1
|
Zhang L, Sun P, Liu X, Yang Y, Sun RN, Wang XD. A Retrospective Analysis of Patients Presenting with Acute Hyperkalemia in an Emergency Care Setting. Risk Manag Healthc Policy 2024; 17:2599-2608. [PMID: 39493379 PMCID: PMC11531236 DOI: 10.2147/rmhp.s479582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Objective We aimed to analyze the clinical characteristics and prognostic factors of patients with severe hyperkalemia in the emergency department. Methods This retrospective cohort study included adult patients diagnosed with severe hyperkalemia who sought medical care at the emergency department of Aerospace Center Hospital between January 2018 and May 2022. Clinical data, including demographics, comorbidities, laboratory findings, and outcomes, were systematically collected. Patients were categorized into survival and deceased groups based on in-hospital mortality. Comparative analysis between these groups identified significant differences, highlighting key clinically covariates. Binary logistic regression was employed to determine the primary factors influencing patient outcomes. Results Of 90 patients diagnosed with severe hyperkalemia, 64 were in the survival group, and 26 in the deceased group. Binary logistic regression identified several significant predictors of mortality, including higher APACHE II scores (odds ratio [OR] 1.41, P = 0.02), widened QRS wave on electrocardiogram (ECG) (OR 79.39, P = 0.04), and elevated serum potassium levels (OR 1.3, P = 0.04). In contrast, emergency blood purification was associated with a reduced mortality rate (OR 0.29, P = 0.03). Conclusion Key risk factors for mortality in patients with severe hyperkalemia include widened QRS wave on ECG, elevated APACHE II score, and high serum potassium level. Timely correction of hyperkalemia through emergency blood purification significantly improves patient outcomes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Emergency Medicine, Aerospace Center Hospital, Beijing, 100049, People’s Republic of China
| | - Peng Sun
- Department of Emergency Medicine, Aerospace Center Hospital, Beijing, 100049, People’s Republic of China
| | - Xin Liu
- Department of Emergency Medicine, Aerospace Center Hospital, Beijing, 100049, People’s Republic of China
| | - Ya Yang
- Department of Emergency Medicine, Aerospace Center Hospital, Beijing, 100049, People’s Republic of China
| | - Ruo-Nan Sun
- Department of Emergency Medicine, Aerospace Center Hospital, Beijing, 100049, People’s Republic of China
| | - Xu-Dong Wang
- Department of Emergency Medicine, Aerospace Center Hospital, Beijing, 100049, People’s Republic of China
| |
Collapse
|
2
|
Lasaad S, Nickerson AJ, Crambert G, Satlin LM, Kleyman TR. Going with the flow: New insights regarding flow induced K + secretion in the distal nephron. Physiol Rep 2024; 12:e70087. [PMID: 39428258 PMCID: PMC11491169 DOI: 10.14814/phy2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
K+ secretion in the distal nephron has a critical role in K+ homeostasis and is the primary route by which K+ is lost from the body. Renal K+ secretion is enhanced by increases in dietary K+ intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K+ secretion (FIKS). While basal K+ secretion in the distal nephron is mediated by renal outer medullary K+ (ROMK) channels in principal cells (PCs), FIKS is mediated by large conductance, Ca2+/stretch activated K+ (BK) channels in intercalated cells (ICs), a distinct cell type. BK channel activation requires an increase in intracellular Ca2+ concentration ([Ca2+]i), and both PCs and ICs exhibit increases in [Ca2+]i in response to increases in tubular fluid flow rate, associated with an increase in tubular diameter. PIEZO1, a mechanosensitive, nonselective cation channel, is expressed in the basolateral membranes of PCs and ICs, where it functions as a mechanosensor. The loss of flow-induced [Ca2+]i transients in ICs and BK channel-mediated FIKS in microperfused collecting ducts isolated from mice with IC-specific deletion of Piezo1 in the CCD underscores the importance of PIEZO1 in the renal regulation of K+ transport.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Gilles Crambert
- Centre de Recherche Des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM)Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et TubulopathiesParisFrance
- Unité Métabolisme et Physiologie RénaleCentre National de la Recherche Scientifique (CNRS) EMR 8228ParisFrance
| | - Lisa M. Satlin
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell Biology and Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Duan XP, Zhang CB, Wang WH, Lin DH. Role of calcineurin in regulating renal potassium (K +) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia. Acta Physiol (Oxf) 2024; 240:e14189. [PMID: 38860527 PMCID: PMC11250626 DOI: 10.1111/apha.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Biao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Culver SA, Suleman N, Kavuru V, Siragy HM. Renal Hypokalemia: An Endocrine Perspective. J Clin Endocrinol Metab 2024; 109:1694-1706. [PMID: 38546505 DOI: 10.1210/clinem/dgae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/18/2024]
Abstract
The majority of disorders that cause renal potassium wasting present with abnormalities in adrenal hormone secretion. While these findings frequently lead patients to seek endocrine evaluation, clinicians often struggle to accurately diagnose these conditions, delaying treatment and adversely impacting patient care. At the same time, growing insight into the genetic and molecular basis of these disorders continues to improve their diagnosis and management. In this review, we outline a practical integrated approach to the evaluation of renal hypokalemia syndromes that are seen in endocrine practice while highlighting recent advances in understanding of the genetics and pathophysiology behind them.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Nawar Suleman
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Varun Kavuru
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Kim BS, Yu MY, Shin J. Effect of low sodium and high potassium diet on lowering blood pressure and cardiovascular events. Clin Hypertens 2024; 30:2. [PMID: 38163867 PMCID: PMC10759559 DOI: 10.1186/s40885-023-00259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Incorporating aggressive lifestyle modifications along with antihypertensive medication therapy is a crucial treatment strategy to enhance the control rate of hypertension. Dietary modification is one of the important lifestyle interventions for hypertension, and it has been proven to have a clear effect. Among food ingredients, sodium and potassium have been found to have the strongest association with blood pressure. The blood pressure-lowering effect of a low sodium diet and a high potassium diet has been well established, especially in hypertensive population. A high intake of potassium, a key component of the Dietary Approaches to Stop Hypertension (DASH) diet, has also shown a favorable impact on the risk of cardiovascular events. Additionally, research conducted with robust measurement methods has shown cardiovascular benefits of low-sodium intake. In this review, we aim to discuss the evidence regarding the relationship between the low sodium and high potassium diet and blood pressure and cardiovascular events.
Collapse
Affiliation(s)
- Byung Sik Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, South Korea
| | - Mi-Yeon Yu
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Jinho Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, 222, Wangsimni-ro, Sungdong-gu, Seoul, 04763, South Korea.
| |
Collapse
|
7
|
Al-Qusairi L, Ferdaus MZ, Pham TD, Li D, Grimm PR, Zapf AM, Abood DC, Tahaei E, Delpire E, Wall SM, Welling PA. Dietary anions control potassium excretion: it is more than a poorly absorbable anion effect. Am J Physiol Renal Physiol 2023; 325:F377-F393. [PMID: 37498547 PMCID: PMC10639028 DOI: 10.1152/ajprenal.00193.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
The urinary potassium (K+) excretion machinery is upregulated with increasing dietary K+, but the role of accompanying dietary anions remains inadequately characterized. Poorly absorbable anions, including [Formula: see text], are thought to increase K+ secretion through a transepithelial voltage effect. Here, we tested if they also influence the K+ secretion machinery. Wild-type mice, aldosterone synthase (AS) knockout (KO) mice, or pendrin KO mice were randomized to control, high-KCl, or high-KHCO3 diets. The K+ secretory capacity was assessed in balance experiments. Protein abundance, modification, and localization of K+-secretory transporters were evaluated by Western blot analysis and confocal microscopy. Feeding the high-KHCO3 diet increased urinary K+ excretion and the transtubular K+ gradient significantly more than the high-KCl diet, coincident with more pronounced upregulation of epithelial Na+ channels (ENaC) and renal outer medullary K+ (ROMK) channels and apical localization in the distal nephron. Experiments in AS KO mice revealed that the enhanced effects of [Formula: see text] were aldosterone independent. The high-KHCO3 diet also uniquely increased the large-conductance Ca2+-activated K+ (BK) channel β4-subunit, stabilizing BKα on the apical membrane, the Cl-/[Formula: see text] exchanger, pendrin, and the apical KCl cotransporter (KCC3a), all of which are expressed specifically in pendrin-positive intercalated cells. Experiments in pendrin KO mice revealed that pendrin was required to increase K+ excretion with the high-KHCO3 diet. In summary, [Formula: see text] stimulates K+ excretion beyond a poorly absorbable anion effect, upregulating ENaC and ROMK in principal cells and BK, pendrin, and KCC3a in pendrin-positive intercalated cells. The adaptive mechanism prevents hyperkalemia and alkalosis with the consumption of alkaline ash-rich diets but may drive K+ wasting and hypokalemia in alkalosis.NEW & NOTEWORTHY Dietary anions profoundly impact K+ homeostasis. Here, we found that a K+-rich diet, containing [Formula: see text] as the counteranion, enhances the electrogenic K+ excretory machinery, epithelial Na+ channels, and renal outer medullary K+ channels, much more than a high-KCl diet. It also uniquely induces KCC3a and pendrin, in B-intercalated cells, providing an electroneutral KHCO3 secretion pathway. These findings reveal new K+ balance mechanisms that drive adaption to alkaline and K+-rich foods, which should guide new treatment strategies for K+ disorders.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Truyen D Pham
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Dimin Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - P Richard Grimm
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ava M Zapf
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Delaney C Abood
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ebrahim Tahaei
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Susan M Wall
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Zietara A, Palygin O, Levchenko V, Dissanayake LV, Klemens CA, Geurts A, Denton JS, Staruschenko A. K ir7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2023; 325:F177-F187. [PMID: 37318990 PMCID: PMC10393338 DOI: 10.1152/ajprenal.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans Hospital, Tampa, Florida, United States
| |
Collapse
|
9
|
Vieira-Coelho MA, Martel F. Inhibition of kidney potassium channels by fluoxetine: In vivo and in vitro studies. Fundam Clin Pharmacol 2023; 37:226-234. [PMID: 36103995 DOI: 10.1111/fcp.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
In vitro studies have demonstrated that fluoxetine, a commonly used antidepressant drug, can modulate the activity of K+ channels. In the present study, we investigated the in vivo effect of acute and sub-chronic treatment of rats with fluoxetine on K+ renal transport. Furthermore, OK cells, a kidney epithelial cell line, were used in order to evaluate the in vitro effect of fluoxetine on K+ currents. In the sub-chronic study, fluoxetine was administrated daily (10 mg/kg, p.o.) for 15 days to male adult Wistar rats. In the acute study, rats were given increasing doses of fluoxetine (1, 3, 10, 30 and 50 mg/kg, p.o.) for 24 h. Results from the sub-chronic study show that urinary K+ content (in mmol/L) was markedly reduced in the fluoxetine-treated animals (fluoxetine: 83 ± 9; control: 131 ± 10; P < 0.001). K+ fractional renal excretion (in %) was also significantly lower in the fluoxetine group (fluoxetine: 6 ± 1; control: 13 ± 2; P < 0.001). No significant changes was observed in creatinine clearance and on renal tubular Na+ ,K+ -ATPase activity. Results obtained from the acute study demonstrate that, after a 24-h administration, fluoxetine produced a dose-dependent decrease in urinary K+ , with an ED50 (in mg/kg) of 4.2 (2.8; 5.5) and a maximal effect of 62% reduction. In vitro, fluoxetine produced a concentration-dependent inhibition of K+ currents in OK cells, with an EC50 of 107 (84.8; 129.5) μM. In conclusion, fluoxetine produces a marked reduction on urinary K+ excretion; this effect constitutes an in vivo evidence for the inhibitory action of fluoxetine on kidney epithelial K+ channels.
Collapse
Affiliation(s)
- Maria A Vieira-Coelho
- Unit of Pharmacology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Wang WH, Lin DH. Inwardly rectifying K + channels 4.1 and 5.1 (Kir4.1/Kir5.1) in the renal distal nephron. Am J Physiol Cell Physiol 2022; 323:C277-C288. [PMID: 35759440 PMCID: PMC9291425 DOI: 10.1152/ajpcell.00096.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10) interacts with Kir5.1 (encoded by KCNJ16) to form a major basolateral K+ channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na+ and K+ transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K+ and Na+ intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and β-adrenergic receptor. Since NCC activity determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na+ absorption but also in modulating renal K+ excretion and maintaining K+ homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K+ sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K+ excretion and Na+ absorption.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
11
|
Majid DSA, Castillo A, Prieto MC, Navar LG. High salt induced augmentation of angiotensin II mediated hypertension is associated with differential expression of tumor necrosis factor-alpha receptors in the kidney. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: Chronic high salt (HS) intake causes minimal changes in blood pressure (BP) but it induces augmented hypertensive response to angiotensin II (AngII) administration in rodents. The mechanism of this augmentation is not clearly understood. As tumor necrosis factor-alpha (TNF-α) induces natriuresis by activating TNF-α receptor type 1 (TNFR1) but not type 2 (TNFR2), we hypothesize that TNFR1 activity is reduced when HS is given in combination of AngII that leads to enhanced sodium retention and thus, causing augmented hypertension. The aim of this study is to examine the responses to chronic HS intake and AngII administration on the renal tissue protein expressions of TNFR1 and TNFR2 in mice.
Methods: Different groups of mice (n = 6–7 in each group) chronically treated with or without AngII (25 ng/min; implanted minipump) for 4 weeks which were fed either normal salt (NS; 0.4% NaCl) or high salt (HS; 4% NaCl) diets. Systemic BP was measured by tail-cuff plethysmography. At the end of treatment period, kidneys were harvested after sacrificing the mice with euthanasia. Immuno-histochemical analysis of TNFR1 and TNFR2 proteins in renal tissues was performed by measuring the staining area and the intensity of receptors’ immunoreactivities using NIS-Elements software. The results were expressed in percent area of positive staining and the relative intensity.
Results: HS intake alone did not alter mean BP (HS; 77 ± 1 vs. NS; 76 ± 3 vs. mmHg; tail-cuff plethysmography) but AngII induced increases in BP were augmented in HS group (104 ± 2 vs. 95 ± 2 mmHg; P < 0.05). The area of TNFR1 staining was higher in HS than NS group (6.0 ± 0.9% vs. 3.2 ± 0.7%; P < 0.05) but it was lower in AngII + HS than in AngII + NS group (5.0 ± 0.7% vs. 6.3 ± 0.7%; P = 0.068). TNFR2 immunoreactivity was minimal in NS and HS groups but it was high in AngII + NS and even higher in AngII + HS group.
Conclusions: These data suggest that the HS induced increased TNFR1 activity that facilitates enhanced sodium excretion is compromised in elevated AngII condition leading to salt retention and augmented hypertension.
Collapse
Affiliation(s)
- Dewan S. A. Majid
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alexander Castillo
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Minolfa C. Prieto
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - L. Gabriel Navar
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Rizk JG, Lazo JG, Quan D, Gabardi S, Rizk Y, Streja E, Kovesdy CP, Kalantar-Zadeh K. Mechanisms and management of drug-induced hyperkalemia in kidney transplant patients. Rev Endocr Metab Disord 2021; 22:1157-1170. [PMID: 34292479 DOI: 10.1007/s11154-021-09677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Hyperkalemia is a common and potentially life-threatening complication following kidney transplantation that can be caused by a composite of factors such as medications, delayed graft function, and possibly potassium intake. Managing hyperkalemia after kidney transplantation is associated with increased morbidity and healthcare costs, and can be a cause of multiple hospital admissions and barriers to patient discharge. Medications used routinely after kidney transplantation are considered the most frequent culprit for post-transplant hyperkalemia in recipients with a well-functioning graft. These include calcineurin inhibitors (CNIs), pneumocystis pneumonia (PCP) prophylactic agents, and antihypertensives (angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta blockers). CNIs can cause hyperkalemic renal tubular acidosis. When hyperkalemia develops following transplantation, the potential offending medication may be discontinued, switched to another agent, or dose-reduced. Belatacept and mTOR inhibitors offer an alternative to calcineurin inhibitors in the event of hyperkalemia, however should be prescribed in the appropriate patient. While trimethoprim/sulfamethoxazole (TMP/SMX) remains the gold standard for prevention of PCP, alternative agents (e.g. dapsone, atovaquone) have been studied and can be recommend in place of TMP/SMX. Antihypertensives that act on the Renin-Angiotensin-Aldosterone System are generally avoided early after transplant but may be indicated later in the transplant course for patients with comorbidities. In cases of mild to moderate hyperkalemia, medical management can be used to normalize serum potassium levels and allow the transplant team additional time to evaluate the function of the graft. In the immediate post-operative setting following kidney transplantation, a rapidly rising potassium refractory to medical therapy can be an indication for dialysis. Patiromer and sodium zirconium cyclosilicate (ZS-9) may play an important role in the management of chronic hyperkalemia in kidney transplant patients, although additional long-term studies are necessary to confirm these effects.
Collapse
Affiliation(s)
- John G Rizk
- Arizona State University, Edson College, Phoenix, AZ, USA.
| | - Jose G Lazo
- UCSF Medical Center, University of California San Francisco, San Francisco, CA, USA
| | - David Quan
- UCSF Medical Center, University of California San Francisco, San Francisco, CA, USA
| | - Steven Gabardi
- Department of Transplant Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Youssef Rizk
- Department of Internal Medicine, Division of Family Medicine, Lebanese American University Medical Center - St. John's Hospital, Beirut, Lebanon
| | - Elani Streja
- Department of Medicine, Division of Nephrology, Hypertension and Kidney Transplantation, School of Medicine, University of California, CA, Irvine, Orange, USA
| | - Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kamyar Kalantar-Zadeh
- Department of Medicine, Division of Nephrology, Hypertension and Kidney Transplantation, School of Medicine, University of California, CA, Irvine, Orange, USA
- Department of Epidemiology, University of California, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
13
|
Ray EC, Carrisoza-Gaytan R, Al-Bataineh M, Marciszyn AL, Nkashama LJ, Chen J, Winfrey A, Griffiths S, Lam TR, Flores D, Wu P, Wang W, Huang CL, Subramanya AR, Kleyman TR, Satlin LM. L-WNK1 is required for BK channel activation in intercalated cells. Am J Physiol Renal Physiol 2021; 321:F245-F254. [PMID: 34229479 PMCID: PMC8424664 DOI: 10.1152/ajprenal.00472.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.
Collapse
Affiliation(s)
- Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaliyah Winfrey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn Griffiths
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tracey R Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Majid DSA, Castillo A. Angiotensin II-induced natriuresis is attenuated in knockout mice lacking the receptors for tumor necrosis factor-α. Physiol Rep 2021; 9:e14942. [PMID: 34337896 PMCID: PMC8326895 DOI: 10.14814/phy2.14942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Intravenous infusion of relatively higher doses of angiotensin II (AngII) elicits natriuresis as opposed to its usual anti-natruretic response. As AngII can induce tumor necrosis factor-α (TNFα) production which elicits natriuresis via its action on TNFα receptor type 1 (TNFR1), we hypothesize that the concomitant release of TNFα contributes to the natriuretic response to AngII. Responses to AngII infusion (1 ng min-1 g-1 for 75 min, iv) were evaluated in anesthetized knockout (KO) mice lacking TNFR1 (n = 6) and TNFR2 (TNFα receptor type 2; n = 6) and compared these responses with those in wild type (WT; n = 6) mice. Arterial pressure (AP) was recorded from a cannula placed in the carotid artery. Renal blood flow (RBF) and glomerular filtration rate (GFR) were measured by PAH and inulin clearances, respectively. Urine was collected from a catheter placed in the bladder. AngII caused similar increases (p < 0.05 vs basal values) in AP (WT, 37 ± 5%; TNFR1KO, 35 ± 4%; TNFR2KO, 30 ± 4%) and decreases (p < 0.05) in RBF (WT, -39 ± 5%; TNFR1KO, -28 ± 6%; TNFR2KO, -31 ± 4%) without significant changes in GFR (WT, -17 ± 7%; TNFR1KO, -18 ± 7%; TNFR2KO, -12 ± 7%). However, despite similar changes in AP and renal hemodynamics, AngII induced increases (p < 0.05) in urinary sodium excretion in WT (3916 ± 942%) were less in the KO strains, more or less in TNFR1KO (473 ± 170%) than in TNFR2KO (1176 ± 168%). These data indicate that TNF-α receptors, particularly TNFR1 are involved in the natriuretic response that occur during acute infusion of AngII and thus, plays a protective role in preventing excessive salt retention at clinical conditions associated with elevated AngII level.
Collapse
Affiliation(s)
- Dewan S. A. Majid
- Department of PhysiologyTulane Hypertension & Renal Center of ExcellenceTulane University Health Sciences CenterNew OrleansLAUSA
| | - Alexander Castillo
- Department of PhysiologyTulane Hypertension & Renal Center of ExcellenceTulane University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
15
|
Valdivielso JM, Balafa O, Ekart R, Ferro CJ, Mallamaci F, Mark PB, Rossignol P, Sarafidis P, Del Vecchio L, Ortiz A. Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies. Drugs 2021; 81:1467-1489. [PMID: 34313978 DOI: 10.1007/s40265-021-01555-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Despite recent therapeutic advances, chronic kidney disease (CKD) is one of the fastest growing global causes of death. This illustrates limitations of current therapeutic approaches and, potentially, unidentified knowledge gaps. For decades, renin-angiotensin-aldosterone system (RAAS) blockers have been the mainstay of therapy for CKD. However, they favor the development of hyperkalemia, which is already common in CKD patients due to the CKD-associated decrease in urinary potassium (K+) excretion and metabolic acidosis. Hyperkalemia may itself be life-threatening as it may trigger potentially lethal arrhythmia, and additionally may limit the prescription of RAAS blockers and lead to low-K+ diets associated to low dietary fiber intake. Indeed, hyperkalemia is associated with adverse kidney, cardiovascular, and survival outcomes. Recently, novel kidney protective therapies, ranging from sodium/glucose cotransporter 2 (SGLT2) inhibitors to new mineralocorticoid receptor antagonists have shown efficacy in clinical trials. Herein, we review K+ pathophysiology and the clinical impact and management of hyperkalemia considering these developments and the availability of the novel K+ binders patiromer and sodium zirconium cyclosilicate, recent results from clinical trials targeting metabolic acidosis (sodium bicarbonate, veverimer), and an increasing understanding of the role of the gut microbiota in health and disease.
Collapse
Affiliation(s)
- José M Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, REDinREN del ISCIII, IRBLleida, Lleida, Spain.
| | - Olga Balafa
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Robert Ekart
- Clinic for Internal Medicine, Department of Dialysis, University Medical Center Maribor, Maribor, Slovenia
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham, Edgbaston, Birmingham, UK
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases, Ospedali Riuniti, 89124, Reggio Calabria, Italy
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Patrick Rossignol
- Inserm 1433 CIC-P CHRU de Nancy, Inserm U1116 and FCRIN INI-CRCT, Université de Lorraine, Nancy, France
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy
| | - Alberto Ortiz
- School of Medicine, IIS-Fundacion Jimenez Diaz, University Autonoma of Madrid, FRIAT and REDINREN, Madrid, Spain
| |
Collapse
|
16
|
Sung CC, Chen MH, Lin YC, Lin YC, Lin YJ, Yang SS, Lin SH. Urinary Extracellular Vesicles for Renal Tubular Transporters Expression in Patients With Gitelman Syndrome. Front Med (Lausanne) 2021; 8:679171. [PMID: 34179047 PMCID: PMC8219937 DOI: 10.3389/fmed.2021.679171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The utility of urinary extracellular vesicles (uEVs) to faithfully represent the changes of renal tubular protein expression remains unclear. We aimed to evaluate renal tubular sodium (Na+) or potassium (K+) associated transporters expression from uEVs and kidney tissues in patients with Gitelman syndrome (GS) caused by inactivating mutations in SLC12A3. Methods: uEVs were isolated by ultracentrifugation from 10 genetically-confirmed GS patients. Membrane transporters including Na+-hydrogen exchanger 3 (NHE3), Na+/K+/2Cl− cotransporter (NKCC2), NaCl cotransporter (NCC), phosphorylated NCC (p-NCC), epithelial Na+ channel β (ENaCβ), pendrin, renal outer medullary K1 channel (ROMK), and large-conductance, voltage-activated and Ca2+-sensitive K+ channel (Maxi-K) were examined by immunoblotting of uEVs and immunofluorescence of biopsied kidney tissues. Healthy and disease (bulimic patients) controls were also enrolled. Results: Characterization of uEVs was confirmed by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. Compared with healthy controls, uEVs from GS patients showed NCC and p-NCC abundance were markedly attenuated but NHE3, ENaCβ, and pendrin abundance significantly increased. ROMK and Maxi-K abundance were also significantly accentuated. Immunofluorescence of the representative kidney tissues from GS patients also demonstrated the similar findings to uEVs. uEVs from bulimic patients showed an increased abundance of NCC and p-NCC as well as NHE3, NKCC2, ENaCβ, pendrin, ROMK and Maxi-K, akin to that in immunofluorescence of their kidney tissues. Conclusion: uEVs could be a non-invasive tool to diagnose and evaluate renal tubular transporter adaptation in patients with GS and may be applied to other renal tubular diseases.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Min-Hsiu Chen
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Chang Lin
- Division of Cardiovascular Surgery, Department of Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Chun Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Jia Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
de Melo IS, Sabino-Silva R, Cunha TM, Goulart LR, Reis WL, Jardim ACG, Shetty AK, de Castro OW. Hydroelectrolytic Disorder in COVID-19 patients: Evidence Supporting the Involvement of Subfornical Organ and Paraventricular Nucleus of the Hypothalamus. Neurosci Biobehav Rev 2021; 124:216-223. [PMID: 33577841 PMCID: PMC7872848 DOI: 10.1016/j.neubiorev.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Multiple neurological problems have been reported in coronavirus disease-2019 (COVID-19) patients because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely spreads to the central nervous system (CNS) via olfactory nerves or through the subarachnoid space along olfactory nerves into the brain's cerebrospinal fluid and then into the brain's interstitial space. We hypothesize that SARS-CoV-2 enters the subfornical organ (SFO) through the above routes and the circulating blood since circumventricular organs (CVOs) such as the SFO lack the blood-brain barrier, and infection of the SFO causes dysfunction of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), leading to hydroelectrolytic disorder. SARS-CoV-2 can readily enter SFO-PVN-SON neurons because these neurons express angiotensin-converting enzyme-2 receptors and proteolytic viral activators, which likely leads to neurodegeneration or neuroinflammation in these regions. Considering the pivotal role of SFO-PVN-SON circuitry in modulating hydroelectrolyte balance, SARS-CoV-2 infection in these regions could disrupt the neuroendocrine control of hydromineral homeostasis. This review proposes mechanisms by which SARS-CoV-2 infection of the SFO-PVN-SON pathway leads to hydroelectrolytic disorder in COVID-19 patients.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil.
| | - Thúlio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Wagner Luis Reis
- Department of Physiological, Sciences Biological Sciences Centre Federal University of Santa Catarina (UFSC) Florianopolis, Santa Catarina, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, 77843, USA.
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
18
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
19
|
Bamberg K, William-Olsson L, Johansson U, Arner A, Hartleib-Geschwindner J, Sällström J. Electrolyte handling in the isolated perfused rat kidney: demonstration of vasopressin V2-receptor-dependent calcium reabsorption. Ups J Med Sci 2020; 125:274-280. [PMID: 32812807 PMCID: PMC7594766 DOI: 10.1080/03009734.2020.1804496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The most profound effect of vasopressin on the kidney is to increase water reabsorption through V2-receptor (V2R) stimulation, but there are also data suggesting effects on calcium transport. To address this issue, we have established an isolated perfused kidney model with accurate pressure control, to directly study the effects of V2R stimulation on kidney function, isolated from systemic effects. METHODS The role of V2R in renal calcium handling was studied in isolated rat kidneys using a new pressure control system that uses a calibration curve to compensate for the internal pressure drop up to the tip of the perfusion cannula. RESULTS Kidneys subjected to V2R stimulation using desmopressin (DDAVP) displayed stable osmolality and calcium reabsorption throughout the experiment, whereas kidneys not administered DDAVP exhibited a simultaneous fall in urine osmolality and calcium reabsorption. Epithelial sodium channel (ENaC) inhibition using amiloride resulted in a marked increase in potassium reabsorption along with decreased sodium reabsorption. CONCLUSIONS A stable isolated perfused kidney model with computer-controlled pressure regulation was developed, which retained key physiological functions. The preparation responds to pharmacological inhibition of ENaC channels and activation of V2R. Using the model, the dynamic effects of V2R stimulation on calcium handling and urine osmolality could be visualised. The study thereby provides evidence for a stimulatory role of V2R in renal calcium reabsorption.
Collapse
Affiliation(s)
- Krister Bamberg
- Translational Sciences and Experimental Medicines, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lena William-Olsson
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Johansson
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Arner
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Judith Hartleib-Geschwindner
- Projects, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Johan Sällström Department of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, SE-751 23Uppsala, Sweden
| |
Collapse
|
20
|
Lang F, Rajaxavier J, Singh Y, Brucker SY, Salker MS. The Enigmatic Role of Serum & Glucocorticoid Inducible Kinase 1 in the Endometrium. Front Cell Dev Biol 2020; 8:556543. [PMID: 33195190 PMCID: PMC7609842 DOI: 10.3389/fcell.2020.556543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is subject to genetic up-regulation by diverse stimulators including glucocorticoids, mineralocorticoids, dehydration, ischemia, radiation and hyperosmotic shock. To become active, the expressed kinase requires phosphorylation, which is accomplished by PI3K/PDK1 and mTOR dependent signaling. SGK1 enhances the expression/activity of various transport proteins including Na+/K+-ATPase as well as ion-, glucose-, and amino acid- carriers in the plasma membrane. SGK1 can further up-regulate diverse ion channels, such as Na+-, Ca2+-, K+- and Cl- channels. SGK1 regulates expression/activity of a wide variety of transcription factors (such as FKHRL1/Foxo3a, β-catenin, NFκB and p53). SGK1 thus contributes to the regulation of transport, glycolysis, angiogenesis, cell survival, immune regulation, cell migration, tissue fibrosis and tissue calcification. In this review we summarized the current findings that SGK1 plays a crucial function in the regulation of endometrial function. Specifically, it plays a dual role in the regulation of endometrial receptivity necessary for implantation and, subsequently in pregnancy maintenance. Furthermore, fetal programming of blood pressure regulation requires maternal SGK1. Underlying mechanisms are, however, still ill-defined and there is a substantial need for additional information to fully understand the role of SGK1 in the orchestration of embryo implantation, embryo survival and fetal programming.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Janet Rajaxavier
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
21
|
López-González Z, Padilla-Flores T, León-Aparicio D, Gutiérrez-Vásquez E, Salvador C, León-Contreras JC, Hernández-Pando R, Escobar LI. Metabolic acidosis and hyperkalemia differentially regulate cation HCN3 channel in the rat nephron. J Mol Histol 2020; 51:701-716. [PMID: 33070272 DOI: 10.1007/s10735-020-09916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
The kidney controls body fluids, electrolyte and acid-base balance. Previously, we demonstrated that hyperpolarization-activated and cyclic nucleotide-gated (HCN) cation channels participate in ammonium excretion in the rat kidney. Since acid-base balance is closely linked to potassium metabolism, in the present work we aim to determine the effect of chronic metabolic acidosis (CMA) and hyperkalemia (HK) on protein abundance and localization of HCN3 in the rat kidney. CMA increased HCN3 protein level only in the outer medulla (2.74 ± 0.31) according to immunoblot analysis. However, immunofluorescence assays showed that HCN3 augmented in cortical proximal tubules (1.45 ± 0.11) and medullary thick ascending limb of Henle's loop (4.48 ± 0.45) from the inner stripe of outer medulla. HCN3 was detected in brush border membranes (BBM) and mitochondria of the proximal tubule by immunogold electron and confocal microscopy in control conditions. Acidosis did not alter HCN3 levels in BBM and mitochondria but augmented them in lysosomes. HCN3 was also immuno-detected in mitoautophagosomes. In the distal nephron, HCN3 was expressed in principal and intercalated cells from cortical to medullary collecting ducts. CMA did not change HCN3 abundance in these nephron segments. In contrast, HK doubled HCN3 level in cortical collecting ducts and favored its basolateral localization in principal cells from the inner medullary collecting ducts. These findings further support HCN channels contribution to renal acid-base and potassium balance.
Collapse
Affiliation(s)
- Zinaeli López-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico
| | - Teresa Padilla-Flores
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico
| | - Daniel León-Aparicio
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico
| | - Erika Gutiérrez-Vásquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico
| | - Carolina Salvador
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico
| | - Juan C León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, 14080, Mexico, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, 14080, Mexico, Mexico
| | - Laura I Escobar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico.
| |
Collapse
|
22
|
Wu P, Gao Z, Zhang D, Duan X, Terker AS, Lin D, Ellison DH, Wang W. Effect of Angiotensin II on ENaC in the Distal Convoluted Tubule and in the Cortical Collecting Duct of Mineralocorticoid Receptor Deficient Mice. J Am Heart Assoc 2020; 9:e014996. [PMID: 32208832 PMCID: PMC7428622 DOI: 10.1161/jaha.119.014996] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/02/2022]
Abstract
Background Angiotensin II stimulates epithelial Na+ channel (ENaC) by aldosterone-independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild-type (WT) and kidney-specific mineralocorticoid receptor knockout mice (KS-MR-KO). Methods and Results We used electrophysiological, immunoblotting and renal-clearance methods to examine the effect of angiotensin II on ENaC in KS-MR-KO and wild-type mice. High K+ intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K+ and low sodium intake on ENaC, partially inhibited ENaC in DCT2/CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild-type and KS-MR-KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR-independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS-MR-KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS-MR-KO mice; (3) angiotensin II infusion augmented benzamil-induced natriuresis, increased the renal K+ excretion and corrected hyperkalemia of KS-MR-KO mice. Conclusions Angiotensin II-induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Epithelial Sodium Channels/metabolism
- Hyperkalemia/drug therapy
- Hyperkalemia/genetics
- Hyperkalemia/metabolism
- Hyperkalemia/physiopathology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Collecting/physiopathology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Distal/physiopathology
- Membrane Potentials
- Mice, Knockout
- Natriuresis/drug effects
- Potassium/urine
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Mineralocorticoid/deficiency
- Receptors, Mineralocorticoid/genetics
- Renal Elimination/drug effects
Collapse
Affiliation(s)
- Peng Wu
- Institute of Hypertension and Kidney DiseaseThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhong‐Xiuzi Gao
- Institute of Hypertension and Kidney DiseaseThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dan‐Dan Zhang
- Department of PharmacologyNew York Medical CollegeValhallaNY
| | - Xin‐Peng Duan
- Department of PharmacologyNew York Medical CollegeValhallaNY
| | - Andrew S. Terker
- Department of MedicineOregon Health & Science UniversityVA Portland Health Care SystemPortlandOR
| | - Dao‐Hong Lin
- Department of PharmacologyNew York Medical CollegeValhallaNY
| | - David H. Ellison
- Department of MedicineOregon Health & Science UniversityVA Portland Health Care SystemPortlandOR
| | - Wen‐Hui Wang
- Department of PharmacologyNew York Medical CollegeValhallaNY
| |
Collapse
|
23
|
Gu L, Wang J, Zhang DD, Meng X, Zhang Y, Zhang J, Zhang H, Guo X, Lin DH, Wang WH, Gu RM. Inhibition of AT2R and Bradykinin Type II Receptor (BK2R) Compromises High K + Intake-Induced Renal K + Excretion. Hypertension 2019; 75:439-448. [PMID: 31865783 DOI: 10.1161/hypertensionaha.119.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inhibition of Type II angiotensin II receptor (AT2R) or BK2R (bradykinin type II receptor) stimulates basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT) and activates thiazide-sensitive NCC (Na-Cl cotransporter). The aim of the present study is to examine the role of AT2R and BK2R in mediating the effect of HK (high dietary K+) intake on the basolateral K+ channels, NCC, and renal K+ excretion. Feeding mice (male and female) with HK diet for overnight significantly decreased the basolateral K+ conductance, depolarized the DCT membrane, diminished the expression of pNCC (phosphorylated NCC) and tNCC (total NCC), and decreased thiazide-sensitive natriuresis. Overnight HK intake also increased the expression of cleaved ENaC-α and -γ subunits but had no effect on NKCC2 expression. Pretreatment of the mice (male and female) with PD123319 and HOE140 stimulated the expression of tNCC and pNCC, augmented hydrochlorothiazide-induced natriuresis, and increased the negativity of the DCT membrane. The deletion of Kir4.1 not only decreased the NCC activity but also abolished the stimulatory effect of PD123319 and HOE140 perfusion on NCC activity. Moreover, the effect of overnight HK loading on Kir4.1/Kir5.1 in the DCT and NCC expression/activity was compromised in the mice treated with AT2R/BK2R antagonists. Renal clearance study showed that inhibition of AT2R and BK2R impairs renal K+ excretion in response to overnight HK loading, and the mice pretreated with PD123319 and HOE140 were hyperkalemic during HK intake. We conclude that synergistic activation of AT2R and BK2R is required for the effect of overnight HK diet on Kir4.1/Kir5.1 in the DCT and NCC activity.
Collapse
Affiliation(s)
- Li Gu
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - JunLin Wang
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla (D.-D. Z., D.-H.L, W.-H.W.)
| | - XinXin Meng
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - YunHong Zhang
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - JiaWen Zhang
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - Hao Zhang
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - XiWen Guo
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla (D.-D. Z., D.-H.L, W.-H.W.)
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla (D.-D. Z., D.-H.L, W.-H.W.)
| | - Rui-Min Gu
- From the Department of Physiology, Harbin Medical University, China (L.G., J.W., X.M., Y.Z, J.Z., H.Z., X.G., R.-M.G.)
| |
Collapse
|
24
|
Teulon J, Wang WH. Studying Na + and K + channels in aldosterone-sensitive distal nephrons. Methods Cell Biol 2019; 153:151-168. [PMID: 31395377 DOI: 10.1016/bs.mcb.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aldosterone-sensitive distal nephron (ASDN) including the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct (CD) plays an important role in the regulation of hormone-dependent Na+ reabsorption and dietary K+-intake dependent K+ excretion. The major Na+ transporters in the ASDN are thiazide-sensitive Na-Cl cotransporter (NCC), epithelial Na+ channel (ENaC), pendrin/Na+-dependent Cl--bicarbonate exchanger (NDCBE). Whereas major K+ channels in the ASDN are Kir4.1 and Kir5.1 in the basolateral membrane; and Kir1.1 (ROMK) and Ca2+ activated big conductance K+ channel (BK) in the apical membrane. Although a variety of in vitro cell lines of the ASDN is available and these cell models have been employed for studying Na+ and K+ channels, the biophysical properties and the regulation of Na+ and K+ channels in vitro cell models may not be able to recapitulate those in vivo conditions. Thus, the studies performed in the native ASDN are essential for providing highly physiological relevant information and for understanding the Na+ and K+ transport in the ASDN. Here we provide a detailed methodology describing how to perform the electrophysiological measurement in the native DCT, CNT and cortical collecting duct (CCD).
Collapse
Affiliation(s)
- Jacques Teulon
- Sorbnne Université, Centre de recherches des Cordeliers UMR_S 1138, equipe 3, Paris, France.
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
25
|
Nesovic-Ostojic J, Kovacevic S, Spasic S, Lopicic S, Todorovic J, Dincic M, Stanojevic M, Savin M, Milovanovic A, Cemerikic D. Modulation of luminal L-alanine transport in proximal tubular cells of frog kidney induced by low micromolar Cd 2+ concentration. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:38-42. [PMID: 30414954 DOI: 10.1016/j.cbpc.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022]
Abstract
The kidneys are recognized as a major target of cadmium-induced toxicity. However, all mechanisms that are involved in the early stages of cadmium nephrotoxicity, particularly considering low micromolar concentrations of cadmium ions (Cd2+) are still unknown. Therefore, the aim of this study was to investigate the effects of peritubular acute exposure to micromolar Cd2+ concentration (2.3 μmol/L) on the rapid depolarization and the rate of slow repolarization of peritubular membrane potential difference (PD), induced by luminal application of L-alanine in proximal tubular cells of frog kidney. The results showed that the luminal application of L-alanine rapidly depolarized the peritubular membrane PD of -42.00 ± 11.68 mV by 23.89 ± 4.15 mV with an average rate of slow repolarization of 5.64 ± 0.81 mV/min. Additionally, peritubular acute exposure to Cd2+ induced change in rapid depolarization of peritubular membrane PD of -53.33 ± 13.01 mV by 18.78 ± 3.31 mV (P < 0.01) after luminal application of L-alanine. Also, peritubular acute exposure to Cd2+ led to statistically significant decrease in the rate of slow repolarization of peritubular membrane PD (3.53 ± 0.35 mV/min; P < 0.05). In conclusion, these results suggest that peritubular acute exposure to low micromolar Cd2+ concentration decreased the rapid depolarization and the rate of slow repolarization of peritubular membrane PD induced by luminal application of L-alanine. This is followed by reduced luminal sodium-coupled transport of L-alanine and this change may be one of the possible mechanisms involved in the early stages of Cd2+-induced nephrotoxicity.
Collapse
Affiliation(s)
| | - Sanjin Kovacevic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Svetolik Spasic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Srdjan Lopicic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Jasna Todorovic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Marko Dincic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Marija Stanojevic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Marina Savin
- Clinic of Nephrology, Clinical Center of Serbia, Medical Faculty, University of Belgrade, Serbia
| | - Aleksandar Milovanovic
- Insitute of Occupational Health, Clinical Center of Serbia, Medical Faculty, University of Belgrade, Serbia
| | - Dusan Cemerikic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| |
Collapse
|
26
|
Wang B, Wang-France J, Li H, Sansom SC. Furosemide reduces BK-αβ4-mediated K + secretion in mice on an alkaline high-K + diet. Am J Physiol Renal Physiol 2019; 316:F341-F350. [PMID: 30484346 DOI: 10.1152/ajprenal.00223.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Special high-K diets have cardioprotective effects and are often warranted in conjunction with diuretics such as furosemide for treating hypertension. However, it is not understood how a high-K diet (HK) influences the actions of diuretics on renal K+ handling. Furosemide acidifies the urine by increasing acid secretion via the Na+-H+ exchanger 3 (NHE3) in TAL and vacuolar H+-ATPase (V-ATPase) in the distal nephron. We previously found that an alkaline urine is required for large conductance Ca2+-activated K+ (BK)-αβ4-mediated K+ secretion in mice on HK. We therefore hypothesized that furosemide could reduce BK-αβ4-mediated K+ secretion by acidifying the urine. Treating with furosemide (drinking water) for 11 days led to decreased urine pH in both wild-type (WT) and BK-β4-knockout mice (BK-β4-KO) with increased V-ATPase expression and elevated plasma aldosterone levels. However, furosemide decreased renal K+ clearance and elevated plasma [K+] in WT but not BK-β4-KO. Western blotting and immunofluorescence staining showed that furosemide treatment decreased cortical expression of BK-β4 and reduced apical localization of BK-α in connecting tubules. Addition of the carbonic anhydrase inhibitor, acetazolamide, to furosemide water restored urine pH along with renal K+ clearance and plasma [K+] to control levels. Acetazolamide plus furosemide also restored the cortical expression of BK-β4 and BK-α in connecting tubules. These results indicate that in mice adapted to HK, furosemide reduces BK-αβ4-mediated K+ secretion by acidifying the urine.
Collapse
Affiliation(s)
- Bangchen Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Huaqing Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
27
|
The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci Rep 2019; 39:BSR20180773. [PMID: 30643005 PMCID: PMC6356015 DOI: 10.1042/bsr20180773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of growth 4 (ING4), a member of the ING family discovered in 2003, has been shown to act as a tumor suppressor and is frequently down-regulated in various human cancers. Numerous published in vivo and in vitro studies have shown that ING4 is responsible for important cancer hallmarks such as pathologic cell cycle arrest, apoptosis, autophagy, contact inhibition, and hypoxic adaptation, and also affects tumor angiogenesis, invasion, and metastasis. These characteristics are typically associated with regulation through chromatin acetylation by binding histone H3 trimethylated at lysine 4 (H3K4me3) and through transcriptional activity of transcription factor P53 and NF-κB. In addition, emerging evidence has indicated that abnormalities in ING4 expression and function play key roles in non-neoplastic disorders. Here, we provide an overview of ING4-modulated chromosome remodeling and transcriptional function, as well as the functional consequences of different genetic variants. We also present the current understanding concerning the role of ING4 in the development of neoplastic and non-neoplastic diseases. These studies offer inspiration for pursuing novel therapeutics for various cancers.
Collapse
|
28
|
Wang MX, Cuevas CA, Su XT, Wu P, Gao ZX, Lin DH, McCormick JA, Yang CL, Wang WH, Ellison DH. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int 2018; 93:893-902. [PMID: 29310825 PMCID: PMC6481177 DOI: 10.1016/j.kint.2017.10.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.
Collapse
MESH Headings
- Alkalosis/genetics
- Alkalosis/metabolism
- Alkalosis/physiopathology
- Animals
- Disease Models, Animal
- Female
- Homeostasis
- Hydrochlorothiazide/pharmacology
- Hypokalemia/genetics
- Hypokalemia/metabolism
- Hypokalemia/physiopathology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Distal/physiopathology
- Male
- Membrane Potentials
- Mice, Knockout
- Natriuresis
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium, Dietary/metabolism
- Renal Elimination
- Sodium/urine
- Sodium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- Kir5.1 Channel
Collapse
Affiliation(s)
- Ming-Xiao Wang
- Department of Physiology, Zunyi Medical College, Zunyi, China; Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Catherina A Cuevas
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - James A McCormick
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Chao-Ling Yang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
| | - David H Ellison
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
29
|
Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 2017; 7:16215. [PMID: 29176723 PMCID: PMC5701230 DOI: 10.1038/s41598-017-16381-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/13/2017] [Indexed: 01/29/2023] Open
Abstract
Molecular mechanisms of Na+, Cl−, and Ca2+ regulation in ionocytes of fish have been well investigated. However, the regulatory mechanism of K+ in fishes has been largely unknown. In this study, we investigated the mechanism of K+ regulation in medaka larvae acclimated to fresh water. Using a scanning ion-selective electrode technique (SIET) to measure the K+ fluxes at skin cells, significant K+ effluxes were found at ionocytes; in contrast, significant K+ influxes were found at the boundaries between keratinocytes. High K+ water (HK) acclimation induced the K+ effluxes at ionocytes and suppressed the K+ influxes at keratinocytes. The K+ effluxes of ionocytes were suppressed by VU591, bumetanide and ouabain. The K+ influxes of keratinocytes were suppressed by TAP. In situ hybridization analysis showed that mRNA of ROMKa was expressed by ionocytes in the skin and gills of medaka larvae. Quantitative PCR showed that mRNA levels of ROMKa and NKCC1a in gills of adult medaka were upregulated after HK acclimation. This study suggests that medaka obtain K+ through a paracellular pathway between keratinocytes and extrude K+ through ionocytes; apical ROMKa and basolateral NKCC1a are involved in the K+ secretion by ionocytes.
Collapse
|
30
|
Rashmi P, Colussi G, Ng M, Wu X, Kidwai A, Pearce D. Glucocorticoid-induced leucine zipper protein regulates sodium and potassium balance in the distal nephron. Kidney Int 2017; 91:1159-1177. [PMID: 28094030 DOI: 10.1016/j.kint.2016.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
Glucocorticoid induced leucine zipper protein (GILZ) is an aldosterone-regulated protein that controls sodium transport in cultured kidney epithelial cells. Mice lacking GILZ have been reported previously to have electrolyte abnormalities. However, the mechanistic basis has not been explored. Here we provide evidence supporting a role for GILZ in modulating the balance of renal sodium and potassium excretion by regulating the sodium-chloride cotransporter (NCC) activity in the distal nephron. Gilz-/- mice have a higher plasma potassium concentration and lower fractional excretion of potassium than wild type mice. Furthermore, knockout mice are more sensitive to NCC inhibition by thiazides than are the wild type mice, and their phosphorylated NCC expression is higher. Despite increased NCC activity, knockout mice do not have higher blood pressure than wild type mice. However, during sodium deprivation, knockout mice come into sodium balance more quickly, than do the wild type, without a significant increase in plasma renin activity. Upon prolonged sodium restriction, knockout mice develop frank hyperkalemia. Finally, in HEK293T cells, exogenous GILZ inhibits NCC activity at least in part by inhibiting SPAK phosphorylation. Thus, GILZ promotes potassium secretion by inhibiting NCC and enhancing distal sodium delivery to the epithelial sodium channel. Additionally, Gilz-/- mice have features resembling familial hyperkalemic hypertension, a human disorder that manifests with hyperkalemia associated variably with hypertension.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - GianLuca Colussi
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Michael Ng
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Xinhao Wu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Atif Kidwai
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
31
|
Li J, He Q, Wu W, Li Q, Huang R, Pan X, Lai W. Role of the renal sympathetic nerves in renal sodium/potassium handling and renal damage in spontaneously hypertensive rats. Exp Ther Med 2016; 12:2547-2553. [PMID: 27698757 PMCID: PMC5038203 DOI: 10.3892/etm.2016.3669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/12/2016] [Indexed: 12/24/2022] Open
Abstract
Renal sympathetic nerve activity has an important role in renal disease-associated hypertension and in the modulation of fluid homeostasis. In the present study, changes in renal function and renal sodium/potassium handling were investigated in groups of 12-week-old male, spontaneously hypertensive rats with renal denervation (RDNX group) or sham denervation (sham group). The RDNX group excreted significantly more sodium than the sham group during the 2-week observation period (P<0.05). Following bilateral renal denervation, the fractional lithium excretion was elevated in the RDNX group compared with the sham group, but no significant effect was observed of renal denervation on the fractional distal reabsorption rate of sodium or the fractional excretion of potassium. Furthermore, the glomerular injury score and the wall-to-lumen ratio of the interlobular artery were significantly lower in the RDNX group than in the sham group (P<0.05). In conclusion, the present study indicates an involvement of the renal sympathetic nerves in the regulation of renal tubular sodium reabsorption in spontaneously hypertensive rats and in the renal damage associated with hypertension.
Collapse
Affiliation(s)
- Jianling Li
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiaoling He
- Department of Pharmacology, Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning, Guangxi 530000, P.R. China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingjie Li
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongjie Huang
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaofeng Pan
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenying Lai
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Xu C, Lu A, Wang H, Fang H, Zhou L, Sun P, Yang T. (Pro)Renin receptor regulates potassium homeostasis through a local mechanism. Am J Physiol Renal Physiol 2016; 313:F641-F656. [PMID: 27440776 DOI: 10.1152/ajprenal.00043.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022] Open
Abstract
(Pro)renin receptor (PRR) is highly expressed in the distal nephron, but it has an unclear functional implication. The present study was conducted to explore a potential role of renal PRR during high K+ (HK) loading. In normal Sprague-Dawley rats, a 1-wk HK intake increased renal expression of full-length PRR and urinary excretion of soluble PRR (sPRR). Administration of PRO20, a decoy peptide antagonist of PRR, in K+-loaded animals elevated plasma K+ level and decreased urinary K+ excretion, accompanied with suppressed urinary aldosterone excretion and intrarenal aldosterone levels. HK downregulated Na+-Cl- cotransporter (NCC) expression but upregulated CYP11B2 (cytochrome P-450, family 11, subfamily B, polypeptide 2), renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit α1 (α-BK), α-Na+-K+-ATPase (α-NKA), and epithelial Na+ channel subunit β (β-ENaC), all of which were blunted by PRO20. After HK loading was completed, urinary, but not plasma renin, was upregulated, which was blunted by PRO20. The same experiments that were performed using adrenalectomized (ADX) rats yielded similar results. Interestingly, spironolactone treatment in HK-loaded ADX rats attenuated kaliuresis but promoted natriuresis, which was associated with the suppressed responses of β-ENaC, α-NKA, ROMK, and α-BK protein expression. Taken together, we discovered a novel role of renal PRR in regulation of K+ homeostasis through a local mechanism involving intrarenal renin-angiotensin-aldosterone system and coordinated regulation of membrane Na+- and K+-transporting proteins.
Collapse
Affiliation(s)
- Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Hong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Hui Fang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Peng Sun
- Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; .,Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
33
|
Larsen CK, Jensen IS, Sorensen MV, de Bruijn PI, Bleich M, Praetorius HA, Leipziger J. Hyperaldosteronism after decreased renal K+ excretion in KCNMB2 knockout mice. Am J Physiol Renal Physiol 2016; 310:F1035-46. [PMID: 26962098 DOI: 10.1152/ajprenal.00010.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/08/2016] [Indexed: 11/22/2022] Open
Abstract
The kidney is the primary organ ensuring K(+) homeostasis. K(+) is secreted into the urine in the distal tubule by two mechanisms: by the renal outer medullary K(+) channel (Kir1.1) and by the Ca(2+)-activated K(+) channel (KCa1.1). Here, we report a novel knockout mouse of the β2-subunit of the KCa1.1 channel (KCNMB2), which displays hyperaldosteronism after decreased renal K(+) excretion. KCNMB2(-/-) mice displayed hyperaldosteronism, normal plasma K(+) concentration, and produced dilute urine with decreased K(+) concentration. The normokalemia indicated that hyperaldosteronism did not result from primary aldosteronism. Activation of the renin-angiotensin-aldosterone system was also ruled out as renal renin mRNA expression was reduced in KCNMB2(-/-) mice. Renal K(+) excretion rates were similar in the two genotypes; however, KCNMB2(-/-) mice required elevated plasma aldosterone to achieve K(+) balance. Blockade of the mineralocorticoid receptor with eplerenone triggered mild hyperkalemia and unmasked reduced renal K(+) excretion in KCNMB2(-/-) mice. Knockout mice for the α-subunit of the KCa1.1 channel (KCNMA1(-/-) mice) have hyperaldosteronism, are hypertensive, and lack flow-induced K(+) secretion. KCNMB2(-/-) mice share the phenotypic traits of normokalemia and hyperaldosteronism with KCNMA1(-/-) mice but were normotensive and displayed intact flow-induced K(+) secretion. Despite elevated plasma aldosterone, KNCMB2(-/-) mice did not display salt-sensitive hypertension and were able to decrease plasma aldosterone on a high-Na(+) diet, although plasma aldosterone remained elevated in KCNMB2(-/-) mice. In summary, KCNMB2(-/-) mice have a reduced ability to excrete K(+) into the urine but achieve K(+) balance through an aldosterone-mediated, β2-independent mechanism. The phenotype of KCNMB2 mice was similar but milder than the phenotype of KCNMA1(-/-) mice.
Collapse
Affiliation(s)
- Casper K Larsen
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Iben S Jensen
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Mads V Sorensen
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark; Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark; and
| | - Pauline I de Bruijn
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Helle A Praetorius
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
34
|
Poulsen SB, Praetorius J, Damkier HH, Miller L, Nelson RD, Hummler E, Christensen BM. Reducing αENaC expression in the kidney connecting tubule induces pseudohypoaldosteronism type 1 symptoms during K+ loading. Am J Physiol Renal Physiol 2016; 310:F300-10. [DOI: 10.1152/ajprenal.00258.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/16/2015] [Indexed: 11/22/2022] Open
Abstract
Genetic inactivation of the epithelial Na+ channel α-subunit (αENaC) in the renal collecting duct (CD) does not interfere with Na+ and K+ homeostasis in mice. However, inactivation in the CD and a part of the connecting tubule (CNT) induces autosomal recessive pseudohypoaldosteronism type 1 (PHA-1) symptoms in subjects already on a standard diet. In the present study, we further examined the importance of αENaC in the CNT. Knockout mice with αENaC deleted primarily in a part of the CNT (CNT-KO) were generated using Scnn1alox/lox mice and Atp6v1b1:: Cre mice. With a standard diet, plasma Na+ concentration ([Na+]) and [K+], and urine Na+ and K+ output were unaffected. Seven days of Na+ restriction (0.01% Na+) led to a higher urine Na+ output only on days 3–5, and after 7 days plasma [Na+] and [K+] were unaffected. In contrast, the CNT-KO mice were highly susceptible to a 2-day 5% K+ diet and showed lower food intake and relative body weight, lower plasma [Na+], higher fractional excretion (FE) of Na+, higher plasma [K+], and lower FE of K+. The higher FE of Na+ coincided with lower abundance and phosphorylation of the Na+-Cl− cotransporter. In conclusion, reducing ENaC expression in the CNT induces clear PHA-1 symptoms during high dietary K+ loading.
Collapse
Affiliation(s)
| | | | - Helle H. Damkier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lance Miller
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Raoul D. Nelson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
35
|
Kim D, Urban J, Boyle DL, Park Y. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci Rep 2016; 6:21047. [PMID: 26861075 PMCID: PMC4748274 DOI: 10.1038/srep21047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/13/2016] [Indexed: 12/03/2022] Open
Abstract
Control of salivary secretion in ticks involves autocrine dopamine activating two dopamine receptors: D1 and Invertebrate-specific D1-like dopamine receptors. In this study, we investigated Na/K-ATPase as an important component of the secretory process. Immunoreactivity for Na/K-ATPase revealed basal infolding of lamellate cells in type-I, abluminal interstitial (epithelial) cells in type-II, and labyrinth-like infolding structures opening towards the lumen in type-III acini. Ouabain (10 μmol l(-1)), a specific inhibitor of Na/K-ATPase, abolished dopamine-induced salivary secretion by suppressing fluid transport in type III acini. At 1 μmol l(-1), ouabain, the secreted saliva was hyperosmotic. This suggests that ouabain also inhibits an ion resorptive function of Na/K-ATPase in the type I acini. Dopamine/ouabain were not involved in activation of protein secretion, while dopamine-induced saliva contained constitutively basal level of protein. We hypothesize that the dopamine-dependent primary saliva formation, mediated by Na/K-ATPase in type III and type II acini, is followed by a dopamine-independent resorptive function of Na/K-ATPase in type I acini located in the proximal end of the salivary duct.
Collapse
Affiliation(s)
- Donghun Kim
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Joshua Urban
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Daniel L. Boyle
- Division of Biology, Microscopy Facility, Kansas State University, Ackert Hall, Manhattan, Kansas 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| |
Collapse
|
36
|
Webb TN, Carrisoza-Gaytan R, Montalbetti N, Rued A, Roy A, Socovich AM, Subramanya AR, Satlin LM, Kleyman TR, Carattino MD. Cell-specific regulation of L-WNK1 by dietary K. Am J Physiol Renal Physiol 2016; 310:F15-26. [PMID: 26662201 PMCID: PMC4675801 DOI: 10.1152/ajprenal.00226.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022] Open
Abstract
Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1), WNK4, and Kelch-like 3/Cullin 3, two components of an E3 ubiquitin ligase complex that degrades WNKs. We examined whether the full-length (or "long") form of WNK1 (L-WNK1) affected the expression of BK α-subunits in HEK cells. Overexpression of L-WNK1 promoted a significant increase in BK α-subunit whole cell abundance and functional channel expression. BK α-subunit abundance also increased with coexpression of a kinase dead L-WNK1 mutant (K233M) and with kidney-specific WNK1 (KS-WNK1), suggesting that the catalytic activity of L-WNK1 was not required to increase BK expression. We examined whether dietary K(+) intake affected L-WNK1 expression in the aldosterone-sensitive distal nephron. We found a paucity of L-WNK1 labeling in cortical collecting ducts (CCDs) from rabbits on a low-K(+) diet but observed robust staining for L-WNK1 primarily in intercalated cells when rabbits were fed a high-K(+) diet. Our results and previous findings suggest that L-WNK1 exerts different effects on renal K(+) secretory channels, inhibiting renal outer medullary K(+) channels and activating BK channels. A high-K(+) diet induced an increase in L-WNK1 expression selectively in intercalated cells and may contribute to enhanced BK channel expression and K(+) secretion in CCDs.
Collapse
Affiliation(s)
- Tennille N Webb
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Anna Rued
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ankita Roy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 2015; 310:C243-59. [PMID: 26632600 DOI: 10.1152/ajpcell.00328.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flow-induced K secretion (FIKS) in the aldosterone-sensitive distal nephron (ASDN) is mediated by large-conductance, Ca(2+)/stretch-activated BK channels composed of pore-forming α-subunits (BKα) and accessory β-subunits. This channel also plays a critical role in the renal adaptation to dietary K loading. Within the ASDN, the cortical collecting duct (CCD) is a major site for the final renal regulation of K homeostasis. Principal cells in the ASDN possess a single apical cilium whereas the surfaces of adjacent intercalated cells, devoid of cilia, are decorated with abundant microvilli and microplicae. Increases in tubular (urinary) flow rate, induced by volume expansion, diuretics, or a high K diet, subject CCD cells to hydrodynamic forces (fluid shear stress, circumferential stretch, and drag/torque on apical cilia and presumably microvilli/microplicae) that are transduced into increases in principal (PC) and intercalated (IC) cell cytoplasmic Ca(2+) concentration that activate apical voltage-, stretch- and Ca(2+)-activated BK channels, which mediate FIKS. This review summarizes studies by ourselves and others that have led to the evolving picture that the BK channel is localized in a macromolecular complex at the apical membrane, composed of mechanosensitive apical Ca(2+) channels and a variety of kinases/phosphatases as well as other signaling molecules anchored to the cytoskeleton, and that an increase in tubular fluid flow rate leads to IC- and PC-specific responses determined, in large part, by the cell-specific composition of the BK channels.
Collapse
Affiliation(s)
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
38
|
Orlov SN, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension. Genes Dis 2015; 2:186-196. [PMID: 26114157 PMCID: PMC4477834 DOI: 10.1016/j.gendis.2015.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
This review summarizes the data on the functional significance of ubiquitous (NKCC1) and renal-specific (NKCC2) isoforms of electroneutral sodium, potassium and chloride cotransporters. These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid, respectively. Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume. However, the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds.
Collapse
Affiliation(s)
- Sergei N. Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Тomsk State University, Russia
| | | | | | | | | |
Collapse
|
39
|
Ronzaud C, Staub O. Ubiquitylation and control of renal Na+ balance and blood pressure. Physiology (Bethesda) 2014; 29:16-26. [PMID: 24382868 DOI: 10.1152/physiol.00021.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ubiquitylation is crucial for regulating numerous cellular functions. In the kidney, ubiquitylation regulates the epithelial Na(+) channel ENaC. The importance of this process is highlighted in Liddle's syndrome, where mutations interfere with ENaC ubiquitylation, resulting in constitutive Na(+) reabsorption and hypertension. There is emerging evidence that NCC, involved in hypertensive diseases, is also regulated by ubiquitylation. Here, we discuss the current knowledge and recent findings in this field.
Collapse
Affiliation(s)
- Caroline Ronzaud
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
40
|
Todkar A, Picard N, Loffing-Cueni D, Sorensen MV, Mihailova M, Nesterov V, Makhanova N, Korbmacher C, Wagner CA, Loffing J. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J Am Soc Nephrol 2014; 26:425-38. [PMID: 25071088 DOI: 10.1681/asn.2013111156] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aldosterone-independent mechanisms may contribute to K(+) homeostasis. We studied aldosterone synthase knockout (AS(-/-)) mice to define renal control mechanisms of K(+) homeostasis in complete aldosterone deficiency. AS(-/-) mice were normokalemic and tolerated a physiologic dietary K(+) load (2% K(+), 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K(+) intake (5% K(+)), AS(-/-) mice decompensated and became hyperkalemic. High-K(+) diets induced upregulation of the renal outer medullary K(+) channel in AS(-/-) mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K(+) excretion was detected only with a 2% K(+) diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS(-/-) mice than in AS(+/+) mice and was downregulated in mice of both genotypes in response to increased K(+) intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS(-/-) mice. In contrast with the kidney, the distal colon of AS(-/-) mice did not respond to dietary K(+) loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K(+) load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K(+) channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K(+) secretion and increased intratubular availability of Na(+) that can be reabsorbed in exchange for K(+) secreted.
Collapse
Affiliation(s)
- Abhijeet Todkar
- Institutes of Anatomy and Physiology, and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Viatcheslav Nesterov
- Institute for Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Natalia Makhanova
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Christoph Korbmacher
- Institute for Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Carsten A Wagner
- Physiology, and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Johannes Loffing
- Institutes of Anatomy and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
41
|
Abstract
The concept of homeostasis has been inextricably linked to the function of the kidneys for more than a century when it was recognized that the kidneys had the ability to maintain the "internal milieu" and allow organisms the "physiologic freedom" to move into varying environments and take in varying diets and fluids. Early ingenious, albeit rudimentary, experiments unlocked a wealth of secrets on the mechanisms involved in the formation of urine and renal handling of the gamut of electrolytes, as well as that of water, acid, and protein. Recent scientific advances have confirmed these prescient postulates such that the modern clinician is the beneficiary of a rich understanding of the nephron and the kidney's critical role in homeostasis down to the molecular level. This review summarizes those early achievements and provides a framework and introduction for the new CJASN series on renal physiology.
Collapse
Affiliation(s)
- Melanie P Hoenig
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mark L Zeidel
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Carrisoza-Gaytán R, Salvador C, Diaz-Bello B, Escobar LI. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron. J Mol Histol 2014; 45:583-97. [PMID: 24948003 DOI: 10.1007/s10735-014-9581-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico
| | | | | | | |
Collapse
|
43
|
Souza-Menezes J, da Silva Feltran G, Morales MM. CFTR and TNR-CFTR expression and function in the kidney. Biophys Rev 2014; 6:227-236. [PMID: 28510183 PMCID: PMC5425698 DOI: 10.1007/s12551-014-0140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in the kidney. CFTR mRNA is detected in all nephron segments of rats and humans and its expression is higher in the renal cortex and outer medulla than in the inner medulla. CFTR protein is detected at the apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. The localization of CFTR in the proximal tubules is compatible with that of endosomes, suggesting that CFTR might regulate pH in endocytic vesicles by equilibrating H+ accumulation due to H+-ATPase activity. Many studies have also demonstrated that CFTR also regulates channel pore opening and the transport of sodium, chloride and potassium. The kidneys also express a CFTR splicing variant, called TNR-CFTR, in a tissue-specific manner, primarily in the renal medulla. This splicing variant conserves the functional characteristics of wild-type CFTR. The functional significance of TNR-CFTR remains to be elucidated, but our group proposes that TNR-CFTR may have a basic function in intracellular organelles, rather than in the plasma membrane. Also, this splicing variant is able to partially substitute CFTR functions in the renal medulla of Cftr-/- mice and CF patients. In this review we discuss the major functions that have been proposed for CFTR and TNR-CFTR in the kidney.
Collapse
Affiliation(s)
- Jackson Souza-Menezes
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, Barreto, Macaé, 27965-045 RJ Brazil
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| | - Geórgia da Silva Feltran
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, Barreto, Macaé, 27965-045 RJ Brazil
| | - Marcelo M. Morales
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
44
|
Abstract
The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular level. This article provides an update on the distal convoluted tubule, highlighting concepts and pathophysiology relevant to clinical practice.
Collapse
Affiliation(s)
- Arohan R Subramanya
- Departments of Medicine and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania;
| | - David H Ellison
- Departments of Medicine and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; and Portland Veterans Affairs Medical Center, Portland, Oregon
| |
Collapse
|
45
|
RNA sequencing reveals upregulation of RUNX1-RUNX1T1 gene signatures in clear cell renal cell carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:450621. [PMID: 24783204 PMCID: PMC3982423 DOI: 10.1155/2014/450621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/21/2014] [Accepted: 01/31/2014] [Indexed: 12/21/2022]
Abstract
In the past few years, therapies targeted at the von Hippel-Lindau (VHL) and hypoxia-inducible factor (HIF) pathways, such as sunitinib and sorafenib, have been developed to treat clear cell renal cell carcinoma (ccRCC). However, the majority of patients will eventually show resistance to antiangiogenesis therapies. The purpose of our study was to identify novel pathways that could be potentially used as targets for new therapies. Whole transcriptome sequencing (RNA-Seq) was conducted on eight matched tumor and adjacent normal tissue samples. A novel RUNX1-RUNX1T1 pathway was identified which was upregulated in ccRCC through gene set enrichment analysis (GSEA). We also confirmed the findings based on previously published gene expression microarray data. Our data shows that upregulated of the RUNX1-RUNX1T1 gene set maybe an important factor contributing to the etiology of ccRCC.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Potassium channels in the distal nephron are precisely controlled to regulate potassium secretion in accord with physiological demands. In recent years, it has become evident that membrane trafficking processes play a fundamental role. This short review highlights recent developments in elucidating the underlying mechanisms. RECENT FINDINGS Novel sorting signals in the renal potassium channels, and the elusive intracellular trafficking machinery that read and act on these signals have recently been identified. These new discoveries reveal that independent signals sequentially interact with different intracellular sorting, retention and internalization machineries to appropriately ferry the channels to and from the apical and basolateral membrane domains in sufficient numbers to regulate potassium balance. SUMMARY A new understanding of the basic mechanisms that control potassium channel density at polarized membrane domains has emerged, providing new insights into how potassium balance is achieved and how it goes awry in disease.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland Medical School, Baltimore, Maryland 21201, USA.
| |
Collapse
|
47
|
Wang Z, Subramanya AR, Satlin LM, Pastor-Soler NM, Carattino MD, Kleyman TR. Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase. Am J Physiol Cell Physiol 2013; 305:C846-53. [PMID: 23885063 DOI: 10.1152/ajpcell.00133.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Large-conductance, Ca(2+)-activated K(+) channels, commonly referred to as BK channels, have a major role in flow-induced K(+) secretion in the distal nephron. With-no-lysine kinase 4 (WNK4) is a serine-threonine kinase expressed in the distal nephron that inhibits ROMK activity and renal K(+) secretion. WNK4 mutations have been described in individuals with familial hyperkalemic hypertension (FHHt), a Mendelian disorder characterized by low-renin hypertension and hyperkalemia. As BK channels also have an important role in renal K(+) secretion, we examined whether they are regulated by WNK4 in a manner similar to ROMK. BK channel activity was inhibited in a rabbit intercalated cell line transfected with WNK4 or a WNK4 mutant found in individuals with FHHt. Coexpression of an epitope-tagged BK α-subunit with WNK4 or the WNK4 mutant in HEK293 cells reduced BK α-subunit plasma membrane and whole cell expression. A region within WNK4 encompassing the autoinhibitory domain and a coiled coil domain was required for WNK4 to inhibit BK α-subunit expression. The relative fraction of BK α-subunit that was ubiquitinated was significantly increased in cells expressing WNK4, compared with controls. Our results suggest that WNK4 inhibits BK channel activity, in part, by increasing channel degradation through an ubiquitin-dependent pathway. Based on these results, we propose that WNK4 provides a cellular mechanism for the coordinated regulation of two key secretory K(+) channels in the distal nephron, ROMK and BK.
Collapse
Affiliation(s)
- Zhijian Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
48
|
Wu P, Wang M, Luan H, Li L, Wang L, Wang W, Gu R. Angiotensin II stimulates basolateral 10-pS Cl channels in the thick ascending limb. Hypertension 2013; 61:1211-7. [PMID: 23569086 PMCID: PMC3686115 DOI: 10.1161/hypertensionaha.111.01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 02/07/2023]
Abstract
Chloride channels in the basolateral membrane play a key role in Cl absorption in the thick ascending limb (TAL). The patch-clamp experiments were performed to test whether angiotensin II (AngII) increases Cl absorption in the TAL by stimulating the basolateral 10-pS Cl channels. AngII (1-100 nmol/L) stimulated the 10-pS Cl channel in the TAL, an effect that was blocked by losartan (angiotension AT1 receptor [AT1R] antagonist) but not by PD123319 (angiotension AT2 receptor [AT2R] antagonist). Inhibition of phospholipase C or protein kinase C also abolished the stimulatory effect of AngII on Cl channels. Moreover, stimulation of protein kinase C with phorbol-12-myristate-13-acetate mimicked the effect of AngII and increased Cl channel activity. However, the stimulatory effect of AngII on Cl channels was absent in the TAL pretreated with diphenyleneiodonium sulfate, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Moreover, treatment of the TAL with diphenyleneiodonium sulfate also blocked the effect of phorbol-12-myristate-13-acetate on the 10-pS Cl channel. Western blotting demonstrated that incubation of isolated TAL with AngII increased phosphorylation of p47(phox) at Ser(304), suggesting that AngII stimulates the basolateral Cl channels by increasing NADPH oxidase-dependent superoxide generation. This notion was also supported by the observation that H2O2 significantly increased 10-pS Cl channel activity in the TAL. We conclude that stimulation of AT1R increased the basolateral Cl channels by activating the protein kinase C-dependent NADPH oxidase pathway. The stimulatory effect of AngII on the basolateral Cl channel may contribute to AngII-induced increases in NaCl reabsorption in the TAL and AngII-infuse-induced hypertension.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Mingxiao Wang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Haiyan Luan
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Lili Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Lijun Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Ruimin Gu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Uyehara CFT, Sarkar J. Role of vasopressin in maintenance of potassium homeostasis in severe hemorrhage. Am J Physiol Regul Integr Comp Physiol 2013; 305:R101-3. [PMID: 23678030 DOI: 10.1152/ajpregu.00206.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncontrolled elevation in plasma potassium within minutes of rapid blood volume loss is associated with mortality and distinguishes nonsurvivors of severe hemorrhage from survivors. In a pig model of severe hemorrhage, we discovered that along with a sharp increase in plasma potassium coincident with a shut down of urine flow, nonsurvivors also had an insufficient vasopressin response to hemorrhage. In contrast, survivors did have elevated vasopressin levels in response to hemorrhage and maintained plasma potassium within normal limits. While it has been demonstrated for some time that vasopressin can influence secretion of potassium in the distal nephron, the magnitude of this effect and conditions under which this contributes to physiological modulation of potassium excretion has yet to be defined. In this review, we assess the evidence that would suggest that vasopressin plays a key role in modulating potassium excretion and is important in the regulation of potassium homeostasis during hemorrhage.
Collapse
|
50
|
Ronzaud C, Loffing-Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler-Jaeger N, Boase NA, Perrier R, Maillard M, Yang B, Stokes JB, Koesters R, Kumar S, Hummler E, Loffing J, Staub O. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest 2013; 123:657-65. [PMID: 23348737 DOI: 10.1172/jci61110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/16/2012] [Indexed: 01/14/2023] Open
Abstract
The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.
Collapse
Affiliation(s)
- Caroline Ronzaud
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|