1
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|
2
|
Sinha SK, Mellody M, Carpio MB, Damoiseaux R, Nicholas SB. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023; 11:1356. [PMID: 37239027 PMCID: PMC10216241 DOI: 10.3390/biomedicines11051356] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Osteopontin (OPN) is a ubiquitously expressed protein with a wide range of physiological functions, including roles in bone mineralization, immune regulation, and wound healing. OPN has been implicated in the pathogenesis of several forms of chronic kidney disease (CKD) where it promotes inflammation and fibrosis and regulates calcium and phosphate metabolism. OPN expression is increased in the kidneys, blood, and urine of patients with CKD, particularly in those with diabetic kidney disease and glomerulonephritis. The full-length OPN protein is cleaved by various proteases, including thrombin, matrix metalloproteinase (MMP)-3, MMP-7, cathepsin-D, and plasmin, producing N-terminal OPN (ntOPN), which may have more detrimental effects in CKD. Studies suggest that OPN may serve as a biomarker in CKD, and while more research is needed to fully evaluate and validate OPN and ntOPN as CKD biomarkers, the available evidence suggests that they are promising candidates for further investigation. Targeting OPN may be a potential treatment strategy. Several studies show that inhibition of OPN expression or activity can attenuate kidney injury and improve kidney function. In addition to its effects on kidney function, OPN has been linked to cardiovascular disease, which is a major cause of morbidity and mortality in patients with CKD.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Division of Endocrinology, Molecular Medicine and Metabolism, Charles R. Drew University of Science and Medicine, Los Angeles, CA 90059, USA
| | - Michael Mellody
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA;
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Sharbatdar Y, Mousavian R, Noorbakhsh Varnosfaderani SM, Aziziyan F, Liaghat M, Baziyar P, Yousefi Rad A, Tavakol C, Moeini AM, Nabi-Afjadi M, Zalpoor H, Kazemi-Lomedasht F. Diabetes as one of the long-term COVID-19 complications: from the potential reason of more diabetic patients' susceptibility to COVID-19 to the possible caution of future global diabetes tsunami. Inflammopharmacology 2023; 31:1029-1052. [PMID: 37079169 PMCID: PMC10116486 DOI: 10.1007/s10787-023-01215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as β cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.
Collapse
Affiliation(s)
- Yasamin Sharbatdar
- Department of Anesthesiology, School of Allied Medical Sciences, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Ronak Mousavian
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Chanour Tavakol
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci 2023; 316:121414. [PMID: 36682521 DOI: 10.1016/j.lfs.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
A significant portion of the health burden of diabetic kidney disease (DKD) is caused by both type 1 and type 2 diabetes which leads to morbidity and mortality globally. It is one of the most common diabetic complications characterized by loss of renal function with high prevalence, often leading to acute kidney disease (AKD). Inflammation triggered by gut microbiota is commonly associated with the development of DKD. Interactions between the gut microbiota and the host are correlated in maintaining metabolic and inflammatory homeostasis. However, the fundamental processes through which the gut microbiota affects the onset and progression of DKD are mainly unknown. In this narrative review, we summarised the potential role of the gut microbiome, their pathogenicity between diabetic and non-diabetic kidney disease (NDKD), and their impact on host immunity. A well-established association has already been seen between gut microbiota, diabetes and kidney disease. The gut-kidney interrelationship is confirmed by mounting evidence linking gut dysbiosis to DKD, however, it is still unclear what is the real cause of gut dysbiosis, the development of DKD, and its progression. In addition, we also try to distinguish novel biomarkers for early detection of DKD and the possible therapies that can be used to regulate the gut microbiota and improve the host immune response. This early detection and new therapies will help clinicians for better management of the disease and help improve patient outcomes.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramanathan Gnanasambandan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Effects of captopril on glucose metabolism and autophagy in liver and muscle from mice with type 1 diabetes and diet-induced obesity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166477. [PMID: 35780942 DOI: 10.1016/j.bbadis.2022.166477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
Impaired metabolic functions underlie the pathophysiology of diabetes and obesity. The renin-angiotensin system (RAS) is one pathway related to the pathophysiology of both diseases. RAS activation in metabolically active tissues exerts pro-inflammatory effects via angiotensin II (Ang II), linked to dysfunction in cellular processes such as autophagy, which is associated with obesity and diabetes. Here, we determined whether RAS is involved in metabolic dysregulations in a Type 1 Diabetes (T1D) mouse model, treated with captopril, and in an obesity mouse model (Agt-Tg) that overexpresses angiotensinogen (Agt) in adipose tissue. T1D mice had lower plasma leptin, resistin and higher non-esterified fatty acids (NEFA) compared to wild type (Wt) mice, even under captopril treatment. Further, mRNA levels for Agt, At1, Insr, and Beclin1 were upregulated in muscle and liver of T1D mice with captopril compared to Wt. Moreover, autophagy markers LC3 and p62 proteins were decreased, regardless of captopril treatment in the liver from T1D mice. In obese Wt mice, captopril increased muscle Irs1 gene levels. Further, captopril reduced mRNA levels of At1, Insr, Ampk, Beclin1, Atg12, and Lc3 in the liver from both Wt and Agt-Tg mice, while Agt, At1, Insr, and Atg12 expression was reduced in Agt-Tg mice without captopril treatment. Irs1 expression was decreased in the liver from obese Wt mice treated with captopril. Our results suggest that captopril treatment upregulates components of RAS, insulin signaling, and autophagy in both muscle and liver, indicating potential utility of captopril in targeting both insulin sensitivity and autophagy in diabetes and obesity.
Collapse
|
6
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Kuma K, Tsuda S, Fukui A, Yoshitomi R, Haruyama N, Nakayama M. Low plasma renin activity is independently associated with kidney disease progression in patients with type 2 diabetes and overt nephropathy, including those with impaired kidney function: a 2-year prospective study. Endocr J 2022; 69:547-557. [PMID: 34897193 DOI: 10.1507/endocrj.ej21-0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma renin activity (PRA) is lower in patients with diabetic nephropathy (DN) than in healthy individuals. However, the association, if any, between PRA and renal outcomes in patients with DN remains uncertain. In a 2-year prospective observational study, we aimed to investigate the association of PRA with the decline in kidney function in patients with DN. We studied 97 patients with DN who were categorized according to tertile (T1-T3) of PRA. The annual changes in estimated glomerular filtration rate (eGFR) (mL/min/1.73 m2/year) were determined from the slope of the linear regression curve for eGFR. The secondary endpoint was defined as a composite of the doubling of serum creatinine or end-stage renal disease. Results showed that kidney function rapidly declined with lower tertiles of PRA (median value [interquartile range] of the annual eGFR changes: -8.8 [-18.5 to -4.2] for T1, -8.0 [-14.3 to -3.2] for T2, and -3.1 [-6.3 to -2.0] for T3; p for trend <0.01). Multivariable linear regression analyses showed that, compared with T3, T1 was associated with a larger annual change in eGFR (coefficient, -4.410; 95% confidence interval [CI], -7.910 to -0.909 for T1). Composite renal events occurred in 46 participants. In multivariable Cox analysis, the lower tertiles of PRA (T1 and T2) were associated with higher incidences of the composite renal outcome (T2: hazard ratio [HR], 4.78; 95% CI, 1.64-13.89; T1: HR, 4.85; 95% CI 1.61-14.65) than T3. In conclusion, low PRA is independently associated with poor renal outcomes in patients with DN.
Collapse
Affiliation(s)
- Kazuyoshi Kuma
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Susumu Tsuda
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Akiko Fukui
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Ryota Yoshitomi
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Naoki Haruyama
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Masaru Nakayama
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| |
Collapse
|
8
|
Reshad RAI, Riana SH, Chowdhury MAB, Moin AT, Miah F, Sarkar B, Jewel NA. Diabetes in COVID-19 patients: challenges and possible management strategies. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8642747 DOI: 10.1186/s43168-021-00099-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The recent pandemic of coronavirus disease 19 (COVID-19) has been causing intense stress among the global population. In the case of hospitalized and ICU-admitted COVID-19 patients with comorbidities, it has been observed that a major portion of them are diabetic. Therefore, researchers had indicated a link between diabetes mellitus (DM) and COVID-19. Furthermore, DM is a potential risk factor for the severity of COVID-19 cases. Thus, in this study, the correlation existing between diabetic patients and COVID-19 was summarized. Main body of the abstract Diabetic patients have a weaker immune system, less viral clearance rate, malfunctions of metabolic activity due to their high blood glucose level, and other associated problems. This does not increase the susceptibility for the patients to be infected with COVID-19. However, the severity of COVID-19 can worsen due to the comorbidity of DM. Short conclusion Proper management, appropriate use of drugs that do not increase the ACE2 expression, lowering blood glucose level, decreasing the susceptibility of SARS-CoV-2, and maintaining a healthy lifestyle could be effective.
Collapse
|
9
|
Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22189985. [PMID: 34576149 PMCID: PMC8465809 DOI: 10.3390/ijms22189985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic Nephropathy (DN) is a debilitating consequence of both Type 1 and Type 2 diabetes affecting the kidney and renal tubules leading to End Stage Renal Disease (ESRD). As diabetes is a world epidemic and almost half of diabetic patients develop DN in their lifetime, a large group of people is affected. Due to the complex nature of the disease, current diagnosis and treatment are not adequate to halt disease progression or provide an effective cure. DN is now considered a manifestation of inflammation where inflammatory molecules regulate most of the renal physiology. Recent advances in genetics and genomic technology have identified numerous susceptibility genes that are associated with DN, many of which have inflammatory functions. Based on their role in DN, we will discuss the current aspects of developing biomarkers and molecular therapy for advancing precision medicine.
Collapse
|
10
|
Rezq S, Huffman AM, Basnet J, Yanes Cardozo LL, Romero DG. Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19. Int J Mol Sci 2021; 22:ijms22189746. [PMID: 34575910 PMCID: PMC8470275 DOI: 10.3390/ijms22189746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Alexandra M. Huffman
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Jelina Basnet
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Correspondence: ; Tel.: +1-601-984-1523; Fax: +1-601-984-1501
| |
Collapse
|
11
|
Azinheira Nobrega Cruz N, Stoll D, Casarini D, Bertagnolli M. Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility. Clin Sci (Lond) 2021; 135:1805-1824. [PMID: 34338772 PMCID: PMC8329853 DOI: 10.1042/cs20210284] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
In times of coronavirus disease 2019 (COVID-19), the impact of severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection on pregnancy is still unclear. The presence of angiotensin-converting enzyme (ACE) 2 (ACE2), the main receptor for SARS-CoV-2, in human placentas indicates that this organ can be vulnerable for viral infection during pregnancy. However, for this to happen, additional molecular processes are critical to allow viral entry in cells, its replication and disease manifestation, particularly in the placenta and/or feto-maternal circulation. Beyond the risk of vertical transmission, COVID-19 is also proposed to deplete ACE2 protein and its biological actions in the placenta. It is postulated that such effects may impair essential processes during placentation and maternal hemodynamic adaptations in COVID-19 pregnancy, features also observed in several disorders of pregnancy. This review gathers information indicating risks and protective features related to ACE2 changes in COVID-19 pregnancies. First, we describe the mechanisms of SARS-CoV-2 infection having ACE2 as a main entry door and current evidence of viral infection in the placenta. Further, we discuss the central role of ACE2 in physiological systems such as the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), both active during placentation and hemodynamic adaptations of pregnancy. Significant knowledge gaps are also identified and should be urgently filled to better understand the fate of ACE2 in COVID-19 pregnancies and the potential associated risks. Emerging knowledge will be able to improve the early stratification of high-risk pregnancies with COVID-19 exposure as well as to guide better management and follow-up of these mothers and their children.
Collapse
Affiliation(s)
- Nayara Azinheira Nobrega Cruz
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
- Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l’Île-de-Montréal, Montréal, Canada
| | - Danielle Stoll
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | - Mariane Bertagnolli
- Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l’Île-de-Montréal, Montréal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
12
|
Hsien HC, Casarini DE, Carvalhaes JTDA, Ronchi FA, Oliveira LCGD, Braga JAP. Levels of angiotensin-converting enzyme 1 and 2 in serum and urine of children with Sickle Cell Disease. ACTA ACUST UNITED AC 2021; 43:303-310. [PMID: 33973994 PMCID: PMC8428630 DOI: 10.1590/2175-8239-jbn-2020-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
Introduction: Sickle cell nephropathy begins in childhood and presents early increases in
glomerular filtration, which, over the long term, can lead to chronic renal
failure. Several diseases have increased circulating and urinary
angiotensin-converting enzyme (ACE) activity, but there is little
information about changes in ACEs activity in children with sickle cell
disease (SCD). Objective: We examined circulating and urinary ACE 1 activity in children with SCD. Methods: This cross-sectional study compared children who were carriers of SCD with
children who comprised a control group (CG). Serum and urinary activities of
ACE were evaluated, as were biochemical factors, urinary album/creatinine
rates, and estimated glomerular filtration rate. Results: Urinary ACE activity was significantly higher in patients with SCD than in
healthy children (median 0.01; range 0.00-0.07 vs median 0.00; range
0.00-0.01 mU/mL·creatinine, p < 0.001. No significant difference in serum
ACE activities between the SCD and CG groups was observed (median 32.25;
range 16.2-59.3 vs median 40.9; range 18.0-53.4) mU/m`L·creatinine, p <
0.05. Conclusion: Our data revealed a high urinary ACE 1 activity, different than plasmatic
level, in SCD patients suggesting a dissociation between the intrarenal and
systemic RAAS. The increase of urinary ACE 1 activity in SCD patients
suggests higher levels of Ang II with a predominance of classical RAAS axis,
that can induce kidney damage.
Collapse
Affiliation(s)
- Ho Chi Hsien
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | - Dulce Elena Casarini
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | - João Tomas de Abreu Carvalhaes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | - Fernanda Aparecida Ronchi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | | | | |
Collapse
|
13
|
Li G, Chen Z, Lv Z, Li H, Chang D, Lu J. Diabetes Mellitus and COVID-19: Associations and Possible Mechanisms. Int J Endocrinol 2021; 2021:7394378. [PMID: 33859687 PMCID: PMC8025139 DOI: 10.1155/2021/7394378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/02/2020] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recently emerged disease with formidable infectivity and high mortality. Emerging data suggest that diabetes is one of the most prevalent comorbidities in patients with COVID-19. Although their causal relationship has not yet been investigated, preexisting diabetes can be considered as a risk factor for the adverse outcomes of COVID-19. Proinflammatory state, attenuation of the innate immune response, possibly increased level of ACE2, along with vascular dysfunction, and prothrombotic state in people with diabetes probably contribute to higher susceptibility for SARS-CoV-2 infection and worsened prognosis. On the other hand, activated inflammation, islet damage induced by virus infection, and treatment with glucocorticoids could, in turn, result in impaired glucose regulation in people with diabetes, thus working as an amplification loop to aggravate the disease. Therefore, glycemic management in people with COVID-19, especially in those with severe illness, is of considerable importance. The insights may help to reduce the fatality in the effort against COVID-19.
Collapse
Affiliation(s)
- Gerui Li
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhan Lv
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hang Li
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Danqi Chang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jinping Lu
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
14
|
Suh SH, Ma SK, Kim SW, Bae EH. Angiotensin-converting enzyme 2 and kidney diseases in the era of coronavirus disease 2019. Korean J Intern Med 2021; 36:247-262. [PMID: 33617712 PMCID: PMC7969072 DOI: 10.3904/kjim.2020.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the decades since the discovery of angiotensin-converting enzyme 2 (ACE2), its protective role in terms of antagonizing activation of the classical renin-angiotensin system (RAS) axis has been recognized in clinical and experimental studies on kidney and cardiovascular diseases. The effects of ACE inhibitor/angiotensin type 1 receptor blockers (ACEi/ARBs) on ACE2-angiotensin-(1-7) (Ang- (1-7))-Mas receptor (MasR) axis activation has encouraged the use of such blockers in patients with kidney and cardiovascular diseases, until the emergence of coronavirus disease 2019 (COVID-19). The previously unchallenged functions of the ACE2-Ang-(1-7)-MasR axis and ACEi/ARBs are being re-evaluated in the era of COVID-19; the hypothesis is that ACEi/ARBs may increase the risk of severe acute respiratory syndrome coronavirus 2 infection by upregulating the human ACE2 receptor expression level. In this review, we examine ACE2 molecular structure, function (as an enzyme of the RAS), and distribution. We explore the roles played by ACE2 in kidney, cardiovascular, and pulmonary diseases, highlighting studies that defined the benefits imparted when ACEi/ARBs activated the local ACE2- Ang-(1-7)-MasR axis. Finally, the question of whether ACEi/ARBs therapies should be stopped in COVID-19-infected patients will be reviewed by reference to the available evidence.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Eun Hui Bae, M.D. Department of Internal Medicine, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6503 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
15
|
Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev 2021; 37:e3377. [PMID: 32588943 PMCID: PMC7361201 DOI: 10.1002/dmrr.3377] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The outbreak of the coronavirus disease 2019 (Covid-19) has become an evolving worldwide health crisis. With the rising prevalence of obesity and diabetes has come an increasing awareness of their impacts on infectious diseases, including increased risk for various infections, post-infection complications and mortality from critical infections. Although epidemiological and clinical characteristics of Covid-19 have been constantly reported, no article has systematically illustrated the role of obesity and diabetes in Covid-19, or how Covid-19 affects obesity and diabetes, or special treatment in these at-risk populations. Here, we present a synthesis of the recent advances in our understanding of the relationships between obesity, diabetes and Covid-19 along with the underlying mechanisms, and provide special treatment guidance for these at-risk populations.
Collapse
Affiliation(s)
- Yue Zhou
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Jingwei Chi
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Wenshan Lv
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| |
Collapse
|
16
|
Alawi LF, Dhakal S, Emberesh SE, Sawant H, Hosawi A, Thanekar U, Grobe N, Elased KM. Effects of Angiotensin II Type 1A Receptor on ACE2, Neprilysin and KIM-1 in Two Kidney One Clip (2K1C) Model of Renovascular Hypertension. Front Pharmacol 2021; 11:602985. [PMID: 33708117 PMCID: PMC7941277 DOI: 10.3389/fphar.2020.602985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Activation of the renin angiotensin system plays a pivotal role in the regulation of blood pressure, which is mainly attributed to the formation of angiotensin-II (Ang II). The actions of Ang II are mediated through binding to the Ang-II type 1 receptor (AT1R) which leads to increased blood pressure, fluid retention, and aldosterone secretion. In addition, Ang II is also involved in cell injury, vascular remodeling, and inflammation. The actions of Ang II could be antagonized by its conversion to the vasodilator peptide Ang (1-7), partly generated by the action of angiotensin converting enzyme 2 (ACE2) and/or neprilysin (NEP). Previous studies demonstrated increased urinary ACE2 shedding in the db/db mouse model of diabetic kidney disease. The aim of the study was to investigate whether renal and urinary ACE2 and NEP are altered in the 2K1C Goldblatt hypertensive mice. Since AT1R is highly expressed in the kidney, we also researched the effect of global deletion of AT1R on renal and urinary ACE2, NEP, and kidney injury marker (KIM-1). Hypertension and albuminuria were induced in AT1R knock out (AT1RKO) and WT mice by unilateral constriction of the renal artery of one kidney. The 24 h mean arterial blood pressure (MAP) was measured using radio-telemetry. Two weeks after 2K1C surgery, MAP and albuminuria were significantly increased in WT mice compared to AT1RKO mice. Results demonstrated a correlation between MAP and albuminuria. Unlike db/db diabetic mice, ACE2 and NEP expression and activities were significantly decreased in the clipped kidney of WT and AT1RKO compared with the contralateral kidney and sham control (p < 0.05). There was no detectable urinary ACE2 and NEP expression and activity in 2K1C mice. KIM-1 was significantly increased in the clipped kidney of WT and AT1KO (p < 0.05). Deletion of AT1R has no effect on the increased urinary KIM-1 excretion detected in 2K1C mice. In conclusion, renal injury in 2K1C Goldblatt mouse model is associated with loss of renal ACE2 and NEP expression and activity. Urinary KIM-1 could serve as an early indicator of acute kidney injury. Deletion of AT1R attenuates albuminuria and hypertension without affecting renal ACE2, NEP, and KIM-1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Khalid M. Elased
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
17
|
Albulescu R, Dima SO, Florea IR, Lixandru D, Serban AM, Aspritoiu VM, Tanase C, Popescu I, Ferber S. COVID-19 and diabetes mellitus: Unraveling the hypotheses that worsen the prognosis (Review). Exp Ther Med 2020; 20:194. [PMID: 33101484 PMCID: PMC7579812 DOI: 10.3892/etm.2020.9324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the caused disease - coronavirus disease 2019 (COVID-19), has affected so far >6,000,000 people worldwide, with variable grades of severity, and has already inflicted >350,000 deaths. SARS-CoV-2 infection seems severely affected by background diseases such as diabetes mellitus and its related complications, that seem to be favoring the most severe manifestations of SARS-CoV-2 and, therefore, require special attention in clinical care units. The present literature review focus on addressing several hypotheses explaining why diabetic patients could develop multi-organ failure in severe acute respiratory syndrome coronavirus (SARS-CoV) infections. Undoubtedly, as diabetes related complications are present it is expected to emphasize the severity of the COVID-19. Dermatological complications can occur and worsen in diabetic patients, and diseases such as acanthosis nigricans and psoriasis are prone to more severe manifestations of COVID-19. Approaches to treat SARS-CoV-2 infected patients, based on different solutions i.e. plasma therapy, use of antiviral compounds, development of vaccines or new therapeutic agents are ongoing.
Collapse
Affiliation(s)
- Radu Albulescu
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- National Institute for Chemical-Pharmaceutical R&D, 031299 Bucharest, Romania
| | - Simona Olimpia Dima
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Raluca Florea
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Daniela Lixandru
- Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Andreea Madalina Serban
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Veronica Madalina Aspritoiu
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Cristiana Tanase
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Department of Biochemistry-Proteomics,‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence to: Professor Cristiana Tanase, ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 185 Vacaresti Road, 004051 Bucharest, Romania
| | - Irinel Popescu
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sarah Ferber
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Center for Stem Cells and Regenerative Medicine, Sheba Medical Center, 5262000 Hashomer, Israel
- Orgenesis Ltd., 6997801 Aviv, Israel
- Department of Human Genetics, Aviv University, Sackler School of Medicine, 6997801 Aviv, Israel
| |
Collapse
|
18
|
Paoli A, Gorini S, Caprio M. The dark side of the spoon - glucose, ketones and COVID-19: a possible role for ketogenic diet? J Transl Med 2020; 18:441. [PMID: 33218357 PMCID: PMC7677746 DOI: 10.1186/s12967-020-02600-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is posing a serious challenge to the health-care systems worldwide, with an enormous impact on health conditions and loss of lives. Notably, obesity and its related comorbidities are strictly related with worse clinical outcomes of COVID-19 disease. Recently, there is a growing interest in the clinical use of ketogenic diets (KDs), particularly in the context of severe obesity with related metabolic complications. KDs have been proven effective for a rapid reduction of fat mass, preserving lean mass and providing an adequate nutritional status. In particular, the physiological increase in plasma levels of ketone bodies exerts important anti-inflammatory and immunomodulating effects, which may reveal as precious tools to prevent infection and potential adverse outcomes of COVID-19 disease. We discuss here the importance of KDs for a rapid reduction of several critical risk factors for COVID-19, such as obesity, type 2 diabetes and hypertension, based on the known effects of ketone bodies on inflammation, immunity, metabolic profile and cardiovascular function. We do believe that a rapid reduction of all modifiable risk factors, especially obesity with its metabolic complications, should be a pillar of public health policies and interventions, in view of future waves of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy. .,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166, Rome, Italy.
| |
Collapse
|
19
|
Dart AB, Wicklow B, Scholey J, Sellers EA, Dyck J, Mahmud F, Sochett E, Hamilton J, Blydt-Hansen T, Burns K. An evaluation of renin-angiotensin system markers in youth with type 2 diabetes and associations with renal outcomes. Pediatr Diabetes 2020; 21:1102-1109. [PMID: 32657529 DOI: 10.1111/pedi.13081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS/HYPOTHESIS Youth with type 2 diabetes (T2D) have high rates of obesity, hypertension and suboptimal glycemic control. We hypothesized that renin-angiotensin system (RAS) activation is present in youth with T2D and associated with poor glycemic control and renal outcomes. METHODS Cross-sectional analysis of 183 youth with T2D and 100 controls from the Improving renal Complications in Adolescents with T2D through REsearch cohort. Diabetes youth stratified by urine albumin:creatinine ratio (ACR) < or ≥2 mg/mmol. RAS levels measured with enzyme-linked immunosorbent assay (ELISA) and enzyme activities by synthetic substrates. In T2D, levels log transformed and Tobit linear regressions evaluated for associations with hemoglobin A1c (HbA1c), mean arterial pressure (MAP), estimated glomerular filtration rate (eGFR), ACR. RESULTS Youth were 14 to 15 years, with diabetes duration 1.7 to 1.8 years; 21.3% albuminuria. Serum: differences in plasma renin activity (<0.0001), and angiotensin converting enzyme (ACE) activity (P = .003) in T2D vs controls. Urine: higher ACE activity and ACE2 protein/activity (all P < .0001) in T2D, higher levels in T2D with albuminuria. Multivariable regressions: higher serum ACE activity (ß = 0.03, SE 0.01;P < .01), urine ACE activity (ß = 0.44, SE 0.18;P < .01), ACE2 (ß = 0.51, SE 0.19;P < .01) positively associated with HbA1c; urine angiotensinogen (AGT) negatively associated (ß = -0.28 [SE 0.06;P < .01]). Higher serum aldosterone (ß = 0.11 [SE 0.04;P < .01]) and urine AGT (ß = 0.32 [SE 0.07;P < .01]) significantly associated with ACR and urine ACE2 (ß = 0.21 [SE 0.13;P < .03]). No associations between RAS markers and eGFR/MAP. CONCLUSIONS/INTERPRETATION RAS activation present in youth with T2D and associated with higher HbA1c. Higher serum aldosterone and urine AGT associated with albuminuria. The prognostic significance of the combined effect of glycemia and RAS activation on renal outcomes requires additional investigation.
Collapse
Affiliation(s)
- Allison B Dart
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Winnipeg, Manitoba, Canada
| | - Brandy Wicklow
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Winnipeg, Manitoba, Canada
| | - James Scholey
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A Sellers
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Winnipeg, Manitoba, Canada
| | - Justin Dyck
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Farid Mahmud
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Sochett
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jill Hamilton
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Tom Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020; 34:14103-14119. [PMID: 32965736 PMCID: PMC7537138 DOI: 10.1096/fj.202001394rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michelle Sayuri Nishino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.,Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Carla Maximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Holly JMP, Biernacka K, Maskell N, Perks CM. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front Endocrinol (Lausanne) 2020; 11:582870. [PMID: 33042029 PMCID: PMC7527410 DOI: 10.3389/fendo.2020.582870] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of COVID-19, caused by the coronavirus, SARS-CoV-2, has had a global impact not seen for an infectious disease for over a century. This acute pandemic has spread from the East and has been overlaid onto a slow pandemic of metabolic diseases of obesity and diabetes consequent from the increasing adoption of a Western-lifestyle characterized by excess calorie consumption with limited physical activity. It has become clear that these conditions predispose individuals to a more severe COVID-19 with increased morbidity and mortality. There are many features of diabetes and obesity that may accentuate the clinical response to SARS-CoV-2 infection: including an impaired immune response, an atherothrombotic state, accumulation of advanced glycation end products and a chronic inflammatory state. These could prime an exaggerated cytokine response to viral infection, predisposing to the cytokine storm that triggers progression to septic shock, acute respiratory distress syndrome, and multi-organ failure. Infection leads to an inflammatory response and tissue damage resulting in increased metabolic activity and an associated increase in the mechanisms by which cells ingest and degrade tissue debris and foreign materials. It is becoming clear that viruses have acquired an ability to exploit these mechanisms to invade cells and facilitate their own life-cycle. In obesity and diabetes these mechanisms are chronically activated due to the deteriorating metabolic state and this may provide an increased opportunity for a more profound and sustained viral infection.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
22
|
Brosnihan KB, Merrill DC, Yamaleyeva LM, Chen K, Neves L, Joyner J, Givner C, Lanier K, Moorefield C, Westwood B. Longitudinal study of angiotensin peptides in normal and pre-eclamptic pregnancy. Endocrine 2020; 69:410-419. [PMID: 32319014 PMCID: PMC10519175 DOI: 10.1007/s12020-020-02296-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To address whether differential regulation of the renin-angiotensin-aldosterone system occurs in pre-eclampsia, we performed an analysis of the time course of circulating and urinary profiles of the vasoconstrictor (Ang II) and the vasodilator [Ang-(1-7)] peptides in normal pregnant (NP) and pre-eclamptic (PE) women. METHODS Urine and plasma samples from 86 nulliparous women were collected prospectively; 67 subjects continued as NP and 19 developed PE. Subjects were enrolled prior to 12 weeks of gestation and plasma and spot urine samples were obtained throughout gestation. Control samples were obtained at 6 weeks postpartum (PP). RESULTS Mean blood pressure (p < 0.001) was elevated at 31-37 weeks of gestation in PE subjects as compared with NP subjects. Plasma Ang I and Ang II levels were elevated in NP subjects as early as 16 weeks of gestation and maintained throughout gestation. In PE subjects both plasma Ang I and Ang II were elevated at 16-33 weeks as compared with PP levels. PE subjects showed reduced plasma Ang I and Ang II (at 35-37 weeks of gestation) compared with NP subjects. Plasma Ang-(1-7) was unchanged in both groups. All three urinary peptides increased throughout gestation in NP subjects. In PE subjects urinary Ang I was increased at 23-26 weeks and was maintained throughout gestation. Urinary Ang II was increased at 27-29 and 31-33 weeks of gestation. PE subjects had no change in urinary Ang-(1-7). CONCLUSION The activation of the RAS, particularly Ang II throughout normal gestation may contribute to the maintenance of vascular tone during normal pregnancy. However higher sensitivity to Ang II in pre-eclampsia may be potentiated by the higher circulating and urinary levels of Ang II, unopposed by local renal Ang-(1-7), and thus may contribute to the development of pre-eclampsia.
Collapse
Affiliation(s)
- K Bridget Brosnihan
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | | | - Liliya M Yamaleyeva
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kai Chen
- Aspirus Wausau Medical Center, Wausau, WI, 54401, USA
| | - Liomar Neves
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - JaNae Joyner
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Courtney Givner
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristy Lanier
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Cheryl Moorefield
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brian Westwood
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
23
|
Shekhar S, Wurth R, Kamilaris CDC, Eisenhofer G, Barrera FJ, Hajdenberg M, Tonleu J, Hall JE, Schiffrin EL, Porter F, Stratakis CA, Hannah-Shmouni F. Endocrine Conditions and COVID-19. Horm Metab Res 2020; 52:471-484. [PMID: 32512611 PMCID: PMC7417289 DOI: 10.1055/a-1172-1352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 was declared a global pandemic by the WHO and has affected millions of patients around the world. COVID-19 disproportionately affects persons with endocrine conditions, thus putting them at an increased risk for severe disease. We discuss the mechanisms that place persons with endocrine conditions at an additional risk for severe COVID-19 and review the evidence. We also suggest precautions and management of endocrine conditions in the setting of global curfews being imposed and offer practical tips for uninterrupted endocrine care.
Collapse
Affiliation(s)
- Skand Shekhar
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
- Clinical Research Branch, National Institute of Environmental Health
Sciences, NIH, North Carolina, USA
| | - Rachel Wurth
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| | - Crystal D. C. Kamilaris
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, and Department
of Medicine III, University Hospital Carl Gustav Carus, Technische
Universität Dresden, Dresden, Germany
| | - Francisco J. Barrera
- Endocrinology Division, Internal Medicine Department, University
Hospital “Dr. Jose E. Gonzalez”, Universidad Autonoma de Nuevo
Leon, Monterrey, Mexico
- Plataforma INVEST-KER Unit Mayo Clinic, School of Medicine, Universidad
Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Michelle Hajdenberg
- College of Arts and Sciences at Washington University in St. Louis,
Saint Louis, Missouri, USA
| | - Joselyne Tonleu
- Clinical Research Branch, National Institute of Environmental Health
Sciences, NIH, North Carolina, USA
| | - Janet E. Hall
- Clinical Research Branch, National Institute of Environmental Health
Sciences, NIH, North Carolina, USA
| | - Ernesto L. Schiffrin
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital,
McGill University, Montreal, Quebec, Canada
| | - Forbes Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, NIH, Bethesda, Maryland,
USA
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
24
|
Drucker DJ. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev 2020; 41:5820492. [PMID: 32294179 PMCID: PMC7184382 DOI: 10.1210/endrev/bnaa011] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome (SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.
Collapse
Affiliation(s)
- Daniel J Drucker
- From the Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, University of Toronto, Toronto Ontario, Canada
| |
Collapse
|
25
|
Tang J, Wysocki J, Ye M, Vallés PG, Rein J, Shirazi M, Bader M, Gomez RA, Sequeira-Lopez MLS, Afkarian M, Batlle D. Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Hypertension 2019; 74:83-94. [PMID: 31079532 DOI: 10.1161/hypertensionaha.119.12873] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In patients with diabetic kidney disease (DKD), plasma renin activity is usually decreased, but there is limited information on urinary renin and its origin. Urinary renin was evaluated in samples from patients with longstanding type I diabetes mellitus and mice with streptozotocin-induced diabetes mellitus. Renin-reporter mouse model (Ren1d-Cre;mT/mG) was made diabetic with streptozotocin to examine whether the distribution of cells of the renin lineage was altered in a chronic diabetic environment. Active renin was increased in urine samples from patients with DKD (n=36), compared with those without DKD (n=38; 3.2 versus 1.3 pg/mg creatinine; P<0.001). In mice with streptozotocin-induced diabetes mellitus, urine renin was also increased compared with nondiabetic controls. By immunohistochemistry, in mice with streptozotocin-induced diabetes mellitus, juxtaglomerular apparatus and proximal tubular renin staining were reduced, whereas collecting tubule staining, by contrast, was increased. To examine the role of filtration and tubular reabsorption on urinary renin, mice were either infused with either mouse or human recombinant renin and lysine (a blocker of proximal tubular protein reabsorption). Infusion of either form of renin together with lysine markedly increased urinary renin such that it was no longer different between nondiabetic and diabetic mice. Megalin mRNA was reduced in the kidney cortex of streptozotocin-treated mice (0.70±0.09 versus 1.01±0.04 in controls, P=0.01) consistent with impaired tubular reabsorption. In Ren1d-Cre;mT/mG with streptozotocin-induced diabetes mellitus, the distribution of renin lineage cells within the kidney was similar to nondiabetic renin-reporter mice. No evidence for migration of cells of renin linage to the collecting duct in diabetic mice could be found. Renin mRNA in microdissected collecting ducts from streptozotocin-treated mice, moreover, was not significantly different than in controls, whereas in kidney cortex, largely reflecting juxtaglomerular apparatus renin, it was significantly reduced. In conclusion, in urine from patients with type 1 diabetes mellitus and DKD and from mice with streptozotocin-induced diabetes mellitus, renin is elevated. This cannot be attributed to production from cells of the renin lineage migrating to the collecting duct in a chronic hyperglycemic environment. Rather, the elevated levels of urinary renin found in DKD are best attributed to altered glomerular filteration and impaired proximal tubular reabsorption.
Collapse
Affiliation(s)
- Jeannette Tang
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Jan Wysocki
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| | - Minghao Ye
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| | - Patricia G Vallés
- Notti Pediatric Hospital School of Medicine, Mendoza, Argentina (P.G.V.)
| | - Johannes Rein
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Mina Shirazi
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Michael Bader
- Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.).,Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.B.)
| | | | | | | | - Daniel Batlle
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| |
Collapse
|
26
|
Gilbert A, Liu J, Cheng G, An C, Deo K, Gorret AM, Qin X. A review of urinary angiotensin converting enzyme 2 in diabetes and diabetic nephropathy. Biochem Med (Zagreb) 2018; 29:010501. [PMID: 30591810 PMCID: PMC6294158 DOI: 10.11613/bm.2019.010501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022] Open
Abstract
Urinary angiotensin converting enzyme 2 (ACE2) is significantly increased in diabetes and diabetic nephropathy. While studies on its clinical significance are still underway, its urinary expression, association with metabolic and renal parameters has been in the recent past considerably studied. The recent studies have demystified urine ACE2 in many ways and suggested the roles it could play in the management of diabetic nephropathy. In all studies the expression of urinary ACE2 was determined by enzyme activity assay and/with the quantification of ACE2 protein and mRNA by methods whose reliability are yet to be evaluated. This review summarizes recent findings on expression of urinary ACE2, examines its relationship with clinical parameters and highlights possible applications in management of diabetic nephropathy.
Collapse
Affiliation(s)
- Akankwasa Gilbert
- Department of laboratory medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jianhua Liu
- Department of laboratory medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Guixue Cheng
- Department of laboratory medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Changjuan An
- Department of laboratory medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Kabuye Deo
- Department of laboratory medicine, First Teaching Hospital of China Medical University, Shenyang, People's Republic of China
| | - Abalinda Mary Gorret
- Department of medical laboratory science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xiaosong Qin
- Department of laboratory medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
27
|
Gutta S, Grobe N, Kumbaji M, Osman H, Saklayen M, Li G, Elased KM. Increased urinary angiotensin converting enzyme 2 and neprilysin in patients with type 2 diabetes. Am J Physiol Renal Physiol 2018; 315:F263-F274. [PMID: 29561187 PMCID: PMC6139527 DOI: 10.1152/ajprenal.00565.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) and neprilysin (NEP) are metalloproteases that are highly expressed in the renal proximal tubules. ACE2 and NEP generate renoprotective angiotensin (1-7) from angiotensin II and angiotensin I, respectively, and therefore could have a major role in chronic kidney disease (CKD). Recent data demonstrated increased urinary ACE2 in patients with diabetes with CKD and kidney transplants. We tested the hypothesis that urinary ACE2, NEP, and a disintegrin and metalloproteinase 17 (ADAM17) are increased and could be risk predictors of CKD in patients with diabetes. ACE2, NEP, and ADAM17 were investigated in 20 nondiabetics (ND) and 40 patients with diabetes with normoalbuminuria (Dnormo), microalbuminuria (Dmicro), and macroalbuminuria (Dmacro) using ELISA, Western blot, and fluorogenic and mass spectrometric-based enzyme assays. Logistic regression model was applied to predict the risk prediction. Receiver operating characteristic curves were drawn, and prediction accuracies were calculated to explore the effectiveness of ACE2 and NEP in predicting diabetes and CKD. Results demonstrated that there is no evidence of urinary ACE2 and ADAM17 in ND subjects, but both enzymes were increased in patients with diabetes, including Dnormo. Although there was no detectable plasma ACE2 activity, there was evidence of urinary and plasma NEP in all the subjects, and urinary NEP was significantly increased in Dmicro patients. NEP and ACE2 showed significant correlations with metabolic and renal characteristics. In summary, urinary ACE2, NEP, and ADAM17 are increased in patients with diabetes and could be used as early biomarkers to predict the incidence or progression of CKD at early stages among individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Sridevi Gutta
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Nadja Grobe
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Meenasri Kumbaji
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Hassan Osman
- Dayton Veterans Affairs Medical Center , Dayton, Ohio
| | | | - Gengxin Li
- Department of Mathematics and Statistics, Wright State University, Dayton, Ohio
| | - Khalid M Elased
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) is a pivotal player in the physiology and pathophysiology of cardiovascular and renal systems. Discovery of angiotensin-converting enzyme 2 (ACE2), capable of cleaving RAS effector peptide angiotensin (Ang) II into biologically active Ang-(1-7), has increased the complexity of our knowledge of the RAS. ACE2 expression is abundant in the kidney and is thought to provide protection against injury. This review emphasizes current experimental and clinical findings that examine ACE2 in the context of kidney injury and its potential therapeutic impact for treatment of kidney disease. RECENT FINDINGS Clinical studies have reported upregulation of ACE2 in urine from diabetic patients, which may be reflective of pathological shedding of renal ACE2 as suggested by mechanistic experiments. Studies in experimental models have investigated the feasibility of pharmacological induction of ACE2 for improvement of renal function, inflammation, and fibrosis. SUMMARY Emerging concepts about the RAS indicate that ACE2 is a critical regulator of angiotensin peptide metabolism and the pathogenesis of renal disease. Human recombinant ACE2 is available and may be a practical clinical approach to enzyme replacement. Elucidating precise roles of ACE2 throughout disease progression will enrich our view of the RAS and help identify novel targets and appropriate strategies for intervention.
Collapse
|
29
|
Abstract
Diabetic kidney disease (DKD) remains one of the leading causes of reduced lifespan in diabetes. The quest for both prognostic and surrogate endpoint biomarkers for advanced DKD and end-stage renal disease has received major investment and interest in recent years. However, at present no novel biomarkers are in routine use in the clinic or in trials. This review focuses on the current status of prognostic biomarkers. First, we emphasise that albuminuria and eGFR, with other routine clinical data, show at least modest prediction of future renal status if properly used. Indeed, a major limitation of many current biomarker studies is that they do not properly evaluate the marginal increase in prediction on top of these routinely available clinical data. Second, we emphasise that many of the candidate biomarkers for which there are numerous sporadic reports in the literature are tightly correlated with each other. Despite this, few studies have attempted to evaluate a wide range of biomarkers simultaneously to define the most useful among these correlated biomarkers. We also review the potential of high-dimensional panels of lipids, metabolites and proteins to advance the field, and point to some of the analytical and post-analytical challenges of taking initial studies using these and candidate approaches through to actual clinical biomarker use.
Collapse
Affiliation(s)
- Helen M Colhoun
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | |
Collapse
|
30
|
Lovshin JA, Boulet G, Lytvyn Y, Lovblom LE, Bjornstad P, Farooqi MA, Lai V, Cham L, Tse J, Orszag A, Scarr D, Weisman A, Keenan HA, Brent MH, Paul N, Bril V, Perkins BA, Cherney DZ. Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. JCI Insight 2018; 3:96968. [PMID: 29321380 PMCID: PMC5821172 DOI: 10.1172/jci.insight.96968] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In type 1 diabetes (T1D), adjuvant treatment with inhibitors of the renin-angiotensin-aldosterone system (RAAS), which dilate the efferent arteriole, is associated with prevention of progressive albuminuria and renal dysfunction. Uncertainty still exists as to why some individuals with long-standing T1D develop diabetic kidney disease (DKD) while others do not (DKD resistors). We hypothesized that those with DKD would be distinguished from DKD resistors by the presence of RAAS activation. METHODS Renal and systemic hemodynamic function was measured before and after exogenous RAAS stimulation by intravenous infusion of angiotensin II (ANGII) in 75 patients with prolonged T1D durations and in equal numbers of nondiabetic controls. The primary outcome was change in renal vascular resistance (RVR) in response to RAAS stimulation, a measure of endogenous RAAS activation. RESULTS Those with DKD had less change in RVR following exogenous RAAS stimulation compared with DKD resistors or controls (19%, 29%, 31%, P = 0.008, DKD vs. DKD resistors), reflecting exaggerated endogenous renal RAAS activation. All T1D participants had similar changes in renal efferent arteroilar resistance (9% vs. 13%, P = 0.37) irrespective of DKD status, which reflected less change versus controls (20%, P = 0.03). In contrast, those with DKD exhibited comparatively less change in afferent arteriolar vascular resistance compared with DKD resistors or controls (33%, 48%, 48%, P = 0.031, DKD vs. DKD resistors), indicating higher endogenous RAAS activity. CONCLUSION In long-standing T1D, the intrarenal RAAS is exaggerated in DKD, which unexpectedly predominates at the afferent rather than the efferent arteriole, stimulating vasoconstriction. FUNDING JDRF operating grant 17-2013-312.
Collapse
Affiliation(s)
- Julie A. Lovshin
- Division of Endocrinology and Metabolism and
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geneviève Boulet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leif E. Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Petter Bjornstad
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Division, Barbara Davis Center for Diabetes, Aurora, Colorado, USA
| | - Mohammed A. Farooqi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vesta Lai
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Cham
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Tse
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrej Orszag
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Scarr
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alanna Weisman
- Division of Endocrinology and Metabolism and
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hillary A. Keenan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Michael H. Brent
- Department of Ophthalmology and Vision Sciences, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Narinder Paul
- Joint Department of Medical Imaging, Division of Cardiothoracic Radiology, University Health Network, Toronto, Ontario, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Krembil Neuroscience Centre, Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A. Perkins
- Division of Endocrinology and Metabolism and
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Z.I. Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Wysocki J, Goodling A, Burgaya M, Whitlock K, Ruzinski J, Batlle D, Afkarian M. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F487-F494. [PMID: 28468961 DOI: 10.1152/ajprenal.00074.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
The pathways implicated in diabetic kidney disease (DKD) are largely derived from animal models. To examine if alterations in renin-angiotensin system (RAS) in humans are concordant with those in rodent models, we measured concentration of angiotensinogen (AOG), cathepsin D (CTSD), angiotensin-converting enzyme (ACE), and ACE2 and enzymatic activities of ACE, ACE2, and aminopeptidase-A in FVB mice 13-20 wk after treatment with streptozotocin (n = 9) or vehicle (n = 15) and people with long-standing type 1 diabetes, with (n = 37) or without (n = 81) DKD. In streptozotocin-treated mice, urine AOG and CTSD were 10.4- and 3.0-fold higher than in controls, respectively (P < 0.001). Enzymatic activities of ACE, ACE2, and APA were 6.2-, 3.2-, and 18.8-fold higher, respectively, in diabetic animals (P < 0.001). Angiotensin II was 2.4-fold higher in diabetic animals (P = 0.017). Compared with people without DKD, those with DKD had higher urine AOG (170 vs. 15 μg/g) and CTSD (147 vs. 31 μg/g). In people with DKD, urine ACE concentration was 1.8-fold higher (1.4 vs. 0.8 μg/g in those without DKD), while its enzymatic activity was 0.6-fold lower (1.0 vs. 1.6 × 109 RFU/g in those without DKD). Lower ACE activity, but not ACE protein concentration, was associated with ACE inhibitor (ACEI) treatment. After adjustment for clinical covariates, AOG, CTSD, ACE concentration, and ACE activity remained associated with DKD. In conclusion, in mice with streptozotocin-induced diabetes and in humans with DKD, urine concentrations and enzymatic activities of several RAS components are concordantly increased, consistent with enhanced RAS activity and greater angiotensin II formation. ACEI use was associated with a specific reduction in urine ACE activity, not ACE protein concentration, suggesting that it may be a marker of exposure to this widely-used therapy.
Collapse
Affiliation(s)
- Jan Wysocki
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anne Goodling
- Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Mar Burgaya
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathryn Whitlock
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington; and
| | - John Ruzinski
- Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois;
| | - Maryam Afkarian
- Division of Nephrology, Department of Medicine, University of California, Davis, California
| |
Collapse
|