1
|
Waghode P, Quadir SS, Choudhary D, Sharma S, Joshi G. Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives. J Diabetes Metab Disord 2024; 23:365-383. [PMID: 38932822 PMCID: PMC11196550 DOI: 10.1007/s40200-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/17/2024] [Indexed: 06/28/2024]
Abstract
Objective This article critically reviews the recent search on the use of Small Interfering RNA (siRNA) in the process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Significance Diabetes, a prevalent and severe condition, poses life-threatening risks due to elevated blood glucose levels. It results from inadequate insulin production by the pancreas or ineffective insulin utilization by the body. Recent research suggests siRNA could hold promise in addressing diabetes complications. Methods In this review, we discussed several subjects, including diabetes; its function, and common treatment options. An in-depth analysis of gene silencing method for siRNA and role of siRNA in diabetes, focusing on its impact on glucose homeostasis, diabetic retinopathy, wound healing, diabetic nephropathy and peripheral neuropathy, diabetic foot ulcers, diabetic atherosclerosis, and diabetic cardiomyopathy. Result siRNA-based treatment has the potential to target specific genes without disrupting several other endogenous pathways, which decreases the risk of off-target effects. In addition, siRNA has the capability to provide long-term efficacy with a single dose which will reduce treatment options and enhance patient compliance. Conclusion In the context of diabetic complications, siRNA has been explored as a potential therapeutic tool to modulate the expression of genes involved in various processes associated with diabetes-related issues such as Diabetic Retinopathy, Neuropathy, Nephropathy, wound healing. The use of siRNA in these contexts is still largely experimental, and challenges such as delivery to specific tissues, potential off-target effects, and long-term safety need to be addressed. Additionally, the development of siRNA-based therapies for clinical use in diabetic complications is an active area of research. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01405-7.
Collapse
Affiliation(s)
- Pranali Waghode
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| |
Collapse
|
2
|
Li XJ, Suo P, Wang YN, Zou L, Nie XL, Zhao YY, Miao H. Arachidonic acid metabolism as a therapeutic target in AKI-to-CKD transition. Front Pharmacol 2024; 15:1365802. [PMID: 38523633 PMCID: PMC10957658 DOI: 10.3389/fphar.2024.1365802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Arachidonic acid (AA) is a main component of cell membrane lipids. AA is mainly metabolized by three enzymes: cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). Esterified AA is hydrolysed by phospholipase A2 into a free form that is further metabolized by COX, LOX and CYP450 to a wide range of bioactive mediators, including prostaglandins, lipoxins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. Increased mitochondrial oxidative stress is considered to be a central mechanism in the pathophysiology of the kidney. Along with increased oxidative stress, apoptosis, inflammation and tissue fibrosis drive the progressive loss of kidney function, affecting the glomerular filtration barrier and the tubulointerstitium. Recent studies have shown that AA and its active derivative eicosanoids play important roles in the regulation of physiological kidney function and the pathogenesis of kidney disease. These factors are potentially novel biomarkers, especially in the context of their involvement in inflammatory processes and oxidative stress. In this review, we introduce the three main metabolic pathways of AA and discuss the molecular mechanisms by which these pathways affect the progression of acute kidney injury (AKI), diabetic nephropathy (DN) and renal cell carcinoma (RCC). This review may provide new therapeutic targets for the identification of AKI to CKD continuum.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Suo
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiao-Li Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
He K, Zhou X, Du H, Zhao J, Deng R, Wang J. A review on the relationship between Arachidonic acid 15-Lipoxygenase (ALOX15) and diabetes mellitus. PeerJ 2023; 11:e16239. [PMID: 37849828 PMCID: PMC10578307 DOI: 10.7717/peerj.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15), as one of the lipoxygenase family, is mainly responsible for catalyzing the oxidation of various fatty acids to produce a variety of lipid components, contributing to the pathophysiological processes of various immune and inflammatory diseases. Studies have shown that ALOX15 and its related products are widely distributed in human tissues and related to multiple diseases such as liver, cardiovascular, cerebrovascular diseases, diabetes mellitus and other diseases. Diabetes mellitus (DM), the disease studied in this article, is a metabolic disease characterized by a chronic increase in blood glucose levels, which is significantly related to inflammation, oxidative stress, ferroptosis and other mechanisms, and it has a high incidence in the population, accompanied by a variety of complications. Figuring out how ALOX15 is involved in DM is critical to understanding its role in diseases. Therefore, ALOX15 inhibitors or combination therapy containing inhibitors may deliver a novel research direction for the treatment of DM and its complications. This article aims to review the biological effect and the possible function of ALOX15 in the pathogenesis of DM.
Collapse
Affiliation(s)
- Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Xiaochun Zhou
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Hongxuan Du
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Jing Zhao
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Rongrong Deng
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Jianqin Wang
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| |
Collapse
|
4
|
Engineered ionizable lipid siRNA conjugates enhance endosomal escape but induce toxicity in vivo. J Control Release 2022; 349:831-843. [PMID: 35917865 DOI: 10.1016/j.jconrel.2022.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Lipid conjugation supports delivery of small interfering RNAs (siRNAs) to extrahepatic tissues, expanding the therapeutic potential of siRNAs beyond liver indications. However, siRNA silencing efficacy in extrahepatic tissues remains inferior to that routinely achieved in liver, partially due to the low rate of endosomal escape following siRNA internalization. Improving siRNA endosomal release into cytoplasm is crucial to improving efficacy of lipid-conjugated siRNAs. Given the ability of ionizable lipids to enhance endosomal escape in a context of lipid nanoparticles (LNP), here, we provide the first report on the effect of an ionizable lipid conjugate on siRNA endosomal escape, tissue distribution, efficacy, and toxicity in vivo. After developing a synthetic route to covalently attach the ionizable lipid, DLin-MC3-DMA, to siRNAs, we demonstrate that DLin-MC3-DMA enhances endosomal escape in cell culture without compromising siRNA efficacy. In mice, DLin-MC3-DMA conjugated siRNAs exhibit a similar overall tissue distribution profile to the similarly hydrophobic cholesterol-conjugated siRNA. However, only DLin-MC3-DMA conjugated siRNAs accumulated in vascular compartments, suggesting an effect of conjugate structure on intratissue distribution. Interestingly, we observed non-specific modulation of gene expression in tissues with high accumulation of DLin-MC3-DMA siRNAs (>20 pmol/mg of tissue) while limited non-specific gene modulation has been observed in tissues with lower siRNA accumulation. These findings suggest modulating the nature of the conjugate is a promising strategy to alter siRNA intratissue and intracellular trafficking. Fine-tuning the nature of the conjugate to optimize endosomal escape while minimizing toxicity will be critical for the progression of therapeutic siRNA applications beyond the liver.
Collapse
|
5
|
Liu N, Liu Y, Dong D, Yu J, Yuan H. Effects of Inflammatory Factor Expression Regulated by 12/15 Lipoxygenase on Obesity-Related Nephropathy. Nutrients 2022; 14:nu14132743. [PMID: 35807921 PMCID: PMC9268756 DOI: 10.3390/nu14132743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Background: It has been demonstrated that 12/15-lipoxygenase (LO) contributes to insulin resistance by promoting beta cells’ exposure to inflammation. We investigate the mechanism by which 12/15-LO regulates the expression of inflammatory factors in obesity-related glomerular disease (ORG). Methods: Glomerular mesangial cells were treated with metabolite of 12/15-LO, and the expression of inflammatory factors was measured. Cell histones methylation in 12/15-LO related metabolic memory process were evaluated by chromatin immunoprecipitation (ChIP) assays. Wild-type (WT) and 12/15-LO knockout mice were fed a high-fat diet (HFD) to induce ORG. Results: 12(S)-HETE increased TNF-α, MCP-1, and IL-6 mRNA expression. Inhibition of 12/15-LO reduced the expression of inflammatory factors stimulated by PA or TNF-α. ChIP assays showed that 12(S)-HETE increased H3K4me modification in the TNF-α, IL-6, and MCP-1 gene promoters, and decreased H3K9me3 modification in the MCP-1 and IL-6 gene promoter. Urinary albumin excretion was greater in HFD-fed than in standard fat diet-fed mice, but both urinary protein and microalbumin amounts were lower in HFD-fed 12/15-LO knockout than in WT mice. The levels of TNF-α, IL-6, and MCP-1 in serum and renal cortex were higher in WT than in 12/15-LO knockout mice. Conclusions: 12/15-LO may regulate the expression of inflammatory factors in ORG by methylation of histones in the promoter regions of genes encoding inflammatory factors, sustaining the inflammatory phenotype of ORG.
Collapse
Affiliation(s)
- Nian Liu
- Department of Urology, First Hospital of Jilin University, Xin Min Street 1, Changchun 130021, China;
| | - Yang Liu
- Department of Nephrology, First Hospital of Jilin University, Xin Min Street 1, Changchun 130021, China; (Y.L.); (D.D.); (J.Y.)
| | - Dan Dong
- Department of Nephrology, First Hospital of Jilin University, Xin Min Street 1, Changchun 130021, China; (Y.L.); (D.D.); (J.Y.)
| | - Jinyu Yu
- Department of Nephrology, First Hospital of Jilin University, Xin Min Street 1, Changchun 130021, China; (Y.L.); (D.D.); (J.Y.)
| | - Hang Yuan
- Department of Nephrology, First Hospital of Jilin University, Xin Min Street 1, Changchun 130021, China; (Y.L.); (D.D.); (J.Y.)
- Correspondence: ; Tel.: +86-17604307906
| |
Collapse
|
6
|
Inflammatory gene silencing in activated monocytes by a cholesterol tagged-miRNA/siRNA: a novel approach to ameliorate diabetes induced inflammation. Cell Tissue Res 2022; 389:219-240. [PMID: 35604451 DOI: 10.1007/s00441-022-03637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
There is a major unmet need for the development of effective therapies for diabetes induced inflammation. Increased adenosine-uridine rich elements (AREs) containing mRNAs of inflammatory molecules are reported in inflamed monocytes. Destabilizing these inflammatory mRNAs by the miR-16 could reduce inflammation. DNA microarrays and in vitro cell studies showed that exogenous miR16 and its mimic treatment, in LPS/PMA induced monocytes, significantly downregulated several ARE containing inflammatory cytokine mRNAs similar to those seen in the normal monocytes. Ingenuity pathway analyses showed exogenous miR-16 or its synthetic mimic treatment alleviates inflammatory responses. To selectively target uptake, especially to inflamed cells, one of the CD36 substrate cholesterol was tagged to miR16/siRNA. Cholesterol tagged miR-16/ARE-siRNA showed enhanced uptake in CD36 expressing inflamed cells. In LPS or PMA, treated monocytes, candidate genes expressions levels such as IL-6, IL-8, IL-12β, IP-10, and TNF-α mRNA were increased, as measured by RT-qPCR as seen in primary monocytes of diabetes patients. Exogenous miR16 or ARE-siRNA transfection reduced mRNAs of pro-inflammatory cytokines levels in monocyte, and its adhesion. Increased uptake of cholesterol tagged miR-16 through the CD36 receptor was observed. This destabilizes numerous inflammatory ARE containing mRNAs and alleviates inflammatory responses. Cholesterol-tagged miR-16 and its mimic are novel anti-inflammatory molecules that can be specifically targeted to, via through CD36 expressing, "inflamed" cells and thus serve as therapeutic candidates to alleviate inflammatory diseases.
Collapse
|
7
|
Delivery of Oligonucleotides: Efficiency with Lipid Conjugation and Clinical Outcome. Pharmaceutics 2022; 14:pharmaceutics14020342. [PMID: 35214074 PMCID: PMC8879684 DOI: 10.3390/pharmaceutics14020342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Oligonucleotides have shifted drug discovery into a new paradigm due to their ability to silence the genes and inhibit protein translation. Importantly, they can drug the un-druggable targets from the conventional small-molecule perspective. Unfortunately, poor cellular permeability and susceptibility to nuclease degradation remain as major hurdles for the development of oligonucleotide therapeutic agents. Studies of safe and effective delivery technique with lipid bioconjugates gains attention to resolve these issues. Our review article summarizes the physicochemical effect of well-studied hydrophobic moieties to enhance the cellular entry of oligonucleotides. The structural impacts of fatty acids, cholesterol, tocopherol, and squalene on cellular internalization and membrane penetration in vitro and in vivo were discussed first. The crucial assays for delivery evaluation within this section were analyzed sequentially. Next, we provided a few successful examples of lipid-conjugated oligonucleotides advanced into clinical studies for treating patients with different medical backgrounds. Finally, we pinpointed current limitations and outlooks in this research field along with opportunities to explore new modifications and efficacy studies.
Collapse
|
8
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
9
|
Biscans A, Caiazzi J, McHugh N, Hariharan V, Muhuri M, Khvorova A. Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles. Mol Ther 2021; 29:1382-1394. [PMID: 33348054 PMCID: PMC8058398 DOI: 10.1016/j.ymthe.2020.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023] Open
Abstract
Oligonucleotide therapeutics hold promise for the treatment of muscle- and heart-related diseases. However, oligonucleotide delivery across the continuous endothelium of muscle tissue is challenging. Here, we demonstrate that docosanoic acid (DCA) conjugation of small interfering RNAs (siRNAs) enables efficient (~5% of injected dose), sustainable (>1 month), and non-toxic (no cytokine induction at 100 mg/kg) gene silencing in both skeletal and cardiac muscles after systemic injection. When designed to target myostatin (muscle growth regulation gene), siRNAs induced ~55% silencing in various muscle tissues and 80% silencing in heart, translating into a ~50% increase in muscle volume within 1 week. Our study identifies compounds for RNAi-based modulation of gene expression in skeletal and cardiac muscles, paving the way for both functional genomics studies and therapeutic gene modulation in muscle and heart.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01604, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01604, USA; VIDE Program, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA.
| |
Collapse
|
10
|
Khelghati N, Soleimanpour Mokhtarvand J, Mir M, Alemi F, Asemi Z, Sadeghpour A, Maleki M, Samadi Kafil H, Jadidi-Niaragh F, Majidinia M, Yousefi B. The importance of co-delivery of nanoparticle-siRNA and anticancer agents in cancer therapy. Chem Biol Drug Des 2021; 97:997-1015. [PMID: 33458952 DOI: 10.1111/cbdd.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/10/2021] [Indexed: 01/12/2023]
Abstract
According to global statistics, cancer is the second leading cause of death worldwide. Because of the heterogeneity of cancer, single-drug therapy has many limitations due to low efficacy. Therefore, combination therapy with two or more therapeutic agents is being arisen. One of the most important approaches in cancer therapy is the shot down of key genes involved in apoptotic processes and cell cycle. In this regard, siRNA is a good candidate, a highly attractive method to suppressing tumor growth and invasion. Combination therapy with siRNAs and chemotherapeutic agents can overcome the multidrug resistance and increase apoptosis. The efficient delivery of siRNA to the target cell/tissue/organ has been a challenge. To overcome these challenges, the presence of suitable delivery systems by using nanoparticles is interesting. In this review, we discuss the current challenges for successful RNA interference. Also, we suggested proper a strategy for delivering siRNA that can be useful in targeting therapy. Finally, the combination of a variety of anticancer drugs and siRNA through acceptable delivery systems and their effects on cell cycle and apoptosis will be evaluated.
Collapse
Affiliation(s)
- Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Mir
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Sun J, Wang J, Lu W, Xie L, Lv J, Li H, Yang S. MiR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2020; 47:1850-1860. [PMID: 32603491 DOI: 10.1111/1440-1681.13371] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN), a common cardiovascular disease, has been a global health threat. MicroRNAs (miRNAs) have been proposed to frequently participate in the occurrence and development of DN, however, the role of miR-325-3p in DN remains uncharacterized. Our research aimed to explore the function and mechanism of miR-325-3p in DN. Bioinformatics analysis (Targetscan, http://www.targetscan.org) and a wide range of experiments including RT-qPCR, CCK-8 assay, western blot, luciferase reporter assay, RNA immunoprecipitation (RIP) assays, urine protein and blood glucose assays, histology analysis and morphometric analysis were used to explore the function and mechanism of miR-325-3p and C-C motif chemokine ligand 19 (CCL19). CCL19 could facilitate the progression of DN by inhibiting cell viability and promoting inflammation and fibrosis in HK-2 and HMC cells. In addition, CCL19 was confirmed to be targeted and negatively regulated by miR-325-3p. Rescue assays validated that the impacts of miR-325-3p mimics on the viability, inflammation and fibrosis of HK-2 and HMC cells were recovered by CCL19 overexpression. To sum up, miR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in a DN cell model and mice model, implying miR-325-3p as a possible therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Wanhong Lu
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyi Xie
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huixian Li
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shifeng Yang
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Dong C, Liu S, Cui Y, Guo Q. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy. Eur J Pharmacol 2020; 879:173122. [DOI: 10.1016/j.ejphar.2020.173122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
|
13
|
Jia Y, Reddy MA, Das S, Oh HJ, Abdollahi M, Yuan H, Zhang E, Lanting L, Wang M, Natarajan R. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J Biol Chem 2019; 294:12695-12707. [PMID: 31266808 DOI: 10.1074/jbc.ra119.007575] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β)-induced fibrotic and inflammatory genes in renal mesangial cells (MCs) play important roles in glomerular dysfunction associated with diabetic nephropathy (DN). TGF-β regulates gene expression in MCs by altering key chromatin histone modifications at target gene promoters. However, the role of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification is unclear. Here we show that TGF-β reduces H3K27me3 at the Ctgf, Serpine1, and Ccl2 gene promoters in rat MCs (RMCs) and reciprocally up-regulates the expression of these pro-fibrotic and inflammatory genes. In parallel, TGF-β down-regulates Enhancer of Zeste homolog 2 (Ezh2), an H3K27me3 methyltransferase, and decreases its recruitment at Ctgf and Ccl2 but not Serpine1 promoters. Ezh2 knockdown with siRNAs enhances TGF-β-induced expression of these genes, supporting its repressive function. Mechanistically, Ezh2 down-regulation is mediated by TGF-β-induced microRNA, miR-101b, which targets Ezh2 3'-UTR. TGF-β also up-regulates Jmjd3 and Utx in RMCs, suggesting a key role for these H3K27me3 demethylases in H3K27me3 inhibition. In RMCs, Utx knockdown inhibits hypertrophy, a key event in glomerular dysfunction. The H3K27me3 regulators are similarly altered in human and mouse MCs. High glucose inhibits Ezh2 and increases miR-101b in a TGF-β-dependent manner. Furthermore, in kidneys from rodent models of DN, fibrotic genes, miR-101b, and H3K27me3 demethylases are up-regulated, whereas Ezh2 protein levels as well as enrichment of Ezh2 and H3K27me3 at target genes are decreased, demonstrating in vivo relevance. These results suggest that H3K27me3 inhibition by TGF-β via dysregulation of related histone-modifying enzymes and miRNAs augments pathological genes mediating glomerular mesangial dysfunction and DN.
Collapse
Affiliation(s)
- Ye Jia
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Division of Nephrology, First Hospital of Jilin University, Changchun 130021, China
| | - Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Hyung Jung Oh
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, South Korea
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Hang Yuan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Division of Nephrology, First Hospital of Jilin University, Changchun 130021, China
| | - Erli Zhang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
14
|
Wang X, Gao L, Xiao L, Yang L, Li W, Liu G, Chen L, Zhang J. 12(S)-hydroxyeicosatetraenoic acid impairs vascular endothelial permeability by altering adherens junction phosphorylation levels and affecting the binding and dissociation of its components in high glucose-induced vascular injury. J Diabetes Investig 2019; 10:639-649. [PMID: 30251333 PMCID: PMC6497583 DOI: 10.1111/jdi.12941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 12/24/2022] Open
Abstract
AIMS/INTRODUCTION Diabetes is an important risk factor for atherosclerotic disease. The initiating factor of atherosclerosis is local endothelial cell injury. The arachidonic acid metabolite, 12(S)-hydroxyeicosatetraenoic acid (12[S]-HETE), might be involved in this process. In recent years, some studies have discussed the effect of 12(S)-HETE on vascular endothelial cell function. In the present study, we investigated the effect of 12(S)-HETE on vascular endothelial cell function in high-glucose conditions and the mechanisms involved. MATERIALS AND METHODS Human umbilical vein endothelial cells were cultured in conventional M199 medium and high-glucose M199 medium. Human umbilical vein endothelial cells were stimulated with 12(S)-HETE and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (a 12/15-lipoxygenases inhibitor). A type 1 diabetes mellitus model was established in C57BL/6 or 12/15-lipoxygenases knockout mice with streptozotocin. Aortic tissue was harvested for subsequent testing. The transmembrane transport of dextran and human acute monocytic leukaemia cell line (THP-1) cells was measured. The adherens junction protein, IkBα, nuclear factor kappa Bp65 (P65), intercellular adhesion molecule 1 and vascular cell adhesion protein 1 expression and phosphorylation, and the binding/dissociation of endothelial cell components were observed. RESULTS Transendothelial migration of dextran and THP-1 cells was significantly increased by stimulation of human umbilical vein endothelial cell monolayers with high glucose and 12(S)-HETE (P < 0.05). High glucose and 12(S)-HETE altered the vascular endothelial cadherin and β-catenin phosphorylation level, and promoted the dissociation of β-catenin and vascular endothelial cadherin. Expression levels of P-Ikbα, P-P65, intercellular adhesion molecule 1 and vascular cell adhesion protein 1 were elevated in high glucose and 12(S)-HETE treated cells and diabetic mice compared with controls (P < 0.05). CONCLUSIONS The lipoxygenases metabolite, 12(S)-HETE, can impair vascular endothelial permeability by altering adherens junction phosphorylation levels, and affecting the binding and dissociation of its components in high-glucose conditions.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| | - Lu Gao
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| | - Lili Xiao
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| | - Lulu Yang
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| | - Wenshu Li
- Department of CardiologyFirst Affiliated HospitalHenan University of Science and TechnologyLuoyangChina
| | - Gangqiong Liu
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| | - Linlin Chen
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| | - Jinying Zhang
- Department of CardiologyFirst Affiliated HospitalCollege of MedicineZhengzhou UniversityZhengzhouChina
| |
Collapse
|
15
|
Biscans A, Coles A, Haraszti R, Echeverria D, Hassler M, Osborn M, Khvorova A. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res 2019; 47:1082-1096. [PMID: 30544191 PMCID: PMC6379722 DOI: 10.1093/nar/gky1239] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Small interfering RNA (siRNA)-based therapies are proving to be efficient for treating liver-associated disorders. However, extra-hepatic delivery remains challenging, limiting therapeutic siRNA utility. We synthesized a panel of fifteen lipid-conjugated siRNAs and systematically evaluated the impact of conjugate on siRNA tissue distribution and efficacy. Generally, conjugate hydrophobicity defines the degree of clearance and the liver-to-kidney distribution profile. In addition to primary clearance tissues, several conjugates achieve significant siRNA accumulation in muscle, lung, heart, adrenal glands and fat. Oligonucleotide distribution to extra-hepatic tissues with some conjugates was significantly higher than with cholesterol, a well studied conjugate, suggesting that altering conjugate structure can enhance extra-hepatic delivery. These conjugated siRNAs enable functional gene silencing in lung, muscle, fat, heart and adrenal gland. Required levels for productive silencing vary (5-200 μg/g) per tissue, suggesting that the chemical nature of conjugates impacts tissue-dependent cellular/intracellular trafficking mechanisms. The collection of conjugated siRNA described here enables functional gene modulation in vivo in several extra-hepatic tissues opening these tissues for gene expression modulation. A systemic evaluation of a panel of conjugated siRNA, as reported here, has not previously been investigated and shows that chemical engineering of lipid siRNAs is essential to advance the RNA therapeutic field.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Reka Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Maire Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
16
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater 2018; 81:20-42. [PMID: 30268916 DOI: 10.1016/j.actbio.2018.09.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
Emergence of nanoparticulate drug delivery systems in diabetes has facilitated improved delivery of small molecule drugs which could dramatically improve the quality of life for diabetics. Conventional dosage forms of the anti-diabetic drugs exhibit variable/less bioavailability and short half-life, demanding frequent dosing and causing increased side-effects resulting in ineffectiveness of therapy and non-compliance with the patients. Considering the chronic nature of diabetes, nanotechnology-based approaches are more promising in terms of providing site-specific delivery of drugs with higher bioavailability and reduced dosage regimen. Nanomedicines act at the cellular and molecular levels to enhance the uptake of the drug into the cells or block the efflux mechanisms thus retaining the drug inside the cell for a longer duration of time. Many studies have hinted at the possibility of administering peptide drugs like glucagon like peptides orally by encapsulation into nanoparticles. Nanoparticles also allow further modifications including their encapsulation into microparticles, polyethylene glycol (PEG)-PEGylation- or functionalization with ligands for active targeting. Nevertheless, such remarkable benefits are fraught with their long-term safety concerns, regulatory hurdles, limitations of scale-up and ineffective patent protection which have hindered their commercialization. This review summarizes the latest advances in the area of nanoformulations as applied to the delivery of anti-diabetics. STATEMENT OF SIGNIFICANCE: The present work describes the latest advancements in the area of nanoformulations for anti-diabetic therapy along with highlighting the advantages that these nanoformulations offer at molecular level for diabetes. Although several potent orally active anti-hyperglycemic agents are available, the current challenges in efficient management of diabetes include optimization of the present therapies to ensure an optimum and stable level of glucose, and also to reduce the occurrence of long term complications associated with diabetes. Nanoformulations because of their high surface area to volume ratio provide improved efficacy, targeting their delivery to the desired site of action tends to minimize adverse effects and administration of peptide drugs by oral route is also possible by encapsulating them in nanoparticles. As we reflect on the success and failures of latest research on nanoformulations for the treatment of diabetes, it is important not to dwell on lack of FDA approvals but rather define future directions that guarantee more effective anti-diabetic treatment. In proposed review we have explored the latest advancement in anti-diabetic nanotechnology based formulations.
Collapse
Affiliation(s)
- Siddharth Uppal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Kishan S Italiya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
18
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
19
|
Abstract
Diabetes is a condition that is not completely treatable but life of a diabetic patient can be smoothed by preventing or delaying the associate conditions like diabetic retinopathy, nephropathy, impaired wound healing process, etc. Apart from conventional methods to regulate diabetic condition, new techniques using siRNA have been emerged to prevent the associated conditions. This paper focuses on how siRNA used as a tool to silence the expression of genes which plays critical role in pathogenesis of these conditions. A marked improvement in wound-healing process of diabetic patients has been observed with siRNA treatment by silencing of Keap1 gene. Glucagon plays critical role in glucose homoeostasis and increases blood glucose level during hypoglycaemia. Glucose homoeostasis is impaired in diabetic patient and suppressing the expression of glucagon secretion with siRNA is used to suppress the progress of diabetes. Similarly, silencing expression of several factors has demonstrated improvement of treatment of diabetic nephropathy, retinopathy and inflammation by the use of siRNA.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| | - Chirag Patel
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
20
|
Watanabe Y, Yamaguchi T, Ishihara N, Nakamura S, Tanaka S, Oka R, Imamura H, Sato Y, Ban N, Kawana H, Ohira M, Shimizu N, Saiki A, Tatsuno I. 7-Ketocholesterol induces ROS-mediated mRNA expression of 12-lipoxygenase, cyclooxygenase-2 and pro-inflammatory cytokines in human mesangial cells: Potential role in diabetic nephropathy. Prostaglandins Other Lipid Mediat 2017; 134:16-23. [PMID: 29154978 DOI: 10.1016/j.prostaglandins.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
7-Ketocholesterol (7-KCHO) is a highly proinflammatory oxysterol and plays an important role in the pathophysiology of diabetic nephropathy (DN). Lipoxygenases (LOXs) and cyclooxygenases (COXs) are also involved in the development of DN. The aim of this study was to clarify the effects of 7-KCHO on mRNA expression of LOXs and COXs as well as pro-inflammatory cytokines in human mesangial cells (HMC). We evaluated cell viability by WST-8 assay and measured mRNA expression by reverse transcription-polymerase chain reaction. Intracellular reactive oxygen species (ROS) production was evaluated by flow cytometry. Although 7-KCHO did not affect cell viability of HMC, 7-KCHO stimulated significant increases in mRNA expression of 12-LOX, COX-2 and pro-inflammatory cytokines. 7-KCHO also induced an increase in ROS production, while N-acetylcysteine partially suppressed the increase. The 12-LOX and COX-2 inhibitors also suppressed mRNA expression of cytokines. These findings may contribute to the elucidation of the molecular mechanism of the pathophysiology of DN.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan; Department of Diabetes, Endocrinology and Metabolism, Toho University Graduate School of Medicine, 6-1-1 Omorinisi, Ota-ku, Tokyo, Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Noriko Ishihara
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Shoko Nakamura
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Sho Tanaka
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Rena Oka
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Haruki Imamura
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Yuta Sato
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Noriko Ban
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Hidetoshi Kawana
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Masahiro Ohira
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Naomi Shimizu
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Atsuhito Saiki
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan.
| |
Collapse
|
21
|
Ai F, Zheng J, Zhang Y, Fan T. Inhibition of 12/15-LO ameliorates CVB3-induced myocarditis by activating Nrf2. Chem Biol Interact 2017; 272:65-71. [DOI: 10.1016/j.cbi.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022]
|
22
|
Oroojalian F, Rezayan AH, Shier WT, Abnous K, Ramezani M. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl- polyethylenimine -containing nanoplexes. Int J Pharm 2017; 523:102-120. [DOI: 10.1016/j.ijpharm.2017.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/09/2023]
|
23
|
Chen R, Feng Y, Wu J, Song Y, Li H, Shen Q, Li D, Zhang J, Lu Z, Xiao H, Zhang Y. Metformin attenuates angiotensin II-induced TGFβ1 expression by targeting hepatocyte nuclear factor-4-α. Br J Pharmacol 2017; 175:1217-1229. [PMID: 28230250 DOI: 10.1111/bph.13753] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Metformin, a small molecule, antihyperglycaemic agent, is a well-known activator of AMP-activated protein kinase (AMPK) and protects against cardiac fibrosis. However, the underlying mechanisms remain elusive. TGFβ1 is a key cytokine mediating cardiac fibrosis. Here, we investigated the effects of metformin on TGFβ1 production induced by angiotensin II (AngII) and the underlying mechanisms. EXPERIMENTAL APPROACH Wild-type and AMPKα2-/- C57BL/6 mice were injected s.c. with metformin or saline and infused with AngII (3 mg·kg-1 ·day-1 ) for 7 days. Adult mouse cardiac fibroblasts (CFs) were isolated for in vitro experiments. KEY RESULTS In CFs, metformin inhibited AngII-induced TGFβ1 expression via AMPK activation. Analysis using bioinformatics predicted a potential hepatocyte nuclear factor 4α (HNF4α)-binding site in the promoter region of the Tgfb1 gene. Overexpressing HNF4α increased TGFβ1 expression in CFs. HNF4α siRNA attenuated AngII-induced TGFβ1 production and cardiac fibrosis in vitro and in vivo. Metformin inhibited the AngII-induced increases in HNF4α protein expression and binding to the Tgfb1 promoter in CFs. In vivo, metformin blocked the AngII-induced increase in cardiac HNF4α protein levels in wild-type mice but not in AMPKα2-/- mice. Consequently, metformin inhibited AngII-induced TGFβ1 production and cardiac fibrosis in wild-type mice but not in AMPKα2-/- mice. CONCLUSIONS AND IMPLICATIONS HNF4α mediates AngII-induced TGFβ1 transcription and cardiac fibrosis. Metformin inhibits AngII-induced HNF4α expression via AMPK activation, thus decreasing TGFβ1 transcription and cardiac fibrosis. These findings reveal a novel antifibrotic mechanism of action of metformin and identify HNF4α as a new potential therapeutic target for cardiac fibrosis. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Ruifei Chen
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yenan Feng
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jimin Wu
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hao Li
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qiang Shen
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Dan Li
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jianshu Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Zhizhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Han Xiao
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
24
|
Cui Y, Liu N, Ma F, Sun W, Wu H, Xu Z, Yuan H. Role of histone modification in 12‑lipoxygenase‑associated p21 gene regulation. Mol Med Rep 2016; 14:3978-84. [PMID: 27600103 DOI: 10.3892/mmr.2016.5724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/21/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to examine the impacts and mechanisms of 12‑lipoxygenase (12‑LO) and its metabolites on the acetylation and methylation of histone‑3‑lysine (H3K) in the p21 gene. Rat mesangial cells (MCs) were selected for use in the present study. A chromatin immunoprecipitation assay, reverse transcription‑quantitative polymerase chain reaction analysis and a luciferase assay were used to detect transcriptional activities, the acetylation (Ac) of H3K (H3KAc), p21 promoter methylation (Me) and the transcription regions induced by 12 (S)‑hydroxyeicosatetraenoic acid (HETE). The cells were transfected to induce the overexpression of p300 to examine changes in 12 (S)‑HETE‑associated p21 regulation and epigenetic modifications. 12 (S)‑HETE enhanced p21 transcriptional activity and mRNA expression. In the promoter regions, P1 and P2, and the T1 transcription region, 12 (S)‑HETE induced significant H3K9 Ac and H3K4 Me1 epigenetic modifications, however, no changes were observed in the T2 region. By contrast, 12 (S)‑HETE treatment markedly prevented H3K9Me3 at the p21 promoter, suggesting that complex Me was involved in 12 (S)‑HETE‑associated p21 regulation. Furthermore, the overexpression of p300 markedly enhanced basal and 12 (S)‑HETE‑associated p21 transcriptional regulation in the MCs. 12 (S)‑HETE treatment also induced histone acetyltransferase p300 occupancy in the p21 promoter, and reduced the nuclear expression and occupancy of lysine‑specific demethylase (LSD1) in the p21 promoter. 12 (S)‑HETE induced p300 occupancy, and reduced the nuclear expression and occupancy of LSD1 in the p21 promoter. Therefore, enhanced H3K9Ac and H3K4Me1 in the p21 promoter and transcription regions, and decreased H3K9Me3 in the p21 promoter increased the expression of p21.
Collapse
Affiliation(s)
- Yingchun Cui
- Department of Nephrology, Second Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nian Liu
- Center of Urology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fuzhe Ma
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weixia Sun
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hao Wu
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonggao Xu
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hang Yuan
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
26
|
Xu HZ, Cheng YL, Wang WN, Wu H, Zhang YY, Zang CS, Xu ZG. 12-Lipoxygenase Inhibition on Microalbuminuria in Type-1 and Type-2 Diabetes Is Associated with Changes of Glomerular Angiotensin II Type 1 Receptor Related to Insulin Resistance. Int J Mol Sci 2016; 17:ijms17050684. [PMID: 27164093 PMCID: PMC4881510 DOI: 10.3390/ijms17050684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
(1) BACKGROUND: 12-lipoxygenase (12-LO) is involved in the development of diabetic nephropathy (DN). In the present study, we investigated whether 12-LO inhibition may ameliorate type-2 DN (T2DN) by interfering with insulin resistance (IR); (2) METHODS: Rat glomerular mesangial cells, glomeruli and skeletal muscles were isolated and used in this study. Kidney histological changes were confirmed by periodic-acid Schiff staining; mRNA expression was detected by competitive reverse transcription polymerase chain reaction; and the protein level was determined by Western blot and the enzyme-linked immunosorbent assay, respectively; (3) RESULTS: The inhibition of 12-LO attenuated microalbuminuria (MAU) increases in type-2 diabetic rats, but not in type-1 diabetic rats. Infusion of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) significantly increased the expression of angiotensin II (Ang II) and Ang II type 1 receptor (AT1R), but decreased the expression of AT1R-associated protein (ATRAP) in rat glomeruli, compared to the control. An in vitro study revealed that both 12(S)-HETE and insulin upregulated AT1R expression in rat mesangial cells. In the presence of p38 mitogen-activated protein kinase (MAPK) inhibitor, SB202190, the 12(S)-HETE-induced ATRAP reduction was significantly abolished. Interestingly, 12-LO inhibition did not influence AT1R expression in type-1 diabetic rats, but significantly abolished the increased AT1R and Ang II expression in glomeruli of type-2 diabetic rats. Furthermore, the inhibition of 12-LO significantly corrected impaired insulin sensitivity and fast serum insulin level, as well as the p-AMP-activated protein kinase (AMPK) reduction in skeletal muscle of type-2 diabetic rats; (4) CONCLUSION: The inhibition of 12-LO potentially ameliorated MAU by preventing IR through the downregulation of glomerular AT1R expression in T2DN.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- Albuminuria/etiology
- Albuminuria/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/metabolism
- Down-Regulation
- Insulin Resistance
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/metabolism
- Lipoxygenase Inhibitors/pharmacology
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Hong-Zhao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yan-Li Cheng
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Wan-Ning Wang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Hao Wu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yuan-Yuan Zhang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Chong-Sen Zang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhong-Gao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
27
|
Yuan H, Reddy MA, Deshpande S, Jia Y, Park JT, Lanting LL, Jin W, Kato M, Xu ZG, Das S, Natarajan R. Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxid Redox Signal 2016; 24:361-75. [PMID: 26492974 PMCID: PMC4779982 DOI: 10.1089/ars.2015.6372] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Epigenetic mechanisms, including histone post-translational modifications and DNA methylation, are implicated in the pathogenesis of diabetic nephropathy (DN), but the mediators are not well known. Moreover, although dyslipidemia contributes to DN, epigenetic changes triggered by lipids are unclear. In diabetes, increased expression of 12/15-lipoxygenase (12/15-LO) enhances oxidized lipids such as 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], which promote oxidant stress, glomerular and mesangial cell (MC) dysfunction, and fibrosis, and mediate the actions of profibrotic growth factors. We hypothesized that 12/15-LO and its oxidized lipid products can regulate epigenetic mechanisms mediating profibrotic gene expression related to DN. RESULTS 12(S)-HETE increased profibrotic gene expression and enrichment of permissive histone lysine modifications at their promoters in MCs. 12(S)-HETE also increased protein levels of SET7, a histone H3 lysine 4 methyltransferase, and promoted its nuclear translocation and enrichment at profibrotic gene promoters. Furthermore, SET7 (Setd7) gene silencing inhibited 12(S)-HETE-induced profibrotic gene expression. 12/15-LO (Alox15) gene silencing or genetic knockout inhibited transforming growth factor-β1 (TGF-β1)-induced expression of Setd7 and profibrotic genes and histone modifications in MCs. Furthermore, 12/15-LO knockout in mice ameliorated key features of DN and abrogated increases in renal SET7 and profibrotic genes. Additionally, 12/15-LO siRNAs in vivo blocked increases in renal SET7 and profibrotic genes in diabetic mice. INNOVATION AND CONCLUSION These novel results demonstrate for the first time that 12/15-LO-derived oxidized lipids regulate histone modifications associated with profibrotic gene expression in MCs, and 12/15-LO can mediate similar actions of TGF-β1 and diabetes. Targeting 12/15-LO might be a useful strategy to inhibit key epigenetic mechanisms involved in DN.
Collapse
Affiliation(s)
- Hang Yuan
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,2 Department of Nephrology, First Hospital of Jilin University , Changchun, China
| | - Marpadga A Reddy
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Supriya Deshpande
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Ye Jia
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,3 Department of Nephrology, Second Hospital of Jilin University , Changchun, China
| | - Jung Tak Park
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,4 Department of Internal Medicine, College of Medicine, Yonsei University , Seoul, Republic of Korea
| | - Linda L Lanting
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Wen Jin
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Mitsuo Kato
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Zhong Gao Xu
- 2 Department of Nephrology, First Hospital of Jilin University , Changchun, China
| | - Sadhan Das
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Rama Natarajan
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| |
Collapse
|
28
|
Brück J, Pascolo S, Fuchs K, Kellerer C, Glocova I, Geisel J, Dengler K, Yazdi AS, Röcken M, Ghoreschi K. Cholesterol Modification of p40-Specific Small Interfering RNA Enables Therapeutic Targeting of Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2216-23. [PMID: 26232431 DOI: 10.4049/jimmunol.1402989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/01/2015] [Indexed: 11/19/2022]
Abstract
Small interfering RNA (siRNA)-based therapies allow targeted correction of molecular defects in distinct cell populations. Although efficient in multiple cell populations, dendritic cells (DCs) seem to resist siRNA delivery. Using fluorescence labeling and radiolabeling, we show that cholesterol modification enables siRNA uptake by DCs in vitro and in vivo. Delivery of cholesterol-modified p40 siRNA selectively abolished p40 transcription and suppressed TLR-triggered p40 production by DCs. During immunization with peptide in CFA, cholesterol-modified p40 siRNA generated p40-deficient, IL-10-producing DCs that prevented IL-17/Th17 and IFN-γ/Th1 responses. Only cholesterol-modified p40-siRNA established protective immunity against experimental autoimmune encephalomyelitis and suppressed IFN-γ and IL-17 expression by CNS-infiltrating mononuclear cells without inducing regulatory T cells. Because cholesterol-modified siRNA can thus modify selected DC functions in vivo, it is intriguing for targeted immune therapy of allergic, autoimmune, or neoplastic diseases.
Collapse
Affiliation(s)
- Jürgen Brück
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Steve Pascolo
- Department of Oncology, University Hospital Zurich, CH-8044 Zurich, Switzerland
| | - Kerstin Fuchs
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Christina Kellerer
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Ivana Glocova
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Julia Geisel
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Katja Dengler
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Amir S Yazdi
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| | - Kamran Ghoreschi
- Department of Dermatology, Eberhard Karls University of Tübingen, D-72076 Tübingen, Germany; and
| |
Collapse
|
29
|
Faulkner J, Pye C, Al-Shabrawey M, Elmarakby AA. Inhibition of 12/15-Lipoxygenase Reduces Renal Inflammation and Injury in Streptozotocin-Induced Diabetic Mice. ACTA ACUST UNITED AC 2015; 6. [PMID: 26823989 DOI: 10.4172/2155-6156.1000555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies suggest that 12/15 lipoxygenase (12/15-LO) is implicated in diabetic vascular complications. We hypothesize that 12/15-LO inhibition attenuates renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in wild-type C57BL/6J (WT) and 12/15-LO deficient mice using streptozotocin. Additionally, four groups of WT mice were also used; control non diabetic, diabetic, diabetic treated with the 12/15-LO inhibitor baicalein for 10 weeks and diabetic treated with baicalein only for the last 4 weeks of the experiment. After 10 weeks of induction of diabetes with streptozotocin, WT diabetic mice exhibited marked elevation in proteinuria together with elevation in the excretion levels of thiobarbituric acid reactive substance (TBARs), a marker of oxidative stress, and monocyte chemoattractant protein-1 (MCP-1), a marker of inflammation and these changes were significantly reduced in 12/15-LO deficient diabetic mice (P<0.05). Similarly, pharmacological inhibition of 12/15-LO with baicalein prevented the elevation in renal 12-HETE production, the major murine metabolic product of 12/15-LO, in diabetic mice, and this effect was associated with decreased proteinuria, TBARs excretion and renal collagen deposition compared to untreated diabetic mice. Interestingly, the protective effects of baicalein were not noticed when only administered in the last 4 weeks of diabetes compared to untreated diabetic mice. WT diabetic mice displayed elevation in renal interleukin-6 (IL-6) levels and these changes were only reduced in diabetic mice treated with baicalein for 10 weeks (P<0.05). The anti-inflammatory effects of baicalein or 12/15-LO deficiency were further confirmed in lipopolysaccharide (LPS)-induced acute renal inflammation as inhibition of 12/15-LO reduced the elevation in renal soluble epoxide hydrolase expression in LPS-injected mice. These results suggest that increased 12/15-LO activity and 12-HETE production contribute to the elevation of renal oxidative stress, inflammation and injury in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Jessica Faulkner
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Chelsey Pye
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Ophthalmology and Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
| | - Ahmed A Elmarakby
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
30
|
Zuckerman JE, Gale A, Wu P, Ma R, Davis ME. siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Ther 2015; 25:53-64. [PMID: 25734248 PMCID: PMC4376487 DOI: 10.1089/nat.2014.0505] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/06/2015] [Indexed: 11/12/2022] Open
Abstract
There is an urgent need for new therapies that can halt or reverse the course of chronic kidney disease with minimal side-effect burden on the patient. Small interfering RNA (siRNA) nanoparticles are new therapeutic entities in clinical development that could be useful for chronic kidney disease treatment because they combine the tissue-specific targeting properties of nanoparticles with the gene-specific silencing effects of siRNA. Recent reports have emerged demonstrating that the kidney, specifically the glomerulus, is a readily accessible site for nanoparticle targeting. Here, we explore the hypothesis that intravenously administered polycationic cyclodextrin nanoparticles containing siRNA (siRNA/CDP-NPs) can be used for delivery of siRNA to the glomerular mesangium. We demonstrate that siRNA/CDP-NPs localize to the glomerular mesangium with limited deposition in other areas of the kidney after intravenous injection. Additionally, we report that both mouse and human mesangial cells rapidly internalize siRNA/CDP-NPs in vitro and that nanoparticle uptake can be enhanced by attaching the targeting ligands mannose or transferrin to the nanoparticle surface. Lastly, we show knockdown of mesangial enhanced green fluorescent protein expression in a reporter mouse strain following iv treatment with siRNA/CDP-NPs. Altogether, these data demonstrate the feasibility of mesangial targeting using intravenously administered siRNA/CDP-NPs.
Collapse
Affiliation(s)
| | - Aaron Gale
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Peiwen Wu
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rong Ma
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
31
|
Shrestha K, Lukasik K, Baufeld A, Vanselow J, Moallem U, Meidan R. Regulation of ovulatory genes in bovine granulosa cells: lessons from siRNA silencing of PTGS2. Reproduction 2015; 149:21-9. [DOI: 10.1530/rep-14-0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin endoperoxide synthase-2 (PTGS2), tumour necrosis factor-alpha-induced protein-6 (TNFAIP6), pentraxin-3 (PTX3), epidermal growth factor-like factors: amphiregulin (AREG) and epiregulin (EREG) are essential for successful ovulation. In this study, we compared the induction of these ovulatory genes in bovine granulosa cells (GCs) in vivo (after LH surge) and in vitro (forskolin (FRS) treatment). These genes were markedly stimulated in GCs isolated from cows 21 h after LH-surge. In isolated GCs, FRS induced a distinct temporal profile for each gene. Generally, there was a good agreement between the in vivo and in vitro inductions of these genes except for PTX3. Lack of PTX3 induction in isolated GCs culture suggests that other follicular compartments may mediate its induction by LH. Next, to study the role of PTGS2 and prostaglandins (PGs) in the cascade of ovulatory genes, PTGS2 was silenced with siRNA. PTGS2 siRNA caused a marked and specific knockdown of PTGS2 mRNA and PGE2 production (70% compared with scrambled siRNA) in bovine GCs. Importantly, PTGS2 silencing also reduced AREG, EREG and TNFAIP6 mRNA levels but not PTX3. Exogenous PGE2 increased AREG, EREG and TNFAIP6 mRNA levels, further confirming that these genes are prostanoid dependent. A successful and specific knockdown of PTGS2 was also achieved in endometrial cells (EndoCs) expressing PTGS2. Then, cholesterol-conjugated PTGS2 (chol-PTGS2) siRNA that facilitates cells' entry was investigated. In EndoCs, but not in GCs, chol-PTGS2 siRNA succeeded to reduce PTGS2 and PGE2 levels even without transfection reagent. PTGS2 knockdown is a promising tool to critically examine the functions of PTGS2 in the reproductive tract.
Collapse
|
32
|
Park JT, Kato M, Lanting L, Castro N, Nam BY, Wang M, Kang SW, Natarajan R. Repression of let-7 by transforming growth factor-β1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am J Physiol Renal Physiol 2014; 307:F1390-403. [PMID: 25354942 DOI: 10.1152/ajprenal.00458.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Accumulation of mesangial extracellular matrix (ECM) proteins such as collagen type 1-α2 (Col1a2) and collagen type 4-α1 (Col4a1) is a key feature of diabetic nephropathy (DN). Transforming growth factor (TGF)-β1 plays important roles in ECM accumulation in DN, and evidence shows a mediatory role for microRNAs. In the present study, we found that microRNA let-7 family members (let-7b/c/d/g/i) were downregulated in TGF-β-treated mouse mesangial cells (MMCs) along with upregulation of Col1a2 and Col4a1. Ectopic expression of let-7b in TGF-β-treated MMCs attenuated Col1a2 and Col4a1 upregulation. Conversely, let-7b inhibitors increased Col1a2 and Col4a1 levels. Cotransfection of MMCs with mouse Col1a2 or Col4a1 3'-untranslated region luciferase constructs and let-7b inhibitors increased luciferase activity. However, constructs with let-7 target site mutations were unresponsive to TGF-β. TGF-β-induced 3'-untranslated region activity was attenuated by let-7b mimics, suggesting that Col1a2 and Col4a1 are direct targets of let-7b. In addition, Lin28b, a negative regulator of let-7 biogenesis, was upregulated in TGF-β-treated MMCs. Luciferase assays showed that the Lin28b promoter containing the Smad-binding element (SBE) responded to TGF-β, which was abolished in constructs without SBE. Chromatin immunoprecipitation assays showed TGF-β-induced enrichment of Smad2/3 at the Lin28b promoter, together suggesting that Lin28b is transcriptionally induced by TGF-β through SBE. Furthermore, let-7b levels were decreased, whereas Lin28b, Col1a2, and Col4a1 levels were increased, in glomeruli of diabetic mice compared with nondiabetic control mice, demonstrating the in vivo relevance of this Lin28/let-7/collagen axis. These results identify Lin28 as a new TGF-β target gene and suggest a novel role for the Lin28/let-7 pathway in controlling TGF-β-induced collagen accumulation in DN.
Collapse
Affiliation(s)
- Jung Tak Park
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea; and Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Mitsuo Kato
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Linda Lanting
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Nancy Castro
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea; and
| | - Mei Wang
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea; and
| | - Rama Natarajan
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
33
|
Gao S, Hein S, Dagnæs-Hansen F, Weyer K, Yang C, Nielsen R, Christensen EI, Fenton RA, Kjems J. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Am J Cancer Res 2014; 4:1039-51. [PMID: 25157280 PMCID: PMC4142293 DOI: 10.7150/thno.7866] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/28/2014] [Indexed: 12/05/2022] Open
Abstract
RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.
Collapse
|
34
|
Zhang H, Zhao T, Gong Y, Dong X, Zhang W, Sun S, Wang H, Gu Y, Lu X, Yan M, Li P. Attenuation of diabetic nephropathy by Chaihuang-Yishen granule through anti-inflammatory mechanism in streptozotocin-induced rat model of diabetics. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:556-564. [PMID: 24269779 DOI: 10.1016/j.jep.2013.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/30/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medical herbs have been used in China for a long time to treat different diseases. Based on traditional Chinese medicine (TCM) principle, Chaihuang-Yishen granule (CHYS) was developed and has been employed clinically to treat chronic kidney disease including diabetic nephropathy (DN). The present study was designed to investigate its mechanism of action in treatment of DN. MATERIALS AND METHODS Diabetic rats were established by having a right uninephrectomy plus a single intraperitoneal injection of STZ. Rats were divided into four groups of sham, diabetes, diabetes with CHYS and diabetes with fosinopril. CHYS and fosinopril were given to rats by gavage for 20 weeks. Samples from blood, urine and kidney were collected for biochemical, histological, immunohistochemical and molecular analyses. RESULTS Rats treated with CHYS showed reduced 24h urinary protein excretion, decreased serum TC and TG levels, but CHYS treatment did not affect blood glucose level. Glomerular mesangial expansion and tubulointerstitial fibrosis in diabetic rats were significantly alleviated by CHYS treatment. Moreover, CHYS administration markedly reduced mRNA levels of NF-κB p65 and TGF-β1, as well as decreased protein levels of NF-κB p65, MCP-1, TNF-α and TGF-β1 in the kidney of diabetic rats. CONCLUSIONS CHYS ameliorates renal injury in diabetic rats through reduction of inflammatory cytokines and their intracellular signaling.
Collapse
Affiliation(s)
- Haojun Zhang
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tingting Zhao
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuewen Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Xi Dong
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weiku Zhang
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Sifan Sun
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hua Wang
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanting Gu
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoguang Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meihua Yan
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
35
|
Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int 2013; 85:362-73. [PMID: 24088954 PMCID: PMC3946617 DOI: 10.1038/ki.2013.387] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms such as chromatin histone H3 lysine methylation and acetylation have been implicated in diabetic vascular complications. However, histone modification profiles at pathologic genes associated with diabetic nephropathy in vivo and their regulation by the angiotensin II type 1 receptor (AT1R) are not clear. Here we tested whether treatment of type 2 diabetic db/db mice with the AT1R blocker Losartan not only ameliorates diabetic nephropathy, but also reverses epigenetic changes. As expected, the db/db mice had increased blood pressure, mesangial hypertrophy, proteinuria and glomerular expression of RAGE and PAI-1 versus control db/+ mice. This was associated with increased RNA Polymerase II recruitment and permissive histone marks as well as decreased repressive histone marks at these genes, and altered expression of relevant histone modification enzymes. Increased MCP-1 mRNA levels were not associated with such epigenetic changes, suggesting post-transcriptional regulation. Losartan attenuated key parameters of diabetic nephropathy and gene expression, and reversed some but not all the epigenetic changes in db/db mice. Losartan also attenuated increased H3K9/14Ac at RAGE, PAI-1 and MCP-1 promoters in mesangial cells cultured under diabetic conditions. Our results provide novel information about the chromatin state at key pathologic genes in vivo in diabetic nephropathy mediated in part by AT1R. Thus combination therapies targeting epigenetic regulators and AT1R could be evaluated for more effective treatment of diabetic nephropathy.
Collapse
|
36
|
Ambardekar VV, Wakaskar RR, Sharma B, Bowman J, Vayaboury W, Singh RK, Vetro JA. The efficacy of nuclease-resistant Chol-siRNA in primary breast tumors following complexation with PLL-PEG(5K). Biomaterials 2013; 34:4839-48. [PMID: 23557861 DOI: 10.1016/j.biomaterials.2013.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Modifying the sense strand of nuclease-resistant siRNA with 3'-cholesterol (Chol-*siRNA) increases mRNA suppression after i.v. administration but with relatively low efficacy. We previously found evidence in vitro that suggests complexation of Chol-siRNA with PLL-PEG(5K), a block copolymer of poly-l-lysine and 5 kDa polyethylene glycol, may increase the efficacy of Chol-siRNA in vivo in a PLL block length-dependent manner. In this study, the extent that polyplexes of PLL10-PEG(5K), PLL30-PEG(5K), and PLL50-PEG(5K) protect complexed Chol-siRNA in high concentrations of murine serum and affect the activity of Chol-*siRNA in murine 4T1 breast tumor epithelial cells in vitro and in primary orthotopic tumors of 4T1 was compared. PLL-PEG(5K) required 3'-Chol to protect full-length siRNA from nuclease degradation in 90% (v/v) murine serum and protection was increased by increasing PLL block length and nuclease resistance of Chol-siRNA. Polyplexes of Chol-*siLuc suppressed stably expressed luciferase in 4T1-Luc cells to different levels in vitro where PLL30 > PLL50 > PLL10. In contrast, only polyplexes of Chol-*siLuc and PLL30-PEG(5K) or PLL50-PEG(5K) suppressed high levels of luciferase in primary orthotopic tumors of 4T1-Luc after i.v. administration, whereas polyplexes of Chol-*siLuc and PLL10-PEG(5K), inactive Chol-*siCtrl polyplexes of PLL-PEG(5K), or Chol-*siLuc alone had no detectable activity. As a whole, these results indicate that polyplexes of PLL-PEG(5K) increase the efficacy of nuclease-resistant Chol-siRNA in primary breast tumors after i.v. administration in a PLL block length-dependent manner. Thus, complexation of Chol-siRNA with PLL-PEG(5K) may be a promising approach to increase the efficacy of Chol-siRNA in a wide range of primary tumors, metastases, and other tissues but likely requires a PLL block length that balances polymer-related adverse effects, Chol-siRNA bioavailability, and subsequent activity in the target cell.
Collapse
Affiliation(s)
- Vishakha V Ambardekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia 2013; 56:444-56. [PMID: 23135222 DOI: 10.1007/s00125-012-2768-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/09/2012] [Indexed: 12/23/2022]
Abstract
There is no cure for diabetic nephropathy and the molecular mechanisms underlying disease aetiology remain poorly understood. While current paradigms for clinical management of diabetic nephropathy are useful in delaying disease onset and preventing its progression, they do not do so for a significant proportion of diabetic individuals, who eventually end up developing renal failure. Thus, novel therapeutic targets are needed for the treatment and prevention of the disease. MicroRNAs (miRNAs), a class of non-coding RNAs that negatively regulate gene expression, have recently been identified as attractive targets for therapeutic intervention. It is widely recognised that dysregulation of miRNA expression or action contributes to the development of a number of different human diseases, and evidence of a role for miRNAs in the aetiology of diabetic nephropathy is emerging. The discovery that modulation of miRNA expression in vivo is feasible, combined with recent results from successful clinical trials using this technology, opens the way for future novel therapeutic applications. For instance, inhibition of miRNAs that are commonly upregulated in diabetic nephropathy decreases albuminuria and mesangial matrix accumulation in animal models, suggesting that a therapeutic agent against these molecules may help to prevent the development of diabetic nephropathy. Certain challenges, including the development of safe and reliable delivery systems, remain to be overcome before miRNA-based therapeutics become a reality. However, the findings accumulated to date, in conjunction with newly emerging results, are expected to yield novel insights into the complex pathogenesis of diabetic nephropathy, and may eventually lead to the identification of improved therapeutic targets for treatment of this disease.
Collapse
Affiliation(s)
- M L Alvarez
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 North Fifth St, Phoenix, AZ 85004, USA
| | | |
Collapse
|
38
|
Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 2013; 304:F601-13. [PMID: 23235480 PMCID: PMC3602713 DOI: 10.1152/ajprenal.00523.2012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/08/2012] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced expression of plasminogen activator inhibitor-1 (PAI-1) and p21 in renal mesangial cells (MCs) plays a major role in glomerulosclerosis and hypertrophy, key events in the pathogenesis of diabetic nephropathy. However, the involvement of histone acetyl transferases (HATs) and histone deacetylases (HDACs) that regulate epigenetic histone lysine acetylation, and their interaction with TGF-β1-responsive transcription factors, are not clear. We evaluated the roles of histone acetylation, specific HATs, and HDACs in TGF-β1-induced gene expression in rat mesangial cells (RMCs) and in glomeruli from diabetic mice. Overexpression of HATs CREB binding protein (CBP) or p300, but not p300/CBP-activating factor, significantly enhanced TGF-β1-induced PAI-1 and p21 mRNA levels as well as transactivation of their promoters in RMCs. Conversely, they were significantly attenuated by HAT domain mutants of CBP and p300 or overexpression of HDAC-1 and HDAC-5. Chromatin immunoprecipitation assays showed that TGF-β1 treatment led to a time-dependent enrichment of histone H3-lysine9/14-acetylation (H3K9/14Ac) and p300/CBP occupancies around Smad and Sp1 binding sites at the PAI-1 and p21 promoters. TGF-β1 also enhanced the interaction of p300 with Smad2/3 and Sp1 and increased Smad2/3 acetylation. High glucose-treated RMCs exhibited increased PAI-1 and p21 levels, and promoter H3K9/14Ac, which were blocked by TGF-β1 antibodies. Furthermore, increased PAI-1 and p21 expression was associated with elevated promoter H3K9/14Ac levels in glomeruli from diabetic mice. Thus TGF-β1-induced PAI-1 and p21 expression involves interaction of p300/CBP with Smads and Sp1, and increased promoter access via p300/CBP-induced H3K9/14Ac. This in turn can augment glomerular dysfunction linked to diabetic nephropathy.
Collapse
Affiliation(s)
- Hang Yuan
- Dept. of Diabetes, Beckman Research Institute of the City of Hope, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kriska T, Cepura C, Magier D, Siangjong L, Gauthier KM, Campbell WB. Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2428-38. [PMID: 22467300 DOI: 10.1152/ajpheart.01120.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mouse arteries, Alox15 [leukocyte-type 12/15-lipoxygenase (LO)] is assumed to regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids that mediate the endothelium-dependent relaxations to AA and acetylcholine (ACh). We used Alox15(-/-) mice, made by targeted disruption of the Alox15 gene, to characterize its role in the regulation of blood pressure and vascular tone. Systolic blood pressures did not differ between wild-type (WT) and Alox15(-/-) mice between 8-12 wk of age, but Alox15(-/-) mice exhibited resistance toward both N(G)-nitro-L-arginine-methyl ester (L-NAME)- and deoxycorticosterone acetate (DOCA)/high-salt-induced hypertension. ACh relaxed mesenteric arteries and abdominal aortas of WT and Alox15(-/-) mice to an identical extent. The LO inhibitor nordihydroguaiaretic acid attenuated the ACh relaxations by 35% in arteries from both WT and Alox15(-/-) mice. Reverse-phase HPLC analysis of [(14)C]AA metabolites in aorta and peritoneal macrophages (PM) revealed differences. Unlike PM, aorta tissue did not produce detectable amounts of 15-hydroxyeicosatetraenoic acid. Although Alox15 mRNA was detected in aorta, high-resolution gel electrophoresis with immunodetection revealed no Alox15 protein expression. Unlike aorta, Alox15 protein was detected in PM, intestine, fat, lung, spleen, and skin from WT, but not Alox15(-/-), mice. Injection of WT PM, a primary source of Alox15 protein, into Alox15(-/-) mice abolished their resistance toward L-NAME-induced hypertension. On the other hand, WT mice acquired resistance to L-NAME-induced hypertension after depletion of macrophages by clodronate injection. These studies indicate that Alox15 is involved in development of experimental hypertension by altering macrophage functions but not via synthesis of the vasoactive LO metabolites in mouse arteries.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Mong MC, Yin MC. Nuclear factor κB-dependent anti-inflammatory effects of s-allyl cysteine and s-propyl cysteine in kidney of diabetic mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3158-3165. [PMID: 22394022 DOI: 10.1021/jf3002685] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Renal protection of s-allyl cysteine (SAC) and s-propyl cysteine (SPC) in diabetic mice against inflammatory injury was examined. Each agent at 0.5 and 1 g/L was added to the drinking water for 10 weeks. SAC or SPC intake significantly reduced the plasma blood urea nitrogen level and increased creatinine clearance (P < 0.05). These treatments significantly lowered the renal level of reactive oxygen species, nitric oxide, interleukin-6, tumor necrosis factor-α, and prostaglandin E(2) in diabetic mice (P < 0.05). Renal mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, protein kinase C (PKC)-α, PKC-β, and PKC-γ was enhanced in diabetic mice (P < 0.05); however, SAC or SPC treatments dose dependently declined mRNA expression of these factors (P < 0.05). Nuclear factor κB (NF-κB) activity, mRNA expression, and protein production in kidney of diabetic mice were significantly increased (P < 0.05). SAC or SPC intake dose dependently suppressed NF-κB activity, NF-κB p65 mRNA expression, and protein level (P < 0.05). Diabetes also enhanced renal protein expression of mitogen-activated protein kinase (P < 0.05). SAC and SPC, only at a high dose, significantly suppressed protein production of p-p38 and p-ERK1/2 (P < 0.05). Renal mRNA expression and protein generation of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ were significantly down-regulated in diabetic mice (P < 0.05), but the intake of SAC or SPC at high dose up-regulated PPAR-α and PPAR-γ (P < 0.05). These findings support that SAC and SPC are potent anti-inflammatory agents against diabetic kidney diseases.
Collapse
Affiliation(s)
- Mei-chin Mong
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
| | | |
Collapse
|
41
|
RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J Virol 2012; 86:5660-73. [PMID: 22438545 DOI: 10.1128/jvi.06338-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.
Collapse
|
42
|
Shevalye H, Lupachyk S, Watcho P, Stavniichuk R, Khazim K, Abboud HE, Obrosova IG. Prediabetic nephropathy as an early consequence of the high-calorie/high-fat diet: relation to oxidative stress. Endocrinology 2012; 153:1152-61. [PMID: 22234462 PMCID: PMC3281531 DOI: 10.1210/en.2011-1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study evaluated early renal functional, structural, and biochemical changes in high-calorie/high-fat diet fed mice, a model of prediabetes and alimentary obesity. Male C57BL6/J mice were fed normal (11 kcal% fat) or high-fat (58 kcal% fat) diets for 16 wk. Renal changes were evaluated by histochemistry and immunohistochemistry, Western blot analysis, ELISA, enzymatic assays, and chemiluminometry. High-fat diet consumption led to increased body and kidney weights, impaired glucose tolerance, hyperinsulinemia, polyuria, a 2.7-fold increase in 24-h urinary albumin excretion, 20% increase in renal glomerular volume, 18% increase in renal collagen deposition, and 8% drop of glomerular podocytes. It also resulted in a 5.3-fold increase in urinary 8-isoprostane excretion and a 38% increase in renal cortex 4-hydroxynonenal adduct accumulation. 4-hydroxynonenal adduct level and immunoreactivity or Sirtuin 1 expression in renal medulla were not affected. Studies of potential mechanisms of the high-fat diet induced renal cortex oxidative injury revealed that whereas nicotinamide adenine dinucleotide phosphate reduced form oxidase activity only tended to increase, 12/15-lipoxygenase was significantly up-regulated, with approximately 12% increase in the enzyme protein expression and approximately 2-fold accumulation of 12(S)-hydroxyeicosatetraenoic acid, a marker of 12/15-lipoxygenase activity. Accumulation of periodic acid-Schiff -positive material, concentrations of TGF-β, sorbitol pathway intermediates, and expression of nephrin, CAAT/enhancer-binding protein homologous protein, phosphoeukaryotic initiation factor-α, and total eukaryotic initiation factor-α in the renal cortex were indistinguishable between experimental groups. Vascular endothelial growth factor concentrations were reduced in high-fat diet fed mice. In conclusion, systemic and renal cortex oxidative stress associated with 12/15-lipoxygenase overexpression and activation is an early phenomenon caused by high-calorie/high-fat diet consumption and a likely contributor to kidney disease associated with prediabetes and alimentary obesity.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 2012; 23:458-69. [PMID: 22223877 DOI: 10.1681/asn.2011050485] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TGF-β1 upregulates microRNA-192 (miR-192) in cultured glomerular mesangial cells and in glomeruli from diabetic mice. miR-192 not only increases collagen expression by targeting the E-box repressors Zeb1/2 but also modulates other renal miRNAs, suggesting that it may be a therapeutic target for diabetic nephropathy. We evaluated the efficacy of a locked nucleic acid (LNA)-modified inhibitor of miR-192, designated LNA-anti-miR-192, in mouse models of diabetic nephropathy. LNA-anti-miR-192 significantly reduced levels of miR-192, but not miR-194, in kidneys of both normal and streptozotocin-induced diabetic mice. In the kidneys of diabetic mice, inhibition of miR-192 significantly increased Zeb1/2 and decreased gene expression of collagen, TGF-β, and fibronectin; immunostaining confirmed the downregulation of these mediators of renal fibrosis. Furthermore, LNA-anti-miR-192 attenuated proteinuria in these diabetic mice. In summary, the specific reduction of renal miR-192 decreases renal fibrosis and improves proteinuria, lending support for the possibility of an anti-miRNA-based translational approach to the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Sumanth Putta
- Department of Diabetes, Division of Molecular Diabetes Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
44
|
Al-Qadi S, Grenha A, Remuñán-López C. Chitosan and its derivatives as nanocarriers for siRNA delivery. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Zhao T, Zhang H, Zhao T, Zhang X, Lu J, Yin T, Liang Q, Wang Y, Luo G, Lan H, Li P. Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic kidney disease. J Pharm Biomed Anal 2011; 60:32-43. [PMID: 22153801 DOI: 10.1016/j.jpba.2011.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/15/2022]
Abstract
The pathological development of diabetic kidney disease (DKD) might involve metabolic perturbations in kidney tissue. The present study was designed to detect the systematic alterations of renal cortex metabolites thereby exploring the related mechanisms of DKD development and fosinopril treatment. Based on combined gas chromatography/time-of-flight mass spectrometry (GC-TOF MS) and liquid chromatography/time-of-flight mass spectrometry (UPLC-TOF MS) data acquiring platform, we have performed a metabolomic analysis of perfused renal cortex samples from the diabetic rats induced by streptozocin and treated with or without fosinopril, a pharmacological inhibitor of angiotensin II converting enzyme (ACEI). We identified a number of abnormal metabolites in the diabetic kidney, including groups of amino acids, carbohydrates, polyols, lyso-phospholipids, glucuronides and other unidentified metabolites. Of them, an increase in intrarenal organic toxins including uremic toxins, glucuronides and glucotocixity-associated metabolites are highly correlated with diabetic kidney injury including 24h urinary protein levels and tubulointerstitial injury index. Treatment with fosinopril significantly attenuated diabetic kidney injury, and simultaneously blocked the intrarenal accumulation of these organic toxins, especially hippurate and glucuronides. These results indicate that intrarenal accumulation of organic toxins may be significant for the development of DKD and the related mechanisms deserve to be further investigated.
Collapse
Affiliation(s)
- Tie Zhao
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
McMahon KM, Mutharasan RK, Tripathy S, Veliceasa D, Bobeica M, Shumaker DK, Luthi AJ, Helfand BT, Ardehali H, Mirkin CA, Volpert O, Thaxton CS. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. NANO LETTERS 2011; 11:1208-14. [PMID: 21319839 PMCID: PMC4077779 DOI: 10.1021/nl1041947] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery.
Collapse
Affiliation(s)
- Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
| | - R. Kannan Mutharasan
- Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL 60611
| | - Sushant Tripathy
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
| | - Dorina Veliceasa
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
| | - Mariana Bobeica
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
| | - Dale K. Shumaker
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Ave., Chicago, IL 60611
| | - Andrea J. Luthi
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, IL 60208
| | - Brian T. Helfand
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL 60611
| | - Chad A. Mirkin
- Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Ave., Chicago, IL 60611
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, IL 60208
| | - Olga Volpert
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., Tarry 16-703, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, 303 E. Superior Ave., Chicago, IL 60611
- Institute for BioNanotechnology and Medicine (IBNAM), 303 E. Superior Ave., 11 Floor, Chicago, IL 60611
- Northwestern University, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
48
|
Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Stevens MJ, Nadler JL, Obrosova IG. Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radic Biol Med 2010; 49:1036-45. [PMID: 20599608 PMCID: PMC3056543 DOI: 10.1016/j.freeradbiomed.2010.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/08/2010] [Accepted: 06/14/2010] [Indexed: 01/15/2023]
Abstract
This study evaluated the role of 12/15-lipoxygenase, which converts arachidonic acid to 12(S)- and 15(S)-hydroxyeicosatetraenoic acids, in nitrosative stress in the peripheral nervous system and peripheral prediabetic and diabetic neuropathies. The experiments were performed in C57BL6/J mice made diabetic with streptozotocin or fed a high-fat diet and in human Schwann cells cultured in 5.5 or 30 mM glucose. 12/15-Lipoxygenase overexpression and activation were present in sciatic nerve and spinal cord of diabetic and high-fat diet-fed mice, as well as in human Schwann cells cultured in high concentrations of D-, but not L-glucose. 12/15-Lipoxygenase inhibition by cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (8 mg kg(-1) day(-1) sc, for 4 weeks after 12 weeks without treatment) alleviated the accumulation of nitrated proteins in the sciatic nerve and spinal cord, and large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss. 12/15-Lipoxygenase gene deficiency alleviated nitrosative stress and nerve conduction deficit, but not small sensory fiber neuropathy, in high-fat diet-fed mice. In conclusion, 12/15-lipoxygenase is implicated in nitrosative stress and peripheral neuropathy in mouse models of type 1 and early type 2 diabetes. Its presence in human Schwann cells and upregulation by high glucose suggest a potential involvement in human disease.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Obrosova IG, Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Nadler JL, Schmidt RE. Different roles of 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1436-47. [PMID: 20724598 DOI: 10.2353/ajpath.2010.100178] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Up-regulation of 12/15-lipoxygenase, which converts arachidonic acid to 12(S)- and 15(S)-hydroxyeicosatetraenoic acids, causes impaired cell signaling, oxidative-nitrosative stress, and inflammation. This study evaluated the role for 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. Control and streptozotocin-diabetic wild-type and 12/15-lipoxygenase-deficient mice were maintained for 14 to 16 weeks. 12/15-lipoxygenase gene deficiency did not affect weight gain or blood glucose concentrations. Diabetic wild-type mice displayed increased sciatic nerve 12/15-lipoxygenase and 12(S)-hydroxyeicosatetraenoic acid levels. 12/15-lipoxygenase deficiency prevented or alleviated diabetes-induced thermal hypoalgesia, tactile allodynia, motor and sensory nerve conduction velocity deficits, and reduction in tibial nerve myelinated fiber diameter, but not intraepidermal nerve fiber loss. The frequencies of superior mesenteric-celiac ganglion neuritic dystrophy, the hallmark of diabetic autonomic neuropathy in mouse prevertebral sympathetic ganglia, were increased 14.8-fold and 17.2-fold in diabetic wild-type and 12/15-lipoxygenase-deficient mice, respectively. In addition, both diabetic groups displayed small (<1%) numbers of degenerating sympathetic neurons. In conclusion, whereas 12/15-lipoxygenase up-regulation provides an important contribution to functional changes characteristic for both large and small fiber peripheral diabetic neuropathies and axonal atrophy of large myelinated fibers, its role in small sensory nerve fiber degeneration and neuritic dystrophy and neuronal degeneration characteristic for diabetic autonomic neuropathy is minor. This should be considered in the selection of endpoints for future clinical trials of 12/15-lipoxygenase inhibitors.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Shevalye H, Maksimchyk Y, Watcho P, Obrosova IG. Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1020-7. [PMID: 20621183 DOI: 10.1016/j.bbadis.2010.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022]
Abstract
Poly(ADP-ribose)polymerase (PARP) inhibitors prevent or alleviate diabetic nephropathy. This study evaluated the role for PARP-1 in diabetic kidney disease using the PARP-1-deficient mouse. PARP-1-/- and the wild-type (129S1/SvImJ) mice were made diabetic with streptozotocin, and were maintained for 12 weeks. Final blood glucose concentrations were increased ∼ 3.7-fold in both diabetic groups. PARP-1 protein expression (Western blot analysis) in the renal cortex was similar in non-diabetic and diabetic wild-type mice (100% and 107%) whereas all knockouts were PARP-1-negative. PARP-1 gene deficiency reduced urinary albumin (ELISA) and protein excretion prevented diabetes-induced kidney hypertrophy, and decreased mesangial expansion and collagen deposition (both assessed by histochemistry) as well as fibronectin expression. Renal podocyte loss (immunohistochemistry) and nitrotyrosine and transforming growth factor-β₁ accumulations (both by ELISA) were slightly lower in diabetic PARP-1-/- mice, but the differences with diabetic wild-type group did not achieve statistical significance. In conclusion, PARP-1-/- gene deficiency alleviates although does not completely prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | |
Collapse
|