1
|
Grashei M, Wodtke P, Skinner JG, Sühnel S, Setzer N, Metzler T, Gulde S, Park M, Witt D, Mohr H, Hundshammer C, Strittmatter N, Pellegata NS, Steiger K, Schilling F. Simultaneous magnetic resonance imaging of pH, perfusion and renal filtration using hyperpolarized 13C-labelled Z-OMPD. Nat Commun 2023; 14:5060. [PMID: 37604826 PMCID: PMC10442412 DOI: 10.1038/s41467-023-40747-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.
Collapse
Affiliation(s)
- Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Mihyun Park
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Daniela Witt
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, I-27100, Pavia, Italy
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, D-85748, Garching, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Guglielmetti C, Cordano C, Najac C, Green AJ, Chaumeil MM. Imaging immunomodulatory treatment responses in a multiple sclerosis mouse model using hyperpolarized 13C metabolic MRI. COMMUNICATIONS MEDICINE 2023; 3:71. [PMID: 37217574 DOI: 10.1038/s43856-023-00300-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Christian Cordano
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ari J Green
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California at San Francisco, CA, San Francisco, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Sharma G, Maptue N, Rahim M, Trigo Mijes ML, Hever T, Wen X, Funk AM, Malloy CR, Young JD, Khemtong C. Oxidation of hyperpolarized [1- 13 C]pyruvate in isolated rat kidneys. NMR IN BIOMEDICINE 2023; 36:e4857. [PMID: 36285844 PMCID: PMC9980878 DOI: 10.1002/nbm.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Kidneys play a central role in numerous disorders but current imaging methods have limited utility to probe renal metabolism. Hyperpolarized (HP) 13 C magnetic resonance imaging is uniquely suited to provide metabolite-specific information about key biochemical pathways and it offers the further advantage that renal imaging is practical in humans. This study evaluated the feasibility of hyperpolarization examinations in a widely used model for analysis of renal physiology, the isolated kidney, which enables isolation of renal metabolism from the effects of other organs and validation of HP results by independent measurements. Isolated rat kidneys were supplied with either HP [1-13 C]pyruvate only or HP [1-13 C]pyruvate plus octanoate. Metabolic activity in both groups was confirmed by stable renal oxygen consumption. HP [1-13 C]pyruvate was readily metabolized to [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]alanine, detectable seconds after HP [1-13 C]pyruvate was injected. Octanoate suppressed but did not eliminate the production of HP [13 C]bicarbonate from [1-13 C]pyruvate. Steady-state flux analyses using non-HP 13 C substrates validated the utilization of HP [1-13 C]pyruvate, as observed by HP 13 C NMR. In the presence of octanoate, lactate is generated from a tricarboxylic acid cycle intermediate, oxaloacetate. The isolated rat kidney may serve as an excellent model for investigating and establishing new HP 13 C metabolic probes for future kidney imaging applications.
Collapse
Affiliation(s)
- Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nesmine Maptue
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Miriam L. Trigo Mijes
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Hever
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander M. Funk
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- VA North Texas Health Care System, Dallas, TX, USA
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Bertelsen LB, Hansen ESS, Sadowski T, Ruf S, Laustsen C. Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney. NMR IN BIOMEDICINE 2021; 34:e4583. [PMID: 34240478 DOI: 10.1002/nbm.4583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The purpose of the current study was to investigate if hyperpolarized [1-13 C]pyruvate can inform us on the metabolic consequences for the kidney glucose metabolism upon treatment with the pyruvate kinase M2 (PKM2) activator TEPP-46, which has shown promise as a novel therapeutic target for diabetic nephropathy. A healthy male Wistar rat model was employed to study the conversion of [1-13 C]pyruvate to [1-13 C]lactate in the kidney 2 and 4 h after treatment with TEPP-46. All rats were scanned with hyperpolarized [1-13 C]pyruvate kidney MR and vital parameters and blood samples were taken after scanning. The PKM2 activator TEPP-46 increases the glycolytic activity in the kidneys, leading to an increased lactate production, as seen by hyperpolarized pyruvate-to-lactate conversion. The results are supported by an increase in blood lactate, a decreased blood glucose level and an increased pyruvate kinase (PK) activity. The metabolic changes observed in both kidneys following treatment with TEPP-46 are largely independent of renal function and could as such represent a new and extremely sensitive metabolic readout for future drugs targeting PKM2. These results warrant further studies in disease models to evaluate if [1-13 C]pyruvate-to-[1-13 C]lactate conversion can predict treatment outcome.
Collapse
Affiliation(s)
- Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Sven Ruf
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Laustsen C, von Morze C, Reed GD. Hyperpolarized Carbon ( 13C) MRI of the Kidney: Experimental Protocol. Methods Mol Biol 2021; 2216:481-493. [PMID: 33476019 PMCID: PMC9703202 DOI: 10.1007/978-1-0716-0978-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Alterations in renal metabolism are associated with both physiological and pathophysiologic events. The existing noninvasive analytic tools including medical imaging have limited capability for investigating these processes, which potentially limits current understanding of kidney disease and the precision of its clinical diagnosis. Hyperpolarized 13C MRI is a new medical imaging modality that can capture changes in the metabolic processing of certain rapidly metabolized substrates, as well as changes in kidney function. Here we describe experimental protocols for renal metabolic [1-13C]pyruvate and functional 13C-urea imaging step-by-step. These methods and protocols are useful for investigating renal blood flow and function as well as the renal metabolic status of rodents in vivo under various experimental (patho)physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol is complemented by two separate chapters describing the basic concept and data analysis.
Collapse
Affiliation(s)
- Christoffer Laustsen
- The MR Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
6
|
Shin SH, Wendland MF, Vandsburger MH. Delayed urea differential enhancement CEST (dudeCEST)-MRI with T 1 correction for monitoring renal urea handling. Magn Reson Med 2020; 85:2791-2804. [PMID: 33180343 DOI: 10.1002/mrm.28583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We demonstrate a method of delayed urea differential enhancement CEST for probing urea recycling action of the kidney using expanded multi-pool Lorentzian fitting and apparent exchange-dependent relaxation compensation. METHODS T1 correction of urea CEST contrast by apparent exchange-dependent relaxation was tested in phantoms. Nine mice were scanned at 7 Tesla following intraperitoneal injection of 2M 150 μL urea, and later saline. T1 maps and Z-spectra were acquired before and 20 and 40 min postinjection. Z-spectra were fit to a 7-pool Lorentzian model for CEST quantification and compared to urea assay of kidney homogenate. Renal injury was induced by aristolochic acid in 7 mice, and the same scan protocol was performed. RESULTS Apparent exchange-dependent relaxation corrected for variable T1 times in phantoms. Urea CEST contrast at +1 ppm increased significantly at both time points following urea injection in the inner medulla and papilla. When normalizing the postinjection urea CEST contrast to the corresponding baseline value, both urea and saline injection resulted in identical fold changes in urea CEST contrast. Urea assay of kidney homogenate showed a significant correlation to both apparent exchange-dependent relaxation (R2 = 0.4687, P = .0017) and non-T1 -corrected Lorentzian amplitudes (R2 = 0.4964, P = .0011). Renal injury resulted in increased T1 time in the cortex and reduced CEST contrast change upon urea and saline infusion. CONCLUSION Delayed urea enhancement following infusion can provide insight into renal urea handling. In addition, changes in CEST contrast at 1.0 ppm following saline infusion may provide insight into renal function.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, California, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Mariager CØ, Hansen ESS, Bech SK, Munk A, Kjaergaard U, Lyhne MD, Søberg K, Nielsen PF, Ringgaard S, Laustsen C. Graft assessment of the ex vivo perfused porcine kidney using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2020; 84:2645-2655. [PMID: 32557782 DOI: 10.1002/mrm.28363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Normothermic perfusion is an emerging strategy for donor organ preservation and therapy, incited by the high worldwide demand for organs for transplantation. Hyperpolarized MRI and MRS using [1-13 C]pyruvate and other 13 C-labeled molecules pose a novel way to acquire highly detailed information about metabolism and function in a noninvasive manner. This study investigates the use of this methodology as a means to study and monitor the state of ex vivo perfused porcine kidneys, in the context of kidney graft preservation research. METHODS Kidneys from four 40-kg Danish domestic pigs were perfused ex vivo with whole blood under normothermic conditions, using an MR-compatible perfusion system. Kidneys were investigated using 1 H MRI as well as hyperpolarized [1-13 C]pyruvate MRI and MRS. Using the acquired anatomical, functional and metabolic data, the state of the ex vivo perfused porcine kidney could be quantified. RESULTS Four kidneys were successfully perfused for 120 minutes and verified using a DCE perfusion experiment. Renal metabolism was examined using hyperpolarized [1-13 C]pyruvate MRI and MRS, and displayed an apparent reduction in pyruvate turnover compared with the usual case in vivo. Perfusion and blood gas parameters were in the normal ex vivo range. CONCLUSION This study demonstrates the ability to monitor ex vivo graft metabolism and function in a large animal model, resembling human renal physiology. The ability of hyperpolarized MRI and MRS to directly compare the metabolic state of an organ in vivo and ex vivo, in combination with the simple MR implementation of normothermic perfusion, renders this methodology a powerful future tool for graft preservation research.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Munk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Dam Lyhne
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karsten Søberg
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Laustsen C, Nielsen PM, Qi H, Løbner MH, Palmfeldt J, Bertelsen LB. Hyperpolarized [1,4- 13C]fumarate imaging detects microvascular complications and hypoxia mediated cell death in diabetic nephropathy. Sci Rep 2020; 10:9650. [PMID: 32541797 PMCID: PMC7295762 DOI: 10.1038/s41598-020-66265-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Today, there is a general lack of prognostic biomarkers for development of renal disease and in particular diabetic nephropathy. Increased glycolytic activity, lactate accumulation and altered mitochondrial oxygen utilization are hallmarks of diabetic kidney disease. Fumarate hydratase activity has been linked to mitochondrial dysfunction as well as activation of the hypoxia inducible factor, induction of apoptosis and necrosis. Here, we investigate fumarate hydratase activity in biofluids in combination with the molecular imaging probe, hyperpolarized [1,4-13C2]fumarate, to identify the early changes associated with hemodynamics and cell death in a streptozotocin rat model of type 1 diabetes. We found a significantly altered hemodynamic signature of [1,4-13C2]fumarate in the diabetic kidneys as well as an systemic increased metabolic conversion of fumarate-to-malate, indicative of increased cell death associated with progression of diabetes, while little to no renal specific conversion was observed. This suggest apoptosis as the main cause of cell death in the diabetic kidney. This is likely resulting from an increased reactive oxygen species production following uncoupling of the electron transport chain at complex II. The mechanism coupling the enzyme leakage and apoptotic phenotype is hypoxia inducible factor independent and seemingly functions as a protective mechanism in the kidney cells.
Collapse
Affiliation(s)
- Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Hadberg Løbner
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Grist JT, Miller JJ, Zaccagna F, McLean MA, Riemer F, Matys T, Tyler DJ, Laustsen C, Coles AJ, Gallagher FA. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. J Cereb Blood Flow Metab 2020; 40:1137-1147. [PMID: 32153235 PMCID: PMC7238376 DOI: 10.1177/0271678x20909045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Cerebral metabolism is tightly regulated and fundamental for healthy neurological function. There is increasing evidence that alterations in this metabolism may be a precursor and early biomarker of later stage disease processes. Proton magnetic resonance spectroscopy (1H-MRS) is a powerful tool to non-invasively assess tissue metabolites and has many applications for studying the normal and diseased brain. However, the technique has limitations including low spatial and temporal resolution, difficulties in discriminating overlapping peaks, and challenges in assessing metabolic flux rather than steady-state concentrations. Hyperpolarized carbon-13 magnetic resonance imaging is an emerging clinical technique that may overcome some of these spatial and temporal limitations, providing novel insights into neurometabolism in both health and in pathological processes such as glioma, stroke and multiple sclerosis. This review will explore the growing body of pre-clinical data that demonstrates a potential role for the technique in assessing metabolism in the central nervous system. There are now a number of clinical studies being undertaken in this area and this review will present the emerging clinical data as well as the potential future applications of hyperpolarized 13C magnetic resonance imaging in the brain, in both clinical and pre-clinical studies.
Collapse
Affiliation(s)
- James T Grist
- Institute of Cancer and Genomic Sciences, University of
Birmingham, Birmingham, UK
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge,
UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | | | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge,
Cambridge, UK
| | | |
Collapse
|
10
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Pedersen M, Ursprung S, Jensen JD, Jespersen B, Gallagher F, Laustsen C. Hyperpolarised 13C-MRI metabolic and functional imaging: an emerging renal MR diagnostic modality. MAGMA (NEW YORK, N.Y.) 2020; 33:23-32. [PMID: 31782036 DOI: 10.1007/s10334-019-00801-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a well-established modality for assessing renal morphology and function, as well as changes that occur during disease. However, the significant metabolic changes associated with renal disease are more challenging to assess with MRI. Hyperpolarized carbon-13 MRI is an emerging technique which provides an opportunity to probe metabolic alterations at high sensitivity by providing an increase in the signal-to-noise ratio of 20,000-fold or more. This review will highlight the current status of hyperpolarised 13C-MRI and its translation into the clinic and how it compares to metabolic measurements provided by competing technologies such as positron emission tomography (PET).
Collapse
Affiliation(s)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jens Dam Jensen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ferdia Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200, Aarhus N, Denmark.
| |
Collapse
|
12
|
Grist JT, Mariager CØ, Qi H, Nielsen PM, Laustsen C. Detection of acute kidney injury with hyperpolarized [ 13 C, 15 N]Urea and multiexponential relaxation modeling. Magn Reson Med 2019; 84:943-949. [PMID: 31840294 DOI: 10.1002/mrm.28134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE To assess the utility of Laplacian fitting to describe the differences in hyperpolarized [13 C, 15 N]urea T2 relaxation in ischemic and healthy rodent kidneys. METHODS Six rats with unilateral renal ischemia were investigated. [13 C, 15 N]Urea T2 mapping was undertaken with a radial fast spin echo method, with subsequent postprocessing performed with regularized Laplacian fitting. RESULTS Simulations showed that Laplacian fitting was stable down to a signal-to-noise ratio of 20. In vivo results showed a significant increase in the mono- and decrease in biexponential pools in ischemia reperfusion injury kidneys, in comparison to healthy (14 ± 10% versus 4 ± 2%, 85 ± 10% versus 95 ± 3%; P < .05). CONCLUSION We demonstrate, for the first time, the differences in multiexponential behavior of [13 C, 15 N]urea between the healthy and ischemic rodent kidney. The distribution of relaxation pools were found to be both visually and numerically significantly different. The ability to improve the information level in hyperpolarized MR, by using the relaxation contrast mechanisms is an appealing option, that can easily be adopted in large animals and even in clinical studies in the near future.
Collapse
Affiliation(s)
- James T Grist
- The Institute of Child Health, Institute of Cancer and Genomic Sciences, School of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | | | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Shin SH, Wendland MF, Zhang B, Tran A, Tang A, Vandsburger MH. Noninvasive imaging of renal urea handling by CEST-MRI. Magn Reson Med 2019; 83:1034-1044. [PMID: 31483529 DOI: 10.1002/mrm.27968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Renal function is characterized by concentration of urea for removal in urine. We tested urea as a CEST-MRI contrast agent for measurement of the concentrating capacity of distinct renal anatomical regions. METHODS The CEST contrast of urea was examined using phantoms with different concentrations and pH levels. Ten C57BL/6J mice were scanned twice at 7 T, once following intraperitoneal injection of 2M 150 µL urea and separately following an identical volume of saline. Kidneys were segmented into regions encompassing the cortex, outer medulla, and inner medulla and papilla to monitor spatially varying urea concentration. Z-spectra were acquired before and 20 minutes after injection, with dynamic scanning of urea handling performed in between via serial acquisition of CEST images acquired following saturation at +1 ppm. RESULTS Phantom experiments revealed concentration and pH-dependent CEST contrast of urea that was both acid- and base-catalyzed. Z-spectra acquired before injection showed significantly higher CEST contrast in the inner medulla and papilla (2.3% ± 1.9%) compared with the cortex (0.15% ± 0.75%, P = .011) and outer medulla (0.12% ± 0.58%, P = .008). Urea infusion increased CEST contrast in the inner medulla and papilla by 2.1% ± 1.9% (absolute), whereas saline infusion decreased CEST contrast by -0.5% ± 2.0% (absolute, P = .028 versus urea). Dynamic scanning revealed that thermal drift and diuretic status are confounding factors. CONCLUSION Urea CEST has a potential of monitoring renal function by capturing the spatially varying urea concentrating ability of the kidneys.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core, University of California, Berkeley, Berkeley, California
| | - Brandon Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - An Tran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Albert Tang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
14
|
Qi H, Mariager CØ, Nielsen PM, Schroeder M, Lindhardt J, Nørregaard R, Klein JD, Sands JM, Laustsen C. Glucagon infusion alters the hyperpolarized 13 C-urea renal hemodynamic signature. NMR IN BIOMEDICINE 2019; 32:e4028. [PMID: 30426590 DOI: 10.1002/nbm.4028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Renal urea handling is central to the urine concentrating mechanism, and as such the ability to image urea transport in the kidney is an important potential imaging biomarker for renal functional assessment. Glucagon levels associated with changes in dietary protein intake have been shown to influence renal urea handling; however, the exact mechanism has still to be fully understood. Here we investigate renal function and osmolite distribution using [13 C,15 N] urea dynamics and 23 Na distribution before and 60 min after glucagon infusion in six female rats. Glucagon infusion increased the renal [13 C,15 N] urea mean transit time by 14%, while no change was seen in the sodium distribution, glomerular filtration rate or oxygen consumption. This change is related to the well-known effect of increased urea excretion associated with glucagon infusion, independent of renal functional effects. This study demonstrates for the first time that hyperpolarized 13 C-urea enables monitoring of renal urinary excretion effects in vivo.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Water Salt Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Abstract
Kidney diseases can be caused by a wide range of genetic, hemodynamic, toxic, infectious, and autoimmune factors. The diagnosis of kidney disease usually involves the biochemical analysis of serum and blood, but these tests are often insufficiently sensitive or specific to make a definitive diagnosis. Although radiologic imaging currently has a limited role in the evaluation of most kidney diseases, several new imaging methods hold great promise for improving our ability to non-invasively detect structural, functional, and molecular changes within the kidney. New methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent (BOLD) MRI, allow functional imaging of the kidney. The use of novel contrast agents, such as microbubbles and nanoparticles, allows the detection of specific molecules in the kidney. These methods could greatly advance our ability to diagnose disease and also to safely monitor patients over time. This could improve the care of individual patients, and it could also facilitate the evaluation of new treatment strategies.
Collapse
Affiliation(s)
- Joshua Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Milshteyn E, von Morze C, Reed GD, Shang H, Shin PJ, Larson PEZ, Vigneron DB. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 290:46-59. [PMID: 29567434 PMCID: PMC6054792 DOI: 10.1016/j.jmr.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 05/27/2023]
Abstract
Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
17
|
Placental physiology monitored by hyperpolarized dynamic 13C magnetic resonance. Proc Natl Acad Sci U S A 2018; 115:E2429-E2436. [PMID: 29444856 DOI: 10.1073/pnas.1715175115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placental functions, including transport and metabolism, play essential roles in pregnancy. This study assesses such processes in vivo, from a hyperpolarized MRI perspective. Hyperpolarized urea, bicarbonate, and pyruvate were administered to near-term pregnant rats, and all metabolites displayed distinctive behaviors. Little evidence of placental barrier crossing was observed for bicarbonate, at least within the timescales allowed by 13C relaxation. By contrast, urea was observed to cross the placental barrier, with signatures visible from certain fetal organs including the liver. This was further evidenced by the slower decay times observed for urea in placentas vis-à-vis other maternal compartments and validated by mass spectrometric analyses. A clear placental localization, as well as concurrent generation of hyperpolarized lactate, could also be detected for [1-13C]pyruvate. These metabolites also exhibited longer lifetimes in the placentas than in maternal arteries, consistent with a metabolic activity occurring past the trophoblastic interface. When extended to a model involving the administration of a preeclampsia-causing chemical, hyperpolarized MR revealed changes in urea's transport, as well as decreases in placental glycolysis vs. the naïve animals. These distinct behaviors highlight the potential of hyperpolarized MR for the early, minimally invasive detection of aberrant placental metabolism.
Collapse
|
18
|
Wang J, Wright AJ, Hesketh RL, Hu D, Brindle KM. A referenceless Nyquist ghost correction workflow for echo planar imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate. NMR IN BIOMEDICINE 2018; 31:e3866. [PMID: 29215773 PMCID: PMC5814908 DOI: 10.1002/nbm.3866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 05/10/2023]
Abstract
Single-shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13 C-labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal-to-noise ratio (SNR) as a result of prolonged T2 * decay. We describe here a workflow for hyperpolarized 13 C EPI that requires no reference scan. This involves the selection of a ghost-containing background from a 13 C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13 C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13 C reference echoes (>15%) or better ghost removal relative to a 1 H reference scan. The residual ghosting in a slightly de-shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1 H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13 C reference scan.
Collapse
Affiliation(s)
- Jiazheng Wang
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Richard L. Hesketh
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - De‐en Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
19
|
Niles DJ, Gordon JW, Huang G, Reese S, Adamson EB, Djamali A, Fain SB. Evaluation of renal metabolic response to partial ureteral obstruction with hyperpolarized 13 C MRI. NMR IN BIOMEDICINE 2018; 31. [PMID: 29130537 PMCID: PMC5736002 DOI: 10.1002/nbm.3846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/13/2023]
Abstract
Hyperpolarized 13 C magnetic resonance imaging (MRI) may be used to non-invasively image the transport and chemical conversion of 13 C-labeled compounds in vivo. In this study, we utilize hyperpolarized 13 C MRI to evaluate metabolic markers in the kidneys longitudinally in a mouse model of partial unilateral ureteral obstruction (pUUO). Partial obstruction was surgically induced in the left ureter of nine adult mice, leaving the right ureter as a control. 1 H and hyperpolarized [1-13 C]pyruvate MRI of the kidneys was performed 2 days prior to surgery (baseline) and at 3, 7 and 14 days post-surgery. Images were evaluated for changes in renal pelvis volume, pyruvate, lactate and the lactate to pyruvate ratio. After 14 days, mice were sacrificed and immunohistological staining of both kidneys for collagen fibrosis (picrosirius red) and macrophage infiltration (F4/80) was performed. Statistical analysis was performed using a linear mixed effects model. Significant kidney × time interaction effects were observed for both lactate and pyruvate, indicating that these markers changed differently between time points for the obstructed and unobstructed kidneys. Both kidneys showed an increase in the lactate to pyruvate ratio after obstruction, suggesting a shift towards glycolytic metabolism. These changes were accompanied by marked hydronephrosis, fibrosis and macrophage infiltration in the obstructed kidney, but not in the unobstructed kidney. Our results show that pUUO is associated with increased pyruvate to lactate metabolism in both kidneys, with injury and inflammation specific to the obstructed kidney. The work also demonstrates the feasibility of the use of hyperpolarized 13 C MRI to study metabolism in renal disease.
Collapse
Affiliation(s)
- David J Niles
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy W Gordon
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Gengwen Huang
- Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shannon Reese
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin B Adamson
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Arjang Djamali
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
20
|
Mariager CØ, Nielsen PM, Qi H, Ringgaard S, Laustsen C. Hyperpolarized 13
C,15
N2
-urea T2
relaxation changes in acute kidney injury. Magn Reson Med 2017; 80:696-702. [DOI: 10.1002/mrm.27050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Steffen Ringgaard
- MR Research Centre, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
21
|
Mikkelsen EFR, Mariager CØ, Nørlinger T, Qi H, Schulte RF, Jakobsen S, Frøkiær J, Pedersen M, Stødkilde-Jørgensen H, Laustsen C. Hyperpolarized [1- 13C]-acetate Renal Metabolic Clearance Rate Mapping. Sci Rep 2017; 7:16002. [PMID: 29167446 PMCID: PMC5700138 DOI: 10.1038/s41598-017-15929-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023] Open
Abstract
11C-acetate is a positron emission tomography (PET) tracer of oxidative metabolism, whereas hyperpolarized 13C-acetate can be used in magnetic resonance imaging (MRI) for investigating specific metabolic processes. The aims of this study were to examine if the kinetic formalism of 11C-acetate PET in the kidneys is comparable to that of 13C-acetate MRI, and to compare the dynamic metabolic information of hyperpolarized 13C-acetate MRI with that obtained with 11C-acetate PET. Rats were examined with dynamic hyperpolarized 13C-acetate MRI or 11C-acetate PET before and after intravenous injection of furosemide, a loop diuretic known to alter both the hemodynamics and oxygen consumption in the kidney. The metabolic clearance rates (MCR) were estimated and compared between the two modalities experimentally in vivo and in simulations. There was a clear dependency on the mean transit time and MCR for both 13C-acetate and 11C-acetate following furosemide administration, while no dependencies on the apparent renal perfusion were observed. This study demonstrated that hyperpolarized 13C-acetate MRI is feasible for measurements of the intrarenal energetic demand via the MCR, and that the quantitative measures are correlated with those measured by 11C-acetate PET, even though the temporal window is more than 30 times longer with 11C-acetate.
Collapse
Affiliation(s)
- Emmeli F R Mikkelsen
- MR Research Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.,Comparative Medicine Lab, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | | | - Thomas Nørlinger
- MR Research Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.,Comparative Medicine Lab, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Haiyun Qi
- MR Research Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rolf F Schulte
- GE healthcare, Freisinger Landstraße 50, 85748, Munich, Germany
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade, 8000, Aarhus C, Denmark
| | - Jørgen Frøkiær
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade, 8000, Aarhus C, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Stødkilde-Jørgensen
- MR Research Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
22
|
Østergaard Mariager C, Nielsen PM, Qi H, Schroeder M, Bertelsen LB, Laustsen C. Can Hyperpolarized 13C-Urea be Used to Assess Glomerular Filtration Rate? A Retrospective Study. ACTA ACUST UNITED AC 2017; 3:146-152. [PMID: 30042978 PMCID: PMC6024438 DOI: 10.18383/j.tom.2017.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study investigated a simple method for calculating the single-kidney glomerular filtration rate (GFR) using dynamic hyperpolarized 13C-urea magnetic resonance (MR) renography. A retrospective data analysis was applied to renal hyperpolarized 13C-urea MR data acquired from control rats, prediabetic nephropathy rats, and rats in which 1 kidney was subjected to ischemia-reperfusion. Renal blood flow was determined by the model-free bolus differentiation method, GFR was determined using the Baumann–Rudin model method. Reference single-kidney and total GFRs were measured by plasma creatinine content and compared to 1H dynamic contrast-enhanced estimated GFR and fluorescein isothiocyanate-inulin clearance GFR estimation. In healthy and prediabetic nephropathy rats, single-kidney hyperpolarized 13C-urea GFR was estimated to be 2.5 ± 0.7 mL/min in good agreement with both gold-standard inulin clearance GFR (2.7 ± 1.2 ml/min) and 1H dynamic contrast-enhanced estimated GFR (1.8 ± 0.8 mL/min), as well as plasma creatinine measurements and literature findings. Following ischemia-reperfusion, hyperpolarized 13C-urea revealed a significant reduction in single-kidney GFR of 57% compared with the contralateral kidney. Hyperpolarized 13C MR could be a promising tool for accurate determination of GFR. The model-free renal blood flow and arterial input function-insensitive GFR estimations are simple to implement and warrant further translational adaptation.
Collapse
Affiliation(s)
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Adamson EB, Ludwig KD, Mummy DG, Fain SB. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 2017; 62:R81-R123. [PMID: 28384123 DOI: 10.1088/1361-6560/aa6be8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Collapse
Affiliation(s)
- Erin B Adamson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | | | | |
Collapse
|
24
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function. Biosci Rep 2017; 37:BSR20160186. [PMID: 27899435 PMCID: PMC5270319 DOI: 10.1042/bsr20160186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch.
Collapse
|
26
|
Hansen ESS, Stewart NJ, Wild JM, Stødkilde-Jørgensen H, Laustsen C. Hyperpolarized 13 C, 15 N 2 -Urea MRI for assessment of the urea gradient in the porcine kidney. Magn Reson Med 2016; 76:1895-1899. [PMID: 27670826 DOI: 10.1002/mrm.26483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE A decline in cortico-medullary osmolality gradient of the kidney may serve as an early indicator of pathological disruption of the tubular reabsorption process. The purpose of this study was to investigate the feasibility of hyperpolarized 13 C,15 N2 -urea MRI as a biomarker of renal function in healthy porcine kidneys resembling the human physiology. METHODS Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a 13 C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized 13 C,15 N2 -urea via a femoral vein catheter. Images were acquired at different time points after urea injection, and following treatment with furosemide. RESULTS A gradient in cortico-medullary urea was observed with an intramedullary accumulation 75 s after injection of hyperpolarized 13 C,15 N2 -urea, whereas images acquired at earlier time points postinjection were dominated by cortical perfusion. Furosemide treatment resulted in an increased urea accumulation in the cortical space, leading to a reduction of the medullary-to-cortical signal ratio of 49%. CONCLUSION This study demonstrates that hyperpolarized 13 C,15 N2 -urea MRI is capable of identifying the intrarenal accumulation of urea and can differentiate acute renal functional states in multipapillary kidneys, highlighting the potential for human translation. Magn Reson Med 76:1895-1899, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Esben S S Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Neil J Stewart
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Qi H, Nørlinger TS, Nielsen PM, Bertelsen LB, Mikkelsen E, Xu Y, Stødkilde Jørgensen H, Laustsen C. Early diabetic kidney maintains the corticomedullary urea and sodium gradient. Physiol Rep 2016; 4:4/5/e12714. [PMID: 26997625 PMCID: PMC4823596 DOI: 10.14814/phy2.12714] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Early diabetic nephropathy is largely undetectable before substantial functional changes have occurred. In the present study, we investigated the distribution of electrolytes and urea in the early diabetic kidney in order to explore whether pathophysiological and metabolic changes appear concomitantly with a decreased sodium and urea gradient. By using hyperpolarized 13C urea it was possible to measure the essential intrarenal electrolyte gradients and the acute changes following furosemide treatment. No differences in either intrarenal urea or sodium gradients were observed in early diabetes compared to healthy controls. These results indicate that the early metabolic and hypertrophic changes occurring in the diabetic kidney prelude the later functional alterations in diabetic kidney function, thus driving the increased metabolic demand commonly occurring in the diabetic kidney.
Collapse
Affiliation(s)
- Haiyun Qi
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Thomas S Nørlinger
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Per M Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte B Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Emmeli Mikkelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Yafang Xu
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Nielsen PM, Szocska Hansen ES, Nørlinger TS, Nørregaard R, Bonde Bertelsen L, Stødkilde Jørgensen H, Laustsen C. Renal ischemia and reperfusion assessment with three-dimensional hyperpolarized 13 C, 15 N2-urea. Magn Reson Med 2016; 76:1524-1530. [PMID: 27548739 DOI: 10.1002/mrm.26377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/25/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this work was to investigate whether hyperpolarized 13 C,15 N2 -urea can be used as an imaging marker of renal injury in renal unilateral ischemic reperfusion injury (IRI), given that urea is correlated with the renal osmotic gradient, which describes the renal function. METHODS Hyperpolarized three-dimensional balanced steady-state 13 C magnetic resonance imaging (MRI) experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements were performed in rats subjected to unilateral renal ischemia for 60-minute and 24-hour reperfusion. RESULTS We revealed a significant reduction in the intrarenal gradient in the ischemic kidney in agreement with cortical injury markers neutrophil gelatinase-associated lipocalin and kidney injury molecule 1, as well as functional kidney parameters. CONCLUSION Hyperpolarized functional 13 C,15 N2 urea MRI can be used to successfully detect changes in the intrarenal urea gradient post-IRI, thereby enabling in vivo monitoring of the intrarenal functional status in the rat kidney. Magn Reson Med 76:1524-1530, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
29
|
Reed GD, von Morze C, Verkman AS, Koelsch BL, Chaumeil MM, Lustig M, Ronen SM, Bok RA, Sands JM, Larson PEZ, Wang ZJ, Larsen JHA, Kurhanewicz J, Vigneron DB. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2016; 2:125-135. [PMID: 27570835 PMCID: PMC4996281 DOI: 10.18383/j.tom.2016.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools.
Collapse
Affiliation(s)
- Galen D Reed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, USA
| | - Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Lustig
- Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jan Henrik Ardenkjær Larsen
- GE Healthcare, Brøndby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
30
|
Reed GD, von Morze C, Verkman AS, Koelsch BL, Chaumeil MM, Lustig M, Ronen SM, Bok RA, Sands JM, Larson PEZ, Wang ZJ, Larsen JHA, Kurhanewicz J, Vigneron DB. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2016. [PMID: 27570835 DOI: 10.18383/j.tom2016.00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools.
Collapse
Affiliation(s)
- Galen D Reed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, USA
| | - Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Lustig
- Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jan Henrik Ardenkjær Larsen
- GE Healthcare, Brøndby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
31
|
Bertelsen LB, Nielsen PM, Qi H, Nørlinger TS, Zhang X, Stødkilde-Jørgensen H, Laustsen C. Diabetes induced renal urea transport alterations assessed with 3D hyperpolarized 13 C, 15 N-Urea. Magn Reson Med 2016; 77:1650-1655. [PMID: 27172094 DOI: 10.1002/mrm.26256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 04/01/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE In the current study, we investigated hyperpolarized urea as a possible imaging biomarker of the renal function by means of the intrarenal osmolality gradient. METHODS Hyperpolarized three-dimensional balanced steady state 13 C MRI experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements was performed on two groups of rats, a streptozotocin type 1 diabetic group and a healthy control group. RESULTS A significant decline in intrarenal steepness of the urea gradient was found after 4 weeks of untreated insulinopenic diabetes in agreement with an increased urea transport transcription. CONCLUSION MRI and hyperpolarized [13 C,15 N]urea can monitor the changes in the corticomedullary urea concentration gradients in diabetic and healthy control rats. Magn Reson Med 77:1650-1655, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Lotte B Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per M Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas S Nørlinger
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Xiaolu Zhang
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Laustsen C. Hyperpolarized Renal Magnetic Resonance Imaging: Potential and Pitfalls. Front Physiol 2016; 7:72. [PMID: 26973539 PMCID: PMC4771722 DOI: 10.3389/fphys.2016.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
The introduction of dissolution dynamic nuclear polarization (d-DNP) technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation. Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical value of this technology is unknown. In this paper, I review the potential benefits and pitfalls associated with dissolution dynamic nuclear polarization in preclinical research and its translation to renal patients.
Collapse
Affiliation(s)
- Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University Aarhus, Denmark
| |
Collapse
|
33
|
Durst M, Chiavazza E, Haase A, Aime S, Schwaiger M, Schulte RF. α-trideuteromethyl[15N]glutamine: A long-lived hyperpolarized perfusion marker. Magn Reson Med 2016; 76:1900-1904. [PMID: 26822562 DOI: 10.1002/mrm.26104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE We characterized the performance of a novel hyperpolarized perfusion marker, α-trideuteromethyl[15N]glutamine, for direct comparison with a 13C-based hyperpolarized perfusion marker, [13C, 15N2]urea. METHODS A hardware platform and pulse sequence for in vivo 15N experiments were established. Hyperpolarized solutions of α-trideuteromethyl[15N]glutamine and [13C, 15N2]urea were injected into healthy male Lewis rats. Kidney slice images were acquired using a single-shot spiral readout. Both compounds were compared to determine in vivo signal lifetime and tracer distribution. Mass spectrometry was performed to evaluate excretion of the compound. RESULTS Compared with 13C-labeled urea, a significantly increased signal lifetime was observed. While the urea signal was gone after 90 s, decay of the glutamine compound was sufficiently slow to obtain a quantifiable signal, even after 5 min. The glutamine derivative showed strong localization in the kidneys with little background signal. Effective T1 of α-trideuteromethyl[15N]glutamine was approximately eight-fold higher than that of urea. Mass spectrometry results confirmed rapid excretion within the time scale of the measurement. CONCLUSION Hyperpolarized α-trideuteromethyl[15N]glutamine is a highly promising candidate for renal studies because of its long signal lifetime, strong localization and rapid excretion. Magn Reson Med 76:1900-1904, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Markus Durst
- IMETUM, Technical University of Munich, Garching, Bavaria, Germany
| | | | - Axel Haase
- IMETUM, Technical University of Munich, Garching, Bavaria, Germany
| | | | | | | |
Collapse
|
34
|
Laustsen C, Stokholm Nørlinger T, Christoffer Hansen D, Qi H, Mose Nielsen P, Bonde Bertelsen L, Henrik Ardenkjaer-Larsen J, Stødkilde Jørgensen H. Hyperpolarized 13C urea relaxation mechanism reveals renal changes in diabetic nephropathy. Magn Reson Med 2015; 75:515-8. [PMID: 26584247 PMCID: PMC4738460 DOI: 10.1002/mrm.26036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Our aim was to assess a novel (13) C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [(13) C,(15) N2 ]urea as a T2 relaxation based contrast bio-probe. METHODS A novel HP (13) C MR contrast experiment was conducted in a group of streptozotocin type-1 diabetic rat model and age matched controls. RESULTS A significantly different relaxation time (P = 0.004) was found in the diabetic kidney (0.49 ± 0.03 s) compared with the controls (0.64 ± 0.02 s) and secondly, a strong correlation between the blood oxygen saturation level and the relaxation times were observed in the healthy controls. CONCLUSION HP [(13) C,(15) N2 ]urea apparent T2 mapping may be a useful for interrogating local renal pO2 status and renal tissue alterations. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Collapse
Affiliation(s)
- Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Henrik Ardenkjaer-Larsen
- GE Healthcare, Broendby, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | | |
Collapse
|
35
|
Chaumeil MM, Najac C, Ronen SM. Studies of Metabolism Using (13)C MRS of Hyperpolarized Probes. Methods Enzymol 2015; 561:1-71. [PMID: 26358901 DOI: 10.1016/bs.mie.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First described in 2003, the dissolution dynamic nuclear polarization (DNP) technique, combined with (13)C magnetic resonance spectroscopy (MRS), has since been used in numerous metabolic studies and has become a valuable metabolic imaging method. DNP dramatically increases the level of polarization of (13)C-labeled compounds resulting in an increase in the signal-to-noise ratio (SNR) of over 50,000 fold for the MRS spectrum of hyperpolarized compounds. The high SNR enables rapid real-time detection of metabolism in cells, tissues, and in vivo. This chapter will present a comprehensive review of the DNP approaches that have been used to monitor metabolism in living systems. First, the list of (13)C DNP probes developed to date will be presented, with a particular focus on the most commonly used probe, namely [1-(13)C] pyruvate. In the next four sections, we will then describe the different factors that need to be considered when designing (13)C DNP probes for metabolic studies, conducting in vitro or in vivo hyperpolarized experiments, as well as acquiring, analyzing, and modeling hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
36
|
Shang H, Skloss T, von Morze C, Carvajal L, Van Criekinge M, Milshteyn E, Larson PEZ, Hurd RE, Vigneron DB. Handheld electromagnet carrier for transfer of hyperpolarized carbon-13 samples. Magn Reson Med 2015; 75:917-22. [PMID: 25765516 DOI: 10.1002/mrm.25657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/18/2015] [Accepted: 01/24/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Hyperpolarization of carbon-13 ((13) C) nuclei by dissolution dynamic nuclear polarization increases signal-to-noise ratio (SNR) by >10,000-fold for metabolic imaging, but care must be taken when transferring hyperpolarized (HP) samples from polarizer to MR scanner. Some (13) C substrates relax rapidly in low ambient magnetic fields. A handheld electromagnet carrier was designed and constructed to preserve polarization by maintaining a sufficient field during sample transfer. METHODS The device was constructed with a solenoidal electromagnet, powered by a nonmagnetic battery, holding the HP sample during transfer. A specially designed switch automated deactivation of the field once transfer was complete. Phantom and rat experiments were performed to compare MR signal enhancement with or without the device for HP [(13) C]urea and [1-(13) C]pyruvate. RESULTS The magnetic field generated by this device was tested to be >50 G over a 6-cm central section. In phantom and rat experiments, [(13) C]urea transported via the device showed SNR improvement by a factor of 1.8-1.9 over samples transferred through the background field. CONCLUSION A device was designed and built to provide a suitably high yet safe magnetic field to preserve hyperpolarization during sample transfer. Comparative testing demonstrated SNR improvements of approximately two-fold for [(13) C]urea while maintaining SNR for [1-(13) C]pyruvate.
Collapse
Affiliation(s)
- Hong Shang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | | | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | | | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| |
Collapse
|
37
|
von Morze C, Bok RA, Reed GD, Ardenkjaer-Larsen JH, Kurhanewicz J, Vigneron DB. Simultaneous multiagent hyperpolarized (13)C perfusion imaging. Magn Reson Med 2013; 72:1599-609. [PMID: 24382698 DOI: 10.1002/mrm.25071] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 01/04/2023]
Abstract
PURPOSE To demonstrate simultaneous hyperpolarization and imaging of three (13)C-labeled perfusion MRI contrast agents with dissimilar molecular structures ([(13)C]urea, [(13)C]hydroxymethyl cyclopropane, and [(13)C]t-butanol) and correspondingly variable chemical shifts and physiological characteristics, and to exploit their varying diffusibility for simultaneous measurement of vascular permeability and perfusion in initial preclinical studies. METHODS Rapid and efficient dynamic multislice imaging was enabled by a novel pulse sequence incorporating balanced steady state free precession excitation and spectral-spatial readout by multiband frequency encoding, designed for the wide, regular spectral separation of these compounds. We exploited the varying bilayer permeability of these tracers to quantify vascular permeability and perfusion parameters simultaneously, using perfusion modeling methods that were investigated in simulations. "Tripolarized" perfusion MRI methods were applied to initial preclinical studies with differential conditions of vascular permeability, in normal mouse tissues and advanced transgenic mouse prostate tumors. RESULTS Dynamic imaging revealed clear differences among the individual tracer distributions. Computed permeability maps demonstrated differential permeability of brain tissue among the tracers, and tumor perfusion and permeability were both elevated over values expected for normal tissues. CONCLUSION Tripolarized perfusion MRI provides new molecular imaging measures for specifically monitoring permeability, perfusion, and transport simultaneously in vivo.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
38
|
Keshari KR, Wilson DM. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev 2013; 43:1627-59. [PMID: 24363044 DOI: 10.1039/c3cs60124b] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of transient chemical phenomena by conventional NMR has proved elusive, particularly for non-(1)H nuclei. For (13)C, hyperpolarization using the dynamic nuclear polarization (DNP) technique has emerged as a powerful means to improve SNR. The recent development of rapid dissolution DNP methods has facilitated previously impossible in vitro and in vivo study of small molecules. This review presents the basics of the DNP technique, identification of appropriate DNP substrates, and approaches to increase hyperpolarized signal lifetimes. Also addressed are the biochemical events to which DNP-NMR has been applied, with descriptions of several probes that have met with in vivo success.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | | |
Collapse
|
39
|
Chiavazza E, Kubala E, Gringeri CV, Düwel S, Durst M, Schulte RF, Menzel MI. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:35-8. [PMID: 23262330 DOI: 10.1016/j.jmr.2012.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 05/15/2023]
Abstract
Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.
Collapse
|
40
|
He X. Functional MR imaging of kidney--novel approaches to monitoring renal physiology. Am J Physiol Renal Physiol 2012; 303:F639-40. [PMID: 22573377 DOI: 10.1152/ajprenal.00224.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|