1
|
Fidanboylu M, Thomas SA. L-Arginine and asymmetric dimethylarginine (ADMA) transport across the mouse blood-brain and blood-CSF barriers: Evidence of saturable transport at both interfaces and CNS to blood efflux. PLoS One 2024; 19:e0305318. [PMID: 39446890 PMCID: PMC11501026 DOI: 10.1371/journal.pone.0305318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
L-Arginine is the physiological substrate for the nitric oxide synthase (NOS) family, which synthesises nitric oxide (NO) in endothelial and neuronal cells. NO synthesis can be inhibited by endogenous asymmetric dimethylarginine (ADMA). NO has explicit roles in cellular signalling and vasodilation. Impaired NO bioavailability represents the central feature of endothelial dysfunction associated with vascular diseases. Interestingly, dietary supplementation with L-arginine has been shown to alleviate endothelial dysfunctions caused by impaired NO synthesis. In this study the transport kinetics of [3H]-arginine and [3H]-ADMA into the central nervous system (CNS) were investigated using physicochemical assessment and the in situ brain/choroid plexus perfusion technique in anesthetized mice. Results indicated that L-arginine and ADMA are tripolar cationic amino acids and have a gross charge at pH 7.4 of 0.981. L-Arginine (0.00149±0.00016) has a lower lipophilicity than ADMA (0.00226±0.00006) as measured using octanol-saline partition coefficients. The in situ perfusion studies revealed that [3H]-arginine and [3H]-ADMA can cross the blood-brain barrier (BBB) and the blood-CSF barrier. [3H]-Arginine (11.6nM) and [3H]-ADMA (62.5nM) having unidirectional transfer constants (Kin) into the frontal cortex of 5.84±0.86 and 2.49±0.35 μl.min-1.g-1, respectively, and into the CSF of 1.08±0.24 and 2.70±0.90 μl.min-1.g-1, respectively. In addition, multiple-time uptake studies revealed the presence of CNS-to-blood efflux of ADMA. Self- and cross-inhibition studies indicated the presence of transporters at the BBB and the blood-CSF barriers for both amino acids, which were shared to some degree. Importantly, these results are the first to demonstrate: (i) saturable transport of [3H]-ADMA at the blood-CSF barrier (choroid plexus) and (ii) a significant CNS to blood efflux of [3H]-ADMA. Our results suggest that the arginine paradox, in other words the clinical observation that NO-deficient patients respond well to oral supplementation with L-arginine even though the plasma concentration is sufficient to saturate endothelial NOS, could be related to altered ADMA transport (efflux).
Collapse
Affiliation(s)
- Mehmet Fidanboylu
- Pharmaceutical Sciences Research Division, King’s College London, London, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Sarah Ann Thomas
- Pharmaceutical Sciences Research Division, King’s College London, London, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Reyes LZ, Winterberg PD, George RP, Kelleman M, Harris F, Jo H, Brown LAS, Morris CR. Arginine Dysregulation and Myocardial Dysfunction in a Mouse Model and Children with Chronic Kidney Disease. Nutrients 2023; 15:2162. [PMID: 37432321 PMCID: PMC10181438 DOI: 10.3390/nu15092162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in chronic kidney disease (CKD). Arginine, the endogenous precursor for nitric oxide synthesis, is produced in the kidneys. Arginine bioavailability contributes to endothelial and myocardial dysfunction in CKD. Plasma from 129X1/SvJ mice with and without CKD (5/6th nephrectomy), and banked plasma from children with and without CKD were analyzed for amino acids involved in arginine metabolism, ADMA, and arginase activity. Echocardiographic measures of myocardial function were compared with plasma analytes. In a separate experiment, a non-specific arginase inhibitor was administered to mice with and without CKD. Plasma citrulline and glutamine concentrations correlated with multiple measures of myocardial dysfunction. Plasma arginase activity was significantly increased in CKD mice at 16 weeks vs. 8 weeks (p = 0.002) and ventricular strain improved after arginase inhibition in mice with CKD (p = 0.03). In children on dialysis, arginase activity was significantly increased vs. healthy controls (p = 0.04). Increasing ADMA correlated with increasing RWT in children with CKD (r = 0.54; p = 0.003). In a mouse model, and children, with CKD, arginine dysregulation correlates with myocardial dysfunction.
Collapse
Affiliation(s)
- Loretta Z. Reyes
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Pamela D. Winterberg
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Roshan Punnoose George
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Michael Kelleman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Frank Harris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hanjoong Jo
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S. Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia R. Morris
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Division of Pediatric Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Qi H, Li Q, Jing J, Jing T, Liu C, Qiu L, Sami R, Helal M, Ismail KA, Aljahani AH. Construction of N-CDs and Calcein-Based Ratiometric Fluorescent Sensor for Rapid Detection of Arginine and Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:976. [PMID: 35335790 PMCID: PMC8953410 DOI: 10.3390/nano12060976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
In our study, a unique ratiometric fluorescent sensor for the rapid detection of arginine (Arg) and acetaminophen (AP) was constructed by the integration of blue fluorescent N-CDs and yellowish-green fluorescent calcein. The N-CD/calcein ratiometric fluorescent sensor exhibited dual emission at 435 and 519 nm under the same excitation wavelength of 370 nm, and caused potential Förster resonance energy transfer (FRET) from N-CDs to calcein. When detecting Arg, the blue fluorescence from the N-CDs of the N-CD/calcein sensor was quenched by the interaction of N-CDs and Arg. Then, the fluorescence of our sensor was recovered with the addition of AP, possibly due to the stronger association between AP and Arg, leading to the dissociation of Arg from N-CDs. Meanwhile, we observed an obvious fluorescence change from blue to green, then back to blue, when Arg and AP were added, exhibiting the "on-off-on" pattern. Next, we determined the detection limits of the N-CD/calcein sensor to Arg and AP, which were as low as 0.08 μM and 0.02 μM, respectively. Furthermore, we discovered that the fluorescence changes of the N-CD/calcein sensor were only responsible for Arg and AP. These results suggested its high sensitivity and specificity for Arg and AP detection. In addition, we have successfully achieved its application in bovine serum samples, indicating its practicality. Lastly, the logic gate was generated by the N-CD/calcein sensor and presented its good reversibility. Overall, we have demonstrated that our N-CD/calcein sensor is a powerful sensor to detect Arg and AP and that it has potential applications in biological analysis and imaging.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Qiuying Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Jing Jing
- School of Medicine and Health, Harbin Institute of Technology, No.92, West Dazhi Street, Harbin 150000, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Chuntong Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Lixin Qiu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khadiga Ahmed Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
4
|
Avenues for post-translational protein modification prevention and therapy. Mol Aspects Med 2022; 86:101083. [PMID: 35227517 PMCID: PMC9378364 DOI: 10.1016/j.mam.2022.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Non-enzymatic post-translational modifications (nPTMs) of proteins have emerged as novel risk factors for the genesis and progression of various diseases. We now have a variety of experimental and established therapeutic strategies to target harmful nPTMs and potentially improve clinical outcomes. Protein carbamylation and glycation are two common and representative nPTMs that have gained considerable attention lately as favorable therapeutic targets with emerging clinical evidence. Protein carbamylation is associated with the occurrence of cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD); and advanced glycation end products (AGEs), a heterogeneous group of molecules produced in a series of glycation reactions, have been linked to various diabetic complications. Therefore, reducing the burden of protein carbamylation and AGEs is an appealing and promising therapeutic approach. This review chapter summarizes potential anti-nPTM therapy options in CKD, CVD, and diabetes along with clinical implications. Using two prime examples-protein carbamylation and AGEs-we discuss the varied preventative and therapeutic options to mitigate these pathologic nPTMs in detail. We provide in-depth case studies on carbamylation in the setting of kidney disease and AGEs in metabolic disorders, with an emphasis on the relevance to reducing adverse clinical outcomes such as CKD progression, cardiovascular events, and mortality. Overall, whether specific efforts to lower carbamylation and AGE burden will yield definitive clinical improvement in humans remains largely to be seen. However, the scientific rationale for such pursuits is demonstrated herein.
Collapse
|
5
|
Salyers ZR, Coleman M, Balestrieri NP, Ryan TE. Indoxyl sulfate impairs angiogenesis via chronic aryl hydrocarbon receptor activation. Am J Physiol Cell Physiol 2021; 320:C240-C249. [PMID: 33406025 DOI: 10.1152/ajpcell.00262.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is associated with a substantial increased risk of cardiovascular disease. There is growing evidence that uremic metabolites, which accumulate in the blood with CKD, have detrimental impacts on endothelial cell health and function. However, the molecular mechanisms by which uremic metabolites negatively impact endothelial cell biology are not fully understood. In this study, activation of the aryl hydrocarbon receptor (AHR) via indoxyl sulfate, a known uremic metabolite, was found to impair endothelial cell tube formation and proliferation but not migratory function. Moreover, aortic ring cultures treated with indoxyl sulfate also exhibited decreased sprouting and high AHR activation. Next, genetic knockdown of the AHR using shRNA was found to rescue endothelial cell tube formation, proliferation, and aortic ring sprouting. Similarly, pharmacological AHR antagonism using resveratrol and CH223191 were also found to rescue angiogenesis in cell and aortic ring cultures. Finally, a constitutively active AHR (CAAHR) vector was generated and used to confirm AHR-specific effects. Expression of the CAAHR recapitulated the impaired tube formation and proliferation in cultured endothelial cells and decreased sprouting in aortic ring cultures. Taken together, these data define the impact of AHR activation on angiogenesis and highlight the potential for therapeutic AHR antagonists, which may improve angiogenesis in the context of CKD and cardiovascular disease.
Collapse
Affiliation(s)
- Zachary R Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Madeline Coleman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nicholas P Balestrieri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida.,Center for Exercise Science, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
7
|
Gawrys J, Gajecki D, Szahidewicz-Krupska E, Doroszko A. Intraplatelet L-Arginine-Nitric Oxide Metabolic Pathway: From Discovery to Clinical Implications in Prevention and Treatment of Cardiovascular Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1015908. [PMID: 32215167 PMCID: PMC7073508 DOI: 10.1155/2020/1015908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Despite the development of new drugs and other therapeutic strategies, cardiovascular disease (CVD) remains still the major cause of morbidity and mortality in the world population. A lot of research, performed mostly in the last three decades, revealed an important correlation between "classical" demographic and biochemical risk factors for CVD, (i.e., hypercholesterolemia, hyperhomocysteinemia, smoking, renal failure, aging, diabetes, and hypertension) with endothelial dysfunction associated directly with the nitric oxide deficiency. The discovery of nitric oxide and its recognition as an endothelial-derived relaxing factor was a breakthrough in understanding the pathophysiology and development of cardiovascular system disorders. The nitric oxide synthesis pathway and its regulation and association with cardiovascular risk factors were a common subject for research during the last decades. As nitric oxide synthase, especially its endothelial isoform, which plays a crucial role in the regulation of NO bioavailability, inhibiting its function results in the increase in the cardiovascular risk pattern. Among agents altering the production of nitric oxide, asymmetric dimethylarginine-the competitive inhibitor of NOS-appears to be the most important. In this review paper, we summarize the role of L-arginine-nitric oxide pathway in cardiovascular disorders with the focus on intraplatelet metabolism.
Collapse
Affiliation(s)
- Jakub Gawrys
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| | - Damian Gajecki
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
8
|
Yu L, Liu T, Fu S, Li L, Meng X, Su X, Xie Z, Ren J, Meng Y, Lv X, Du Y. Physiological functions of urea transporter B. Pflugers Arch 2019; 471:1359-1368. [PMID: 31734718 PMCID: PMC6882768 DOI: 10.1007/s00424-019-02323-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/04/2022]
Abstract
Urea transporters (UTs) are membrane proteins in the urea transporter protein A (UT-A) and urea transporter protein B (UT-B) families. UT-B is mainly expressed in endothelial cell membrane of the renal medulla and in other tissues, including the brain, heart, pancreas, colon, bladder, bone marrow, and cochlea. UT-B is responsible for the maintenance of urea concentration, male reproductive function, blood pressure, bone metabolism, and brain astrocyte and cardiac functions. Its deficiency and dysfunction contribute to the pathogenesis of many diseases. Actually, UT-B deficiency increases the sensitivity of bladder epithelial cells to apoptosis triggers in mice and UT-B-null mice develop II-III atrioventricular block and depression. The expression of UT-B in the rumen of cow and sheep may participate in digestive function. However, there is no systemic review to discuss the UT-B functions. Here, we update research approaches to understanding the functions of UT-B.
Collapse
Affiliation(s)
- Lanying Yu
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Tiantian Liu
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Shuang Fu
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Li Li
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Xiaoping Meng
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Zhanfeng Xie
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Jiayan Ren
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Yan Meng
- Department of Pathophysiology, College of Basic Medicine, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Xuejiao Lv
- Department of Respiratory Medicine, the Second Affiliated Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China.
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China.
| |
Collapse
|
9
|
Abstract
Protein carbamylation is a nonenzymatic posttranslational protein modification that can be driven, in part, by exposure to urea's dissociation product, cyanate. In humans, when kidney function is impaired and urea accumulates, systemic protein carbamylation levels increase. Additional mediators of protein carbamylation have been identified including inflammation, diet, smoking, circulating free amino acid levels, and environmental exposures. Carbamylation reactions on proteins are capable of irreversibly changing protein charge, structure, and function, resulting in pathologic molecular and cellular responses. Carbamylation has been mechanistically linked to the biochemical pathways implicated in atherosclerosis, dysfunctional erythropoiesis, kidney fibrosis, autoimmunity, and other pathological domains highly relevant to patients with chronic kidney disease. In this review, we describe the biochemical impact of carbamylation on human proteins, the mechanistic role carbamylation can have on clinical outcomes in kidney disease, the clinical association studies of carbamylation in chronic kidney disease, including patients on dialysis, and the promise of therapies aimed at reducing carbamylation burden in this vulnerable patient population.
Collapse
Affiliation(s)
- Joshua Long
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Vela Parada
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Shin S, Thapa SK, Fung HL. Cellular interactions between L-arginine and asymmetric dimethylarginine: Transport and metabolism. PLoS One 2017; 12:e0178710. [PMID: 28562663 PMCID: PMC5451097 DOI: 10.1371/journal.pone.0178710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to examine the effect of L-arginine (ARG) exposure on the disposition of asymmetric dimethylarginine (ADMA) in human endothelial cells. Although the role of ADMA as an inhibitor of endothelial nitric oxide synthase (eNOS) is well-recognized, cellular interactions between ARG and ADMA are not well-characterized. EA.hy926 human vascular endothelial cells were exposed to 15N4-ARG, and the concentrations of 15N4-ARG and ADMA in the cell lysate and incubation medium were determined by a liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) assay. Nitric oxide (NO) production was estimated by utilizing cumulative nitrite concentration via a fluorometric assay. Cells incubated with 15N4-ARG exhibited enhanced nitrite production as well as 15N4-ARG cellular uptake. These changes were accompanied by a decrease in cellular ADMA level and increase in extracellular ADMA level, indicating an efflux of endogenous ADMA from the cell. The time courses of ADMA efflux as well as nitrite accumulation in parallel with 15N4-ARG uptake were characterized. Following preincubation with 15N4-ARG and D7-ADMA, the efflux of cellular 15N4-ARG and D7-ADMA was significantly stimulated by high concentrations of ARG or ADMA in the incubation medium, demonstrating trans-stimulated cellular transport of these two amino acids. D7-ADMA metabolism was inhibited in the presence of added ARG. These results demonstrated that in addition to an interaction at the level of eNOS, ARG and ADMA may mutually influence their cellular availability via transport and metabolic interactions.
Collapse
Affiliation(s)
- Soyoung Shin
- Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Korea
- * E-mail:
| | - Subindra Kazi Thapa
- Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Korea
| | - Ho-Leung Fung
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
11
|
Magzal F, Sela S, Szuchman-Sapir A, Tamir S, Michelis R, Kristal B. In-vivo oxidized albumin- a pro-inflammatory agent in hypoalbuminemia. PLoS One 2017; 12:e0177799. [PMID: 28542419 PMCID: PMC5443520 DOI: 10.1371/journal.pone.0177799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoalbuminemia of Hemodialysis (HD) patients is an independent cardiovascular risk factor, however, there is no mechanistic explanation between hypoalbuminemia and vascular injury. In the event of oxidative stress and inflammation to which HD patients are exposed, albumin is oxidized and undetected by common laboratory methods, rendering an apparent hypoalbuminemia. We wanted to show that these circulating modified oxidized albumin molecules cause direct vascular damage, mediating inflammation. Once these in-vivo albumin modifications were reduced in- vitro, the apparent hypoalbuminemia concomitantly with its inflammatory effects, were eliminated. Albumin modification profiles from 14 healthy controls (HC) and 14 HD patients were obtained by mass spectrometry (MS) analyses before and after reduction in- vitro, using redox agent 1,4 dithiothreitol (DTT). Their inflammatory effects were explored by exposing human umbilical endothelial cells (HUVEC) to all these forms of albumin. Albumin separated from hypoalbuminemic HD patients increased endothelial mRNA expression of cytokines and adhesion molecules, and augmented secretion of IL-6. This endothelial inflammatory state was almost fully reverted by exposing HUVEC to the in-vitro reduced HD albumin. MS profile of albumin modifications peaks was similar between HD and HC, but the intensities of the various peaks were significantly different. Abolishing the reversible oxidative modifications by DTT prevented endothelial injury and increased albumin levels. The irreversible modifications such as glycation and sulfonation show low intensities in HD albumin profiles and are nearly unobserved in HC. We showed, for the first time, a mechanistic link between hypoalbuminemia and the pro-inflammatory properties of in-vivo oxidized albumin, initiating vascular injury.
Collapse
Affiliation(s)
- Faiga Magzal
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, Israel
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
- Laboratory of Human Health and Nutrition Sciences, MIGAL—Galilee Research Institute, Kiryat Shmona, Israel
| | - Shifra Sela
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, Israel
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Andrea Szuchman-Sapir
- Laboratory of Human Health and Nutrition Sciences, MIGAL—Galilee Research Institute, Kiryat Shmona, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL—Galilee Research Institute, Kiryat Shmona, Israel
| | - Regina Michelis
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Batya Kristal
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
- Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
- * E-mail:
| |
Collapse
|
12
|
Watson CP, Pazarentzos E, Fidanboylu M, Padilla B, Brown R, Thomas SA. The transporter and permeability interactions of asymmetric dimethylarginine (ADMA) and L-arginine with the human blood-brain barrier in vitro. Brain Res 2016; 1648:232-242. [PMID: 27431938 PMCID: PMC5042357 DOI: 10.1016/j.brainres.2016.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
The blood–brain barrier (BBB) is a biological firewall that carefully regulates the cerebral microenvironment by acting as a physical, metabolic and transport barrier. This selectively permeable interface was modelled using the immortalised human cerebral microvascular endothelial cell line (hCMEC/D3) to investigate interactions with the cationic amino acid (CAA) L-arginine, the precursor for nitric oxide (NO), and with asymmetric dimethylarginine (ADMA), an endogenously derived analogue of L-arginine that potently inhibits NO production. The transport mechanisms utilised by L-arginine are known but they are not fully understood for ADMA, particularly at the BBB. This is of clinical significance giving the emerging role of ADMA in many brain and cerebrovascular diseases and its potential as a therapeutic target. We discovered that high concentrations of ADMA could induce endothelial dysfunction in the hCMEC/D3s BBB permeability model, leading to an increase in paracellular permeability to the paracellular marker FITC-dextran (40 kDa). We also investigated interactions of ADMA with a variety of transport mechanisms, comparing the data with L-arginine interactions. Both molecules are able to utilise the CAA transport system y+. Furthermore, the expression of CAT-1, the best known protein from this group, was confirmed in the hCMEC/D3s. It is likely that influx systems, such as y+L and b0,+, have an important physiological role in ADMA transport at the BBB. These data are not only important with regards to the brain, but apply to other microvascular endothelia where ADMA is a major area of investigation. ADMA interacts with a variety of transporters at the blood-brain barrier. These included cationic amino acid transporters, including CAT-1. Human blood-brain barrier endothelial cells express CAT-1. ADMA at high concentrations can disrupt the blood-brain barrier. This disruption is not linked to increased ROS at the blood-brain barrier.
Collapse
Affiliation(s)
- Christopher P Watson
- King's College London, Institute of Pharmaceutical Science, Waterloo, London, UK
| | - Evangelos Pazarentzos
- Imperial College London, Experimental Medicine and Toxicology Section, Division of Experimental Medicine, London, UK
| | - Mehmet Fidanboylu
- King's College London, Institute of Pharmaceutical Science, Waterloo, London, UK
| | - Beatriz Padilla
- King's College London, Institute of Pharmaceutical Science, Waterloo, London, UK
| | - Rachel Brown
- King's College London, Institute of Pharmaceutical Science, Waterloo, London, UK
| | - Sarah A Thomas
- King's College London, Institute of Pharmaceutical Science, Waterloo, London, UK.
| |
Collapse
|
13
|
Sun Y, Lau CW, Jia Y, Li Y, Wang W, Ran J, Li F, Huang Y, Zhou H, Yang B. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway. Sci Rep 2016; 6:18697. [PMID: 26739766 PMCID: PMC4703984 DOI: 10.1038/srep18697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by N(ω)-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chi-Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianhua Ran
- Department of Anatomy and Neuroscience Center, Chongqing Medical University, Chongqing, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Abstract
The urea transporter UT-B is expressed in multiple tissues including erythrocytes, kidney, brain, heart, liver, colon, bone marrow, spleen, lung, skeletal muscle, bladder, prostate, and testis in mammals. Phenotype analysis of UT-B-null mice has confirmed that UT-B deletion results in a urea-selective urine-concentrating defect (see Chap. 9 ). The functional significance of UT-B in extrarenal tissues studied in the UT-B-null mouse is discussed in this chapter. UT-B-null mice present depression-like behavior with urea accumulation and nitric oxide reduction in the hippocampus. UT-B deletion causes a cardiac conduction defect, and TNNT2 and ANP expression changes in the aged UT-B-null heart. UT-B also plays a very important role in protecting bladder urothelium from DNA damage and apoptosis by regulating the urea concentration in urothelial cells. UT-B functional deficiency results in urea accumulation in the testis and early maturation of the male reproductive system. These results show that UT-B is an indispensable transporter involved in maintaining physiological functions in different tissues.
Collapse
|
15
|
Kalim S, Karumanchi SA, Thadhani RI, Berg AH. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am J Kidney Dis 2014; 64:793-803. [PMID: 25037561 PMCID: PMC4209336 DOI: 10.1053/j.ajkd.2014.04.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Abstract
Carbamylation describes a nonenzymatic posttranslational protein modification mediated by cyanate, a dissociation product of urea. When kidney function declines and urea accumulates, the burden of carbamylation naturally increases. Free amino acids may protect proteins from carbamylation, and protein carbamylation has been shown to increase in uremic patients with amino acid deficiencies. Carbamylation reactions are capable of altering the structure and functional properties of certain proteins and have been implicated directly in the underlying mechanisms of various disease conditions. A broad range of studies has demonstrated how the irreversible binding of urea-derived cyanate to proteins in the human body causes inappropriate cellular responses leading to adverse outcomes such as accelerated atherosclerosis and inflammation. Given carbamylation's relationship to urea and the evidence that it contributes to disease pathogenesis, measurements of carbamylated proteins may serve as useful quantitative biomarkers of time-averaged urea concentrations while also offering risk assessment in patients with kidney disease. Moreover, the link between carbamylated proteins and disease pathophysiology creates an enticing therapeutic target for reducing the rate of carbamylation. This article reviews the biochemistry of the carbamylation reaction, its role in specific diseases, and the potential diagnostic and therapeutic implications of these findings based on recent advances.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Harvard Medical School, Boston, MA; Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA; Howard Hughes Medical Institute, Boston, MA
| | - Ravi I Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Anders H Berg
- Harvard Medical School, Boston, MA; Department of Pathology, Division of Clinical Chemistry, Beth Israel Deaconess Medical Center, Boston, MA.
| |
Collapse
|
16
|
Martens CR, Kuczmarski JM, Kim J, Guers JJ, Harris MB, Lennon-Edwards S, Edwards DG. Voluntary wheel running augments aortic l-arginine transport and endothelial function in rats with chronic kidney disease. Am J Physiol Renal Physiol 2014; 307:F418-26. [PMID: 24966085 DOI: 10.1152/ajprenal.00014.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reduced nitric oxide (NO) synthesis contributes to risk for cardiovascular disease in chronic kidney disease (CKD). Vascular uptake of the NO precursor l-arginine (ARG) is attenuated in rodents with CKD, resulting in reduced substrate availability for NO synthesis and impaired vascular function. We tested the effect of 4 wk of voluntary wheel running (RUN) and/or ARG supplementation on endothelium-dependent relaxation (EDR) in rats with CKD. Twelve-week-old male Sprague-Dawley rats underwent ⅚ ablation infarction surgery to induce CKD, or SHAM surgery as a control. Beginning 4 wk following surgery, CKD animals either remained sedentary (SED) or received one of the following interventions: supplemental ARG, RUN, or combined RUN+ARG. Animals were euthanized 8 wk after surgery, and EDR was assessed. EDR was significantly impaired in SED vs. SHAM animals after 8 wk, in response to ACh (10(-9)-10(-5) M) as indicated by a reduced area under the curve (AUC; 44.56 ± 9.01 vs 100 ± 4.58, P < 0.05) and reduced maximal response (Emax; 59.9 ± 9.67 vs. 94.31 ± 1.27%, P < 0.05). AUC was not improved by ARG treatment but was significantly improved above SED animals in both RUN and RUN+ARG-treated animals. Maximal relaxation was elevated above SED in RUN+ARG animals only. l-[(3)H]arginine uptake was impaired in both SED and ARG animals and was improved in RUN and RUN+ARG animals. The results suggest that voluntary wheel running is an effective therapy to improve vascular function in CKD and may be more beneficial when combined with l-arginine.
Collapse
Affiliation(s)
- Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - James M Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware; and
| | - Jahyun Kim
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - John J Guers
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - M Brennan Harris
- Department of Kinesiology and Health Sciences, The College of William and Mary, Williamsburg, Virginia
| | - Shannon Lennon-Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware; and
| |
Collapse
|
17
|
Nesher N, Frolkis I, Schwartz D, Chernichovski T, Levi S, Pri-Paz Y, Chernin G, Shtabsky A, Ben-Gal Y, Paz Y, Schwartz IF. L-arginine improves endothelial function, independently of arginine uptake, in aortas from chronic renal failure female rats. Am J Physiol Renal Physiol 2013; 306:F449-56. [PMID: 24338824 DOI: 10.1152/ajprenal.00457.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial cell dysfunction (ECD) is a common feature of chronic renal failure (CRF). Defective nitric oxide (NO) generation due to decreased endothelial nitric oxide synthase (eNOS) activity is a crucial parameter characterizing ECD. Decreased activity of cationic amino acid transporter-1 (CAT-1), the selective arginine transporter of eNOS, has been shown to inhibit eNOS in uremia. Recently, we failed to demonstrate a decrease in glomerular arginine transport in uremic female rats (Schwartz IF, Grupper A, Soetendorp H, Hillel O, Laron I, Chernichovski T, Ingbir M, Shtabski A, Weinstein T, Chernin G, Shashar M, Hershkoviz R, Schwartz D. Am J Physiol Renal Physiol 303: F396-F404, 2012). The current experiments were designed to determine whether sexual dimorphism which characterizes glomerular arginine transport system in uremia involves the systemic vasculature as well and to assess the effect of L-arginine in such conditions. Contractile and vasodilatory responses, ultrastructural changes, and measures of the L-arginine-NO system were performed in thoracic aortas of female rats subjected to 5/6 nephrectomy. The contractile response to KCl was significantly reduced, and acetylcholine-induced vasodilation was significantly impaired in aortas from CRF dames compared with healthy rats. Both of these findings were prevented by the administration of arginine in the drinking water. The decrease in both cGMP generation, a measure of eNOS activity, and aortic eNOS and phosphorylated eNOS abundance observed in CRF rats was completely abolished by l-arginine, while arginine transport and CAT-1 protein were unchanged in all experimental groups. Arginine decreased both serum levels of advanced glycation end products and the asymmetrical dimethylarginine/arginine ratio and restored the endothelial ultrastructure in CRF rats. In conclusion. arginine administration has a profound beneficial effect on ECD, independently of cellular arginine uptake, in CRF female rats.
Collapse
Affiliation(s)
- Nachum Nesher
- Dept. of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv, Israel 64239.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Betz B, Möller-Ehrlich K, Kress T, Kniepert J, Schwedhelm E, Böger RH, Wanner C, Sauvant C, Schneider R. Increased symmetrical dimethylarginine in ischemic acute kidney injury as a causative factor of renal L-arginine deficiency. Transl Res 2013; 162:67-76. [PMID: 23707198 DOI: 10.1016/j.trsl.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
Availability of L-arginine, the exclusive substrate for nitric oxide synthases, plays an important role in kidney ischemia/reperfusion injury. The endogenous L-arginine derivatives asymmetrical dimethylarginine (ADMA) and symmetrical dimethylarginine (SDMA) block cellular L-arginine uptake competitively, thereby inhibiting the production of nitric oxide. ADMA also blocks nitric oxide synthase activity directly. Here, we investigate the pathomechanistic impact of ADMA and SDMA on ischemic acute kidney injury. Rats were subject to bilateral renal ischemia (60 minutes)/reperfusion (24 hours) injury. Impairment of renal function was determined with inulin clearance (glomerular filtration rate) and para-aminohippurate (PAH) clearance (renal plasma flow). L-arginine, ADMA, and SDMA levels were measured by liquid chromatography-tandem mass spectrometry. L-arginine was extracted from renal tissue and analyzed by enzyme-linked immunosorbent assay, and protein and messenger RNA expressions were determined by Western blot and real-time reverse transcription polymerase chain reaction. Renal function deteriorated severely after ischemia/reperfusion injury, as demonstrated by inulin and PAH clearance. Serum ADMA and SDMA increased, but tissue expression of specific ADMA or SDMA synthesizing and metabolizing enzymes (protein arginine methyltransferases and dimethyl arginine dimethylaminohydrolases) did not alter. Serum L-arginine increased as well, whereas intracellular L-arginine concentration diminished. Renal messenger RNA expression of cationic amino acid transporters, which mediate L-arginine uptake, remained unchanged. In serum, the ratio of L-arginine to ADMA did not alter after ischemia/reperfusion injury, whereas the ratios of L-arginine to SDMA and ADMA to SDMA decreased. A marked increase in serum SDMA, especially when accompanied by a diminished L-arginine-to-SDMA ratio, might reflect competitive inhibition of cellular L-arginine uptake by SDMA. As a consequence, a pathologic renal L-arginine deficiency in ischemic acute kidney injury results.
Collapse
Affiliation(s)
- Boris Betz
- Division of Nephrology, Department of Medicine I, University Hospital of Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ge G, Wu H, Xiong F, Zhang Y, Guo Z, Bian Z, Xu J, Gu C, Gu N, Chen X, Yang D. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells. NANOSCALE RESEARCH LETTERS 2013; 8:215. [PMID: 23647620 PMCID: PMC3651330 DOI: 10.1186/1556-276x-8-215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/20/2013] [Indexed: 05/22/2023]
Abstract
One major obstacle for successful application of nanoparticles in medicine is its potential nanotoxicity on the environment and human health. In this study, we evaluated the cytotoxicity effect of dimercaptosuccinic acid-coated iron oxide (DMSA-Fe2O3) using cultured human aortic endothelial cells (HAECs). Our results showed that DMSA-Fe2O3 in the culture medium could be absorbed into HAECs, and dispersed in the cytoplasm. The cytotoxicity effect of DMSA-Fe2O3 on HAECs was dose-dependent, and the concentrations no more than 0.02 mg/ml had little toxic effect which were revealed by tetrazolium dye assay. Meanwhile, the cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without DMSA-Fe2O3). However, the endocrine function for endothelin-1 and prostacyclin I-2, as well as the urea transporter function, was altered even without obvious evidence of cell injury in this context. We also showed by real-time PCR analysis that DMSA-Fe2O3 exposure resulted in differential effects on the expressions of pro- and anti-apoptosis genes of HAECs. Meanwhile, it was noted that DMSA-Fe2O3 exposure could activate the expression of genes related to oxidative stress and adhesion molecules, which suggested that inflammatory response might be evoked. Moreover, we demonstrated by in vitro endothelial tube formation that even a small amount of DMSA-Fe2O3 (0.01 and 0.02 mg/ml) could inhibit angiogenesis by the HAECs. Altogether, these results indicate that DMSA-Fe2O3 have some cytotoxicity that may cause side effects on normal endothelial cells.
Collapse
Affiliation(s)
- Gaoyuan Ge
- Research Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hengfang Wu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Fei Xiong
- State Key Laboratory of Molecule and Biomolecule Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Yu Zhang
- State Key Laboratory of Molecule and Biomolecule Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Zhirui Guo
- Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhiping Bian
- Research Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jindan Xu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chunrong Gu
- Research Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ning Gu
- State Key Laboratory of Molecule and Biomolecule Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Xiangjian Chen
- Research Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Di Yang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
20
|
Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). J Mol Cell Cardiol 2012; 53:392-400. [DOI: 10.1016/j.yjmcc.2012.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022]
|
21
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at increased risk of stroke, heart disease and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Reducing dietary salt is effective in lowering blood pressure in salt-sensitive individuals. Insulin resistance and altered glucose metabolism are common features of hypertension in humans and animal models, with or without salt sensitivity. Altered glucose metabolism leads to increased formation of advanced glycation end products. Insulin resistance is also linked to oxidative stress, and alterations in the nitric oxide pathway and renin angiotensin system. A diet rich in protein containing the semiessential amino acid, arginine, and arginine treatment, lowers blood pressure in humans and in animal models. This may be due to the ability of arginine to improve insulin resistance, decrease advanced glycation end products formation, increase nitric oxide, and decrease levels of angiotensin II and oxidative stress, with improved endothelial cell function and decreased peripheral vascular resistance. The Dietary Approaches to Stop Hypertension (DASH) study demonstrated that the DASH diet, rich in vegetables, fruits and low-fat dairy products; low in fat; and including whole grains, poultry, fish and nuts, lowered blood pressures even more than a typical North American diet with similar reduced sodium content. The DASH diet is rich in protein; the blood pressure-lowering effect of the DASH diet may be due to its higher arginine-containing protein, higher antioxidants and low salt content.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | |
Collapse
|
22
|
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3:217. [PMID: 22745630 PMCID: PMC3383189 DOI: 10.3389/fphys.2012.00217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physiological roles of the different urea transporters. In the kidney, deletion of UT-A1/UT-A3 results in polyuria and a severe urine concentrating defect, indicating that intrarenal recycling of urea plays a crucial role in the overall capacity to concentrate urine. Since UT-B has a wide tissue distribution, multiple phenotypic abnormalities have been found in UT-B null mice, such as defective urine concentration, exacerbated heart blockage with aging, depression-like behavior, and earlier male sexual maturation. This review summarizes the new insights of urea transporter functions in different organs, gleaned from studies of urea transporter knockout mice, and explores some of the potential pharmacological prospects of urea transporters.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education Beijing, China
| | | | | |
Collapse
|
23
|
Schwartz IF, Grupper A, Soetendorp H, Hillel O, Laron I, Chernichovski T, Ingbir M, Shtabski A, Weinstein T, Chernin G, Shashar M, Hershkoviz R, Schwartz D. Attenuated glomerular arginine transport prevents hyperfiltration and induces HIF-1α in the pregnant uremic rat. Am J Physiol Renal Physiol 2012; 303:F396-404. [PMID: 22552935 DOI: 10.1152/ajprenal.00488.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pregnancy worsens renal function in females with chronic renal failure (CRF) through an unknown mechanism. Reduced nitric oxide (NO) generation induces renal injury. Arginine transport by cationic amino acid transporter-1 (CAT-1), which governs endothelial NO generation, is reduced in both renal failure and pregnancy. We hypothesize that attenuated maternal glomerular arginine transport promotes renal damage in CRF pregnant rats. In uremic rats, pregnancy induced a significant decrease in glomerular arginine transport and cGMP generation (a measure of NO production) compared with CRF or pregnancy alone and these effects were prevented by l-arginine. While CAT-1 abundance was unchanged in all experimental groups, protein kinase C (PKC)-α, phosphorylated PKC-α (CAT-1 inhibitor), and phosphorylated CAT-1 were significantly augmented in CRF, pregnant, and pregnant CRF animals; phenomena that were prevented by coadministrating l-arginine. α-Tocopherol (PKC inhibitor) significantly increased arginine transport in both pregnant and CRF pregnant rats, effects that were attenuated by ex vivo incubation of glomeruli with PMA (a PKC stimulant). Renal histology revealed no differences between all experimental groups. Inulin and p-aminohippurate clearances failed to augment and renal cortical expression of hypoxia inducible factor-1α (HIF-1α) significantly increased in CRF pregnant rat, findings that were prevented by arginine. These studies suggest that in CRF rats, pregnancy induces a profound decrease in glomerular arginine transport, through posttranslational regulation of CAT-1 by PKC-α, resulting in attenuated NO generation. These events provoke renal damage manifested by upregulation of renal HIF-1α and loss of the ability to increase glomerular filtration rate during gestation.
Collapse
Affiliation(s)
- Idit F Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. ACTA ACUST UNITED AC 2012; 6:85-99. [PMID: 22321962 DOI: 10.1016/j.jash.2011.11.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction, the shift from a healthy endothelium to a damaged pro-coagulative, pro-inflammatory, and pro-vasoconstrictive phenotype, is an early event in many chronic diseases that frequently precedes cardiovascular complications. Functional assessment of the endothelium can identify endothelial damage and predict cardiovascular risk; however, this assessment provides little information as to the mechanisms underlying development of endothelial dysfunction. Changes in plasma asymmetric dimethyl arginine levels, markers of lipid peroxidation, circulating levels of inflammatory mediators, indices of coagulation and cellular surrogates such as microparticles, circulating endothelial cells, and endothelial progenitor cells may reflect alterations in endothelial status and as such have been defined as "biomarkers" of endothelial function. Biomarkers may be chemical or cellular. This review examines some markers of endothelial dysfunction, with a particular focus on cellular biomarkers of endothelial dysfunction and their diagnostic potential.
Collapse
|
25
|
Mice lacking urea transporter UT-B display depression-like behavior. J Mol Neurosci 2011; 46:362-72. [PMID: 21750947 DOI: 10.1007/s12031-011-9594-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/01/2011] [Indexed: 12/25/2022]
Abstract
Urea transporter B is one of urea transporters that selectively transport urea driven by urea gradient across membrane and expressed abundantly in brain. To determine the physiological role of UT-B in brain, UT-B localization, urea concentration, tissue morphology of brain, and behavioral phenotypes were studied in UT-B heterozygous mice via UT-B null mice. UT-B mRNA was expressed in olfactory bulb, cortex, caudate nucleus, hippocampus and hypothalamus of UT-B heterozygous mice. UT-B null mice exhibited depression-like behavior, with urea accumulation, nitric oxide reduction, and selective neuronal nitric oxide synthase level increase in hippocampus. After acute urea loading, the urea level increased, NO production decreased in hippocampus from both types of mice. Moreover, urea level was higher, and NO concentration was lower consistently in UT-B null hippocampus than that in heterozygous hippocampus. In vitro, 25 mM urea inhibited NO production too. Furthermore, UT-B knockout induced a long-lasting notable decrease in regional cerebral blood flow and altered morphology, such as loss of neurons in CA3 region, swelling, and membranous myelin-like structure formation within myelinated and unmyelinated fibers in hippocampus. These results suggest that urea accumulation in the hippocampus induced by UT-B deletion can cause depression-like behavior, which possibly attribute to disturbance in NOS/NO system.
Collapse
|
26
|
Martens CR, Edwards DG. Peripheral vascular dysfunction in chronic kidney disease. Cardiol Res Pract 2011; 2011:267257. [PMID: 21637718 PMCID: PMC3103875 DOI: 10.4061/2011/267257] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/15/2011] [Indexed: 11/30/2022] Open
Abstract
There is an increased prevalence of cardiovascular disease- (CVD-) related mortality in patients with chronic kidney disease (CKD). Endothelial dysfunction is a primary event in the development of atherosclerosis and hypertension and likely contributes to the elevated cardiovascular risk in CKD. Endothelial dysfunction has been shown to occur in the peripheral vasculature of patients with both severe and moderate CKD. Mechanisms include oxidative stress, L-arginine deficiency, and elevated plasma levels of ADMA. Interventions designed to restore vascular function in patients with CKD have shown mixed results. Evidence from cell culture studies suggest that the accumulation of uremic toxins inhibits L-arginine transport and reduces nitric oxide production. The results of these studies suggest that endothelial dysfunction may become less reversible with advancing kidney disease. The purpose of this paper is to present the current literature pertaining to potential mechanisms of peripheral vascular dysfunction in chronic kidney disease and to identify possible targets for treatment.
Collapse
Affiliation(s)
- Christopher R Martens
- Department of Kinesiology & Applied Physiology, University of Delaware, 541 South College Avenue, Newark, DE 19716, USA
| | | |
Collapse
|
27
|
Teerlink T, Luo Z, Palm F, Wilcox CS. Cellular ADMA: regulation and action. Pharmacol Res 2009; 60:448-60. [PMID: 19682580 DOI: 10.1016/j.phrs.2009.08.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 02/07/2023]
Abstract
Asymmetric (N(G),N(G)) dimethylarginine (ADMA) is present in plasma and cells. It can inhibit nitric oxide synthase (NOS) that generates nitric oxide (NO) and cationic amino acid transporters (CATs) that supply intracellular NOS with its substrate, l-arginine, from the plasma. Therefore, ADMA and its transport mechanisms are strategically placed to regulate endothelial function. This could have considerable clinical impact since endothelial dysfunction has been detected at the origin of hypertension and chronic kidney disease (CKD) in human subjects and may be a harbinger of large vessel disease and cardiovascular disease (CVD). Indeed, plasma levels of ADMA are increased in many studies of patients at risk for, or with overt CKD or CVD. However, the levels of ADMA measured in plasma of about 0.5micromol.l(-1) may be below those required to inhibit NOS whose substrate, l-arginine, is present in concentrations many fold above the Km for NOS. However, NOS activity may be partially inhibited by cellular ADMA. Therefore, the cellular production of ADMA by protein arginine methyltransferase (PRMT) and protein hydrolysis, its degradation by N(G),N(G)-dimethylarginine dimethylaminohydrolase (DDAH) and its transmembrane transport by CAT that determines intracellular levels of ADMA may also determine the state of activation of NOS. This is the focus of the review. It is concluded that cellular levels of ADMA can be 5- to 20-fold above those in plasma and in a range that could tonically inhibit NOS. The relative importance of PRMT, DDAH and CAT for determining the intracellular NOS substrate:inhibitor ratio (l-arginine:ADMA) may vary according to the pathophysiologic circumstance. An understanding of this important balance requires knowledge of these three processes that regulate the intracellular levels of ADMA and arginine.
Collapse
Affiliation(s)
- Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Di Marco GS, Reuter S, Hillebrand U, Amler S, König M, Larger E, Oberleithner H, Brand E, Pavenstädt H, Brand M. The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD. J Am Soc Nephrol 2009; 20:2235-45. [PMID: 19608702 DOI: 10.1681/asn.2009010061] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endothelial dysfunction contributes to the increased cardiovascular risk that accompanies CKD. We hypothesized that the soluble VEGF receptor 1 (sFlt-1), a VEGF antagonist, plays a role in endothelial dysfunction and decreased angiogenesis in CKD. We enrolled 130 patients with CKD stages 3 to 5 and 56 age- and gender-matched control patients. Plasma sFlt-1 levels were higher in patients with CKD and, after multivariate regression analyses, exclusively associated with renal function and levels of vWF, a marker of endothelial dysfunction. Compared with serum from control patients, both recombinant sFlt-1 and serum from patients with CKD had antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay, induced endothelial cell apoptosis in vitro, and decreased nitric oxide generation in two different endothelial cell lines. Pretreating the sera with an antibody against sFlt-1 abrogated all of these effects. Furthermore, we observed increased sFlt1 levels in 5/6-nephrectomized rats compared with sham-operated animals. Finally, using real-time PCR and ELISA, we identified monocytes as a possible source of increased sFlt-1 in patients with CKD. Our findings show that excess sFlt-1 associates with endothelial dysfunction in CKD and suggest that increased sFlt-1 may predict cardiovascular risk in CKD.
Collapse
Affiliation(s)
- Giovana S Di Marco
- Department of Internal Medicine D, University Clinics Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ingbir M, Schwartz IF, Shtabsky A, Filip I, Reshef R, Chernichovski T, Levin-Iaina N, Rozovski U, Levo Y, Schwartz D. Rosiglitazone improves aortic arginine transport, through inhibition of PKCα, in uremic rats. Am J Physiol Renal Physiol 2008; 295:F471-7. [DOI: 10.1152/ajprenal.00619.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists were shown to inhibit atherosclerosis through augmentation of endothelial nitric oxide synthase (eNOS) activity. In addition, rosiglitazone exerts a beneficial effect in chronic renal failure (CRF). Since l-arginine transport by CAT-1 (the specific arginine transporter for eNOS) is inhibited in uremia, we aimed to explore the effect of rosiglitazone on arginine transport in CRF. Arginine uptake by aortic rings was studied in control animals, rats, 6 wk following 5/6 nephrectomy (CRF) and rats with CRF treated with rosiglitazone. The decrease of arginine transport in CRF was prevented by rosiglitazone. Immunobloting revealed that CAT-1 protein was decreased in CRF but remained unchanged following rosiglitazone administration. Protein content of the membrane fraction of PKCα and phosphorylated CAT-1 increased significantly in CRF, effects that were prevented by rosiglitazone. PKCα phosphorylation was unchanged but significantly attenuated by rosiglitazone in CRF. Ex vivo administration of phorbol-12-myristate-13-acetate to rosiglitazone-treated CRF rats significantly attenuated the effect of rosiglitazone on arginine uptake. The decrease in cGMP response to carbamyl-choline (eNOS agonist) was significantly attenuated by rosiglitazone in CRF. Western blotting and immunohistochemistry analysis revealed that protein nitration was intensified in the endothelium of CRF rats and this was attenuated by rosiglitazone. In conclusion, rosiglitazone prevents the decrease in arginine uptake in CRF through both depletion and inactivation of PKCα. These findings are associated with restoration of eNO generation and attenuation of protein nitration and therefore may serve as a novel mechanism to explain the beneficial effects of rosiglitazone on endothelial function in uremia.
Collapse
|
30
|
Lee J. Nitric oxide in the kidney : its physiological role and pathophysiological implications. Electrolyte Blood Press 2008; 6:27-34. [PMID: 24459519 PMCID: PMC3894485 DOI: 10.5049/ebp.2008.6.1.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide has been implicated in many physiologic processes that influence both acute and long-term control of kidney function. Its net effect in the kidney is to promote natriuresis and diuresis, contributing to adaptation to variations of dietary salt intake and maintenance of normal blood pressure. A pretreatment with nitric oxide donors or L-arginine may prevent the ischemic acute renal injury. In chronic kidney diseases, the systolic blood pressure is correlated with the plasma level of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase. A reduced production and biological action of nitric oxide is associated with an elevation of arterial pressure, and conversely, an exaggerated activity may represent a compensatory mechanism to mitigate the hypertension.
Collapse
Affiliation(s)
- Jongun Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
31
|
Teng B, Ledent C, Mustafa SJ. Up-regulation of A 2B adenosine receptor in A 2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 2008; 44:905-14. [PMID: 18423660 DOI: 10.1016/j.yjmcc.2008.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
In this study, we looked into possible compensatory changes of other adenosine receptors (ARs) in A(2A) genetic knockout mice (A2AKO) as well as the functional role of nitric oxide (NO) in A(2A) AR-mediated vasodilation. Gene expression of ARs from coronary arteries of A(2A) AR wild type mice (A2AWT) and A2AKO was studied using real-time PCR. Functional studies were carried out in isolated heart and isolated coronary artery preparations. A(2B) AR was found to be 4.5 fold higher in A2AKO than in A2AWT, while A(2A) AR expression was absent in A2AKO. There was no difference in A(1) and A(3) ARs between WT and KO animals. The concentration-relaxation curve for adenosine-5'-N-ethylcarboxamide (NECA, non-selective AR agonist) in isolated coronary arterial rings in A2AKO was shifted to the left when compared to A2AWT. The concentration-response curve for A(2B) selective agonist (BAY 60-6583) was also shifted to the left in A2AKO hearts. L-NAME, a non-specific NO synthase inhibitor, did not affect baseline coronary flow (CF) until the concentration reached 10 microM in A2AWT (76.32+/-11.35% from baseline, n=5). In A2AKO, the CF decreased significantly by L-NAME only at a higher concentration (100 microM, 93.32+/-5.8% from baseline, n=5). L-NMA (1 microM, n=4), another non-specific NO synthase inhibitor, also demonstrated similar results in decreasing CF (59.66+/-3.23% from baseline in A2AWT, while 81.76+/-8.91% in A2AKO). It was further demonstrated that the increase in CF by 100 microM NECA was significantly blunted with 10 microM L-NAME (377.08+/-25.23% to 305.41+/-30.73%, n=9) in A2AWT but not in A2AKO (153.66+/-22.7% to 143.88+/-36.65%, n=5). Similar results were also found using 50 nM of CGS-21680 instead of NECA in A2AWT (346+/-22.85 to 277+/-31.39, n=6). No change in CF to CGS-21680 was noted in A(2A)AKO. Our data demonstrate, for the first time, that coronary A(2B) AR was up-regulated in mice deficient in A(2A) AR. We also provide direct evidence supporting a role for NO in A(2A) AR-mediated coronary vasodilation. The data further support the role for A(2A) AR in the regulation of basal coronary tone through the release of NO.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9104, USA
| | | | | |
Collapse
|
32
|
Westerweel PE, Verhaar MC. Protective Actions of PPAR-gamma Activation in Renal Endothelium. PPAR Res 2008; 2008:635680. [PMID: 19266048 PMCID: PMC2650079 DOI: 10.1155/2008/635680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/08/2008] [Indexed: 01/30/2023] Open
Abstract
Renal endothelial damage is pivotal in the initiation and progression of renal disease. Damaged renal endothelium may be regenerated through proliferation of local endothelium and circulation-derived endothelial progenitor cells. Activation of the PPAR-gamma-receptors present on endothelial cells affects their cellular behavior. Proliferation, apoptosis, migration, and angiogenesis by endothelial cells are modulated, but may involve both stimulation and inhibition depending on the specific circumstances. PPAR-gamma-receptor activation stimulates the production of nitric oxide, C-type natriuretic peptide, and superoxide dismutase, while endothelin-1 production is inhibited. Together, they augment endothelial function, resulting in blood pressure lowering and direct renoprotective effects. The presentation of adhesion molecules and release of cytokines recruiting inflammatory cells are inhibited by PPAR-gamma-agonism. Finally, PPAR-gamma-receptors are also found on endothelial progenitor cells and PPAR-gamma-agonists stimulate progenitor-mediated endothelial repair. Together, the stimulatory effects of PPAR-gamma-agonism on endothelium make an important contribution to the beneficial actions of PPAR-gamma-agonists on renal disease.
Collapse
Affiliation(s)
- Peter E. Westerweel
- 1Department of Vascular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- 2Department of Internal Medicine, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Marianne C. Verhaar
- 1Department of Vascular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- *Marianne C. Verhaar:
| |
Collapse
|
33
|
Abstract
The overall production of nitric oxide (NO) is decreased in chronic kidney disease (CKD) which contributes to cardiovascular events and further progression of kidney damage. There are many likely causes of NO deficiency in CKD and the areas surveyed in this review are: 1. Limitations on substrate (l-Arginine) availability, probably due to impaired renal l-Arginine biosynthesis, decreased transport of l-Arginine into endothelial cells and possible competition between NOS and competing metabolic pathways, such as arginase. 2. Increased circulating levels of endogenous NO synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Increased methylation of proteins and their subsequent breakdown to release free ADMA may contribute but the major culprit is probably reduced ADMA catabolism by the enzymes dimethylarginine dimethylaminohydrolases. 3. Reduced renal cortex abundance of the neuronal NOS (nNOS)α protein correlates with injury while increasing nNOSβ abundance may provide a compensatory, protective response. Interventions that can restore NO production by targeting these various pathways are likely to reduce the cardiovascular complications of CKD as well as slowing the rate of progression.
Collapse
|
34
|
|
35
|
Marin E, Sessa WC. Role of endothelial-derived nitric oxide in hypertension and renal disease. Curr Opin Nephrol Hypertens 2007; 16:105-10. [PMID: 17293684 DOI: 10.1097/mnh.0b013e328017f893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To highlight recent advances in the field of endothelial-derived nitric oxide regulation of blood pressure and renal homeostasis. RECENT FINDINGS Many laboratories have dissected a role for nitric oxide in regulating blood pressure and renal function. In models of hypertension, and chronic and acute renal disease, the loss of nitric oxide bioavailability may occur due to inactivation of endothelial nitric oxide synthase, synthesis of endogenous inhibitors or oxidative inactivation of nitric oxide. SUMMARY Understanding the molecular mechanisms of nitric oxide synthesis may lead to novel diagnostics and treatments for cardiovascular disorders.
Collapse
Affiliation(s)
- Ethan Marin
- Departments of Pharmacology and Nephrology and Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
36
|
Ashman N, Brunini TM, Mann GE, Mendes Ribeiro AC, Yaqoob MM. Increased L-arginine transport via system b0,+ in human proximal tubular cells exposed to albumin. Clin Sci (Lond) 2006; 111:389-99. [PMID: 16928190 DOI: 10.1042/cs20060158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Albumin has complex effects on PTECs (proximal tubular epithelial cells) and is able to stimulate growth or injury depending on its bound moieties. Albumin itself is a mitogen, inducing proliferation through a number of pathways. In PTEC exposed to purified albumin, polyamines are required for entry into the cell cycle and are critical for proliferation. Polyamines are synthesized from L-ornithine (itself derived by the action of arginase on L-arginine), and the transport and availability of L-arginine may thus be important for subsequent polyamine-dependent proliferation. In the present study we investigated radiolabelled cationic amino-acid transport in cultured PTEC exposed to 20 mg/ml ultrapure recombinant human albumin, describing the specific kinetic characteristics of transport and the expression of transporters. L-[3H]Arginine transport capacity in human PTEC is increased after exposure for 24 h to human albumin, mediated by the broad-scope high-affinity system b0,+ and, to a lesser extent, system y+L (but not system y+) transport. Increased transport is associated with increased b0,+-associated transporter expression. Inhibition of phosphoinositide 3-kinase, a key regulator of albumin endocytosis and signalling, inhibited proliferation, but had no effect on the observed increase in transport. PTEC proliferated in response to albumin. L-Lysine, a competitive inhibitor of L-arginine transport, had no effect on albumin-induced proliferation; however, arginine deprivation effectively reversed the albumin-induced proliferation observed. In conclusion, in PTEC exposed to albumin, increased L-arginine transport is mediated by increased transcription and activity of the apical b0,+ transport system. This may make L-arginine available as a substrate for the downstream synthesis of polyamines, but is not critical for cell proliferation.
Collapse
Affiliation(s)
- Neil Ashman
- Department of Experimental Medicine, Critical Care and Nephrology, William Harvey Research Institute, Queen Mary College, University of London, London, UK.
| | | | | | | | | |
Collapse
|
37
|
Baylis C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. ACTA ACUST UNITED AC 2006; 2:209-20. [PMID: 16932427 PMCID: PMC2756810 DOI: 10.1038/ncpneph0143] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 01/27/2006] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) production is reduced in renal disease, partially due to decreased endothelial NO production. Evidence indicates that NO deficiency contributes to cardiovascular events and progression of kidney damage. Two possible causes of NO deficiency are substrate (L-arginine) limitation and increased levels of circulating endogenous inhibitors of NO synthase (particularly asymmetric dimethylarginine [ADMA]). Decreased L-arginine availability in chronic kidney disease (CKD) is due to perturbed renal biosynthesis of this amino acid. In addition, inhibition of transport of L-arginine into endothelial cells and shunting of L-arginine into other metabolic pathways (e.g. those involving arginase) might also decrease availability. Elevated plasma and tissue levels of ADMA in CKD are functions of both reduced renal excretion and reduced catabolism by dimethylarginine dimethylaminohydrolase (DDAH). The latter might be associated with loss-of-function polymorphisms of a DDAH gene, functional inhibition of the enzyme by oxidative stress in CKD and end-stage renal disease, or both. These findings provide the rationale for novel therapies, including supplementation of dietary L-arginine or its precursor L-citrulline, inhibition of non-NO-producing pathways of L-arginine utilization, or both. Because an increase in ADMA has emerged as a major independent risk factor in end-stage renal disease (and probably also in CKD), lowering ADMA concentration is a major therapeutic goal; interventions that enhance the activity of the ADMA-hydrolyzing enzyme DDAH are under investigation.
Collapse
Affiliation(s)
- Chris Baylis
- University of Florida, 1600 SW Archer Road, Gainesville, FL 32667, USA.
| |
Collapse
|
38
|
Schwartz IF, Ayalon R, Chernichovski T, Reshef R, Chernin G, Weinstein T, Litvak A, Levo Y, Schwartz D. Arginine uptake is attenuated through modulation of cationic amino-acid transporter-1, in uremic rats. Kidney Int 2006; 69:298-303. [PMID: 16408119 DOI: 10.1038/sj.ki.5000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endothelial cell dysfunction (ECD) is a common feature of chronic renal failure (CRF). Defective nitric oxide (NO) generation due to decreased endothelial NO synthase (eNOS) activity is a crucial parameter characterizing ECD. L-arginine is the sole precursor for NO biosynthesis. Among several transporters that mediate L-arginine uptake, cationic amino-acid transporter-1 (CAT-1) acts as the specific arginine transporter for eNOS. Our hypothesis implies that CAT-1 is a major determinant of eNOS activity in CRF. We studied glomerular and aortic arginine uptake, CAT-1, and CAT-2 messenger ribonucleic acid (mRNA) expression, and CAT-1 protein in: (a) rats 6 weeks following 5/6 nephrectomy (CRF), (b) sham-operated animals, and (c) rats with CRF treated orally with either atorvastatin or arginine in drinking water (modalities which have been shown to enhance eNOS activity and improve endothelial function). Both glomerular and aortic arginine transport were significantly decreased in CRF. Treatment with either arginine or atorvastatin abolished the decrease in arginine uptake in CRF rats. Using reverse transcriptase-polymerase chain reaction and Northern blotting, we found a significant increase in glomerular and aortic CAT-1 mRNA expression in CRF. Western blotting revealed that CAT-1 protein was decreased in CRF, but remained intact following arginine and atorvastatin administration. Renal and systemic arginine uptake is attenuated in CRF, through modulation of CAT-1 protein. These findings provide a possible novel mechanism to eNOS inactivation and endothelial dysfunction in uremia.
Collapse
Affiliation(s)
- I F Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis 2005; 46:186-202. [PMID: 16112037 DOI: 10.1053/j.ajkd.2005.05.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/02/2005] [Accepted: 05/02/2005] [Indexed: 12/26/2022]
Abstract
The idea that asymmetric dimethylarginine (ADMA) accumulation may be a cardiovascular risk factor in patients with end-stage renal disease was advanced by Vallance in 1992. During the last decade, the relationship between ADMA and adverse cardiovascular events, including death, in dialysis patients has been investigated thoroughly. Several studies have shown that, independently of other risk factors, ADMA is strongly associated with intima-media thickness of the carotid artery and left ventricular mass, particularly concentric left ventricular hypertrophy. Furthermore, cohort studies in both the general population and the dialysis population showed a strong and independent link between ADMA, all-cause mortality, and cardiovascular events. Circumstantial evidence indicates that norepinephrine and ADMA may be in the same causal pathway leading to cardiovascular complications in patients with end-stage renal disease. Several lines of evidence show that high ADMA levels may exert toxic effects in various cell types. High ADMA levels have been associated with alterations in the regulation of cerebral blood flow and neural function, with insulin resistance, thyroid dysfunction, and alterations in bone homeostasis, fertility, and erectile function. The clinical significance of decreasing plasma ADMA concentrations, if any, is unknown. Well-designed and carefully conducted studies are needed to further clarify the role of ADMA in the pathophysiological states of renal disease and explore possible treatment options to improve the prognosis of patients with elevated ADMA levels. ADMA may enable us to predict risk and follow up the course of renal diseases.
Collapse
Affiliation(s)
- Jan T Kielstein
- Division of Nephrology, Department of Internal Medicine, Medical School Hannover, Germany
| | | |
Collapse
|
40
|
Dammers R, Hoeks APG, Tordoir JHM, Welten RJTJ, Hamulyák K, Kooman JP, Kitslaar PJEHM. Endothelin-1 levels and conduit artery mechanical properties in end-stage renal disease. Blood Purif 2005; 23:190-5. [PMID: 15711039 DOI: 10.1159/000083940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction markers are increased in end-stage renal disease (ESRD). The present study focused on the relationship between EC markers, conduit artery wall mechanics and hemodynamics in ESRD. METHODS In 29 ESRD patients and 16 controls, brachial artery diameter, distension, and wall thickness was measured and circumferential wall stress (CWS) calculated. Shear stress was determined with a shear rate-estimating system. Furthermore, von Willebrand factor antigen (vWF) and endothelin-1 (ET-1) levels were measured. RESULTS vWF (p = 0.002) and ET-1 (p < 0.001) were higher in ESRD patients and vWF was related to ET-1 (r = 0.70, p = 0.005). Peak (p = 0.001) and mean shear stress (p = 0.003) were significantly lower in ESRD patients, and ET-1 showed an inverse log linear relation with both (peak: r = -0.59, p = 0.016; mean: r = -0.64, p = 0.007). Also, ET-1 was log linearly related to CWS (r = 0.58, p = 0.014). CONCLUSION These results indicate that, in ESRD, conduit artery shear stress is lower, which might be secondary to an increased peripheral vascular resistance caused by higher ET-1 levels.
Collapse
Affiliation(s)
- Ruben Dammers
- Department of Surgery, University Hospital Maastricht, NL-6202 Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610-0274
| |
Collapse
|
42
|
Abstract
Uremia leads to a number of metabolic and hormonal disorders induced by renal failure with definite biological and clinical sequels. Most frequently, alimentary disorders are the first to appear, followed by symptoms from other organs and systems. The gastrointestinal tract is a site of synthesis of many compounds that have hormonal or hormonal-like biological activity. These substances are produced by highly-specialised receptor-effector cells, that are dispersed in the gastrointestinal mucosa and classified as APUD cells. The present review is an attempt to make a synthesis of current opinions and views concerning the effect of homeostatic dysfunction of the kidneys on the morphology and action of APUD cells in the stomach.
Collapse
Affiliation(s)
- Irena Kasacka
- Department of Histology and Embryology, Medical University, Białystok, Poland.
| |
Collapse
|
43
|
McCarty MF. Vascular endothelium is the organ chiefly responsible for the catabolism of plasma asymmetric dimethylarginine – an explanation for the elevation of plasma ADMA in disorders characterized by endothelial dysfunction. Med Hypotheses 2004; 63:699-708. [PMID: 15325021 DOI: 10.1016/j.mehy.2002.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 11/11/2002] [Indexed: 01/06/2023]
Abstract
Plasma levels of asymmetric dimethylarginine (ADMA), an endogenously produced competitive inhibitor of nitric oxide synthase (NOS), have been found to be elevated in a large number of disorders characterized by endothelial dysfunction; this remarkable phenomenon has yet to receive a plausible explanation. ADMA arises by proteolysis of methylated proteins throughout the body; the majority of this ADMA is catabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH), found in many tissues, including those that express NOS. Since the production of ADMA can be considered constitutive, and little intact ADMA emerges in the urine, impaired catabolism is most likely responsible for elevations of plasma ADMA. The association of elevated ADMA with endotheliopathy is readily explained if we assume that vascular endothelium is the organ chiefly responsible for the catabolism of plasma ADMA--a view that is credible owing to the privileged access of endothelium to plasma, the capacity of endothelium for active transport of arginine (and methylated arginines), and the ample DDAH activity of healthy endothelial cells--and further assume that endothelial dysfunction is often attended by a loss of DDAH activity and/or an impairment of arginine transport, reducing the efficiency of ADMA catabolism. Indeed, there is recent evidence that DDAH is inhibited by endothelial oxidative stress, a typical feature of endotheliopathy; there is also some reason to suspect that arginine transport may be less efficient in dysfunctional endothelium. From this perspective, increased plasma ADMA is not the primary cause of the endothelial dysfunction in various disorders, but rather its effect--though the rise in ADMA can then exacerbate this dysfunction by inhibiting endothelial NOS. Supplemental arginine should be of some clinical benefit in disorders characterized by elevated ADMA, since it can offset that adverse impact of ADMA on NOS activity, and possibly exert other beneficial effects on endothelium--but it cannot be expected to reverse the primary cause of the endothelial dysfunction. Whether or not ADMA plays an important pathogenic role, it seems likely to emerge as a potent risk factor for adverse vascular events, since it may be viewed as a barometer of endothelial health.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
44
|
Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 2003; 83:183-252. [PMID: 12506130 DOI: 10.1152/physrev.00022.2002] [Citation(s) in RCA: 319] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
While transport processes for amino acids and glucose have long been known to be expressed in the luminal and abluminal membranes of the endothelium comprising the blood-brain and blood-retinal barriers, it is only within the last decades that endothelial and smooth muscle cells derived from peripheral vascular beds have been recognized to rapidly transport and metabolize these nutrients. This review focuses principally on the mechanisms regulating amino acid and glucose transporters in vascular endothelial cells, although we also summarize recent advances in the understanding of the mechanisms controlling membrane transport activity and expression in vascular smooth muscle cells. We compare the specificity, ionic dependence, and kinetic properties of amino acid and glucose transport systems identified in endothelial cells derived from cerebral, retinal, and peripheral vascular beds and review the regulation of transport by vasoactive agonists, nitric oxide (NO), substrate deprivation, hypoxia, hyperglycemia, diabetes, insulin, steroid hormones, and development. In view of the importance of NO as a modulator of vascular tone under basal conditions and in disease and chronic inflammation, we critically review the evidence that transport of L-arginine and glucose in endothelial and smooth muscle cells is modulated by bacterial endotoxin, proinflammatory cytokines, and atherogenic lipids. The recent colocalization of the cationic amino acid transporter CAT-1 (system y(+)), nitric oxide synthase (eNOS), and caveolin-1 in endothelial plasmalemmal caveolae provides a novel mechanism for the regulation of NO production by L-arginine delivery and circulating hormones such insulin and 17beta-estradiol.
Collapse
Affiliation(s)
- Giovanni E Mann
- Centre for Cardiovascular Biology and Medicine, Guy's, King's, and St. Thomas' School of Biomedical Sciences, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
45
|
Wratten ML, Galaris D, Tetta C, Sevanian A. Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease. Antioxid Redox Signal 2002; 4:935-44. [PMID: 12573142 DOI: 10.1089/152308602762197470] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
End-stage renal disease patients have increased cardiovascular morbidity and mortality. These patients have many unique risk factors, such as an accumulation of uremic toxins, electrolyte imbalances, metabolic disturbances, anemia, chronic inflammation, and thrombogenic disturbances. Oxidative stress has been implicated in many of these disturbances. This review will focus on some of the factors that may accelerate cardiovascular disease in uremic patients, with an emphasis on mechanisms and interactions of various components of oxidative stress and inflammation. Understanding the mechanisms of these pathways may be useful in developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Mary Lou Wratten
- Clinical and Laboratory Research Department, Bellco, Mirandola (MO) Italy.
| | | | | | | |
Collapse
|
46
|
Wagner L, Klein JD, Sands JM, Baylis C. Urea transporters are distributed in endothelial cells and mediate inhibition of L-arginine transport. Am J Physiol Renal Physiol 2002; 283:F578-82. [PMID: 12167610 PMCID: PMC2756784 DOI: 10.1152/ajprenal.00355.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory previously reported that uremic levels of urea inhibit L-arginine (L-Arg) transport into endothelial cells. The present study further investigated this effect. We measured L-Arg transport in cultured bovine aortic endothelial cells with normal or high urea (25 mM). The urea transport inhibitor phloretin abolished the inhibitory effect of urea on L-Arg transport, suggesting a role for urea transporters (UTs). We screened bovine aortic endothelial cells and several other endothelial cell types for the presence of UTs by using Western blot analysis. UT-B was present in all endothelial cells, irrespective of species or location of derivation, whereas UT-A distribution was variable and sparse. UT-B was also abundant in rat aorta, mesenteric blood vessels, and spinotrapezius muscle, whereas UT-A distribution was, again, variable and sparse. Chronic elevation of urea had variable, inconsistent effects on UT abundance. This study showed that urea must enter endothelial cells, probably by UT-B, to inhibit L-Arg transport. In view of the wide distribution of UT-B in rat vasculature, elevated blood urea nitrogen may lead to endothelial L-Arg deficiency in vivo.
Collapse
Affiliation(s)
- Laszlo Wagner
- Department of Physiology, West Virginia University, Morgantown, West Virginia 26506-9229, USA
| | | | | | | |
Collapse
|
47
|
Maas R, Schwedhelm E, Albsmeier J, Böger RH. The pathophysiology of erectile dysfunction related to endothelial dysfunction and mediators of vascular function. Vasc Med 2002; 7:213-25. [PMID: 12553745 DOI: 10.1191/1358863x02vm429ra] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of erectile dysfunction increases with diabetes, hypertension, hypercholesterolaemia, cardiovascular disease and renal failure. All these conditions are associated with endothelial dysfunction. This review addresses the pathophysiology of erectile dysfunction with a special focus on new insights into nitric oxide (NO)-mediated pathways, oxidative stress and parallels to endothelial dysfunction. NO appears to be the key mediator promoting endothelium-derived vasodilation and penile erection. The possibility is discussed that elevated plasma concentrations of asymmetrical dimethylarginine (ADMA), an endogenous NO synthase inhibitor, may provide an additional pathomechanism for various forms of erectile dysfunction associated with cardiovascular risk factors and disease. Likewise, the role of endothelium-derived factors mediating NO-independent pathways is evaluated.
Collapse
Affiliation(s)
- Renke Maas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
48
|
Xiao S, Erdely A, Wagner L, Baylis C. Uremic levels of BUN do not cause nitric oxide deficiency in rats with normal renal function. Am J Physiol Renal Physiol 2001; 280:F996-F1000. [PMID: 11352839 DOI: 10.1152/ajprenal.2001.280.6.f996] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro, 7 days of high blood urea nitrogen (BUN) inhibits endothelial L-arginine transport and nitric oxide synthase (NOS) activity. The present study investigates whether 7 days of high BUN in vivo influences renal hemodynamics, blood pressure (BP), and/or the nitric oxide (NO) system. Normal rats were fed low-nitrate food containing 30% urea for 7 days, which increased BUN (15 +/- 1 to 69 +/- 4 mg/100 ml, P < 0.001). High BUN did not reduce 24-hour urinary nitrite/nitrate excretion (a measure of total NO production). Baseline BP and renal hemodynamics were unaffected by high BUN as were the pressor and renal vasoconstrictor responses to acute NOS inhibition with N(G)-nitro-L-arginine-methyl ester. In addition, high BUN had no impact on renal cortical L-arginine concentration, density of either endothelial NOS or neuronal NOS protein, or renal cortical NOS activity. NOS activity in the brain cerebellum was also unaffected. In conclusion, high BUN did not lead to vasoconstriction or NO deficiency in rats with normal renal function. Further studies are needed to evaluate the effect of high BUN on the NO system in rats with progressive renal functional insufficiency.
Collapse
Affiliation(s)
- S Xiao
- Department of Physiology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | |
Collapse
|