1
|
Chiba T, Oda A, Zhang Y, Pfister K, Bons J, Bharathi SS, Kinoshita A, Zhang BB, Richert A, Schilling B, Goetzman E, Sims-Lucas S. Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury. JCI Insight 2025; 10:e186073. [PMID: 39932791 PMCID: PMC11949023 DOI: 10.1172/jci.insight.186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
The renal tubular epithelial cells (RTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for RTECs via fatty acid oxidation (FAO), FAO-mediated H2O2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2 in vitro. Furthermore, we showed that renal LCAD becomes hyposuccinylated during AKI. Here, we demonstrated that succinylation of recombinant LCAD protein suppresses the production of H2O2. Following 2 distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion injury (IRI), LCAD-/- mice demonstrated renoprotection. Specifically, LCAD-/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against 2 distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.
Collapse
Affiliation(s)
- Takuto Chiba
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Oda
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Pfister
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Sivakama S. Bharathi
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ayako Kinoshita
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bob B. Zhang
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Richert
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Eric Goetzman
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh (UPMC CHP), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
3
|
Chiba T, Oda A, Zhang Y, Bons J, Bharathi SS, Pfister KE, Zhang BB, Richert AC, Schilling B, Goetzman ES, Sims-Lucas S. Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619640. [PMID: 39484612 PMCID: PMC11526992 DOI: 10.1101/2024.10.22.619640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Proximal tubular epithelial cells (PTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for PTECs via fatty acid oxidation (FAO), FAO-mediated H 2 O 2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H 2 O 2 in vitro . Further we have established that loss of a lysine deacylase, Sirtuin 5 ( Sirt5 -/- ), induces hypersuccinylation and inhibition of mitochondrial FAO genes to stimulate peroxisomal FAO and to protect against AKI. However, the role of LCAD has yet to be determined. Mass spectrometry data acquisition revealed that LCAD is hypersuccinylated in Sirt5 -/- kidneys after AKI. Following two distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion (IRI), LCAD knockout mice ( LCAD -/- ) demonstrated renoprotection against AKI. Specifically, LCAD -/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against two distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.
Collapse
|
4
|
Katsuma Y, Matsui I, Matsumoto A, Okushima H, Imai A, Sakaguchi Y, Yamamoto T, Mizui M, Uchinomiya S, Kato H, Ojida A, Takashima S, Inoue K, Isaka Y. Endogenous activation of peroxisome proliferator-activated receptor-α in proximal tubule cells in counteracting phosphate toxicity. Am J Physiol Renal Physiol 2024; 327:F208-F223. [PMID: 38870264 DOI: 10.1152/ajprenal.00046.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid β-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.NEW & NOTEWORTHY This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.
Collapse
Affiliation(s)
- Yusuke Katsuma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Okushima
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuhiro Imai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shohei Uchinomiya
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akio Ojida
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Otunla AA, Shanmugarajah K, Davies AH, Shalhoub J. Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Front Pharmacol 2024; 15:1355674. [PMID: 38464721 PMCID: PMC10924325 DOI: 10.3389/fphar.2024.1355674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Dysregulated lipid metabolism is implicated in the pathophysiology of a range of kidney diseases. The specific mechanisms through which lipotoxicity contributes to acute kidney injury (AKI) remain poorly understood. Herein we review the cardinal features of lipotoxic injury in ischemic kidney injury; lipid accumulation and mitochondrial lipotoxicity. We then explore a new mechanism of lipotoxicity, what we define as "immunometabolic" lipotoxicity, and discuss the potential therapeutic implications of targeting this lipotoxicity using lipid lowering medications.
Collapse
Affiliation(s)
- Afolarin A. Otunla
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | | | - Alun H. Davies
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
7
|
Chen Y, Li Z, Zhang H, Chen H, Hao J, Liu H, Li X. Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury. Cell Death Discov 2024; 10:69. [PMID: 38341438 DOI: 10.1038/s41420-024-01843-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The kidney is susceptible to IRI under several clinical conditions, including hypotension, sepsis, and surgical procedures, such as partial nephrectomy and kidney transplantation. Extensive research has been conducted on the mechanism and intervention strategies of renal IRI in past decades; however, the complex pathophysiology of IRI-induced AKI (IRI-AKI) is not fully understood, and there remains a lack of effective treatments for AKI. Renal IRI involves several processes, including reactive oxygen species (ROS) production, inflammation, and apoptosis. Mitochondria, the centers of energy metabolism, are increasingly recognized as substantial contributors to the early phases of IRI. Multiple mitochondrial lesions have been observed in the renal tubular epithelial cells (TECs) of IRI-AKI mice, and damaged or dysfunctional mitochondria are toxic to the cells because they produce ROS and release cell death factors, resulting in TEC apoptosis. In this review, we summarize the recent advances in the mitochondrial pathology in ischemic AKI and highlight promising therapeutic approaches targeting mitochondrial dysfunction to prevent or treat human ischemic AKI.
Collapse
Affiliation(s)
- Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhan-jiang Central Hospital, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
8
|
Silva Barbosa AC, Pfister KE, Chiba T, Bons J, Rose JP, Burton JB, King CD, O'Broin A, Young V, Zhang B, Sivakama B, Schmidt AV, Uhlean R, Oda A, Schilling B, Goetzman ES, Sims-Lucas S. Dicarboxylic Acid Dietary Supplementation Protects against AKI. J Am Soc Nephrol 2024; 35:135-148. [PMID: 38044490 PMCID: PMC10843194 DOI: 10.1681/asn.0000000000000266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.
Collapse
Affiliation(s)
- Anne C. Silva Barbosa
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katherine E. Pfister
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Takuto Chiba
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California
| | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, California
| | | | | | - Amy O'Broin
- Buck Institute for Research on Aging, Novato, California
| | - Victoria Young
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bob Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharathi Sivakama
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexandra V. Schmidt
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca Uhlean
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Akira Oda
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Eric S. Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Baek J, Sas K, He C, Nair V, Giblin W, Inoki A, Zhang H, Yingbao Y, Hodgin J, Nelson RG, Brosius FC, Kretzler M, Stemmer PM, Lombard DB, Pennathur S. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease. J Biol Chem 2023; 299:102960. [PMID: 36736426 PMCID: PMC9996370 DOI: 10.1016/j.jbc.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Early diabetic kidney disease (DKD) is marked by dramatic metabolic reprogramming due to nutrient excess, mitochondrial dysfunction, and increased renal energy requirements from hyperfiltration. We hypothesized that changes in metabolism in DKD may be regulated by Sirtuin 5 (SIRT5), a deacylase that removes posttranslational modifications derived from acyl-coenzyme A and has been demonstrated to regulate numerous metabolic pathways. We found decreased malonylation in the kidney cortex (∼80% proximal tubules) of type 2 diabetic BKS db/db mice, associated with increased SIRT5 expression. We performed a proteomics analysis of malonylated peptides and found that proteins with significantly decreased malonylated lysines in the db/db cortex were enriched in nonmitochondrial metabolic pathways: glycolysis and peroxisomal fatty acid oxidation. To confirm relevance of these findings in human disease, we analyzed diabetic kidney transcriptomic data from a cohort of Southwestern American Indians, which revealed a tubulointerstitial-specific increase in Sirt5 expression. These data were further corroborated by immunofluorescence data of SIRT5 from nondiabetic and DKD cohorts. Furthermore, overexpression of SIRT5 in cultured human proximal tubules demonstrated increased aerobic glycolysis. Conversely, we observed reduced glycolysis with decreased SIRT5 expression. These findings suggest that SIRT5 may lead to differential nutrient partitioning and utilization in DKD. Taken together, our findings highlight a previously unrecognized role for SIRT5 in metabolic reprogramming in DKD.
Collapse
Affiliation(s)
- Judy Baek
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelli Sas
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chenchen He
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - William Giblin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongyu Zhang
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Yingbao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
11
|
Gao Z, Chen X. Fatty Acid β-Oxidation in Kidney Diseases: Perspectives on Pathophysiological Mechanisms and Therapeutic Opportunities. Front Pharmacol 2022; 13:805281. [PMID: 35517820 PMCID: PMC9065343 DOI: 10.3389/fphar.2022.805281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The kidney is a highly metabolic organ and requires a large amount of ATP to maintain its filtration-reabsorption function, and mitochondrial fatty acid β-oxidation serves as the main source of energy to meet its functional needs. Reduced and inefficient fatty acid β-oxidation is thought to be a major mechanism contributing to kidney diseases, including acute kidney injury, chronic kidney disease and diabetic nephropathy. PPARα, AMPK, sirtuins, HIF-1, and TGF-β/SMAD3 activation have all been shown to play key roles in the regulation of fatty acid β-oxidation in kidney diseases, and restoration of fatty acid β-oxidation by modulation of these molecules can ameliorate the development of such diseases. Here, we disentangle the lipid metabolism regulation properties and potential mechanisms of mesenchymal stem cells and their extracellular vesicles, and emphasize the role of mesenchymal stem cells on lipid metabolism. This review aims to highlight the important role of fatty acid β-oxidation in the progression of kidney diseases, and to explore the fatty acid β-oxidation effects and therapeutic potential of mesenchymal stem cells for kidney diseases.
Collapse
Affiliation(s)
- Zhumei Gao
- Department of Nephrology, The Second Hospital of Jilin University, Jilin, China
| | - Xiangmei Chen
- Department of Nephrology, The Second Hospital of Jilin University, Jilin, China.,Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Kanda M, Goda M, Maegawa A, Yoshioka T, Yoshida A, Miyata K, Aizawa F, Niimura T, Hamano H, Okada N, Sakurada T, Chuma M, Yagi K, Izawa-Ishizawa Y, Yanagawa H, Zamami Y, Ishizawa K. Discovery of preventive drugs for cisplatin-induced acute kidney injury using big data analysis. Clin Transl Sci 2022; 15:1664-1675. [PMID: 35445533 PMCID: PMC9283743 DOI: 10.1111/cts.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cisplatin is effective against many types of carcinoma. However, a high rate of renal damage is a clinical problem. Thus, there is a need to establish a method to prevent it. Although various compounds have been reported to be effective against cisplatin-induced renal injury, there are no examples of their clinical application. Therefore, we attempted to search for prophylactic agents with a high potential for clinical application. We used Cascade Eye to identify genes that are altered during cisplatin-induced renal injury, Library of Integrated Network-based Cellular Signatures (LINCS) to identify drugs that inhibit changes in gene expression, and a large database of spontaneous adverse drug reaction reports to identify drugs that could prevent cisplatin-induced kidney injury in clinical practice. In total, 10 candidate drugs were identified. Using the US FDA Adverse Event Reporting System (FAERS), we identified drugs that reduce cisplatin-induced kidney injury. Fenofibrate was selected as a candidate drug to prevent cisplatin-induced kidney injury based on the FAERS analysis. A model was used to evaluate the efficacy of fenofibrate against cisplatin-induced renal injury. Studies using HK2 cells and mouse models showed that fenofibrate significantly inhibited cisplatin-induced renal injury but did not inhibit the antitumor effect of cisplatin. Fenofibrate is a candidate prophylactic drug with high clinical applicability for cisplatin-induced renal injury. Analysis of data from multiple big databases will improve the search for novel prophylactic drugs with high clinical applicability. For the practical application of these findings, evaluation in prospective controlled trials is necessary.
Collapse
Affiliation(s)
- Masaya Kanda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Akiko Maegawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshihiko Yoshioka
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Ami Yoshida
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Takumi Sakurada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Department of Pharmacy, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kenta Yagi
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroaki Yanagawa
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
13
|
Stec DE, Tiribelli C, Badmus OO, Hinds TD. Novel Function for Bilirubin as a Metabolic Signaling Molecule: Implications for Kidney Diseases. KIDNEY360 2022; 3:945-953. [PMID: 36128497 PMCID: PMC9438427 DOI: 10.34067/kid.0000062022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/24/2022] [Indexed: 01/30/2023]
Abstract
Bilirubin is the end product of the catabolism of heme via the heme oxygenase pathway. Heme oxygenase generates carbon monoxide (CO) and biliverdin from the breakdown of heme, and biliverdin is rapidly reduced to bilirubin by the enzyme biliverdin reductase (BVR). Bilirubin has long been thought of as a toxic product that is only relevant to health when blood levels are severely elevated, such as in clinical jaundice. The physiologic functions of bilirubin correlate with the growing body of evidence demonstrating the protective effects of serum bilirubin against cardiovascular and metabolic diseases. Although the correlative evidence suggests a protective effect of serum bilirubin against many diseases, the mechanism by which bilirubin offers protection against cardiovascular and metabolic diseases remains unanswered. We recently discovered a novel function for bilirubin as a signaling molecule capable of activating the peroxisome proliferator-activated receptor α (PPARα) transcription factor. This review summarizes the new finding of bilirubin as a signaling molecule and proposes several mechanisms by which this novel action of bilirubin may protect against cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Olufunto O. Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022; 13:832732. [PMID: 35308207 PMCID: PMC8931476 DOI: 10.3389/fphar.2022.832732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Accumulating evidence suggests that PPARs may play an important role in the pathogenesis of kidney disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ, have been implicated in many renal pathophysiological conditions, including acute kidney injury, diabetic nephropathy, and chronic kidney disease, among others. Emerging data suggest that PPARs may be potential therapeutic targets for renal disease. This article reviews the physiological roles of PPARs in the kidney and discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Zhaoyan Gu
- Department of Endocrinology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaoyan Gu,
| |
Collapse
|
15
|
Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine 2022; 76:103855. [PMID: 35123268 PMCID: PMC8819107 DOI: 10.1016/j.ebiom.2022.103855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.
Collapse
Affiliation(s)
- Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Wen-Hua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying-Zhi Huang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China.
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
16
|
Starace V, Battista M, Brambati M, Cavalleri M, Bertuzzi F, Amato A, Lattanzio R, Bandello F, Cicinelli MV. The role of inflammation and neurodegeneration in diabetic macular edema. Ther Adv Ophthalmol 2021; 13:25158414211055963. [PMID: 34901746 PMCID: PMC8652911 DOI: 10.1177/25158414211055963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of diabetic macular edema (DME) is complex. Persistently high blood glucose activates multiple cellular pathways and induces inflammation, oxidation stress, and vascular dysfunction. Retinal ganglion cells, macroglial and microglial cells, endothelial cells, pericytes, and retinal pigment epithelium cells are involved. Neurodegeneration, characterized by dysfunction or apoptotic loss of retinal neurons, occurs early and independently from the vascular alterations. Despite the increasing knowledge on the pathways involved in DME, only limited therapeutic strategies are available. Besides antiangiogenic drugs and intravitreal corticosteroids, alternative therapeutic options tackling inflammation, oxidative stress, and neurodegeneration have been considered, but none of them has been currently approved.
Collapse
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Cavalleri
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, via Olgettina 60, 20132 Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M. Nuclear receptors in the kidney during health and disease. Mol Aspects Med 2020; 78:100935. [PMID: 33272705 DOI: 10.1016/j.mam.2020.100935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Over the last 30 years, nuclear receptors (NRs) have been increasingly recognized as key modulators of systemic homeostasis and as contributing factors in many diseases. In the kidney, NRs play numerous important roles in maintaining homeostasis-many of which continue to be unraveled. As "master regulators", these important transcription factors integrate and coordinate many renal processes such as circadian responses, lipid metabolism, fatty acid oxidation, glucose handling, and inflammatory responses. The use of recently-developed genetic tools and small molecule modulators have allowed for detailed studies of how renal NRs contribute to kidney homeostasis. Importantly, while NRs are intimately involved in proper kidney function, they are also implicated in a variety of renal diseases such as diabetes, acute kidney injury, and other conditions such as aging. In the last 10 years, our understanding of renal disease etiology and progression has been greatly shaped by knowledge regarding how NRs are dysregulated in these conditions. Importantly, NRs have also become attractive therapeutic targets for attenuation of renal diseases, and their modulation for this purpose has been the subject of intense investigation. Here, we review the role in health and disease of six key renal NRs including the peroxisome proliferator-activated receptors (PPAR), estrogen-related receptors (ERR), the farnesoid X receptors (FXR), estrogen receptors (ER), liver X receptors (LXR), and vitamin D receptors (VDR) with an emphasis on recent findings over the last decade. These NRs have generated a wealth of data over the last 10 years that demonstrate their crucial role in maintaining normal renal homeostasis as well as their capacity to modulate disease progression.
Collapse
Affiliation(s)
- Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Bryce Jones
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Isabel Lopez-Santiago
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Emma Rowland
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| |
Collapse
|
18
|
Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front Med (Lausanne) 2020; 7:65. [PMID: 32226789 PMCID: PMC7080698 DOI: 10.3389/fmed.2020.00065] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
The kidney is a highly metabolic organ and uses high levels of ATP to maintain electrolyte and acid-base homeostasis and reabsorb nutrients. Energy depletion is a critical factor in development and progression of various kidney diseases including acute kidney injury (AKI), chronic kidney disease (CKD), and diabetic and glomerular nephropathy. Mitochondrial fatty acid β-oxidation (FAO) serves as the preferred source of ATP in the kidney and its dysfunction results in ATP depletion and lipotoxicity to elicit tubular injury and inflammation and subsequent fibrosis progression. This review explores the current state of knowledge on the role of mitochondrial FAO dysfunction in the pathophysiology of kidney diseases including AKI and CKD and prospective views on developing therapeutic interventions based on mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anatomy, Jeju National University School of Medicine, Jeju, South Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
19
|
Jang HS, Noh MR, Jung EM, Kim WY, Southekal S, Guda C, Foster KW, Oupicky D, Ferrer FA, Padanilam BJ. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney Int 2020; 97:327-339. [PMID: 31733829 PMCID: PMC6983334 DOI: 10.1016/j.kint.2019.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022]
Abstract
Regardless of the etiology, acute kidney injury involves aspects of mitochondrial dysfunction and ATP depletion. Fatty acid oxidation is the preferred energy source of the kidney and is inhibited during acute kidney injury. A pivotal role for the mitochondrial matrix protein, cyclophilin D in regulating overall cell metabolism is being unraveled. We hypothesize that mitochondrial interaction of proximal tubule cyclophilin D and the transcription factor PPARα modulate fatty acid beta-oxidation in cisplatin-induced acute kidney injury. Cisplatin injury resulted in histological and functional damage in the kidney with downregulation of fatty acid oxidation genes and increase of intrarenal lipid accumulation. However, proximal tubule-specific deletion of cyclophilin D protected the kidneys from the aforementioned effects. Mitochondrial translocation of PPARα, its binding to cyclophilin D, and sequestration led to inhibition of its nuclear translocation and transcription of PPARα-regulated fatty acid oxidation genes during cisplatin-induced acute kidney injury. Genetic or pharmacological inhibition of cyclophilin D preserved nuclear expression and transcriptional activity of PPARα and prevented the impairment of fatty acid oxidation and intracellular lipid accumulation. Docking analysis identified potential binding sites between PPARα and cyclophilin D. Thus, our results indicate that proximal tubule cyclophilin D elicits impaired mitochondrial fatty acid oxidation via mitochondrial interaction between cyclophilin D and PPARα. Hence, targeting their interaction may be a potential therapeutic strategy to prevent energy depletion, lipotoxicity and cell death in cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fernando A Ferrer
- Department of Surgery, Children's Hospital and Medical Center, Omaha, Nebraska, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
20
|
Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X. Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 2020; 10:1450. [PMID: 31996743 PMCID: PMC6989517 DOI: 10.1038/s41598-020-58334-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
Fatty acid oxidation (FAO) is a key bioenergetic pathway often dysregulated in diseases. The current knowledge on FAO regulators in mammalian cells is limited and sometimes controversial. Previous FAO analyses involve nonphysiological culture conditions or lack adequate quantification. We herein described a convenient and quantitative assay to monitor dynamic FAO activities of mammalian cells in physiologically relevant settings. The method enabled us to assess various molecular and pharmacological modulators of the FAO pathway in established cell lines, primary cells and mice. Surprisingly, many previously proposed FAO inhibitors such as ranolazine and trimetazidine lacked FAO-interfering activity. In comparison, etomoxir at low micromolar concentrations was sufficient to saturate its target proteins and to block cellular FAO function. Oxfenicine, on the other hand, acted as a partial inhibitor of FAO. As another class of FAO inhibitors that transcriptionally repress FAO genes, antagonists of peroxisome proliferator-activated receptors (PPARs), particularly that of PPARα, significantly decreased cellular FAO activity. Our assay also had sufficient sensitivity to monitor upregulation of FAO in response to environmental glucose depletion and other energy-demanding cues. Altogether this study provided a reliable FAO assay and a clear picture of biological properties of potential FAO modulators in the mammalian system.
Collapse
Affiliation(s)
- Yibao Ma
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Wei Wang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Teja Devarakonda
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Huiping Zhou
- Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xiang-Yang Wang
- Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Fadi N Salloum
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Sarah Spiegel
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xianjun Fang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA.
| |
Collapse
|
21
|
Lin X, Pike B, Zhao J, Fan Y, Zhu Y, Zhang Y, Wang F, Odle J. Effects of Dietary Anaplerotic and Ketogenic Energy Sources on Renal Fatty Acid Oxidation Induced by Clofibrate in Suckling Neonatal Pigs. Int J Mol Sci 2020; 21:ijms21030726. [PMID: 31979102 PMCID: PMC7037708 DOI: 10.3390/ijms21030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
Maintaining an active fatty acid metabolism is important for renal growth, development, and health. We evaluated the effects of anaplerotic and ketogenic energy sources on fatty acid oxidation during stimulation with clofibrate, a pharmacologic peroxisome proliferator-activated receptor α (PPARα) agonist. Suckling newborn pigs (n = 72) were assigned into 8 dietary treatments following a 2 × 4 factorial design: ± clofibrate (0.35%) and diets containing 5% of either (1) glycerol-succinate (GlySuc), (2) tri-valerate (TriC5), (3) tri-hexanoate (TriC6), or (4) tri-2-methylpentanoate (Tri2MPA). Pigs were housed individually and fed the iso-caloric milk replacer diets for 5 d. Renal fatty acid oxidation was measured in vitro in fresh tissue homogenates using [1-14C]-labeled palmitic acid. The oxidation was 30% greater in pig received clofibrate and 25% greater (p < 0.05) in pigs fed the TriC6 diet compared to those fed diets with GlySuc, TriC5, and Tri2MPA. Addition of carnitine also stimulated the oxidation by twofold (p < 0.05). The effects of TriC6 and carnitine on palmitic acid oxidation were not altered by clofibrate stimulation. However, renal fatty acid composition was altered by clofibrate and Tri2MPA. In conclusion, modification of anaplerosis or ketogenesis via dietary substrates had no influence on in vitro renal palmitic acid oxidation induced by PPARα activation.
Collapse
Affiliation(s)
- Xi Lin
- Correspondence: ; Tel.: +1-919-515-4014
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chiba T, Peasley KD, Cargill KR, Maringer KV, Bharathi SS, Mukherjee E, Zhang Y, Holtz A, Basisty N, Yagobian SD, Schilling B, Goetzman ES, Sims-Lucas S. Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI. J Am Soc Nephrol 2019; 30:2384-2398. [PMID: 31575700 PMCID: PMC6900790 DOI: 10.1681/asn.2019020163] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined. METHODS We subjected male Sirt5-deficient mice (either +/- or -/-) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2. RESULTS Sirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5-/- ) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5-/- mice, Sirt5-/- mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5-/- proximal tubular epithelial cells. CONCLUSIONS Our findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.
Collapse
Affiliation(s)
- Takuto Chiba
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kevin D Peasley
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kasey R Cargill
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Katherine V Maringer
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Sivakama S Bharathi
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Elina Mukherjee
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, California
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California
| | - Shiva D Yagobian
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | | - Eric S Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
23
|
Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8458472. [PMID: 30962865 PMCID: PMC6431380 DOI: 10.1155/2019/8458472] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/26/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) is a vascular insult that accompanies the hyperglycemic state. Retinal vasculature holds a pivotal role in maintaining the integrity of the retina, and any alteration to retinal vasculature affects retinal functions. The blood retinal barrier, a prerequisite to vision acuity, is most susceptible to damage during the progression of DR. This is a consequence of impaired biochemical pathways such as the polyol, advanced end glycation products (AGE), hexosamine, protein kinase C (PKC), and tissue renin-angiotensin system (RAS) pathways. Moreover, the role of histone modification and altered miRNA expression is also emerging as a major contributor. Epigenetic changes create a link between altered protein function and redox status of retinal cells, creating a state of metabolic memory. Although various biochemical pathways underlie the etiology of DR, the major insult to the retina is due to oxidative stress, a unifying factor of altered biochemical pathways. This review primarily focuses on the critical biochemical pathways altered in DR leading to vascular dysfunctions and discusses antioxidants as plausible treatment strategies.
Collapse
|
24
|
Kuok IT, Rountree AM, Jung SR, Sweet IR. Palmitate is not an effective fuel for pancreatic islets and amplifies insulin secretion independent of calcium release from endoplasmic reticulum. Islets 2019; 11:51-64. [PMID: 31084524 PMCID: PMC6548485 DOI: 10.1080/19382014.2019.1601490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to determine the acute contribution of fuel oxidation in mediating the increase in insulin secretion rate (ISR) in response to fatty acids. Measures of mitochondrial metabolism, as reflected by oxygen consumption rate (OCR) and cytochrome c reduction, calcium signaling, and ISR by rat islets were used to evaluate processes stimulated by acute exposure to palmitic acid (PA). The contribution of mitochondrial oxidation of PA was determined in the presence and absence of a blocker of mitochondrial transport of fatty acids (etomoxir) at different glucose concentrations. Subsequent to increasing glucose from 3 to 20 mM, PA caused small increases in OCR and cytosolic calcium (about 20% of the effect of glucose). In contrast, the effect of PA on ISR was almost 3 times that by glucose, suggesting that the metabolism of PA is not the dominant mechanism mediating PA's effect on ISR. This was further supported by lack of inhibition of PA-stimulated OCR and ISR when blocking entry of PA into mitochondria (with etomoxir), and PA's lack of stimulation of reduced cytochrome c in the presence of high glucose. Consistent with the lack of metabolic stimulation by PA, an inhibitor of calcium release from the endoplasmic reticulum, but not a blocker of L-type calcium channels, abolished the PA-induced elevation of cytosolic calcium. Notably, ISR was unaffected by thapsigargin showing the dissociation of endoplasmic reticulum calcium release and second phase insulin secretion. In conclusion, stimulation of ISR by PA was mediated by mechanisms largely independent of the oxidation of the fuel.
Collapse
Affiliation(s)
- Iok Teng Kuok
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Austin M. Rountree
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Seung-Ryoung Jung
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Ian R. Sweet
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
- CONTACT Ian R. Sweet UW Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98195-8062
| |
Collapse
|
25
|
Erpicum P, Rowart P, Defraigne JO, Krzesinski JM, Jouret F. What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol 2018; 315:F1714-F1719. [PMID: 30332314 DOI: 10.1152/ajprenal.00322.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal segmental metabolism is reflected by the complex distribution of the main energy pathways along the nephron, with fatty acid oxidation preferentially used in the cortex area. Ischemia/reperfusion injury (IRI) is due to the restriction of renal blood flow, rapidly leading to a metabolic switch toward anaerobic conditions. Subsequent unbalance between energy demand and oxygen/nutrient delivery compromises kidney cell functions, resulting in a complex inflammatory cascade including the production of reactive oxygen species (ROS). Renal IRI especially involves lipid accumulation. Lipid peroxidation is one of the major events of ROS-associated tissue injury. Here, we briefly review the current knowledge of renal cell lipid metabolism in normal and ischemic conditions. Next, we focus on renal lipid-associated injury, with emphasis on its mechanisms and consequences during the course of IRI. Finally, we discuss preclinical observations aiming at preventing and/or attenuating lipid-associated IRI.
Collapse
Affiliation(s)
- Pauline Erpicum
- Division of Nephrology, University of Liège Academic Hospital , Liège , Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| | - Jean-Olivier Defraigne
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium.,Division of Cardio-Thoracic Surgery, University of Liège Academic Hospital , Liège , Belgium
| | | | - François Jouret
- Division of Nephrology, University of Liège Academic Hospital , Liège , Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| |
Collapse
|
26
|
Popescu M, Bogdan C, Pintea A, Rugină D, Ionescu C. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1985-1996. [PMID: 30013318 PMCID: PMC6037275 DOI: 10.2147/dddt.s156941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) affects >350 million people worldwide. With many complications that can reduce the patient’s quality of life, vision loss is one of the most debilitating disorders it can cause. Active research in the field of diabetes includes microvascular complications in diabetic retinopathy (DR). Disturbances in the balance of pro-angiogenesis and anti-angiogenesis factors can lead to the progression of DR. The retinal pigment epithelium (RPE) is the outermost layer of the retina, and it is essential in maintaining the visual function. The RPE produces and secretes growth factors as well as protective agents which maintain structural integrity of the retina. Small natural molecules, such as resveratrol, may influence neurotrophic factors of the retina. The pigment epithelium-derived factor (PEDF) and thrombospondin-1 (TSP-1) are secreted by RPE cells. These two proteins inhibit angiogenesis and inflammation in RPE cells. An alteration of their production contributes to various eye diseases. There is a critical balance between two important factors secreted on opposite sides of the RPE: at the basal side, vascular endothelial growth factor (VEGF; acts on the choroidal endothelium) and, on the apical side, PEDF (acts on neurons and photoreceptors). Resveratrol inhibits VEGF expression in human adult RPE cells and limits the development of proliferative vitreoretinopathy, by attenuating transforming growth factor-β2-induced wound closure and cell migration. Possible new mechanisms could include PEDF and TSP-1 expression alterations under physiological and pathological conditions. Resveratrol is currently of interest due to its capacity to influence the cell’s secretory activity. Some limitations arise from its low bioavailability. Several drug delivery systems are currently tested, promising to improve tissue concentrations. This article reviews biological pathways involved in the pathogenesis of DR that could be influenced by resveratrol. A study of these pathways could identify new potential targets for the reduction of diabetic complications.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania,
| | - Adela Pintea
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dumitriţa Rugină
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Corina Ionescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|
27
|
Kim SJ, Park C, Lee JN, Park R. Protective roles of fenofibrate against cisplatin-induced ototoxicity by the rescue of peroxisomal and mitochondrial dysfunction. Toxicol Appl Pharmacol 2018; 353:43-54. [PMID: 29908243 DOI: 10.1016/j.taap.2018.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Cisplatin is an alkylating agent that interferes with DNA replication and kills proliferating carcinogenic cells. Several studies have been conducted to attenuate the side effects of cisplatin; one such side effect in cancer patients undergoing cisplatin chemotherapy is ototoxicity. However, owing to a lack of understanding of the precise mechanism underlying cisplatin-induced side effects, management of cisplatin-induced ototoxicity remains unsolved. We investigated the protective effects of fenofibrate, a PPAR-α activator, on cisplatin-induced ototoxicity. Fenofibrate prevented cisplatin-induced loss of hair cells and improved cell viability; moreover, fenofibrate significantly attenuated the threshold of auditory brainstem responses (ABR) in cisplatin-injected mice. Fenofibrate significantly increased PPAR-α, PPAR-γ, and PGC-1α expression, which consequently resulted in increased number and functional enzyme levels of peroxisomes and mitochondria, and markedly decreased phospho-p53 (S15), activated caspase-3, cleaved-PARP, and NF-κB p65 nuclear translocation, which reduced NADPH oxidase isoform (NOX3 and NOX4) expression, thereby decreasing reactive oxygen species (ROS) production in cisplatin-treated tissues ex vivo. Taken together, these results indicate that fenofibrate rescues cisplatin-induced ototoxicity by maintaining peroxisome and mitochondria number and function, reducing inflammation, and decreasing ROS levels. Our findings suggest that fenofibrate administration might serve as an effective therapeutic agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Se-Jin Kim
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Channy Park
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Joon No Lee
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Raekil Park
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
28
|
Liu ZQ, Lee JN, Son M, Lim JY, Dutta RK, Maharjan Y, Kwak S, Oh GT, Byun K, Choe SK, Park R. Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo. Autophagy 2018; 14:1011-1027. [PMID: 29771182 DOI: 10.1080/15548627.2018.1448326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary cilia are evolutionarily conserved microtubule-based cellular organelles that perceive metabolic status and thus link the sensory system to cellular signaling pathways. Therefore, ciliogenesis is thought to be tightly linked to autophagy, which is also regulated by nutrient-sensing transcription factors, such as PPARA (peroxisome proliferator activated receptor alpha) and NR1H4/FXR (nuclear receptor subfamily 1, group H, member 4). However, the relationship between these factors and ciliogenesis has not been clearly demonstrated. Here, we present direct evidence for the involvement of macroautophagic/autophagic regulators in controlling ciliogenesis. We showed that activation of PPARA facilitated ciliogenesis independently of cellular nutritional states. Importantly, PPARA-induced ciliogenesis was mediated by controlling autophagy, since either pharmacological or genetic inactivation of autophagy significantly repressed ciliogenesis. Moreover, we showed that pharmacological activator of autophagy, rapamycin, recovered repressed ciliogenesis in ppara-/- cells. Conversely, activation of NR1H4 repressed cilia formation, while knockdown of NR1H4 enhanced ciliogenesis by inducing autophagy. The reciprocal activities of PPARA and NR1H4 in regulating ciliogenesis were highlighted in a condition where de-repressed ciliogenesis by NR1H4 knockdown was further enhanced by PPARA activation. The in vivo roles of PPARA and NR1H4 in regulating ciliogenesis were examined in greater detail in ppara-/- mice. In response to starvation, ciliogenesis was facilitated in wild-type mice via enhanced autophagy in kidney, while ppara-/- mice displayed impaired autophagy and kidney damage resembling ciliopathy. Furthermore, an NR1H4 agonist exacerbated kidney damage associated with starvation in ppara-/- mice. These findings indicate a previously unknown role for PPARA and NR1H4 in regulating the autophagy-ciliogenesis axis in vivo.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Joon No Lee
- b Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Korea
| | - Myeongjoo Son
- d Department of Anatomy and Cell Biology , Gachon University Graduate School of Medicine , Incheon , Korea.,e Functional Cellular Networks Laboratory , Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon , Korea
| | - Jae-Young Lim
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Raghbendra Kumar Dutta
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Yunash Maharjan
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - SeongAe Kwak
- c Zoonosis Research Center , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Goo Taeg Oh
- f Laboratory of Cardiovascular Genomics, Division of Life and Pharmaceutical Sciences , Ewha Womans University , Seoul , Korea
| | - Kyunghee Byun
- d Department of Anatomy and Cell Biology , Gachon University Graduate School of Medicine , Incheon , Korea.,e Functional Cellular Networks Laboratory , Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon , Korea
| | - Seong-Kyu Choe
- a Department of Microbiology and Center for Metabolic Function Regulation , Wonkwang University School of Medicine , Iksan , Jeonbuk , Korea
| | - Raekil Park
- b Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Korea
| |
Collapse
|
29
|
Flaig TW, Salzmann-Sullivan M, Su LJ, Zhang Z, Joshi M, Gijón MA, Kim J, Arcaroli JJ, Van Bokhoven A, Lucia MS, La Rosa FG, Schlaepfer IR. Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget 2017; 8:56051-56065. [PMID: 28915573 PMCID: PMC5593544 DOI: 10.18632/oncotarget.17359] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among Western men and the second leading-cause of cancer related deaths. For men who develop metastatic castration resistant PCa (mCRPC), survival is limited, making the identification of novel therapies for mCRPC critical. We have found that deficient lipid oxidation via carnitine palmitoyltransferase (CPT1) results in decreased growth and invasion, underscoring the role of lipid oxidation to fuel PCa growth. Using immunohistochemistry we have found that the CPT1A isoform is abundant in PCa compared to benign tissue (n=39, p<0.001) especially in those with high-grade tumors. Since lipid oxidation is stimulated by androgens, we have evaluated the synergistic effects of combining CPT1A inhibition and anti-androgen therapy. Mechanistically, we have found that decreased CPT1A expression is associated with decreased AKT content and activation, likely driven by a breakdown of membrane phospholipids and activation of the INPP5K phosphatase. This results in increased androgen receptor (AR) action and increased sensitivity to the anti-androgen enzalutamide. To better understand the clinical implications of these findings, we have evaluated fat oxidation inhibitors (etomoxir, ranolazine and perhexiline) in combination with enzalutamide in PCa cell models. We have observed a robust growth inhibitory effect of the combinations, including in enzalutamide-resistant cells and mouse TRAMPC1 cells, a more neuroendocrine PCa model. Lastly, using a xenograft mouse model, we have observed decreased tumor growth with a systemic combination treatment of enzalutamide and ranolazine. In conclusion, our results show that improved anti-cancer efficacy can be achieved by co-targeting the AR axis and fat oxidation via CPT1A, which may have clinical implications, especially in the mCRPC setting.
Collapse
Affiliation(s)
- Thomas W. Flaig
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maren Salzmann-Sullivan
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lih-Jen Su
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhiyong Zhang
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miguel A. Gijón
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jihye Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - John J. Arcaroli
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - M. Scott Lucia
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Francisco G. La Rosa
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Isabel R. Schlaepfer
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
30
|
Erpicum P, Rowart P, Poma L, Krzesinski JM, Detry O, Jouret F. Administration of mesenchymal stromal cells before renal ischemia/reperfusion attenuates kidney injury and may modulate renal lipid metabolism in rats. Sci Rep 2017; 7:8687. [PMID: 28819187 PMCID: PMC5561049 DOI: 10.1038/s41598-017-08726-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been demonstrated to attenuate renal ischemia/reperfusion (I/R) damage in rodent models. The mechanisms of such nephro-protection remain largely unknown. Furthermore, the optimal timing of MSC administration has been poorly investigated. Here, we compare the impact of MSC injection 7 days before (MSCD - 7) versus 1 day after (MSCD + 1) renal I/R in rats. Control groups received equivalent volumes of saline at similar time-points (SD - 7 and SD + 1). Right nephrectomy was performed, and left renal ischemia lasted 45 min. After 48-hour reperfusion, we observed significantly improved renal function parameters, reduced apoptotic index and neutrophil/macrophage infiltration in kidney parenchyma, and lower expression of tubular damage markers and pro-inflammatory cytokines in MSCD - 7 in comparison to MSCD + 1 and saline control groups. Next, comparative high-throughput RNA sequencing of MSCD - 7 vs. SD - 7 non-ischemic right kidneys highlighted significant down-regulation of fatty acid biosynthesis and up-regulation of PPAR-α pathway. Such a preferential regulation towards lipid catabolism was associated with decreased levels of lipid peroxidation products, i.e. malondialdehyde and 4-hydroxy-2-nonenal, in MSCD - 7 versus SD - 7 ischemic kidneys. Our findings suggest that MSC pretreatment may exert protective effects against renal I/R by modulating lipid metabolism in rats.
Collapse
Affiliation(s)
- Pauline Erpicum
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Laurence Poma
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Marie Krzesinski
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), CREDEC Unit, University of Liège, Liège, Belgium
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium. .,Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium.
| |
Collapse
|
31
|
Khabbush A, Orford M, Tsai YC, Rutherford T, O'Donnell M, Eaton S, Heales SJR. Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: A mechanistic insight into the medium-chain triglyceride ketogenic diet. Epilepsia 2017; 58:1423-1429. [PMID: 28682459 DOI: 10.1111/epi.13833] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The medium-chain triglyceride (MCT) ketogenic diet contains both octanoic (C8) and decanoic (C10) acids. The diet is an effective treatment for pharmacoresistant epilepsy. Although the exact mechanism for its efficacy is not known, it is emerging that C10, but not C8, interacts with targets that can explain antiseizure effects, for example, peroxisome proliferator-activated receptor-γ (eliciting mitochondrial biogenesis and increased antioxidant status) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. For such effects to occur, significant concentrations of C10 are likely to be required in the brain. METHODS To investigate how this might occur, we measured the β-oxidation rate of 13 C-labeled C8 and C10 in neuronal SH-SY5Y cells using isotope-ratio mass spectrometry. The effects of carnitine palmitoyltransferase I (CPT1) inhibition, with the CPT1 inhibitor etomoxir, on C8 and C10 β-oxidation were also investigated. RESULTS Both fatty acids were catabolized, as judged by 13 CO2 release. However, C10 was β-oxidized at a significantly lower rate, 20% that of C8. This difference was explained by a clear dependence of C10 on CPT1 activity, which is low in neurons, whereas 66% of C8 β-oxidation was independent of CPT1. In addition, C10 β-oxidation was decreased further in the presence of C8. SIGNIFICANCE It is concluded that, because CPT1 is poorly expressed in the brain, C10 is relatively spared from β-oxidation and can accumulate. This is further facilitated by the presence of C8 in the MCT ketogenic diet, which has a sparing effect upon C10 β-oxidation.
Collapse
Affiliation(s)
- Aziza Khabbush
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Michael Orford
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yi-Chen Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | - Simon Eaton
- Paediatric Surgery, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Simon J R Heales
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Chemical Pathology, Great Ormond Street for Children Hospital NHS Foundation Trust, London, United Kingdom
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
32
|
Muroya Y, Ito O. Effect of clofibrate on fatty acid metabolism in the kidney of puromycin-induced nephrotic rats. Clin Exp Nephrol 2016; 20:862-870. [PMID: 26949064 DOI: 10.1007/s10157-016-1253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proteinuria plays an essential role in the progression of tubulointerstitial damage, which causes end-stage renal disease. An increased load of fatty acids bound to albumin reabsorbed into proximal tubular epithelial cells (PTECs) contributes to tubulointerstitial damage. Fibrates, agonists of peroxisome proliferator-activated receptor α (PPARα), have renoprotective effects against proteinuria whereas the effects of these compounds on fatty acid metabolism in the kidney are still unknown. Therefore, the present study examined whether the renoprotective effects of clofibrate were associated with improvement of fatty acid metabolism in puromycin aminonucleoside (PAN)-induced nephrotic rats. METHODS Rats were allocated to the control, PAN or clofibrate-treated PAN group. Biochemical parameters, renal injury and changes in fatty acid metabolism were studied on day14. RESULTS PAN increased proteinuria, lipid accumulation in PTECs, excretions of N-acetyl-β-D-glucosaminidase (NAG) and 8-hydroxydeoxyguanosine (8OHdG) and the area of caspase 3-positive tubular cells. It decreased renal expressions of medium-chain acyl-CoA dehydrogenase (MCAD), cytochrome P450 (CYP)4A, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα) without change of the expression of PPARα. Clofibrate reduced proteinuria, lipid accumulation, NAG excretion and the area of caspase 3-positive tubular cells. However, albumin excretion was not reduced and 8OHdG excretion was increased. Clofibrate minimized changes in MCAD, CYP4A, PGC-1α and ERRα expressions with increased PPARα, very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain acyl-CoA dehydrogenase (LCAD) expressions. CONCLUSION Clofibrate is protective against renal lipotoxicity in PAN nephrosis. This study indicates that clofibrate has renoprotective effects through maintaining fatty acid metabolism in the kidney of PAN-induced nephrotic rats.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan.
| | - Osamu Ito
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
33
|
Santos DCM, Lima ML, Toledo JS, Fernandes PA, Aguiar MMG, López-Gonzálvez Á, Ferreira LAM, Fernandes AP, Barbas C. Metabolomics as a tool to evaluate the toxicity of formulations containing amphotericin B, an antileishmanial drug. Toxicol Res (Camb) 2016; 5:1720-1732. [PMID: 30090471 PMCID: PMC6062298 DOI: 10.1039/c6tx00253f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
Amphotericin B (AmB) is a drug of choice against life-threatening systemic fungal infections and an alternative therapy for the treatment of all forms of leishmaniasis. It is known that AmB and its conventional formulation cause renal damage; however, the lipid formulations can reduce these effects. The aim of the present study was to identify metabolic changes in mice treated with two different AmB formulations, a nanoemulsion (NE) (lipid system carrier) loaded with AmB and the conventional formulation (C-AmB). For this purpose, metabolic fingerprinting represents a valuable strategy to monitor, in a non-targeted manner, the changes that are at the base of the toxicity mechanism of AmB. Plasma samples of BALB-c mice were collected after treatment with 3 alternate doses of AmB at 1 mg kg-1 administered intravenously and analysed with CE, LC and GC coupled to MS. Blood urea nitrogen (BUN) and plasma creatinine levels were also analysed. Kidney tissue specimens were collected and evaluated. It was not observed that there were any alterations in BUN and creatinine levels as well as in histopathological analysis. Approximately 30 metabolites were identified as potentially related to early C-AmB-induced nephrotoxicity. Disturbances in the arachidonic acid, glycerophospholipid, acylcarnitine and polyunsaturated fatty acid (PUFA) pathways were observed in C-AmB-treated mice. In the AmB-loaded NE group, it was observed that there were fewer metabolic changes, including changes in the plasma levels of cortisol and pyranose. The candidate biomarkers revealed in this study could be useful in the detection of the onset and severity of kidney injury induced by AmB formulations.
Collapse
Affiliation(s)
- Délia C M Santos
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Marta L Lima
- Institute of Tropical Medicine , University of São Paulo , São Paulo , SP , Brazil
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Juliano S Toledo
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Paula A Fernandes
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Marta M G Aguiar
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Ángeles López-Gonzálvez
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Lucas A M Ferreira
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Ana Paula Fernandes
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Coral Barbas
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| |
Collapse
|
34
|
Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction. PLoS One 2016; 11:e0162628. [PMID: 27611371 PMCID: PMC5017777 DOI: 10.1371/journal.pone.0162628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/25/2016] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging.
Collapse
|
35
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
36
|
Kim EN, Lim JH, Kim MY, Kim HW, Park CW, Chang YS, Choi BS. PPARα agonist, fenofibrate, ameliorates age-related renal injury. Exp Gerontol 2016; 81:42-50. [PMID: 27130813 DOI: 10.1016/j.exger.2016.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022]
Abstract
The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney.
Collapse
Affiliation(s)
- Eun Nim Kim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Wook Kim
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[(18)F]Fluoro-D-Glucose Uptake in Prostate Cancer Mouse Xenografts. Mol Imaging Biol 2016; 17:529-38. [PMID: 25561013 PMCID: PMC4493937 DOI: 10.1007/s11307-014-0814-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Prostate cancer (PCa) is the second most common cause of cancer-related death among men in the United States. Due to the lipid-driven metabolic phenotype of PCa, imaging with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is suboptimal, since tumors tend to have low avidity for glucose. Procedures We have used the fat oxidation inhibitor etomoxir (2-[6-(4-chlorophenoxy)-hexyl]oxirane-2-carboxylate) that targets carnitine-palmitoyl-transferase-1 (CPT-1) to increase glucose uptake in PCa cell lines. Small hairpin RNA specific for CPT1A was used to confirm the glycolytic switch induced by etomoxir in vitro. Systemic etomoxir treatment was used to enhance [18F]FDG-positron emission tomography ([18F]FDG-PET) imaging in PCa xenograft mouse models in 24 h. Results PCa cells significantly oxidize more of circulating fatty acids than benign cells via CPT-1 enzyme, and blocking this lipid oxidation resulted in activation of the Warburg effect and enhanced [18F]FDG signal in PCa mouse models. Conclusions Inhibition of lipid oxidation plays a major role in elevating glucose metabolism of PCa cells, with potential for imaging enhancement that could also be extended to other cancers. Electronic supplementary material The online version of this article (doi:10.1007/s11307-014-0814-4) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Helmy MM, Helmy MW, El-Mas MM. Additive Renoprotection by Pioglitazone and Fenofibrate against Inflammatory, Oxidative and Apoptotic Manifestations of Cisplatin Nephrotoxicity: Modulation by PPARs. PLoS One 2015; 10:e0142303. [PMID: 26536032 PMCID: PMC4633146 DOI: 10.1371/journal.pone.0142303] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Nephrotoxicity is a major side effect for the antineoplastic drug cisplatin. Here, we employed pharmacological, biochemical, and molecular studies to investigate the role of peroxisome proliferator-activated receptors (PPARs) in cisplatin nephrotoxicity. Rats were treated with a single i.p. dose of cisplatin (5 mg/kg) alone or combined with pioglitazone (PPARγ agonist), fenofibrate (PPARα agonist), pioglitazone plus fenofibrate, or thalidomide (Tumor necrosis factor-α inhibitor; TNF-α). Cisplatin nephrotoxicity was evidenced by rises in renal indices of functional (blood urea nitrogen, BUN, and creatinine), inflammatory (TNF-α, interleukin 6, IL-6), oxidative (increased malondialdehyde, MDA, and decreased superoxide dismutase, SOD and nitric oxide metabolites, NOx), apoptotic (caspase 3), and histological (glomerular atrophy, acute tubular necrosis and vacuolation) profiles. Cisplatin effects were partly abolished upon concurrent exposure to pioglitazone, fenofibrate, or thalidomide; more renoprotection was observed in rats treated with pioglitazaone plus fenofibrate. Immunostaining showed that renal expressions of PPARα and PPARγ were reduced by cisplatin and restored to vehicle-treated values after simultaneous treatment with pioglitazone or fenofibrate. Fenofibrate or pioglitazone renoprotection remained unaltered after concurrent blockade of PPARα (GW6471) and PPARγ (GW9662), respectively. To complement the rat studies, we also report that in human embryonic kidney cells (HEK293 cells), increases caused by cisplatin in inflammatory, apoptotic, and oxidative biomarkers were (i) partly improved after exposure to pioglitazone, fenofibrate, or thalidomide, and (ii) completely disappeared in cells treated with a combination of all three drugs. These data establish that the combined use of pioglitazone and fenofibrate additively improved manifestations of cisplatin nephrotoxicity through perhaps GW6471/GW9662-insensitive mechanisms.
Collapse
Affiliation(s)
- Mai M Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mahmoud M El-Mas
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Simon N, Hertig A. Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis. Front Med (Lausanne) 2015; 2:52. [PMID: 26301223 PMCID: PMC4525064 DOI: 10.3389/fmed.2015.00052] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022] Open
Abstract
Renal proximal tubular cells are the most energy-demanding cells in the body. The ATP that they use is mostly produced in their mitochondrial and peroxisomal compartments, by the oxidation of fatty acids. When those cells are placed under a biological stress, such as a transient hypoxia, fatty acid oxidation (FAO) is shut down for a period of time that outlasts injury, and carbohydrate oxidation does not take over. Facing those metabolic constraints, surviving tubular epithelial cells exhibit a phenotypic switch that includes cytoskeletal rearrangement and production of extracellular matrix proteins, most probably contributing to acute kidney injury-induced renal fibrogenesis, thence to the development of chronic kidney disease. Here, we review experimental evidence that dysregulation of FAO profoundly affects the fate of tubular epithelial cells, by promoting epithelial-to-mesenchymal transition, inflammation, and eventually interstitial fibrosis. Restoring physiological production of energy is undoubtedly a possible therapeutic approach to unlock the mesenchymal reprograming of tubular epithelial cells in the kidney. In this respect, the benefit of the use of fibrates is uncertain, but new drugs that could specifically target this metabolic pathway, and, hopefully, attenuate renal fibrosis merit future research.
Collapse
Affiliation(s)
- Noémie Simon
- IMSERM UMR_S1155, Rare and Common Kidney Diseases, Remodeling and Tissue Repair, Hôpital Tenon , Paris , France
| | - Alexandre Hertig
- IMSERM UMR_S1155, Rare and Common Kidney Diseases, Remodeling and Tissue Repair, Hôpital Tenon , Paris , France ; UMR S 1155, UPMC Sorbonne Université Paris 06 , Paris , France
| |
Collapse
|
40
|
Muroya Y, Fan F, Regner KR, Falck JR, Garrett MR, Juncos LA, Roman RJ. Deficiency in the Formation of 20-Hydroxyeicosatetraenoic Acid Enhances Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2015; 26:2460-9. [PMID: 25644108 DOI: 10.1681/asn.2014090868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/10/2014] [Indexed: 11/03/2022] Open
Abstract
Ischemia-reperfusion (IR) injury is the most common cause of AKI. The susceptibility to develop AKI varies widely among patients. However, little is known about the genes involved. 20-Hydroxyeicosatetraenoic acid (20-HETE) has an important role in the regulation of renal tubular and vascular function and has been implicated in IR injury. In this study, we examined whether a deficiency in the renal formation of 20-HETE enhances the susceptibility of Dahl salt-sensitive (SS) rats to ischemic AKI. Transfer of chromosome 5 containing the CYP4A genes responsible for the formation of 20-HETE from the Brown Norway (BN) rat onto the SS genetic background increased renal 20-HETE levels after ischemia and reduced plasma creatinine levels (±SEM) 24 hours after IR from 3.7±0.1 to 2.0±0.2 mg/dl in an SS.5(BN)-consomic strain. Transfer of this chromosome also prevented the secondary decline in medullary blood flow and ischemia that develops 2 hours after IR in the susceptible SS strain. Blockade of the synthesis of 20-HETE with HET0016 reversed the renoprotective effects in SS.5(BN) rats. Similar results were observed in an SS.5(Lew)-congenic strain, in which a smaller region of chromosome 5 containing the CYP4A genes from a Lewis rat was introgressed onto the SS genetic background. These results indicate that 20-HETE has a protective role in renal IR injury by maintaining medullary blood flow and that a genetic deficiency in the formation of 20-HETE increases the susceptibility of SS rats to ischemic AKI.
Collapse
Affiliation(s)
| | - Fan Fan
- Departments of Pharmacology and Toxicology and
| | - Kevin R Regner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, Texas
| | | | - Luis A Juncos
- Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | | |
Collapse
|
41
|
Yoo HS, Bradford BU, Kosyk O, Uehara T, Shymonyak S, Collins LB, Bodnar WM, Ball LM, Gold A, Rusyn I. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:32-49. [PMID: 25424545 PMCID: PMC4281933 DOI: 10.1080/15287394.2015.958418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.
Collapse
Affiliation(s)
- Hong Sik Yoo
- a Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fibrates protect against vascular endothelial dysfunction induced by paclitaxel and carboplatin chemotherapy for cancer patients: a pilot study. Int J Clin Oncol 2014; 20:829-38. [PMID: 25539886 DOI: 10.1007/s10147-014-0779-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although we previously demonstrated that paclitaxel and carboplatin chemotherapy (TCchem) is associated with vascular toxicities, the underlying mechanisms remain unclear. Cisplatin is known to inhibit PPARα following microvascular damage to the kidneys. The primary aim of this study was to evaluate whether TCchem induces vascular endothelial dysfunction via systemic PPARα deficiency. In addition, human umbilical vein endothelial cells (HUVECs) were used to elucidate the mechanisms responsible for TCchem-induced vascular toxicities. METHODS This study enrolled 45 gynecological cancer patients with normal lipid profiles who underwent surgical treatment followed by TCchem. The elevated triglyceride (TG) group included patients (n = 19) who exhibited hypertriglyceridemia during TCchem, and the stable TG group (n = 15) included patients with a normal TG level. Eleven patients exhibiting hypertriglyceridemia during TCchem were administered bezafibrate (fibrate group). Endothelial dysfunction was evaluated based on flow-mediated dilation (FMD) values and serum pentraxin-3 levels measured before TCchem and immediately after the final TCchem. HUVECs were used to elucidate the biological mechanisms underlying the endothelial dysfunction induced by TCchem. RESULTS The administration of TCchem induced hypertriglyceridemia in 66 percent of the participants, and bezafibrate reduced the serum TG levels. Meanwhile, the decrease in flow-mediated dilatation (%FMD) induced by TCchem improved following treatment with bezafibrate. The serum pentraxin-3 level increased rapidly after TCchem and decreased following bezafibrate treatment. An in vitro examination demonstrated TCchem attenuated nitric oxide production and PPARα activity in HUVECs, which was partially improved by treatment with bezafibrate. CONCLUSION Bezafibrate prevents endothelial dysfunction induced by TCchem via TG-dependent and TG-independent mechanisms.
Collapse
|
43
|
Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2014; 10:147-55. [PMID: 25092601 DOI: 10.2215/cjn.12191213] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AKI is a common clinical condition associated with a number of adverse outcomes. More timely diagnosis would allow for earlier intervention and could improve patient outcomes. The goal of early identification of AKI has been the primary impetus for AKI biomarker research, and has led to the discovery of numerous novel biomarkers. However, in addition to facilitating more timely intervention, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Furthermore, AKI biomarkers could also function as molecular phenotyping tools that could be used to direct clinical intervention. This review highlights the major studies that have characterized the diagnostic and prognostic predictive power of these biomarkers. The mechanistic relevance of neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, IL-18, liver-type fatty acid-binding protein, angiotensinogen, tissue inhibitor of metalloproteinase-2, and IGF-binding protein 7 to the pathogenesis and pathobiology of AKI is discussed, putting these biomarkers in the context of the progressive phases of AKI. A biomarker-integrated model of AKI is proposed, which summarizes the current state of knowledge regarding the roles of these biomarkers and the molecular and cellular biology of AKI.
Collapse
Affiliation(s)
- Joseph L Alge
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and
| | - John M Arthur
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
44
|
Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS One 2014; 9:e96147. [PMID: 24801481 PMCID: PMC4011795 DOI: 10.1371/journal.pone.0096147] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α, a lipid-sensing transcriptional factor, serves an important role in lipotoxicity. We evaluated whether fenofibrate has a renoprotective effect by ameliorating lipotoxicity in the kidney. Eight-week-old male C57BLKS/J db/m control and db/db mice, divided into four groups, received fenofibrate for 12 weeks. In db/db mice, fenofibrate ameliorated albuminuria, mesangial area expansion and inflammatory cell infiltration. Fenofibrate inhibited accumulation of intra-renal free fatty acids and triglycerides related to increases in PPARα expression, phosphorylation of AMP-activated protein kinase (AMPK), and activation of Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α)-estrogen-related receptor (ERR)-1α-phosphorylated acetyl-CoA carboxylase (pACC), and suppression of sterol regulatory element-binding protein (SREBP)-1 and carbohydrate regulatory element-binding protein (ChREBP)-1, key downstream effectors of lipid metabolism. Fenofibrate decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and FoxO3a phosphorylation in kidneys, increasing the B cell leukaemia/lymphoma 2 (BCL-2)/BCL-2-associated X protein (BAX) ratio and superoxide dismutase (SOD) 1 levels. Consequently, fenofibrate recovered from renal apoptosis and oxidative stress, as reflected by 24 hr urinary 8-isoprostane. In cultured mesangial cells, fenofibrate prevented high glucose-induced apoptosis and oxidative stress through phosphorylation of AMPK, activation of PGC-1α-ERR-1α, and suppression of SREBP-1 and ChREBP-1. Our results suggest that fenofibrate improves lipotoxicity via activation of AMPK-PGC-1α-ERR-1α-FoxO3a signaling, showing its potential as a therapeutic modality for diabetic nephropathy.
Collapse
|
45
|
Wang W, Lopaschuk GD. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations. Expert Rev Cardiovasc Ther 2014; 5:1123-34. [DOI: 10.1586/14779072.5.6.1123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Zeng R, Xiong Y, Zhu F, Ma Z, Liao W, He Y, He J, Li W, Yang J, Lu Q, Xu G, Yao Y. Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One 2013; 8:e76836. [PMID: 24130796 PMCID: PMC3793917 DOI: 10.1371/journal.pone.0076836] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Excess mesangial extracellular matrix (ECM) and mesangial cell proliferation is the major pathologic feature of diabetic nephropathy (DN). Fenofibrate, a PPARα agonist, has been shown to attenuate extracellular matrix formation in diabetic nephropathy. However, the mechanisms underlying this effect remain to be elucidated. In this study, the effect of fenofibrate on high-glucose induced cell proliferation and extracellular matrix exertion and its mechanisms were investigated in cultured rat mesangial cells by the methylthiazoletetrazolium (MTT) assay, flow cytometry and western blot. The results showed that treatment of mesangial cells (MCs) with fenofibrate repressed high-glucose induced up-regulation of extracellular matrix Collagen-IV, and inhibited entry of cell cycle into the S phase. This G1 arrest and ECM inhibition was caused by the reduction of phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT. On the contrary, PPARα siRNA accelerated high glucose-induced cell cycle progression by ERK1/2 and AKT activation. Taken together, fenofibrate ameliorated glucose-induced mesangial cell proliferation and matrix production via its inhibition of PI3K/AKT and ERK1/2 signaling pathways. Such mechanisms may contribute to the favorable effects of treatment using fenofibrate in diabetic nephropathy.
Collapse
Affiliation(s)
- Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xiong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Nephrology, Wuhan No.4 hospital, Wuhan, Hubei, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zufu Ma
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Division of Nephrology, Wuhan No.5 hospital, Wuhan, Hubei, China
| | - JinSeng He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Lu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (YY); (GX)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (YY); (GX)
| |
Collapse
|
47
|
Interaction Effects of the Leu162Val PPAR α and Pro12Ala PPAR γ 2 Gene Variants with Renal Function in Metabolic Syndrome Population. PPAR Res 2013; 2013:329862. [PMID: 23690758 PMCID: PMC3649708 DOI: 10.1155/2013/329862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/04/2013] [Accepted: 03/08/2013] [Indexed: 02/03/2023] Open
Abstract
Leu162Val PPARα and Pro12Ala PPARγ2 were investigated for their individual and their interactive impact on MS and renal functionality (RF). 522 subjects were investigated for biochemical and anthropometric measurements. The diagnosis of MS was based on the IDF definition (2009). The HOMA 2 was used to determine HOMA-β, HOMA-S and HOMA-IR from FPG and FPI concentrations. RF was assessed by estimating the GFR. PCR-RFLP was performed for DNA genotyping. Allele frequencies were 0.845 for Pro and 0.155 for Ala, and were 0.915 for Leu and 0.085 for Val. We showed that carriers of the PPARα Val 162 allele had lower urea, UA and higher GFR compared to those homozygous for the Leu162 allele. Subjects carried by PPARγ2Ala allele had similar results. They also had reduced FPG, FPI and HOMA-IR, and elevated HOMA-β and HOMA-S compared to those homozygous for the Pro allele. Subjects were divided into 4 groups according to the combinations of genetic alleles of the 2 polymorphisms. Subjects carrying the Leu/Val with an Ala allele had lower FPG, PPI, HOMA-IR, urea, UA levels, higher HOMA-β, HOMA-S and GFR than different genotype combinations. Leu162Val PPARα and Pro12Ala PPARγ2 can interact with each other to modulate glucose and insulin homeostasis and expand their association with overall better RF.
Collapse
|
48
|
Lodi A, Tiziani S, Khanim FL, Günther UL, Viant MR, Morgan GJ, Bunce CM, Drayson MT. Proton NMR-based metabolite analyses of archived serial paired serum and urine samples from myeloma patients at different stages of disease activity identifies acetylcarnitine as a novel marker of active disease. PLoS One 2013; 8:e56422. [PMID: 23431376 PMCID: PMC3576408 DOI: 10.1371/journal.pone.0056422] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Biomarker identification is becoming increasingly important for the development of personalized or stratified therapies. Metabolomics yields biomarkers indicative of phenotype that can be used to characterize transitions between health and disease, disease progression and therapeutic responses. The desire to reproducibly detect ever greater numbers of metabolites at ever diminishing levels has naturally nurtured advances in best practice for sample procurement, storage and analysis. Reciprocally, since many of the available extensive clinical archives were established prior to the metabolomics era and were not processed in such an 'ideal' fashion, considerable scepticism has arisen as to their value for metabolomic analysis. Here we have challenged that paradigm. METHODS We performed proton nuclear magnetic resonance spectroscopy-based metabolomics on blood serum and urine samples from 32 patients representative of a total cohort of 1970 multiple myeloma patients entered into the United Kingdom Medical Research Council Myeloma IX trial. FINDINGS Using serial paired blood and urine samples we detected metabolite profiles that associated with diagnosis, post-treatment remission and disease progression. These studies identified carnitine and acetylcarnitine as novel potential biomarkers of active disease both at diagnosis and relapse and as a mediator of disease associated pathologies. CONCLUSIONS These findings show that samples conventionally processed and archived can provide useful metabolomic information that has important implications for understanding the biology of myeloma, discovering new therapies and identifying biomarkers potentially useful in deciding the choice and application of therapy.
Collapse
Affiliation(s)
- Alessia Lodi
- School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Stefano Tiziani
- School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas, United States of America
| | - Farhat L. Khanim
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Ulrich L. Günther
- School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Viant
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - Gareth J. Morgan
- Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Mark T. Drayson
- School of Immunity and Infection, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
49
|
Carvalho JG, Leite ADL, Peres-Buzalaf C, Salvato F, Labate CA, Everett ET, Whitford GM, Buzalaf MAR. Renal proteome in mice with different susceptibilities to fluorosis. PLoS One 2013; 8:e53261. [PMID: 23308176 PMCID: PMC3537663 DOI: 10.1371/journal.pone.0053261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis due to their genetic backgrounds. They also differ with respect to several features of fluoride (F) metabolism and metabolic handling of water. This study was done to determine whether differences in F metabolism could be explained by diversities in the profile of protein expression in kidneys. Weanling, male A/J mice (susceptible to dental fluorosis, n = 18) and 129P3/J mice (resistant, n = 18) were housed in pairs and assigned to three groups given low-F food and drinking water containing 0, 10 or 50 ppm [F] for 7 weeks. Renal proteome profiles were examined using 2D-PAGE and LC-MS/MS. Quantitative intensity analysis detected between A/J and 129P3/J strains 122, 126 and 134 spots differentially expressed in the groups receiving 0, 10 and 50 ppmF, respectively. From these, 25, 30 and 32, respectively, were successfully identified. Most of the proteins were related to metabolic and cellular processes, followed by response to stimuli, development and regulation of cellular processes. In F-treated groups, PDZK-1, a protein involved in the regulation of renal tubular reabsorption capacity was down-modulated in the kidney of 129P3/J mice. A/J and 129P3/J mice exhibited 11 and 3 exclusive proteins, respectively, regardless of F exposure. In conclusion, proteomic analysis was able to identify proteins potentially involved in metabolic handling of F and water that are differentially expressed or even not expressed in the strains evaluated. This can contribute to understanding the molecular mechanisms underlying genetic susceptibility to dental fluorosis, by indicating key-proteins that should be better addressed in future studies.
Collapse
Affiliation(s)
- Juliane Guimarães Carvalho
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Camila Peres-Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Fernanda Salvato
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiros”, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Carlos Alberto Labate
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiros”, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Eric T. Everett
- Department of Pediatric Dentistry, School of Dentistry, The Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gary Milton Whitford
- Department of Oral Biology, School of Dentistry, The Medical College of Georgia, Augusta, Georgia, United States of America
| | | |
Collapse
|
50
|
Diogo CV, Suski JM, Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Pronicki M, Duszynski J, Pinton P, Portincasa P, Oliveira PJ, Wieckowski MR. Cardiac mitochondrial dysfunction during hyperglycemia--the role of oxidative stress and p66Shc signaling. Int J Biochem Cell Biol 2013; 45:114-122. [PMID: 22776741 DOI: 10.1016/j.biocel.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/15/2012] [Accepted: 07/01/2012] [Indexed: 01/25/2023]
Abstract
Diabetes mellitus is a chronic disease caused by a deficiency in the production of insulin and/or by the effects of insulin resistance. Insulin deficiency leads to hyperglycemia which is the major initiator of diabetic cardiovascular complications escalating with time and driven by many complex biochemical and molecular processes. Four hypotheses, which propose mechanisms of diabetes-associated pathophysiology, are currently considered. Cardiovascular impairment may be caused by an increase in polyol pathway flux, by intracellular advanced glycation end-products formation or increased flux through the hexosamine pathway. The latter of these mechanisms involves activation of the protein kinase C. Cellular and mitochondrial metabolism alterations observed in the course of diabetes are partially associated with an excessive production of reactive oxygen species (ROS). Among many processes and factors involved in ROS production, the 66 kDa isoform of the growth factor adaptor shc (p66Shc protein) is of particular interest. This protein plays a key role in the control of mitochondria-dependent oxidative balance thus it involvement in diabetic complications and other oxidative stress based pathologies is recently intensively studied. In this review we summarize the current understanding of hyperglycemia induced cardiac mitochondrial dysfunction with an emphasis on the oxidative stress and p66Shc protein. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Catia V Diogo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|