ischemia. Deletion of VDAC1 exacerbated ischemia-induced mitochondrial fission, but did not aggravate morphological damage to proximal tubules after ischemia. However, VDAC1 deficiency impaired recovery of kidney morphology and increased renal interstitial collagen accumulation. Thus, our data show a novel role for VDAC1 in regulating renal mitochondrial dynamics and recovery of mitochondrial function and ATP levels after AKI. We conclude that the presence of VDAC1 (1) stimulates capacity of renal mitochondria for respiration and ATP production, (2) reduces mitochondrial fission, (3) promotes recovery of mitochondrial function and dynamics, renal morphology, and kidney functions, and (4) increases survival after AKI.
Collapse
|
9
|
Nowak G, Megyesi J. Protein kinase Cα mediates recovery of renal and mitochondrial functions following acute injury. FEBS J 2019; 287:1830-1849. [PMID: 31659858 DOI: 10.1111/febs.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/10/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022]
Abstract
Previously, we have shown that active protein kinase Cα (PKCα) promotes recovery of mitochondrial function after injury in vitro [Nowak G & Bakajsova D (2012) Am J Physiol Renal Physiol 303, F515-F526]. This study examined whether PKCα regulates recovery of mitochondrial and kidney functions after ischemia-induced acute injury (AKI) in vivo. Markers of kidney injury were increased after bilateral ischemia and returned to normal levels in wild-type (WT) mice. Maximum mitochondrial respiration and activities of respiratory complexes and Fo F1 -ATPase decreased after ischemia and recovered in WT mice. Reperfusion after ischemia was accompanied by translocation of active PKCα to mitochondria. PKCα deletion reduced mitochondrial respiration and activities of respiratory complex I and Fo F1 -ATPase in noninjured kidneys, indicating that PKCα is essential in developing fully functional renal mitochondria. These changes in PKCα-deficient mice were accompanied by lower levels of complex I subunits (NDUFA9 and NDUFS3) and the γ-subunit of Fo F1 -ATPase. Also, lack of PKCα exacerbated ischemia-induced decreases in respiration, complex I and Fo F1 -ATPase activities, and blocked their recovery after injury, indicating a crucial role of PKCα in promoting mitochondrial recovery after AKI. Further, PKCα deletion exacerbated acetylation and succinylation of key mitochondrial proteins of energy metabolism after ischemia due to decreases in deacetylase and desuccinylase (sirtuin3 and sirtuin5) levels in renal mitochondria. Thus, our data show a novel role for PKCα in regulating levels of mitochondrial sirtuins and acetylation and succinylation of key mitochondrial proteins. We conclude that PKCα deletion: (a) affects renal physiology by decreasing mitochondrial capacity for maximum respiration; (b) blocks recovery of mitochondrial functions, renal morphology, and functions after AKI; and (c) decreases survival after AKI. ENZYMES: Protein kinase C: EC 2.7.11.13; NADH : ubiquinone reductase (H+ -translocating; complex I): EC 7.1.1.2; FoF1-ATPase (H+ -transporting two-sector ATPase): EC 7.1.2.2; Succinate : ubiquinone oxidoreductase (complex II): EC 1.3.5.1; Ubiquinol : cytochrome-c reductase (complex III): EC 7.1.1.8; Cytochrome c oxidase (complex IV): EC 1.9.3.1; NAD-dependent protein deacetylase sirtuin-3, mitochondrial: EC 2.3.1.286; NAD-dependent protein deacetylase sirtuin-5, mitochondrial: EC 3.5.1.-; Proteinase K (peptidase K): EC 3.4.21.64.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Judit Megyesi
- Division of Nephrology, Departments of Internal Medicine & Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2019; 159:884-893. [PMID: 29369966 DOI: 10.1097/j.pain.0000000000001160] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
Collapse
|
11
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
12
|
Nowak G, Bakajsova-Takacsova D. Protein kinase Cε targets respiratory chain and mitochondrial membrane potential but not F 0 F 1 -ATPase in renal cells injured by oxidant. J Cell Biochem 2018; 119:9394-9407. [PMID: 30074270 PMCID: PMC6298597 DOI: 10.1002/jcb.27256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/21/2018] [Indexed: 01/12/2023]
Abstract
We have previously shown that protein kinase Cε (PKCε) is involved in mitochondrial dysfunction in renal proximal tubular cells (RPTC). This study examined mitochondrial targets of active PKCε in RPTC injured by the model oxidant tert-butyl hydroperoxide (TBHP). TBHP exposure augmented the levels of phosphorylated (active) PKCε in mitochondria, which suggested translocation of PKCε to mitochondria after oxidant exposure. Oxidant injury decreased state 3 respiration, adenosine triphosphate (ATP) production, ATP content, and complex I activity. Further, TBHP exposure increased ΔΨm and production of reactive oxygen species (ROS), and induced mitochondrial fragmentation and RPTC death. PKCε activation by overexpressing constitutively active PKCε exacerbated decreases in state 3 respiration, complex I activity, ATP content, and augmented RPTC death. In contrast, inhibition of PKCε by overexpressing dnPKCε mutant restored state 3 respiration, respiratory control ratio, complex I activity, ΔΨm , and ATP production and content, but did not prevent decreases in F0 F1 -ATPase activity. Inhibition of PKCε prevented oxidant-induced production of ROS and mitochondrial fragmentation, and reduced RPTC death. We conclude that activation of PKCε mediates: (a) oxidant-induced changes in ΔΨm , decreases in mitochondrial respiration, complex I activity, and ATP content; (b) mitochondrial fragmentation; and (c) RPTC death. In contrast, oxidant-induced inhibition of F0 F1 -ATPase activity is not mediated by PKCε. These results show that, in contrast to the protective effects of PKCε in the heart, PKCε activation is detrimental to mitochondrial function and viability in RPTC and mediates oxidant-induced injury.
Collapse
Affiliation(s)
- Grazyna Nowak
- University of Arkansas for Medical Sciences, College of Pharmacy,
Department of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR
72205
| | - Diana Bakajsova-Takacsova
- University of Arkansas for Medical Sciences, College of Pharmacy,
Department of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR
72205
| |
Collapse
|
13
|
Nowak G, Takacsova-Bakajsova D, Megyesi J. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury. Am J Physiol Renal Physiol 2016; 312:F109-F120. [PMID: 27760765 DOI: 10.1152/ajprenal.00115.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023] Open
Abstract
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Diana Takacsova-Bakajsova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Judit Megyesi
- Division of Nephrology, Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
14
|
Layton AT. Recent advances in renal hypoxia: insights from bench experiments and computer simulations. Am J Physiol Renal Physiol 2016; 311:F162-5. [PMID: 27147670 DOI: 10.1152/ajprenal.00228.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 11/22/2022] Open
Abstract
The availability of oxygen in renal tissue is determined by the complex interactions among a host of processes, including renal blood flow, glomerular filtration, arterial-to-venous oxygen shunting, medullary architecture, Na(+) transport, and oxygen consumption. When this delicate balance is disrupted, the kidney may become susceptible to hypoxic injury. Indeed, renal hypoxia has been implicated as one of the major causes of acute kidney injury and chronic kidney diseases. This review highlights recent advances in our understanding of renal hypoxia; some of these studies were published in response to a recent Call for Papers of this journal: Renal Hypoxia.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, North Carolina
| |
Collapse
|
15
|
Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PC. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep 2016; 5:313-327. [PMID: 28955838 PMCID: PMC5600319 DOI: 10.1016/j.bbrep.2016.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). Methods NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. Results tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Conclusions Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. General significance Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature. Mangiferin relives oxidative stress on tBHP induced renal cytotoxicity. Mangiferin reduces tBHP-induced renal cell apoptosis. PI3K has been found to be the pivotal target of mangiferin. Mangiferin positively regulates cell cycle by modulating GSK3β and cyclin D1.
Collapse
Affiliation(s)
- Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Namrata Agarwal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
16
|
Larson J, Drew KL, Folkow LP, Milton SL, Park TJ. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. ACTA ACUST UNITED AC 2014; 217:1024-39. [PMID: 24671961 DOI: 10.1242/jeb.085381] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many vertebrates are challenged by either chronic or acute episodes of low oxygen availability in their natural environments. Brain function is especially vulnerable to the effects of hypoxia and can be irreversibly impaired by even brief periods of low oxygen supply. This review describes recent research on physiological mechanisms that have evolved in certain vertebrate species to cope with brain hypoxia. Four model systems are considered: freshwater turtles that can survive for months trapped in frozen-over lakes, arctic ground squirrels that respire at extremely low rates during winter hibernation, seals and whales that undertake breath-hold dives lasting minutes to hours, and naked mole-rats that live in crowded burrows completely underground for their entire lives. These species exhibit remarkable specializations of brain physiology that adapt them for acute or chronic episodes of hypoxia. These specializations may be reactive in nature, involving modifications to the catastrophic sequelae of oxygen deprivation that occur in non-tolerant species, or preparatory in nature, preventing the activation of those sequelae altogether. Better understanding of the mechanisms used by these hypoxia-tolerant vertebrates will increase appreciation of how nervous systems are adapted for life in specific ecological niches as well as inform advances in therapy for neurological conditions such as stroke and epilepsy.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry and Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
17
|
Rong S, Hueper K, Kirsch T, Greite R, Klemann C, Mengel M, Meier M, Menne J, Leitges M, Susnik N, Meier M, Haller H, Shushakova N, Gueler F. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation. Am J Physiol Renal Physiol 2014; 307:F718-26. [DOI: 10.1152/ajprenal.00372.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H2b PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H2d recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI.
Collapse
Affiliation(s)
- Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- The Transplantation Center, Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Medical School Hannover, Hannover, Germany
| | - Torsten Kirsch
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Robert Greite
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Centre for Paediatrics and Adolescent Medicine, Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Matthias Meier
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jan Menne
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- Phenos GmbH, Hannover, Germany
| | - Michael Leitges
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Nathan Susnik
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Imaging Center, Institute for Animal Science, Medical School Hannover, Hannover, Germany; and
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
19
|
Nowak G, Soundararajan S, Mestril R. Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells. Am J Physiol Renal Physiol 2013; 305:F764-76. [PMID: 23804450 DOI: 10.1152/ajprenal.00061.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study determined the role of PKC-α and associated inducible heat shock protein 70 (iHSP70) in the repair of mitochondrial function in renal proximal tubular cells (RPTCs) after oxidant injury. Wild-type PKC-α (wtPKC-α) and an inactive PKC-α [dominant negative dn; PKC-α] mutant were overexpressed in primary cultures of RPTCs, and iHSP70 levels and RPTC regeneration were assessed after treatment with the oxidant tert-butylhydroperoxide (TBHP). TBHP exposure increased ROS production and induced RPTC death, which was prevented by ferrostatin and necrostatin-1 but not by cyclosporin A. Overexpression of wtPKC-α maintained mitochondrial levels of active PKC-α, reduced cell death, and accelerated proliferation without altering ROS production in TBHP-injured RPTCs. In contrast, dnPKC-α blocked proliferation and monolayer regeneration. Coimmunoprecipitation and proteomic analysis demonstrated an association between inactive, but not active, PKC-α and iHSP70 in mitochondria. Mitochondrial iHSP70 levels increased as levels of active PKC-α decreased after injury. Overexpression of dnPKC-α augmented, whereas overexpression of wtPKC-α abrogated, oxidant-induced increases in mitochondrial iHSP70 levels. iHSP70 overexpression (1) maintained mitochondrial levels of phosphorylated PKC-α, (2) improved the recovery of state 3 respiration and ATP content, (3) decreased RPTC death (an effect abrogated by cyclosporine A), and (4) accelerated proliferation after oxidant injury. In contrast, iHSP70 inhibition blocked the recovery of ATP content and exacerbated RPTC death. Inhibition of PKC-α in RPTC overexpressing iHSP70 blocked the protective effects of iHSP70. We conclude that active PKC-α maintains mitochondrial function and decreases cell death after oxidant injury. iHSP70 is recruited to mitochondria in response to PKC-α dephosphorylation and associates with and reactivates inactive PKC-α, which promotes the recovery of mitochondrial function, decreases RPTC death, and improves regeneration.
Collapse
Affiliation(s)
- Grazyna Nowak
- Dept. of Pharmaceutical Sciences, Univ. of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
20
|
Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors. J Neurosci 2013; 33:2849-59. [PMID: 23407944 DOI: 10.1523/jneurosci.3229-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.
Collapse
|
21
|
Nowak G, Bakajsova D. Protein kinase C-α activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells. Am J Physiol Renal Physiol 2012; 303:F515-26. [PMID: 22674023 DOI: 10.1152/ajprenal.00072.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We demonstrated that nonselective PKC activation promotes mitochondrial function in renal proximal tubular cells (RPTC) following toxicant injury. However, the specific PKC isozyme mediating this effect is unknown. This study investigated the role of PKC-α in the recovery of mitochondrial functions in oxidant-injured RPTC. Wild-type PKC-α (wtPKC-α) and inactive PKC-α mutants were overexpressed in RPTC to selectively increase or block PKC-α activation. Oxidant (tert-butyl hydroperoxidel; TBHP) exposure activated PKC-α in RPTC but decreased PKC-α levels in mitochondria following treatment. Uncoupled and state 3 respirations and activities of complexes I and IV in TBHP-injured cells decreased to 55, 44, 49, and 65% of controls, respectively. F(0)F(1)-ATPase activity and ATP content in injured RPTC decreased to 59 and 60% of controls, respectively. Oxidant exposure increased reactive oxygen species (ROS) production by 210% and induced mitochondrial fragmentation and 52% RPTC lysis. Overexpressing wtPKC-α did not block TBHP-induced ROS production but improved respiration and complex I activity, restored complex IV and F(0)F(1)-ATPase activities, promoted recovery of ATP content, blocked mitochondrial fragmentation, and reduced RPTC lysis to 14%. In contrast, inhibiting PKC-α 1) induced mitochondrial hyperpolarization and fragmentation; 2) blocked increases in ROS production; 3) prevented recovery of respiratory complexes and F(0)F(1)-ATPase activities, respiration, and ATP content; and 4) exacerbated TBHP-induced RPTC lysis. We conclude that 1) activation of PKC-α prevents mitochondrial hyperpolarization and fragmentation, decreases cell death, and promotes recovery of mitochondrial respiration and ATP content following oxidant injury in RPTC; and 2) respiratory complexes I and IV and F(0)F(1)-ATPase are targets of active PKC-α.
Collapse
Affiliation(s)
- Grazyna Nowak
- Univ. of Arkansas for Medical Sciences, Dept. of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| | | |
Collapse
|
22
|
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-80. [PMID: 21967640 PMCID: PMC3315176 DOI: 10.1089/ars.2011.4085] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O₂, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O₂ utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.
Collapse
Affiliation(s)
| | - María Eugenia Elguero
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- Department of Internal Medicine, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Biochemistry, INFIBIOC and School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:1-9. [PMID: 22326449 PMCID: PMC3334476 DOI: 10.1016/j.cbpb.2012.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
24
|
Nowak G, Bakajsova D, Hayes C, Hauer-Jensen M, Compadre CM. γ-Tocotrienol protects against mitochondrial dysfunction and renal cell death. J Pharmacol Exp Ther 2011; 340:330-8. [PMID: 22040679 DOI: 10.1124/jpet.111.186882] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major mechanism of a variety of renal diseases. Tocopherols and tocotrienols are well known antioxidants. This study aimed to determine whether γ-tocotrienol (GT3) protects against mitochondrial dysfunction and renal proximal tubular cell (RPTC) injury caused by oxidants. Primary cultures of RPTCs were injured by using tert-butyl hydroperoxide (TBHP) in the absence and presence of GT3 or α-tocopherol (AT). Reactive oxygen species (ROS) production increased 300% in TBHP-injured RPTCs. State 3 respiration, oligomycin-sensitive respiration, and respiratory control ratio (RCR) decreased 50, 63, and 47%, respectively. The number of RPTCs with polarized mitochondria decreased 54%. F₀F₁-ATPase activity and ATP content decreased 31 and 65%, respectively. Cell lysis increased from 3% in controls to 26 and 52% at 4 and 24 h, respectively, after TBHP exposure. GT3 blocked ROS production, ameliorated decreases in state 3 and oligomycin-sensitive respirations and F₀F₁-ATPase activity, and maintained RCR and mitochondrial membrane potential (ΔΨ(m)) in injured RPTCs. GT3 maintained ATP content, blocked RPTC lysis at 4 h, and reduced it to 13% at 24 h after injury. Treatment with equivalent concentrations of AT did not block ROS production and cell lysis and moderately improved mitochondrial respiration and coupling. This is the first report demonstrating the protective effects of GT3 against RPTC injury by: 1) decreasing production of ROS, 2) improving mitochondrial respiration, coupling, ΔΨ(m), and F₀F₁-ATPase function, 3) maintaining ATP levels, and 4) preventing RPTC lysis. Our data suggest that GT3 is superior to AT in protecting RPTCs against oxidant injury and may prove therapeutically valuable for preventing renal injury associated with oxidative stress.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St., MS 522-3, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
25
|
Nowak G, Bakajsova D, Samarel AM. Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules. Am J Physiol Renal Physiol 2011; 301:F197-208. [PMID: 21289057 DOI: 10.1152/ajprenal.00364.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307-F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F(0)F(1)-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F(0)F(1)-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC.
Collapse
Affiliation(s)
- Grazyna Nowak
- University of Arkansas for Medical Sciences, Dept. of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
26
|
Alcohol withdrawal and brain injuries: beyond classical mechanisms. Molecules 2010; 15:4984-5011. [PMID: 20657404 PMCID: PMC6257660 DOI: 10.3390/molecules15074984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 01/12/2023] Open
Abstract
Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol) adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW) provokes the intense generation of reactive oxygen species (ROS) and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17β-estradiol (E2), interferes with the EW-induced alteration of oxidative signaling pathways and thereby protects neurons, mitochondria, and behaviors. The current review attempts to provide integrated information at the levels of oxidative signaling mechanisms by which EW provokes brain injuries and E2 protects against it.
Collapse
|
27
|
Ulrich PN, Marsh AG. Thermal sensitivity of mitochondrial respiration efficiency and protein phosphorylation in the clam Mercenaria mercenaria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:608-618. [PMID: 19194752 DOI: 10.1007/s10126-009-9177-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 01/02/2009] [Indexed: 05/27/2023]
Abstract
The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15 degrees C, 18 degrees C, and 21 degrees C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18 degrees C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.
Collapse
Affiliation(s)
- P N Ulrich
- College of Marine and Earth Studies, University Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | | |
Collapse
|
28
|
Dave KR, Anthony Defazio R, Raval AP, Dashkin O, Saul I, Iceman KE, Perez-Pinzon MA, Drew KL. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem 2009; 110:1170-9. [PMID: 19493168 PMCID: PMC2774829 DOI: 10.1111/j.1471-4159.2009.06196.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the pre-hibernation season, arctic ground squirrels (AGS) can tolerate 8 min of asphyxial cardiac arrest (CA) without detectable brain pathology. Better understanding of the mechanisms regulating innate ischemia tolerance in AGS has the potential to facilitate the development of novel prophylactic agents to induce ischemic tolerance in patients at risk of stroke or CA. We hypothesized that neuroprotection in AGS involves robust maintenance of ion homeostasis similar to anoxia-tolerant turtles. Ion homeostasis was assessed by monitoring ischemic depolarization (ID) in cerebral cortex during CA in vivo and during oxygen glucose deprivation in vitro in acutely prepared hippocampal slices. In both models, the onset of ID was significantly delayed in AGS compared with rats. The epsilon protein kinase C (epsilonPKC) is a key mediator of neuroprotection and inhibits both Na+/K+-ATPase and voltage-gated sodium channels, primary mediators of the collapse of ion homeostasis during ischemia. The selective peptide inhibitor of epsilonPKC (epsilonV1-2) shortened the time to ID in brain slices from AGS but not in rats despite evidence that epsilonV1-2 decreased activation of epsilonPKC in brain slices from both rats and AGS. These results support the hypothesis that epsilonPKC activation delays the collapse of ion homeostasis during ischemia in AGS.
Collapse
Affiliation(s)
- Kunjan R Dave
- Department of Neurology, Cerebral Vascular Disease Research Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33101, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zeng C, Villar VAM, Yu P, Zhou L, Jose PA. Reactive oxygen species and dopamine receptor function in essential hypertension. Clin Exp Hypertens 2009; 31:156-78. [PMID: 19330604 DOI: 10.1080/10641960802621283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China.
| | | | | | | | | |
Collapse
|
30
|
Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci 2008; 28:4172-82. [PMID: 18417696 PMCID: PMC2678917 DOI: 10.1523/jneurosci.5471-07.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/29/2008] [Accepted: 03/02/2008] [Indexed: 01/01/2023] Open
Abstract
In the brain, ischemic preconditioning (IPC) diminishes mitochondrial dysfunction after ischemia and confers neuroprotection. Activation of epsilon protein kinase C (epsilonPKC) has been proposed to be a key neuroprotective pathway during IPC. We tested the hypothesis that IPC increases the levels of epsilonPKC in synaptosomes from rat hippocampus, resulting in improved synaptic mitochondrial respiration. Preconditioning significantly increased the level of hippocampal synaptosomal epsilonPKC to 152% of sham-operated animals at 2 d of reperfusion, the time of peak neuroprotection. We tested the effect of epsilonPKC activation on hippocampal synaptic mitochondrial respiration 2 d after preconditioning. Treatment with the specific epsilonPKC activating peptide, tat-psiepsilonRACK (tat-psiepsilon-receptor for activated C kinase), increased the rate of oxygen consumption in the presence of substrates for complexes I, II, and IV to 157, 153, and 131% of control (tat peptide alone). In parallel, we found that epsilonPKC activation in synaptosomes from preconditioned animals resulted in altered levels of phosphorylated mitochondrial respiratory chain proteins: increased serine and tyrosine phosphorylation of 18 kDa subunit of complex I, decreased serine phosphorylation of FeS protein in complex III, increased threonine phosphorylation of COX IV (cytochrome oxidase IV), increased mitochondrial membrane potential, and decreased H2O2 production. In brief, ischemic preconditioning promoted significant increases in the level of synaptosomal epsilonPKC. Activation of epsilonPKC increased synaptosomal mitochondrial respiration and phosphorylation of mitochondrial respiratory chain proteins. We propose that, at 48 h of reperfusion after ischemic preconditioning, epsilonPKC is poised at synaptic mitochondria to respond to ischemia either by direct phosphorylation or activation of the epsilonPKC signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Saul
- The Cerebral Vascular Disease Research Center
| | - Antoni Barrientos
- The Cerebral Vascular Disease Research Center
- Department of Neurology and Neuroscience Program, and
- Department of Biochemistry and Molecular Biology and The John T. MacDonald Center for Medical Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Miguel A. Perez-Pinzon
- The Cerebral Vascular Disease Research Center
- Department of Neurology and Neuroscience Program, and
| |
Collapse
|
31
|
Shaik ZP, Fifer EK, Nowak G. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury. Am J Physiol Renal Physiol 2007; 294:F423-32. [PMID: 18077599 DOI: 10.1152/ajprenal.00463.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we showed that protein kinase B (Akt) activation increases intracellular ATP levels and decreases necrosis in renal proximal tubular cells (RPTC) injured by the nephrotoxicant S-(1, 2-dichlorovinyl)-l-cysteine (DCVC) (Shaik ZP, Fifer EK, Nowak G. Am J Physiol Renal Physiol 292: F292-F303, 2007). This study examined the role of Akt in improving mitochondrial function in DCVC-injured RPTC. Our data show a novel observation that phosphorylated (active) Akt is localized in mitochondria of noninjured RPTC, both in mitoplasts and the mitochondrial outer membrane. Mitochondrial levels of active Akt decreased in nephrotoxicant-injured RPTC, and this decrease was associated with mitochondrial dysfunction. DCVC decreased basal, uncoupled, and state 3 respirations; ATP production; activities of complexes I, II, and III; the mitochondrial membrane potential (DeltaPsi(m)); and F(0)F(1)-ATPase activity. Expressing constitutively active Akt in DCVC-injured RPTC increased the levels of phosphorylated Akt in mitochondria, reduced the decreases in basal and uncoupled respirations, increased complex I-coupled state 3 respiration and ATP production, enhanced activities of complex I, complex III, and F(0)F(1)-ATPase, and improved DeltaPsi(m). In contrast, inhibiting Akt activation by expressing dominant negative (inactive) Akt or using 20 microM LY294002 exacerbated decreases in electron transport rate, state 3 respiration, ATP production, DeltaPsi(m), and activities of complex I, complex III, and F(0)F(1)-ATPase. In conclusion, our data show that Akt activation promotes mitochondrial respiration and ATP production in toxicant-injured RPTC by 1) improving integrity of the respiratory chain and maintaining activities of complex I and complex III, 2) reducing decreases in DeltaPsi(m), and 3) restoring F(0)F(1)-ATPase activity.
Collapse
Affiliation(s)
- Zabeena P Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
32
|
Nowak G, Clifton GL, Bakajsova D. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. J Pharmacol Exp Ther 2007; 324:1155-62. [PMID: 18055880 DOI: 10.1124/jpet.107.130872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously reported that mitochondrial function, intracellular ATP levels, and complex I activity are decreased in renal proximal tubular cells (RPTC) after oxidant (tert-butyl hydroperoxide; TBHP)-induced injury. This study examined the hypothesis that succinate supplementation decreases mitochondrial dysfunction, ameliorates energy deficits, and increases viability in TBHP-injured RPTC. Basal and uncoupled respirations in injured RPTC decreased 33 and 35%, respectively, but remained unchanged in injured RPTC supplemented with 10 mM succinate (electron donor to respiratory complex II). State 3 respiration supported by electron donors to complex I decreased 40% in injured RPTC but improved significantly by succinate supplements. The activity of mitochondrial complex I in TBHP-injured RPTC decreased 48%, whereas complex II activity remained unchanged. Succinate supplementation prevented decreases in complex I activity. ATP levels decreased 43% in injured RPTC but were maintained in injured cells supplemented with succinate. Lipid peroxidation increased 19-fold in injured RPTC but only 9-fold in injured cells supplemented with succinate. Exposure of primary cultures of RPTC to TBHP produced 24% cell injury and lysis but no apoptosis. In contrast, no cell lysis was found in RPTC supplemented with succinate. We conclude that mitochondrial dysfunction and energy deficits in oxidant-injured RPTC are ameliorated by succinate, and we propose that succinate supplementation may prove therapeutically valuable. Succinate 1) uses an alternate pathway of mitochondrial energy metabolism, 2) improves activity of complex I and oxidation of substrates through complex I, and 3) decreases oxidative stress and cell lysis in oxidant-injured RPTC.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St., MS 522-3, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
33
|
Haden DW, Suliman HB, Carraway MS, Welty-Wolf KE, Ali AS, Shitara H, Yonekawa H, Piantadosi CA. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 2007; 176:768-77. [PMID: 17600279 PMCID: PMC2020830 DOI: 10.1164/rccm.200701-161oc] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 06/17/2007] [Indexed: 01/20/2023] Open
Abstract
RATIONALE The extent, timing, and significance of mitochondrial injury and recovery in bacterial sepsis are poorly characterized, although oxidative and nitrosative mitochondrial damage have been implicated in the development of organ failure. OBJECTIVES To define the relationships between mitochondrial biogenesis, oxidative metabolism, and recovery from Staphylococcus aureus sepsis. METHODS We developed a murine model of fibrin clot peritonitis, using S. aureus. The model yielded dose-dependent decreases in survival and resting energy expenditure, allowing us to study recovery from sublethal sepsis. MEASUREMENTS AND MAIN RESULTS Peritonitis caused by 10(6) colony-forming units of S. aureus induced a low tumor necrosis factor-alpha state and minimal hepatic cell death, but activated prosurvival protein kinase A, B, and C sequentially over 3 days. Basal metabolism by indirect calorimetry was depressed because of selective mitochondrial oxidative stress and subsequent loss of mitochondrial DNA copy number. During recovery, mitochondrial biogenesis was strongly activated by regulated expression of the requisite nuclear respiratory factors 1 and 2 and the coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha, as well as by repression of the biogenesis suppressor nuclear receptor interacting protein-140. Biogenesis reconstituted mitochondrial DNA copy number and transcription, and restored basal metabolism without significant hepatocellular proliferation. These events dramatically increased hepatic mitochondrial density in transgenic mice expressing mitochondrially targeted green fluorescent protein. CONCLUSIONS This is the first demonstration that mitochondrial biogenesis restores oxidative metabolism in bacterial sepsis and is therefore an early and important prosurvival factor.
Collapse
Affiliation(s)
- Douglas W Haden
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kinsey GR, McHowat J, Beckett CS, Schnellmann RG. Identification of calcium-independent phospholipase A2gamma in mitochondria and its role in mitochondrial oxidative stress. Am J Physiol Renal Physiol 2006; 292:F853-60. [PMID: 17047165 DOI: 10.1152/ajprenal.00318.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidant-induced lipid peroxidation and cell death mediate pathologies associated with ischemia-reperfusion and inflammation. Our previous work in rabbit renal proximal tubular cells (RPTC) demonstrated that inhibition of Ca(2+)-independent phospholipase A(2) (iPLA(2)) potentiates oxidant-induced lipid peroxidation and necrosis, implicating iPLA(2) in phospholipid repair. This study was conducted to identify a RPTC mitochondrial PLA(2) and determine the role of PLA(2) in oxidant-induced mitochondrial dysfunction. iPLA(2) activity was detected in Percoll-purified rabbit renal cortex mitochondria (RCM) and in isolated mitochondrial inner membrane fractions from rabbit and human RCM. Immunoblot analysis and inhibitor sensitivity profiles revealed that iPLA(2)gamma is the RCM iPLA(2) activity. RCM iPLA(2) activity was enhanced in the presence of ATP and was blocked by the PKCepsilon V1-2 inhibitor. Oxidant-induced mitochondrial lipid peroxidation and swelling were accelerated by pretreatment with R-BEL, but not S-BEL. Furthermore, oxidant treatment of isolated RCM resulted in decreased iPLA(2)gamma activity. These results reveal that RCM iPLA(2) is iPLA(2)gamma, RCM iPLA(2)gamma is regulated by phosphorylation by PKCepsilon, iPLA(2)gamma protects RCM from oxidant-induced lipid peroxidation and dysfunction, and that a strategy to preserve or enhance iPLA(2)gamma activity may be of therapeutic benefit.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Dept. of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
35
|
Nowak G, Clifton GL, Godwin ML, Bakajsova D. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells. Am J Physiol Renal Physiol 2006; 291:F840-55. [PMID: 16705147 PMCID: PMC1978509 DOI: 10.1152/ajprenal.00219.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we showed that oxidant exposure in renal proximal tubular cells (RPTC) induces mitochondrial dysfunction mediated by PKC-epsilon. This study examined the role of ERK1/2 in mitochondrial dysfunction induced by oxidant injury and whether PKC-epsilon mediates its effects on mitochondrial function through the Raf-MEK1/2-ERK1/2 pathway. Sublethal injury produced by tert-butylhydroperoxide (TBHP) resulted in three- to fivefold increase in phosphorylation of ERK1/2 and p38 but not JNK. This was followed by decreases in basal and uncoupled respirations (41%), state 3 respiration and ATP production coupled to complex I (46%), and complex I activity (42%). Oxidant exposure decreased aconitase activity 30% but not pyruvate, alpha-ketoglutarate, and malate dehydrogenase activities. Inhibition of ERK1/2 restored basal and state 3 respirations, DeltaPsi(m), ATP production, and complex I activity but not aconitase activity. In contrast, activation of ERK1/2 by expression of constitutively active MEK1 suppressed basal, uncoupled, and state 3 respirations in noninjured RPTC to the levels observed in TBHP-injured RPTC. MEK1/2 inhibition did not change Akt or p38 phosphorylation, demonstrating that the protective effect of MEK1/2 inhibitor was not due to activation of Akt or inhibition of p38 pathway. Inhibition of PKC-epsilon did not block TBHP-induced ERK1/2 phosphorylation in whole RPTC or in mitochondria. We conclude that 1) oxidant-induced activation of ERK1/2 but not p38 or JNK reduces mitochondrial respiration and ATP production by decreasing complex I activity and substrate oxidation through complex I, 2) citric acid cycle dehydrogenases are not under control of the ERK1/2 pathway in oxidant-injured RPTC, 3) the protective effects of ERK1/2 inhibition are not due to activation of Akt, and 4) ERK1/2 and PKC-epsilon mediate oxidant-induced mitochondrial dysfunction through independent pathways.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
36
|
Huang Q, Wu LJ, Tashiro SI, Onodera S, Ikejima T. Elevated levels of DNA repair enzymes and antioxidative enzymes by (+)-catechin in murine microglia cells after oxidative stress. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2006; 8:61-71. [PMID: 16753784 DOI: 10.1080/10286020500209087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
(+)-Catechin possesses a broad range of pharmacological properties, including antioxidative effect. However, little is reported on the mechanism by which (+)-catechin protects microglia cells from DNA damage by oxidative stress. In this study, TUNEL assay and DNA electrophorysis indicated that (+)-catechin markedly blocked DNA fragmentation and apoptosis of microglia cells by tBHP exposure. A potent antioxidative effect of (+)-catechin was confirmed by comparison with a putative antioxidant agent, N-acetylcysteine at the lower doses. Furthermore, the increased intracellular ROS by tBHP exposure were scavenged by elevated activities of catalase (CAT) and superoxide dismutase (SOD) after (+)-catechin treatment. (+)-Catechin partially inhibited the activation of caspase-3, thereby both cleavage of poly (ADP-ribose) polymerase (PARP) and degradation of inhibitor of caspase-activated DNase (ICAD) were effectively abolished. In addition, the expression of PARP for repair of impaired DNA was significantly increased by (+)-catechin treatment. Taken together, these data suggest that protective effects of (+)-catechin against oxidative DNA damage of microglia cells is exerted by the increased expression of DNA repair enzyme PARP and antioxidant enzyme activities.
Collapse
Affiliation(s)
- Qing Huang
- Department of Phytochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | |
Collapse
|
37
|
Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 2005; 38:2-11. [PMID: 15589366 DOI: 10.1016/j.freeradbiomed.2004.09.030] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/22/2004] [Indexed: 12/31/2022]
Abstract
In addition to powering energy needs of the cell, mitochondria function as pivotal integrators of cell survival/death signals. In recent years, numerous studies indicate that each of the major kinase signaling pathways can be stimulated to target the mitochondrion. These include protein kinase A, protein kinase B/Akt, protein kinase C, extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Although most studies focus on phosphorylation of pro- and antiapoptotic proteins (BAD, Bax, Bcl-2, Bcl-xL), kinase-mediated regulation of complex I activity, anion and cation channels, metabolic enzymes, and Mn-SOD mRNA has also been reported. Recent identification of a number of scaffold proteins (AKAP, PICK, Sab) that bring specific kinases to the cytoplasmic surface of mitochondria further emphasizes the importance of mitochondrial kinase signaling. Immunogold electron microscopy, subcellular fractionation and immunofluorescence studies demonstrate the presence of kinases within subcompartments of the mitochondrion, following diverse stimuli and in neurodegenerative diseases. Given the sensitivity of these signaling pathways to reactive oxygen and nitrogen species, in situ activation of mitochondrial kinases may represent a potent reverse-signaling mechanism for communication of mitochondrial status to the rest of the cell.
Collapse
Affiliation(s)
- Craig Horbinski
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
38
|
Sweitzer SM, Wong SME, Peters MC, Mochly-Rosen D, Yeomans DC, Kendig JJ. Protein kinase C epsilon and gamma: involvement in formalin-induced nociception in neonatal rats. J Pharmacol Exp Ther 2004; 309:616-25. [PMID: 14762097 DOI: 10.1124/jpet.103.060350] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central nervous system undergoes dynamic changes as it matures. However, until recently, very little was known about the impact of these changes on pain and analgesia. This study tested the hypothesis that the epsilon and gamma isozymes of protein kinase C (PKC) contribute to formalin-induced nociception in an age-dependent manner. Expression of epsilon and gamma PKC and the contributions of these isozymes in formalin-induced nociception was examined in postnatal day 7, 15, and 21 rats. epsilonPKC expression in dorsal root ganglion neurons and gammaPKC expression in lamina II of the spinal cord increased from the first to the third postnatal week. Coupling immunohistochemical and Western analysis, translocation of epsilonPKC followed intraplantar formalin in all ages. In contrast, formalin-induced gammaPKC translocation was observed only in postnatal day 21 rats. Behaviorally, intrathecal administration of the epsilonPKC-specific inhibitor (epsilonV1-2) attenuated phase 1 and phase 2 formalin behaviors at all ages. In contrast, intrathecal administration of the gammaPKC-specific inhibitor (gammaV5-3) attenuated only phase 2 responses in postnatal day 15 and 21 rats. Functionally, inhibition of epsilonPKC decreased capsaicin-stimulated release of glutamate and calcitonin gene-related peptide in spinal cords isolated from postnatal day 7 rats. These results suggest that epsilonPKC age independently mediates inflammatory pain produced by intraplantar formalin. In contrast, gammaPKC contributes to formalin-induced nociception in an age-dependent manner. Identifying the molecular mechanisms responsible for age-specific patterns of nociception is necessary for the rational development of novel therapeutic strategies for treating pediatric pain.
Collapse
Affiliation(s)
- Sarah M Sweitzer
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|