1
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Wang J, Chen J. Cellular senescence, a novel therapeutic target for mesenchymal stem cells in acute kidney injury. J Cell Mol Med 2021. [PMCID: PMC7812305 DOI: 10.1111/jcmm.16163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cellular senescence is a widespread cellular programme that is characterized by permanent cell cycle arrest. Senescent cells adopt a changed secretory phenotype that can alter cellular function. For years, cellular senescence has been thought to be a protective factor against cancer; however, it is now recognized that it has a dual effect on individuals. Co‐ordinated activation of cellular senescence provides advantages during embryogenesis, wound healing, tissue repair and inhibition of tumorigenesis. On the other hand, the aberrant generation and accumulation of abnormal senescent cells lead to the development of age‐related conditions and tissue deterioration. During acute kidney injury (AKI), the kidney faces multiple types of stressors and challenges, which can easily drive cellular senescence. How to appropriately progress through the cell cycle and minimize long‐term damage is of great importance to the acquisition of adaptive repair considering that no available therapeutic interventions can reliably limit injury, speedy recovery or improve the prognosis of this syndrome. Whether the manipulation of cellular senescence can become a novel therapeutic target in AKI and reignite clinical and research interest remains to be determined. Here, we share our current understanding of the role of cellular senescence in AKI, along with examples of the application of mesenchymal stem cells (MSCs) for targeting this disorder during its treatment.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Fei Han
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Dajin Chen
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Yanhong Ma
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Junni Wang
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| | - Jianghua Chen
- Kidney Disease Center The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province Institute of Nephrology Zhejiang University Hangzhou China
| |
Collapse
|
2
|
Ren Y, Chen Y, Zheng X, Wang H, Kang X, Tang J, Qu L, Shao X, Wang S, Li S, Liu G, Yang L. Human amniotic epithelial cells ameliorate kidney damage in ischemia-reperfusion mouse model of acute kidney injury. Stem Cell Res Ther 2020; 11:410. [PMID: 32967729 PMCID: PMC7510147 DOI: 10.1186/s13287-020-01917-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common clinical disease with complex pathophysiology and limited therapeutic choices. This prompts the need for novel therapy targeting multiple aspects of this disease. Human amnion epithelial cell (hAEC) is an ideal stem cell source. Increasing evidence suggests that exosomes may act as critical cell-cell communicators. Accordingly, we assessed the therapeutic potential of hAECs and their derived exosomes (hAECs-EXO) in ischemia reperfusion mouse model of AKI and explored the underlying mechanisms. METHODS The hAECs were primary cultured, and hAECs-EXO were isolated and characterized. An ischemic-reperfusion injury-induced AKI (IRI-AKI) mouse model was established to mimic clinical ischemic kidney injury with different disease severity. Mouse blood creatinine level was used to assess renal function, and kidney specimens were processed to detect cell proliferation, apoptosis, and capillary density. Macrophage infiltration was analyzed by flow cytometry. hAEC-derived exosomes (hAECs-EXO) were used to treat hypoxia-reoxygenation (H/R) injured HK-2 cells and mouse bone marrow-derived macrophages to evaluate their protective effect in vitro. Furthermore, hAECs-EXO were subjected to liquid chromatography-tandem mass spectrometry for proteomic profiling. RESULTS We found that systematically administered hAECs could improve mortality and renal function in IRI-AKI mice, decrease the number of apoptotic cells, prevent peritubular capillary loss, and modulate kidney local immune response. However, hAECs showed very low kidney tissue integration. Exosomes isolated from hAECs recapitulated the renal protective effects of their source cells. In vitro, hAECs-EXO protected HK-2 cells from H/R injury-induced apoptosis and promoted bone marrow-derived macrophage polarization toward M2 phenotype. Proteomic analysis on hAECs-EXO revealed proteins involved in extracellular matrix organization, growth factor signaling pathways, cytokine production, and immunomodulation. These findings demonstrated that paracrine of exosomes might be the key mechanism of hAECs in alleviating renal ischemia reperfusion injury. CONCLUSIONS We reported hAECs could improve survival and ameliorate renal injury in mice with IRI-AKI. The anti-apoptotic, pro-angiogenetic, and immunomodulatory capabilities of hAECs are at least partially, through paracrine pathways. hAECs-EXO might be a promising clinical therapeutic tool, overcoming the weaknesses and risks associated with the use of native stem cells, for patients with AKI.
Collapse
Affiliation(s)
- Yifei Ren
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Ying Chen
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Xizi Zheng
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Hui Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xin Kang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Jiawei Tang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Lei Qu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co Ltd., Shanghai, 200333, People's Republic of China
| | - Suxia Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Shuangling Li
- Department of Critical Care Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Gang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China.
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China.
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
3
|
Valdés A, Castro-Puyana M, García-Pastor C, Lucio-Cazaña FJ, Marina ML. Time-series proteomic study of the response of HK-2 cells to hyperglycemic, hypoxic diabetic-like milieu. PLoS One 2020; 15:e0235118. [PMID: 32579601 PMCID: PMC7313754 DOI: 10.1371/journal.pone.0235118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
During diabetes, renal proximal tubular cells (PTC) are exposed to a combination of high glucose and hypoxic conditions, which plays a relevant role in the development of diabetic kidney disease (DKD). In this work, a time-series proteomic study was performed to analyse the effect of a diabetic-like microenvironment induced changes on HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions for up to 48 h. Diabetic conditions increased the percentage of death cells after 24 and 48 h, but no differences in the protein/cell ratio were found. The relative protein quantification using dimethyl-labeling and UHPLC-MS/MS analysis allowed the identification of 317, 296 and 259 proteins at 5, 24 and 48 h, respectively. The combination of statistical and time expression profile analyses indicated an increased expression of proteins involved in glycolysis, and a decrease of cytoskeletal-related proteins. The exposure of HK-2 cells to high glucose and hypoxia reproduces some of the effects of diabetes on PTC and, with the limitations inherent to in vitro studies, propose new mechanisms and targets to be considered in the management of DKD.
Collapse
Affiliation(s)
- Alberto Valdés
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | - Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | | | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Alcalá de Henares, Madrid, España
- * E-mail:
| |
Collapse
|
4
|
Brilli Skvarca L, Han HI, Espiritu EB, Missinato MA, Rochon ER, McDaniels MD, Bais AS, Roman BL, Waxman JS, Watkins SC, Davidson AJ, Tsang M, Hukriede NA. Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. Dis Model Mech 2019; 12:dmm.037390. [PMID: 30890583 PMCID: PMC6505474 DOI: 10.1242/dmm.037390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a serious disorder for which there are limited treatment options. Following injury, native nephrons display limited regenerative capabilities, relying on the dedifferentiation and proliferation of renal tubular epithelial cells (RTECs) that survive the insult. Previously, we identified 4-(phenylthio)butanoic acid (PTBA), a histone deacetylase inhibitor (HDI), as an enhancer of renal recovery, and showed that PTBA treatment increased RTEC proliferation and reduced renal fibrosis. Here, we investigated the regenerative mechanisms of PTBA in zebrafish models of larval renal injury and adult cardiac injury. With respect to renal injury, we showed that delivery of PTBA using an esterified prodrug (UPHD25) increases the reactivation of the renal progenitor gene Pax2a, enhances dedifferentiation of RTECs, reduces Kidney injury molecule-1 (Kim-1) expression, and lowers the number of infiltrating macrophages. Further, we found that the effects of PTBA on RTEC proliferation depend upon retinoic acid signaling and demonstrate that the therapeutic properties of PTBA are not restricted to the kidney but also increase cardiomyocyte proliferation and decrease fibrosis following cardiac injury in adult zebrafish. These studies provide key mechanistic insights into how PTBA enhances tissue repair in models of acute injury and lay the groundwork for translating this novel HDI into the clinic. This article has an associated First Person interview with the joint first authors of the paper. Summary: Mortality associated with AKI is in part due to limited treatments available to ameliorate injury. The authors identify a compound that accelerates AKI recovery and promotes cellular dedifferentiation.
Collapse
Affiliation(s)
- Lauren Brilli Skvarca
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hwa In Han
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Maria A Missinato
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elizabeth R Rochon
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael D McDaniels
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abha S Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth L Roman
- Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joshua S Waxman
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Simon C Watkins
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan J Davidson
- Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA .,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Liu T, Liu L, Liu M, Du R, Dang Y, Bai M, Zhang L, Ma F, Yang X, Ning X, Sun S. MicroRNA-493 targets STMN-1 and promotes hypoxia-induced epithelial cell cycle arrest in G 2/M and renal fibrosis. FASEB J 2018; 33:1565-1577. [PMID: 30183377 DOI: 10.1096/fj.201701355rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypoxia plays an important role in the development of renal fibrosis. G2/M arrest in renal tubular cells is an important pathway in the development of chronic kidney disease. It is unknown whether hypoxia leads to renal fibrosis via the regulation of G2/M arrest in renal tubular epithelial cells. For the first time, to our knowledge, we showed that hypoxia induces G2/M arrest in renal tubular cells leading to renal fibrosis, and microRNAs are involved in this regulation. We compared microRNA expression between hypoxia and normoxia in HK2 cells and found microRNA (miR)-493 to be highly expressed at 24 and 48 h after hypoxia. The overexpression of miR-493 reduced the expression of the cell cycle regulator, Stathmin (STMN)-1, and increased the percentage of G2/M phase cells and profibrotic factors in HK2 cells. Targeting STMN-1 with short hairpin RNA produced an effect similar to that of miR-493 overexpression. On contrast, the miR-493 inhibitor reversed these effects in vitro. Consistent with these results, miR-493 sponge adeno-associated virus reduced the expression of profibrotic factors and increased STMN-1 in vivo. In summary, these results suggest that the miR-493-STMN-1 pathway contributes to hypoxia-induced tubular epithelial cell G2/M arrest and renal fibrosis. Abrogating G2/M arrest and blocking the miR-493-STMN-1 pathway will provide further insight for the development of antifibrosis therapy.-Liu, T., Liu, L., Liu, M., Du, R., Dang, Y., Bai, M., Zhang, L., Ma, F., Yang, X., Ning, X., Sun, S. MicroRNA-493 targets STMN-1 and promotes hypoxia-induced epithelial cell cycle arrest In G2/M and renal fibrosis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,Department of Nephrology, Guangren Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Limin Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Du
- Department of Radiation Oncology, Navy General Hospital, Beijing, China
| | - Yangjie Dang
- Department of Anesthesiology, Children Hospital of Xi'an, Xi'an, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Feng Ma
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoxia Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoxuan Ning
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute Kidney Injury as a Condition of Renal Senescence. Cell Transplant 2018; 27:739-753. [PMID: 29701108 PMCID: PMC6047270 DOI: 10.1177/0963689717743512] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI), characterized by a sharp drop in glomerular filtration, continues to be a significant health burden because it is associated with high initial mortality, morbidity, and substantial health-care costs. There is a strong connection between AKI and mechanisms of senescence activation. After ischemic or nephrotoxic insults, a wide range of pathophysiological events occur. Renal tubular cell injury is characterized by cell membrane damage, cytoskeleton disruption, and DNA degradation, leading to tubular cell death by necrosis and apoptosis. The senescence mechanism involves interstitial fibrosis, tubular atrophy, and capillary rarefaction, all of which impede the morphological and functional recovery of the kidneys, suggesting a strong link between AKI and the progression of chronic kidney disease. During abnormal kidney repair, tubular epithelial cells can assume a senescence-like phenotype. Cellular senescence can occur as a result of cell cycle arrest due to increased expression of cyclin kinase inhibitors (mainly p21), downregulation of Klotho expression, and telomere shortening. In AKI, cellular senescence is aggravated by other factors including oxidative stress and autophagy. Given this scenario, the main question is whether AKI can be repaired and how to avoid the senescence process. Stem cells might constitute a new therapeutic approach. Mesenchymal stem cells (MSCs) can ameliorate kidney injury through angiogenesis, immunomodulation, and fibrosis pathway blockade, as well as through antiapoptotic and promitotic processes. Young umbilical cord–derived MSCs are better at increasing Klotho levels, and thus protecting tissues from senescence, than are adipose-derived MSCs. Umbilical cord–derived MSCs improve glomerular filtration and tubular function to a greater degree than do those obtained from adult tissue. Although senescence-related proteins and microRNA are upregulated in AKI, they can be downregulated by treatment with umbilical cord–derived MSCs. In summary, stem cells derived from young tissues, such as umbilical cord–derived MSCs, could slow the post-AKI senescence process.
Collapse
Affiliation(s)
- Lucia Andrade
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Camila E Rodrigues
- 1 Laboratory of Basic Science LIM-12, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Samirah A Gomes
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Irene L Noronha
- 2 Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
7
|
Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, Ichimura T, Kuchroo V, Bonventre JV. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 2015; 125:1620-36. [PMID: 25751064 DOI: 10.1172/jci75417] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain-dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1-mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1-mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation.
Collapse
|
8
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
9
|
Srivastava M, Torosyan Y, Eidelman O, Jozwik C, Pollard HB, Mannon R. Reduced PARP1 as a Serum Biomarker for Graft Rejection in Kidney Transplantation. ACTA ACUST UNITED AC 2015; 8:031-38. [PMID: 26962294 PMCID: PMC4780413 DOI: 10.4172/jpb.1000350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A serum proteomics platform enabling expression Profiling in transplantation-associated clinical subsets gives an opportunity to identify non-invasive biomarkers that can accurately predict transplant outcome. In this study, we attempted to identify candidate serum biomarkers that could predict kidney allograft rejection/injury, regardless of its etiological and therapeutic heterogeneity. Using serum samples collected from kidney transplantation patients and healthy controls, we first employed Clontech-500 Ab microarrays to Profile acute rejection (AR) and chronic graft injury (CGI) versus stable graft function (SF) and normal kidneys (NK). Using GenePattern analysis of duplicate arrays on pooled samples, we identified gender-independent biomarkers PARP1, MAPK1, SRP54, DP1, and p57 (FDR ≈ 25%), the concordant downregulation of which represented a detrimental Profile common for both rejection/ injury types (AR-CGI). The reverse phase arrays qualified a 2-fold upregulation of PARP1 with an ROC of 0.87 in individual samples from patients with SF vs. AR-CGI rendering serum PARP1 as a biomarker for early prognosis. Ingenuity Pathways Analysis (IPA) connected PARP1 to some other markers (MAPK1), elucidating their possible interactions and connections to the immune response and graft-versus-host disease signaling. The downregulation of serum PARP1 in the damaged graft tissues, represents a perspective non-invasive marker, predicting the failing kidney graft, regardless of rejection/injury causes or gender. Thus, the successful identification of PARP1 as a bio-marker in limited patient cohorts demonstrates that serum proteomics platform empowered by the GenePattern- and IPA-based Bioinformatics algorithm can guarantee a successful development of the clinically applicable prognostic biomarker panel.
Collapse
Affiliation(s)
- Meera Srivastava
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Yelizaveta Torosyan
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Catherine Jozwik
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA
| | - Rosyln Mannon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Bonventre JV. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney Int Suppl (2011) 2014; 4:39-44. [PMID: 26310195 PMCID: PMC4536970 DOI: 10.1038/kisup.2014.8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tubular injury has a major etiological role in fibrosis. For many years, this relationship has been dominated by the perception that epithelial cells are transformed into myofibroblasts that proliferate and generate fibrotic matrix—the so-called epithelial-to-mesenchymal transition. Here we focus on mechanisms by which injury to the tubule results in fibrosis because of paracrine mechanisms. Specific injury to the proximal tubule results in inflammation, reversible injury, and adaptive repair if the insult is mild, self-limited in time, and occurs in a background of a normal kidney. Repeated injury, in contrast, leads to maladaptive repair with sustained tubule injury, chronic inflammation, proliferation of interstitial myofibroblasts, vascular rarefaction, interstitial fibrosis, and glomerular sclerosis. During the maladaptive repair process after the renal insult, many tubular cells become arrested in the G2/M phase of the cell cycle. This results in activation of the DNA repair response with the resultant synthesis and secretion of pro-fibrotic factors. Pharmacologic interventions that enhance the movement through G2/M or facilitate apoptosis of cells that otherwise would be blocked in G2/M may reduce the development of fibrosis after kidney injury and reduce the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Joseph V Bonventre
- Renal Division and Biomedical Engineering Division, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital , Boston, Massachusetts, USA ; Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Harvard Stem Cell Institute , Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Novitskaya T, McDermott L, Zhang KX, Chiba T, Paueksakon P, Hukriede NA, de Caestecker MP. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol 2013; 306:F496-504. [PMID: 24370591 DOI: 10.1152/ajprenal.00534.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phenylthiobutanoic acids (PTBAs) are a new class of histone deacetylase (HDAC) inhibitors that accelerate recovery and reduce postinjury fibrosis after ischemia-reperfusion-induced acute kidney injury. However, unlike the more common scenario in which patients present with protracted and less clearly defined onset of renal injury, this model of acute kidney injury gives rise to a clearly defined injury that begins to resolve over a short period of time. In these studies, we show for the first time that treatment with the PTBA analog methyl-4-(phenylthio)butanoate (M4PTB) accelerates recovery and reduces postinjury fibrosis in a progressive model of acute kidney injury and renal fibrosis that occurs after aristolochic acid injection in mice. These effects are apparent when M4PTB treatment is delayed 4 days after the initiating injury and are associated with increased proliferation and decreased G2/M arrest of regenerating renal tubular epithelial cells. In addition, there is reduced peritubular macrophage infiltration and decreased expression of the macrophage chemokines CX3Cl1 and CCL2. Since macrophage infiltration plays a role in promoting kidney injury, and since renal tubular epithelial cells show defective repair and a marked increase in maladaptive G2/M arrest after aristolochic acid injury, these findings suggest M4PTB may be particularly beneficial in reducing injury and enhancing intrinsic cellular repair even when administered days after aristolochic acid ingestion.
Collapse
Affiliation(s)
- Tatiana Novitskaya
- Vanderbilt Univ. Medical Center, Dept. of Medicine, Div. of Nephrology, S3223 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA. Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 2013; 24:943-53. [PMID: 23620402 DOI: 10.1681/asn.2012111055] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24-48 hours after inducing AKI. In zebrafish, treatment with the compound increased larval survival and proliferation of renal tubular epithelial cells. In mice, treatment accelerated recovery, reduced postinjury tubular atrophy and interstitial fibrosis, and increased the regenerative capacity of actively cycling renal tubular cells by decreasing the number of cells in G2/M arrest. These data suggest that accelerating recovery may be a viable approach to treating AKI and provide proof of concept that a screen in zebrafish embryos can identify therapeutic candidates for kidney injury.
Collapse
|
13
|
Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, Wu TH, Linn GR, Ling H, Wu KD, Tsai TJ, Chen YM, Duffield JS, Lin SL. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:118-31. [PMID: 23142380 DOI: 10.1016/j.ajpath.2012.09.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 11/15/2022]
Abstract
Pericytes have been identified as the major source of precursors of scar-producing myofibroblasts during kidney fibrosis. The underlying mechanisms triggering pericyte-myofibroblast transition are poorly understood. Transforming growth factor β-1 (TGF-β1) is well recognized as a pluripotent cytokine that drives organ fibrosis. We investigated the role of TGF-β1 in inducing profibrotic signaling from epithelial cells to activate pericyte-myofibroblast transition. Increased expression of TGF-β1 was detected predominantly in injured epithelium after unilateral ureteral obstruction, whereas downstream signaling from the TGF-β1 receptor increased in both injured epithelium and pericytes. In mice with ureteral obstruction that were treated with the pan anti-TGF-β antibody (1D11) or TGF-β receptor type I inhibitor (SB431542), kidney pericyte-myofibroblast transition was blunted. The consequence was marked attenuation of fibrosis. In addition, epithelial cell cycle G2/M arrest and production of profibrotic cytokines were both attenuated. Although TGF-β1 alone did not trigger pericyte proliferation in vitro, it robustly induced α smooth muscle actin (α-SMA). In cultured kidney epithelial cells, TGF-β1 stimulated G2/M arrest and production of profibrotic cytokines that had the capacity to stimulate proliferation and transition of pericytes to myofibroblasts. In conclusion, this study identified a novel link between injured epithelium and pericyte-myofibroblast transition through TGF-β1 during kidney fibrosis.
Collapse
Affiliation(s)
- Ching-Fang Wu
- Renal Division, Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
D'Andrea S, Berton S, Segatto I, Fabris L, Canzonieri V, Colombatti A, Vecchione A, Belletti B, Baldassarre G. Stathmin is dispensable for tumor onset in mice. PLoS One 2012; 7:e45561. [PMID: 23029098 PMCID: PMC3447788 DOI: 10.1371/journal.pone.0045561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The microtubule-destabilizing protein stathmin is highly expressed in several types of tumor, thus deserving the name of oncoprotein 18. High levels of stathmin expression and/or activity favor the metastatic spreading and mark the most aggressive tumors, thus representing a realistic marker of poor prognosis. Stathmin is a downstream target of many signaling pathways, including Ras-MAPK, PI3K and p53, involved in both tumor onset and progression. We thus hypothesized that stathmin could also play a role during the early stages of tumorigenesis, an issue completely unexplored. In order to establish whether stathmin expression is necessary for tumor initiation, we challenged wild type (WT), stathmin heterozygous and stathmin knock-out (KO) mice with different carcinogens. Using well-defined mouse models of carcinogenesis of skin, bladder and muscle by the means of 7,12-dimethylbenz[α]antracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA), N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) and 3-methylcholanthrylene (3MC) treatments, respectively, we demonstrated that knock-out of stathmin has no impact on the onset of cancer in mice. No significant difference was noticed either when the Ras oncogene was mutated (skin carcinogenesis model) or when the p53 pathway was inactivated (bladder carcinomas and fibrosarcomas). Finally, we concomitantly impinged on p53 and Ras pathways, by generating WT and stathmin KO mouse embryo fibroblasts transformed with papilloma virus large T antigen (LgTAg) plus the K-RasG12V oncogene. In vivo growth of xenografts from these transformed fibroblasts did not highlight any significant difference depending on the presence or absence of stathmin. Overall, our work demonstrates that stathmin expression is dispensable for tumor onset, at least in mice, thus making stathmin a virtually exclusive marker of aggressive disease and a promising therapeutic target for advanced cancers.
Collapse
Affiliation(s)
- Sara D'Andrea
- Division of Experimental Oncology 2, CRO, National Cancer Institute, Aviano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zahedi K, Barone SL, Xu J, Steinbergs N, Schuster R, Lentsch AB, Amlal H, Wang J, Casero RA, Soleimani M. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G546-60. [PMID: 22723264 PMCID: PMC3468550 DOI: 10.1152/ajpgi.00431.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Ohio, USA.
| | - Sharon L. Barone
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jie Xu
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Nora Steinbergs
- 2The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Rebecca Schuster
- 3Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Alex B. Lentsch
- 3Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Hassane Amlal
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jiang Wang
- 4Department of Pathology and Laboratory Medicine and
| | - Robert A. Casero
- 2The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Manoocher Soleimani
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,5Veterans Affair Medical Center, Cincinnati, Ohio
| |
Collapse
|
16
|
Liu H, Zhang R, Ko SY, Oyajobi BO, Papasian CJ, Deng HW, Zhang S, Zhao M. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice. J Bone Miner Res 2011; 26:2052-67. [PMID: 21557310 DOI: 10.1002/jbmr.419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytoskeleton microtubules regulate various cell signaling pathways that are involved in bone cell function. We recently reported that inhibition of microtubule assembly by microtubule-targeting drugs stimulates osteoblast differentiation and bone formation. To further elucidate the role of microtubules in bone homeostasis, we characterized the skeletal phenotype of mice null for stathmin, an endogenous protein that inhibits microtubule assembly. In vivo micro-computed tomography (µCT) and histology revealed that stathmin deficiency results in a significant reduction of bone mass in adult mice concurrent with decreased osteoblast and increased osteoclast numbers in bone tissues. Phenotypic analyses of primary calvarial cells and bone marrow cells showed that stathmin deficiency inhibited osteoblast differentiation and induced osteoclast formation. In vitro overexpression studies showed that increased stathmin levels enhanced osteogenic differentiation of preosteoblast MC3T3-E1 cells and mouse bone marrow-derived cells and attenuated osteoclast formation from osteoclast precursor Raw264.7 cells and bone marrow cells. Results of immunofluorescent studies indicated that overexpression of stathmin disrupted radial microtubule filaments, whereas deficiency of stathmin stabilized the microtubule network structure in these bone cells. In addition, microtubule-targeting drugs that inhibit microtubule assembly and induce osteoblast differentiation lost these effects in the absence of stathmin. Collectively, these results suggest that stathmin, which alters microtubule dynamics, plays an essential role in maintenance of postnatal bone mass by regulating both osteoblast and osteoclast functions in bone. \
Collapse
Affiliation(s)
- Hongbin Liu
- Key Laboratory of Agricultural Animal Genetics, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010; 16:535-43, 1p following 143. [PMID: 20436483 DOI: 10.1038/nm.2144] [Citation(s) in RCA: 1027] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/05/2010] [Indexed: 02/06/2023]
Abstract
Fibrosis is responsible for chronic progressive kidney failure, which is present in a large number of adults in the developed world. It is increasingly appreciated that acute kidney injury (AKI), resulting in aberrant incomplete repair, is a major contributor to chronic fibrotic kidney disease. The mechanism that triggers the fibrogenic response after injury is not well understood. In ischemic, toxic and obstructive models of AKI, we demonstrate a causal association between epithelial cell cycle G2/M arrest and a fibrotic outcome. G2/M-arrested proximal tubular cells activate c-jun NH(2)-terminal kinase (JNK) signaling, which acts to upregulate profibrotic cytokine production. Treatment with a JNK inhibitor, or bypassing the G2/M arrest by administration of a p53 inhibitor or the removal of the contralateral kidney, rescues fibrosis in the unilateral ischemic injured kidney. Hence, epithelial cell cycle arrest at G2/M and its subsequent downstream signaling are hitherto unrecognized therapeutic targets for the prevention of fibrosis and interruption of the accelerated progression of kidney disease.
Collapse
Affiliation(s)
- Li Yang
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
18
|
Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and "antibodyome" measures. Proc Natl Acad Sci U S A 2009; 106:4148-53. [PMID: 19251643 DOI: 10.1073/pnas.0900563106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have conducted an integrative genomics analysis of serological responses to non-HLA targets after renal transplantation, with the aim of identifying the tissue specificity and types of immunogenic non-HLA antigenic targets after transplantation. Posttransplant antibody responses were measured by paired comparative analysis of pretransplant and posttransplant serum samples from 18 pediatric renal transplant recipients, measured against 5,056 unique protein targets on the ProtoArray platform. The specificity of antibody responses were measured against gene expression levels specific to the kidney, and 2 other randomly selected organs (heart and pancreas), by integrated genomics, employing the mapping of transcription and ProtoArray platform measures, using AILUN. The likelihood of posttransplant non-HLA targets being recognized preferentially in any of 7 microdissected kidney compartments was also examined. In addition to HLA targets, non-HLA immune responses, including anti-MICA antibodies, were detected against kidney compartment-specific antigens, with highest posttransplant recognition for renal pelvis and cortex specific antigens. The compartment specificity of selected antibodies was confirmed by IHC. In conclusion, this study provides an immunogenic and anatomic roadmap of the most likely non-HLA antigens that can generate serological responses after renal transplantation. Correlation of the most significant non-HLA antibody responses with transplant health and dysfunction are currently underway.
Collapse
|
19
|
Jayle C, Favreau F, Zhang K, Doucet C, Goujon JM, Hebrard W, Carretier M, Eugene M, Mauco G, Tillement JP, Hauet T. Comparison of protective effects of trimetazidine against experimental warm ischemia of different durations: early and long-term effects in a pig kidney model. Am J Physiol Renal Physiol 2007; 292:F1082-93. [PMID: 17341718 DOI: 10.1152/ajprenal.00338.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute renal failure (ARF) is often the consequence of an ischemia-reperfusion injury (IRI) and associated with high mortality. Warm ischemia (WI) is a crucial factor of tissue damage, and tissue destruction led by ischemia-reperfusion (I/R) can impact the early and long-term functional outcome. Trimetazidine (TMZ) is an anti-ischemic drug. Previously, we already verified its protective effect on a cold-ischemic pig kidney model by directly adding TMZ into the preservation solution (Faure JP, Baumert H, Han Z, Goujon JM, Favreau F, Dutheil D, Petit I, Barriere M, Tallineau C, Tillement JP, Carretier M, Mauco G, Papadopoulos V, Hauet T. Biochem Pharmacol 66: 2241-2250, 2003; Faure JP, Petit I, Zhang K, Dutheil D, Doucet C, Favreau F, Eugene M, Goujon JM, Tillement JP, Mauco G, Vandewalle A, Hauet T. Am J Transplant 4: 495-504, 2004). In this study, we aimed to study the potential effect of TMZ pretreatment (5 mg/kg iv 24 h before WI) on the injury caused by WI for 45, 60, and 90 min and reperfusion in a WI pig kidney model. Compared with sham-operated (control) and uninephrectomized animals (UNX), TMZ pretreatment significantly reduced deleterious effects after 45 min, and particularly 60 and 90 min, of WI by improving the recovery of renal function and minimizing the inflammatory response commonly prevalent in ischemic kidney injury. Compared with controls (control group and UNX group), it was observed that 1) hypoxia-inducible factor-1 (HIF-1alpha) expression occurred earlier and with a higher intensity in the TMZ-treated groups; 2) the reduction of IRI during the first week following reperfusion was correlated with an earlier and greater expression of stathmin, which is involved in the process of tubular repair; and 3) the tubulointerstitial fibrosis was reduced, particularly after 60 and 90 min of WI. In conclusion, TMZ made the warm-ischemic kidneys more resistant to the deleterious impact of a single episode of I/R and reduced early and long-term subsequent damage.
Collapse
Affiliation(s)
- Christophe Jayle
- Institut National de la Santé et de la Recherche Médicale E0324, Centre Hospitalier et Universitaire de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|