1
|
Leija RG, Curl CC, Arevalo JA, Osmond AD, Duong JJ, Huie MJ, Masharani U, Brooks GA. Enteric and systemic postprandial lactate shuttle phases and dietary carbohydrate carbon flow in humans. Nat Metab 2024; 6:670-677. [PMID: 38388706 PMCID: PMC11052717 DOI: 10.1038/s42255-024-00993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Dietary glucose in excess is stored in the liver in the form of glycogen. As opposed to direct conversion of glucose into glycogen, the hypothesis of the postprandial lactate shuttle (PLS) proposes that dietary glucose uptake is metabolized to lactate in the gut, thereby being transferred to the liver for glycogen storage. In the present study, we provide evidence of a PLS in young healthy men and women. Overnight fasted participants underwent an oral glucose tolerance test, and arterialized lactate concentration and rate of appearance were determined. The concentration of lactate in the blood rose before the concentration of glucose, thus providing evidence of an enteric PLS. Secondary increments in the concentration of lactate in the blood and its rate of appearance coincided with those of glucose, which indicates the presence of a larger, secondary, systemic PLS phase driven by hepatic glucose release. The present study challenges the notion that lactate production is the result of hypoxia in skeletal muscles, because our work indicates that glycolysis proceeds to lactate in fully aerobic tissues and dietary carbohydrate is processed via lactate shuttling. Our study proposes that, in humans, lactate is a major vehicle for carbohydrate carbon distribution and metabolism.
Collapse
Affiliation(s)
- Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Melvin J Huie
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Umesh Masharani
- Department of Medicine, University of California, San Francisco, CA, USA
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Sostaric S, Petersen AC, Goodman CA, Gong X, Aw TJ, Brown MJ, Garnham A, Steward CH, Murphy KT, Carey KA, Leppik J, Fraser SF, Cameron-Smith D, Krum H, Snow RJ, McKenna MJ. Oral digoxin effects on exercise performance, K + regulation and skeletal muscle Na + ,K + -ATPase in healthy humans. J Physiol 2022; 600:3749-3774. [PMID: 35837833 PMCID: PMC9541254 DOI: 10.1113/jp283017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract We investigated whether digoxin lowered muscle Na+,K+‐ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak‐workrate, 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% VO2peak and 67% VO2peak, 90% VO2peak to fatigue) trials using a double‐blind, crossover, randomised, counter‐balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% VO2peak, fatigue, 3 h after exercise). In DIG, in resting muscle, [3H]‐ouabain binding site content (OB‐Fab) was unchanged; however, bound‐digoxin removal with Digibind revealed total ouabain binding (OB+Fab) increased (8.2%, P = 0.047), indicating 7.6% NKA–digoxin occupancy. Quadriceps muscle strength declined in DIG (−4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+]a were unchanged, whilst [K+]v was lower (P = 0.042) and [K+]a‐v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB‐Fab was increased at 67% VO2peak (per wet‐weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+]a, [K+]v and [K+]a‐v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+]a, [K+]v and [K+]a‐v were unchanged; with exercise (main effects), plasma [K+]a, [K+]v, [K+]a‐v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA–digoxin occupancy, with K+ disturbances and fatiguability unchanged.
![]() Key points The Na+,K+‐ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+]), excitability and plasma [K+] and thereby also in modulating fatigue during intense contractions.
NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3H]‐ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.
Collapse
Affiliation(s)
- Simon Sostaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Craig A Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Xiaofei Gong
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Tai-Juan Aw
- Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia
| | - Malcolm J Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Collene H Steward
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kate T Murphy
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Kate A Carey
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - James Leppik
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Steve F Fraser
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - David Cameron-Smith
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Henry Krum
- Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia
| | - Rodney J Snow
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
4
|
YAMANAKA R, YUNOKI T, ARIMITSU T, YANO T. Effect of manipulation of fatigue sense on ventilatory response during recovery after intense exercise. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.20.04444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
A century of exercise physiology: key concepts in muscle cell volume regulation. Eur J Appl Physiol 2022; 122:541-559. [PMID: 35037123 DOI: 10.1007/s00421-021-04863-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Skeletal muscle cells can both gain and lose volume during periods of exercise and rest. Muscle cells do not behave as perfect osmometers because the cell volume changes are less than predicted from the change in extracellular osmolality. Therefore, there are mechanisms involved in regulating cell volume, and they are different for regulatory volume decreases and regulatory volume increases. Also, after an initial rapid change in cell volume, there is a gradual and partial recovery of cell volume that is effected by ion and water transport mechanisms. The mechanisms have been studied in non-contracting muscle cells, but remain to be fully elucidated in contracting muscle. Changes in muscle cell volume are known to affect the strength of contractile activity as well as anabolic/catabolic signaling, perhaps indicating that cell volume should be a regulated variable in skeletal muscle cells. Muscles contracting at moderate to high intensity gain intracellular volume because of increased intracellular osmolality. Concurrent increases in interstitial (extracellular) muscle volume occur from an increase in osmotically active molecules and increased vascular filtration pressure. At the same time, non-contracting muscles lose cell volume because of increased extracellular (blood) osmolality. This review provides the physiological foundations and highlights key concepts that underpin our current understanding of volume regulatory processes in skeletal muscle, beginning with consideration of osmosis more than 200 years ago and continuing through to the process of regulatory volume decrease and regulatory volume increase.
Collapse
|
6
|
Steward CH, Smith R, Stepto NK, Brown M, Ng I, McKenna MJ. A single oral glucose load decreases arterial plasma [K + ] during exercise and recovery. Physiol Rep 2021; 9:e14889. [PMID: 34110701 PMCID: PMC8191174 DOI: 10.14814/phy2.14889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
AIM We investigated whether acute carbohydrate ingestion reduced arterial potassium concentration ([K+ ]) during and after intense exercise and delayed fatigue. METHODS In a randomized, double-blind crossover design, eight males ingested 300 ml water containing 75 g glucose (CHO) or placebo (CON); rested for 60 min, then performed high-intensity intermittent cycling (HIIC) at 130% V ˙ O 2peak , comprising three 45-s exercise bouts (EB), then a fourth EB until fatigue. Radial arterial (a) and antecubital venous (v) blood was sampled at rest, before, during and after HIIC and analyzed for plasma ions and metabolites, with forearm arteriovenous differences (a-v diff) calculated to assess inactive forearm muscle effects. RESULTS Glucose ingestion elevated [glucose]a and [insulin]a above CON (p = .001), being, respectively, ~2- and ~5-fold higher during CHO at 60 min after ingestion (p = .001). Plasma [K+ ]a rose during and declined following each exercise bout in HIIC (p = .001), falling below baseline at 5 min post-exercise (p = .007). Both [K+ ]a and [K+ ]v were lower during CHO (p = .036, p = .001, respectively, treatment main effect). The [K+ ]a-v diff across the forearm widened during exercise (p = .001), returned to baseline during recovery, and was greater in CHO than CON during EB1, EB2 (p = .001) and EB3 (p = .005). Time to fatigue did not differ between trials. CONCLUSION Acute oral glucose ingestion, as used in a glucose tolerance test, induced a small, systemic K+ -lowering effect before, during, and after HIIC, that was detectable in both arterial and venous plasma. This likely reflects insulin-mediated, increased Na+ ,K+ -ATPase induced K+ uptake into non-contracting muscles. However, glucose ingestion did not delay fatigue.
Collapse
Affiliation(s)
| | - Robert Smith
- Institute for Health and SportVictoria UniversityMelbourneVICAustralia
- Department of AnaesthesiaWestern HospitalMelbourneVICAustralia
| | - Nigel K. Stepto
- Institute for Health and SportVictoria UniversityMelbourneVICAustralia
| | - Malcolm Brown
- Department of Biochemistry and PharmacologyUniversity of MelbourneMelbourneVICAustralia
| | - Irene Ng
- Department of Anaesthesia and Pain ManagementRoyal Melbourne HospitalMelbourneVICAustralia
| | | |
Collapse
|
7
|
Changes in the SID Actual and SID Effective Values in the Course of Respiratory Acidosis in Horses With Symptomatic Severe Equine Asthma-An Experimental Study. J Equine Vet Sci 2019; 78:107-111. [PMID: 31203972 DOI: 10.1016/j.jevs.2019.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/20/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022]
Abstract
Equine asthma syndrome is an allergic, inflammatory airway disease that usually affects older horses. Respiratory acidosis is an acid-base imbalance caused by alveolar hypoventilation. The acid-base balance may be assessed using the Henderson-Hasselbalch equation as well as the Stewart model. The authors hypothesized that systemic respiratory acidosis changes the ionic concentrations affecting water dissociation. The study group included 16 Warmblood, mixed breed horses of both sexes with a history of severe equine asthma, and 10 healthy horses were used as controls. Arterial and venous blood were collected from all the horses. The pH, pO2, and pCO2 and HCO3- were assessed in the arterial blood. Na, K, Cl, albumin, and Pinorganic (Pi) were assessed in the venous blood. The obtained results were used to calculate the anion gap (AG), modified AG, actual strong ion difference (SIDa), weak non-volatile acids, and effective strong ion difference (SIDe) values for all the horses. A systemic, compensatory respiratory acidosis was diagnosed in the study group. The concentration of Na in the blood serum in the study group was significantly higher, whereas the concentration of Cl was significantly lower than the values in the control group. The SIDa and SIDe values calculated in the horses from the study group were significantly higher than those in the control group. Significantly higher SIDa and SIDe values confirm the presence of ionic changes that affect water dissociation in the course of respiratory acidosis in horses. The SIDa and SIDe values may be useful in the diagnosis and treatment of respiratory acidosis in horses, which warrant further investigation.
Collapse
|
8
|
The Science and Translation of Lactate Shuttle Theory. Cell Metab 2018; 27:757-785. [PMID: 29617642 DOI: 10.1016/j.cmet.2018.03.008] [Citation(s) in RCA: 654] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Once thought to be a waste product of anaerobic metabolism, lactate is now known to form continuously under aerobic conditions. Shuttling between producer and consumer cells fulfills at least three purposes for lactate: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. "Lactate shuttle" (LS) concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signaling. In medicine, it has long been recognized that the elevation of blood lactate correlates with illness or injury severity. However, with lactate shuttle theory in mind, some clinicians are now appreciating lactatemia as a "strain" and not a "stress" biomarker. In fact, clinical studies are utilizing lactate to treat pro-inflammatory conditions and to deliver optimal fuel for working muscles in sports medicine. The above, as well as historic and recent studies of lactate metabolism and shuttling, are discussed in the following review.
Collapse
|
9
|
Effects of prolonged running in the heat and cool environments on selected physiological parameters and salivary lysozyme responses. J Exerc Sci Fit 2018. [PMID: 29541134 PMCID: PMC5812877 DOI: 10.1016/j.jesf.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction Lysozyme is one of the salivary antimicrobial proteins which act as the “first line of defence” at the mucosal surface. The effects of prolonged exercise in the hot and cool environments among recreational athletes on salivary lysozyme responses are very limited in the literature, especially in the Asian countries. Objective To determine the effects of prolonged running in the hot and cool environments on selected physiological parameters and salivary lysozyme responses among recreational athletes. Methods Randomised and cross-over study design. Thirteen male recreational athletes (age: 20.9 ± 1.3 years old) from Universiti Sains Malaysia participated in this study. They performed two separate running trials; 90 min running at 60% of their respective maximum oxygen uptake (V˙O2max) One running trial was performed in the hot (31ºC) while the other was in the cool (18ºC) environment and this sequence was randomised. Each running trial was started with a 5 min warm-up at 50% of participant's respective V˙O2max Recovery period between these two trials was one week. In the both trials, saliva samples, blood samples, heart rate, ratings of perceived exertion, skin and tympanic temperatures, oxygen consumption, nude body weight, room temperature, and relative humidity were collected. Results Participants' skin temperature, tympanic temperature, body weight changes, heart rate, ratings of perceived exertion, and plasma volume changes were significantly higher (p < 0.05) in the hot trial compared to the cool trial. Saliva flow rate was not significantly (p = 0.949) different between the hot (0.32 ± 0.08 ml/min) and cool (0.27 ± 0.05 ml/min) trials. However, in each trial, it significantly decreased (p < 0.05) at post-exercise as compared to pre-exercise but it returned to baseline value at 1 h post-exercise. In addition, there were no significant differences between and within hot and cool trials in salivary lysozyme concentration (p = 0.925; 4.79 ± 1.37 and 4.44 ± 1.11 μg/ml respectively) and secretion rate (p = 0.843; 1.67 ± 1.1 and 1.17 ± 1.0 μg/min respectively). Conclusion This study found similar lysozyme responses between both hot and cool trials. Thus, room/ambient temperature did not affect lysozyme responses among recreational athletes. Nevertheless, the selected physiological parameters were significantly affected by room temperature.
Collapse
|
10
|
Altarawneh MM, Petersen A, Smith R, Rouffet DM, Billaut F, Perry BD, Wyckelsma VL, Tobin A, McKenna MJ. Salbutamol effects on systemic potassium dynamics during and following intense continuous and intermittent exercise. Eur J Appl Physiol 2016; 116:2389-2399. [PMID: 27771799 DOI: 10.1007/s00421-016-3481-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Salbutamol inhalation is permissible by WADA in athletic competition for asthma management and affects potassium regulation, which is vital for muscle function. Salbutamol effects on arterial potassium concentration ([K+]a) during and after high-intensity continuous exercise (HIcont) and intermittent exercise comprising repeated, brief sprints (HIint), and on performance during HIint are unknown and were investigated. METHODS Seven recreationally active men participated in a double-blind, randomised, cross-over design, inhaling 1000 µg salbutamol or placebo. Participants cycled continuously for 5 min at 40 % [Formula: see text]O2peak and 60 % [Formula: see text]O2peak, then HIcont (90 s at 130 % [Formula: see text]O2peak), 20 min recovery, and then HIint (3 sets, 5 × 4 s sprints), with 30 min recovery. RESULTS Plasma [K+]a increased throughout exercise and subsequently declined below baseline (P < 0.001). Plasma [K+]a was greater during HIcont than HIint (P < 0.001, HIcont 5.94 ± 0.65 vs HIint set 1, 4.71 ± 0.40 mM); the change in [K+]a from baseline (Δ[K+]a) was 2.6-fold greater during HIcont than HIint (P < 0.001). The Δ[K+] throughout the trial was less with salbutamol than placebo (P < 0.001, treatment main effect, 0.03 ± 0.67 vs 0.22 ± 0.69 mM, respectively); and remained less after correction for fluid shifts (P < 0.001). The Δ[K+] during HIcont was less after salbutamol (P < 0.05), but not during HIint. Blood lactate, plasma pH, and the work output during HIint did not differ between trials. CONCLUSIONS Inhaled salbutamol modulated the [K+]a rise across the trial, comprising intense continuous and intermittent exercise and recovery, lowering Δ[K+] during HIcont. The limited [K+]a changes during HIint suggest that salbutamol is unlikely to influence systemic [K+] during periods of intense effort in intermittent sports.
Collapse
Affiliation(s)
- Muath M Altarawneh
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Aaron Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Robert Smith
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
- Department of Anaesthesia, Western Hospital, Melbourne, Australia
| | - David M Rouffet
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Francois Billaut
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
- Département de Kinésiologie, Université Laval, Québec, Canada
| | - Ben D Perry
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Antony Tobin
- Intensive Care Unit, St Vincent's Hospital, Melbourne, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Research Program, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.
| |
Collapse
|
11
|
Yunoki T, Matsuura R, Yamanaka R, Afroundeh R, Lian CS, Shirakawa K, Ohtsuka Y, Yano T. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Eur J Appl Physiol 2016; 116:1117-26. [PMID: 27055665 DOI: 10.1007/s00421-016-3374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Effort sense has been suggested to be involved in the hyperventilatory response during intense exercise (IE). However, the mechanism by which effort sense induces an increase in ventilation during IE has not been fully elucidated. The aim of this study was to determine the relationship between effort-mediated ventilatory response and corticospinal excitability of lower limb muscle during IE. METHODS Eight subjects performed 3 min of cycling exercise at 75-85 % of maximum workload twice (IE1st and IE2nd). IE2nd was performed after 60 min of resting recovery following 45 min of submaximal cycling exercise at the workload corresponding to ventilatory threshold. Vastus lateralis muscle response to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs), effort sense of legs (ESL, Borg 0-10 scale), and ventilatory response were measured during the two IEs. RESULTS The slope of ventilation (l/min) against CO2 output (l/min) during IE2nd (28.0 ± 5.6) was significantly greater than that (25.1 ± 5.5) during IE1st. Mean ESL during IE was significantly higher in IE2nd (5.25 ± 0.89) than in IE1st (4.67 ± 0.62). Mean MEP (normalized to maximal M-wave) during IE was significantly lower in IE2nd (66 ± 22 %) than in IE1st (77 ± 24 %). The difference in mean ESL between the two IEs was significantly (p < 0.05, r = -0.82) correlated with the difference in mean MEP between the two IEs. CONCLUSIONS The findings suggest that effort-mediated hyperventilatory response to IE may be associated with a decrease in corticospinal excitability of exercising muscle.
Collapse
Affiliation(s)
- Takahiro Yunoki
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan.
| | - Ryouta Matsuura
- Department of Health and Physical Education, Joetsu University of Education, Joetsu, Japan
| | - Ryo Yamanaka
- Japan Institute of Sports Sciences, Tokyo, Japan
| | - Roghayyeh Afroundeh
- Department of Physical Education and Sports Science, Faculty of Education and Psychology, University of Mohaghegh Ardabilli, Ardabil, Iran
| | - Chang-Shun Lian
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Kazuki Shirakawa
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Yoshinori Ohtsuka
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Tokuo Yano
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| |
Collapse
|
12
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
13
|
Stickland MK, Lindinger MI, Olfert IM, Heigenhauser GJF, Hopkins SR. Pulmonary gas exchange and acid-base balance during exercise. Compr Physiol 2013; 3:693-739. [PMID: 23720327 PMCID: PMC8315793 DOI: 10.1002/cphy.c110048] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As the first step in the oxygen-transport chain, the lung has a critical task: optimizing the exchange of respiratory gases to maintain delivery of oxygen and the elimination of carbon dioxide. In healthy subjects, gas exchange, as evaluated by the alveolar-to-arterial PO2 difference (A-aDO2), worsens with incremental exercise, and typically reaches an A-aDO2 of approximately 25 mmHg at peak exercise. While there is great individual variability, A-aDO2 is generally largest at peak exercise in subjects with the highest peak oxygen consumption. Inert gas data has shown that the increase in A-aDO2 is explained by decreased ventilation-perfusion matching, and the development of a diffusion limitation for oxygen. Gas exchange data does not indicate the presence of right-to-left intrapulmonary shunt developing with exercise, despite recent data suggesting that large-diameter arteriovenous shunt vessels may be recruited with exercise. At the same time, multisystem mechanisms regulate systemic acid-base balance in integrative processes that involve gas exchange between tissues and the environment and simultaneous net changes in the concentrations of strong and weak ions within, and transfer between, extracellular and intracellular fluids. The physicochemical approach to acid-base balance is used to understand the contributions from independent acid-base variables to measured acid-base disturbances within contracting skeletal muscle, erythrocytes and noncontracting tissues. In muscle, the magnitude of the disturbance is proportional to the concentrations of dissociated weak acids, the rate at which acid equivalents (strong acid) accumulate and the rate at which strong base cations are added to or removed from muscle.
Collapse
Affiliation(s)
- Michael K. Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael I. Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - I. Mark Olfert
- Robert C. Byrd Health Sciences Center, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | - Susan R. Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, San Diego, California
| |
Collapse
|
14
|
JOHNSON MICHAELA, MILLS DEANE, BROWN DAVIDM, BAYFIELD KATIEJ, GONZALEZ JAVIERT, SHARPE GRAHAMR. Inspiratory Loading Intensity Does Not Influence Lactate Clearance during Recovery. Med Sci Sports Exerc 2012; 44:863-71. [DOI: 10.1249/mss.0b013e31824079d0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Yamanaka R, Yunoki T, Arimitsu T, Lian CS, Roghayyeh A, Matsuura R, Yano T. Relationship between effort sense and ventilatory response to intense exercise performed with reduced muscle glycogen. Eur J Appl Physiol 2011; 112:2149-62. [PMID: 21964911 DOI: 10.1007/s00421-011-2190-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to examine the effects of muscle glycogen reduction on surface electromyogram (EMG) activity and effort sense and ventilatory responses to intense exercise (IE). Eight subjects performed an IE test in which IE [100-105% of peak O(2) uptake ([Formula: see text]), 2 min] was repeated three times (IE(1st), IE(2nd) and IE(3rd)) at 100-120-min intervals. Each interval consisted of 20-min passive recovery, 40-min submaximal exercise at ventilatory threshold intensity (51.5 ± 2.7% of [Formula: see text]), and a further resting recovery for 40-60 min. Blood pH during IE and subsequent 20-min recovery was significantly higher in the IE(3rd) than in the IE(1st) (P < 0.05). Effort sense of legs during IE was significantly higher in the IE(3rd) than in the IE(1st) and IE(2nd). Integrated EMG (IEMG) measured in the vastus lateralis during IE was significantly lower in the IE(3rd) than in the IE(1st). In contrast, mean power frequency of the EMG was significantly higher in the IE(2nd) and the IE(3rd) than in the IE(1st). Ventilation ([Formula: see text]) in the IE(3rd) was significantly higher than that in the IE(1st) during IE and the first 60 s after the end of IE. These results suggest that ventilatory response to IE is independent of metabolic acidosis and at least partly associated with effort sense elicited by recruitment of type II fibers.
Collapse
Affiliation(s)
- Ryo Yamanaka
- Graduate School of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo 060-0811, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Osmotic effects of ions diffusing in capillary plasma can explain Starling's osmotic force in plasma–ISF exchange. COMPARATIVE EXERCISE PHYSIOLOGY 2011. [DOI: 10.1017/s1755254011000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Vengust M, Stämpfli H, De Moraes AN, Teixeiro-Neto F, Viel L, Heigenhauser G. Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses. Equine Vet J 2011:40-50. [PMID: 21058981 DOI: 10.1111/j.2042-3306.2010.00240.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
REASONS FOR PERFORMING STUDY Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl(-) and HCO(3)(-) exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses. OBJECTIVES To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition. METHODS Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes. RESULTS AczTr decreased the duration of exercise by 45% (P < 0.0001). During the transition from rest to exercise CO(2) output was lower in AczTr (P < 0.0001). Arterial PCO(2) (P < 0.0001; mean ± s.e. 71 ± 2 mmHg AczTr, 46 ± 2 mmHg Con) was higher, whereas hydrogen ion (P = 0.01; 12.8 ± 0.6 nEq/l AczTr, 15.5 ± 0.6 nEq/l Con) and bicarbonate (P = 0.007; 5.5 ± 0.7 mEq/l AczTr, 10.1 ± 1.3 mEq/l Con) differences across the lung were lower in AczTr compared to Con. No difference was observed in weak electrolytes across the lung. Strong ion difference across the lung was lower in AczTr (P = 0.0003; 4.9 ± 0.8 mEq AczTr, 7.5 ± 1.2 mEq Con), which was affected by strong ion changes across the lung with exception of lactate. CONCLUSIONS CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses.
Collapse
Affiliation(s)
- M Vengust
- Firestone Equine Respiratory Research Laboratory, University of Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Johnson RL, Heigenhauser GJF, Hsia CCW, Jones NL, Wagner PD. Determinants of Gas Exchange and Acid–Base Balance During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Yamanaka R, Yunoki T, Arimitsu T, Lian CS, Yano T. Effects of sodium bicarbonate ingestion on EMG, effort sense and ventilatory response during intense exercise and subsequent active recovery. Eur J Appl Physiol 2010; 111:851-8. [DOI: 10.1007/s00421-010-1715-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2010] [Indexed: 11/29/2022]
|
20
|
Relationship between the response to the corneal reflex (depth of narcosis) and specific parameters in the slaughter blood of pigs narcotised with CO 2. Anim Welf 2010. [DOI: 10.1017/s0962728600001986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractThere has been insufficient research into CO2 stunning with regard to its effect on pigs being slaughtered. This lack of knowledge may be at least partly responsible for the partial rejection of CO2-stunning methods. During routine slaughter work, 598 pigs (average carcase weight: 94 kg) were evaluated. The stunning procedure was carried out in industrial stunning chambers with 90% CO2 by volume and an exposure time of either 120 or 90 s. The corneal reflex response was evaluated immediately prior to bleeding in order to determine the depth of narcosis. Blood was taken at slaughter (slaughter blood) to determine the partial pressure of breathing gases and the acid-base status. We found that CO2 stunning mainly produced hypoxaemia, but also normoand hyperoxaemia, in arteriovenous slaughter blood. No further positive reflex responses occurred at a pO2 threshold of ≤ 1.6 kPa. PCO2 increased to values of 40 kPa and above. This extreme hypercapnia resulted in a decrease of the slaughter blood pH with values of less than 7.00 (ie, strong respiratory acidosis). Starting with threshold values from pCO2 > 23 kPa and pH < 6.85, stunned pigs revealed only a few or no positive reflex responses, respectively. The non-respiratory Stewart-variable serum [SID3] was elevated to alkaline values of 65 mmol L−1 and above, in comparison to the normal values of 45 (± 2) mmol L−1. We conclude that the use of cut-off points such as the pH and/or pO2 in routine sampling of slaughter animals (eg by application of ion-sensitive electrodes) would establish the depth of narcosis in pigs destined for slaughter. The efficiency of monitoring could thereby be improved during slaughter, in line with the demands of animal welfare.
Collapse
|
21
|
Jones NL. An obsession with CO2This paper is a summary from the John Sutton Memorial Lecture at the Canadian Society for Exercise Physiology Annual Meeting, held in London, Ont., 14–17 November 2007. Appl Physiol Nutr Metab 2008; 33:641-50. [DOI: 10.1139/h08-040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concept that underlies this paper is that carbon dioxide (CO2) removal is at least as important as the delivery of oxygen for maximum performance during exercise. Increases in CO2pressure and reductions in the pH of muscle influence muscle contractile properties and muscle metabolism (via effects on rate-limiting enzymes), and contribute to limiting symptoms. The approach of Barcroft exemplified the importance of integrative physiology, in describing the adaptive responses of the circulatory and respiratory systems to the demands of CO2production during exercise. The extent to which failure in the response of one system may be countered by adaptation in another is also explained by this approach. A key factor in these linked systems is the transport of CO2in the circulation. CO2is mainly (90%) transported as bicarbonate ions — as such, transport of CO2is critically related to acid–base homeostasis. Understanding in this field has been facilitated by the approach of Peter Stewart. Rooted in classical physico–chemical relationships, the approach identifies the independent variables contributing to homeostasis — the strong ion difference ([SID]), ionization of weak acids (buffers, Atot) and CO2pressure (PCO2). The independent variables may be reliably measured or estimated in muscle, plasma, and whole blood. Equilibrium conditions are calculated to derive the dependent variables — the most important being the concentrations of bicarbonate and hydrogen ions. During heavy exercise, muscle [H+] can exceed 300 nEq·L–1(pH 6.5), mainly due to a greatly elevated PCO2and fall in [SID] as a result of increased lactate (La–) production. As blood flows through active muscle, [La–] increase in plasma is reduced by uptake of La–and Cl–by red blood cells, with a resultant increase in plasma [HCO3–]. Inactive muscle contributes to homeostasis through transfer of La–and Cl–into the muscle from both plasma and red blood cells; this results in a large increase in [HCO3–]. In the lungs, oxygenation of hemoglobin increases red blood cell [A–] aiding rapid conversion of HCO3–into CO2in red cells (containing carbonic anhydrase), with diffusion of CO2into alveoli, but full equilibration of the CO2system in plasma may not occur during the short pulmonary capillary circulation time in heavy exercise. The ionization state of imidazole groups on protein histidine may provide integration between acid–base homeostasis, membrane anion transfer proteins, and activation of rate-limiting enzymes.
Collapse
Affiliation(s)
- Norman L. Jones
- Ambrose Cardiorespiratory Unit, Michael G. de Groote School of Medicine, McMaster University, Hamilton, ON L8S 3Z5, Canada (e-mail: )
| |
Collapse
|
22
|
Lindinger MI, Heigenhauser GJF. Counterpoint: Lactic acid is not the only physicochemical contributor to the acidosis of exercise. J Appl Physiol (1985) 2008; 105:359-61; discussion 361-2. [DOI: 10.1152/japplphysiol.00162.2008a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Leicht C, Perret C. Comparison of blood lactate elimination in individuals with paraplegia and able-bodied individuals during active recovery from exhaustive exercise. J Spinal Cord Med 2008; 31:60-4. [PMID: 18533413 PMCID: PMC2435020 DOI: 10.1080/10790268.2008.11753982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE The aim of the present study was to compare blood lactate elimination between individuals with paraplegia (P) and able-bodied (AB) individuals after strenuous arm exercise. METHODS Eight P and 8 AB men (matched for age, height, and weight) participated in this study. Average weekly arm-training volume for P participants (eg, hand bike, wheelchair basketball) and AB participants (eg, swimming, rowing, cross-country skiing) was 4.1 +/- 1.6 vs 2.8 +/- 0.8 h. A maximal-arm-cranking intensity-graded exercise test to volitional exhaustion was performed by all test participants. Immediately after the exercise test, the participants performed arm cranking for another 30 minutes at a workload of one third of the maximally achieved power output. During this active recovery, mixed-capillary blood samples were taken for lactate analysis. RESULTS The lactate accumulation constant was significantly higher for P individuals, whereas the lactate elimination constant showed no significant difference between the two groups. CONCLUSIONS Individuals with paraplegia seem to have no disadvantages in lactate elimination after exhaustive arm exercise compared with able-bodied individuals.
Collapse
|
24
|
Origins of arterial and femoral venous acid–base responses during moderate-intensity bicycling exercise after glycogen depletion in men. ACTA ACUST UNITED AC 2007. [DOI: 10.1017/s1478061507829872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe interactions between nutrition, energy status and acid–base balance during exercise are poorly understood. Exercise, under conditions of prior glycogen depletion (GD) and low-carbohydrate diet, results in a decreased rate of skeletal muscle glycogenolysis, greatly decreased muscle pyruvate and lactate contents with decreased plasma [lactate] (Putman et al., Am J Physiol, 265: E752, 1993). Therefore, it is hypothesized that exercise in GD, compared with normal (NG) or high-carbohydrate conditions, will result in a reduced magnitude of acidosis due to reduced production and accumulation of lactate. In two trials (GD, then NG) separated by 1–2 weeks, four men cycled at 75% of peak VO2 until the time of exhaustion in GD (57 ± 7 min). At 2 min of exercise, femoral vein (fv) plasma [H+] was increased by 21 ± 4 neq l− 1 (NG) and 14 ± 3 neq l− 1 (GD); increases in arterial [H+] were only c. 45% of those in fv plasma. The increase in fv PCO2 (NG, 25 ± 2 mm Hg and GD, 15 ± 2 mm Hg) was the primary variable responsible for the increased [H+]. During NG, the increase in fv [lactate− ] exceeded the decrease in strong ion difference [SID], with electrolyte charge balance mainly due to increased [Na+]. In the GD trial, arterial [SID] decreased and was the primary contributor to the increased [H+], as passage of blood through the lungs eliminated the CO2 contribution prevalent in fv plasma. Throughout GD, plasma [lactate− ] increased less than in NG and the decrease in [SID] in GD was also significantly less than in NG. In summary, in GD conditions, an attenuated production/release of lactate− and CO2 from muscle resulted in reduced magnitude and duration of acidosis compared with NG conditions. In fv plasma, increased PCO2 was the primary variable responsible for the rapid and sustained elevation in [H+], whereas in arterial plasma decreased [SID], due to increased [lactate− ], was primarily responsible for increased [H+].
Collapse
|
25
|
Fulco CS, Muza SR, Ditzler D, Lammi E, Lewis SF, Cymerman A. Effect of acetazolamide on leg endurance exercise at sea level and simulated altitude. Clin Sci (Lond) 2006; 110:683-92. [PMID: 16499476 DOI: 10.1042/cs20050233] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetazolamide can be taken at sea level to prevent acute mountain sickness during subsequent altitude exposure. Acetazolamide causes metabolic acidosis at sea level and altitude, and increases SaO2 (arterial oxygen saturation) at altitude. The aim of the present study was to determine whether acetazolamide impairs muscle endurance at sea level but not simulated altitude (4300 m for <3 h). Six subjects (20+/-1 years of age; mean+/-S.E.M.) performed exhaustive constant work rate one-leg knee-extension exercise (25+/-2 W) once a week for 4 weeks, twice at sea level and twice at altitude. Each week, subjects took either acetazolamide (250 mg) or placebo orally in a double-blind fashion (three times a day) for 2 days. On day 2, all exercise bouts began approx. 2.5 h after the last dose of acetazolamide or placebo. Acetazolamide caused similar acidosis (pH) in all subjects at sea level (7.43+/-0.01 with placebo compared with 7.34+/-0.01 with acetazolamide; P<0.05) and altitude (7.48+/-0.03 with placebo compared with 7.37+/-0.01 with acetazolamide; P<0.05). However, endurance performance was impaired with acetazolamide only at sea level (48+/-4 min with placebo compared with 36+/-5 min with acetazolamide; P<0.05), but not altitude (17+/-2 min with placebo compared with 20+/-3 min with acetazolamide; P = not significant). In conclusion, lack of impairment of endurance performance by acetazolamide compared with placebo at altitude was probably due to off-setting secondary effects resulting from acidosis, e.g. ventilatory induced increase in SaO2 for acetazolamide compared with placebo (89+/-1 compared with 86+/-1% respectively; P<0.05), which resulted in an increased oxygen pressure gradient from capillary to exercising muscle.
Collapse
Affiliation(s)
- Charles S Fulco
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Kansas Street, Natick, MA 01760-5007, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Harmer AR, Ruell PA, McKenna MJ, Chisholm DJ, Hunter SK, Thom JM, Morris NR, Flack JR. Effects of sprint training on extrarenal potassium regulation with intense exercise in Type 1 diabetes. J Appl Physiol (1985) 2005; 100:26-34. [PMID: 16179401 DOI: 10.1152/japplphysiol.00240.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Effects of sprint training on plasma K+ concentration ([K+]) regulation during intense exercise and on muscle Na+-K+-ATPase were investigated in subjects with Type 1 diabetes mellitus (T1D) under real-life conditions and in nondiabetic subjects (CON). Eight subjects with T1D and seven CON undertook 7 wk of sprint cycling training. Before training, subjects cycled to exhaustion at 130% peak O2 uptake. After training, identical work was performed. Arterialized venous blood was drawn at rest, during exercise, and at recovery and analyzed for plasma glucose, [K+], Na+ concentration ([Na+]), catecholamines, insulin, and glucagon. A vastus lateralis biopsy was obtained before and after training and assayed for Na+-K+-ATPase content ([3H]ouabain binding). Pretraining, Na+-K+-ATPase content and the rise in plasma [K+] ([K+]) during maximal exercise were similar in T1D and CON. However, after 60 min of recovery in T1D, plasma [K+], glucose, and glucagon/insulin were higher and plasma [Na+] was lower than in CON. Training increased Na+-K+-ATPase content and reduced [K+] in both groups (P < 0.05). These variables were correlated in CON (r = -0.65, P < 0.05) but not in T1D. This study showed first that mildly hypoinsulinemic subjects with T1D can safely undertake intense exercise with respect to K+ regulation; however, elevated [K+] will ensue in recovery unless insulin is administered. Second, sprint training improved K+ regulation during intense exercise in both T1D and CON groups; however, the lack of correlation between plasma delta[K+] and Na+-K+-ATPase content in T1D may indicate different relative contributions of K+-regulatory mechanisms.
Collapse
Affiliation(s)
- Alison R Harmer
- School of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, Australia 1825.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rowlands DS. Model for the behaviour of compartmental CO(2) stores during incremental exercise. Eur J Appl Physiol 2004; 93:555-68. [PMID: 15599589 DOI: 10.1007/s00421-004-1217-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 10/25/2022]
Abstract
The respiratory exchange ratio (RER) is a valid method for determining fat and carbohydrate oxidation during exercise when the exchange of respiratory gas is in a state of steady flux between the tissue and fluid compartments and the alveoli. However, under incremental intensity or heavy exercise conditions, the movement of electrolytes, fluids, and CO(2) between body-fluid compartments is accentuated, leading to increased hydrogen-ion concentration ([H(+)]), decreased bicarbonate-ion concentration ([HCO(3) (-)]) and CO(2) stores, and the excretion of additional CO(2) at the alveoli (i.e. H(+)+HCO(3) (-) --> CO(2)+H(2)O) elevating the CO(2) minute volume. This non-respiratory CO(2) excretion can invalidate use of the RER for determination of fat and carbohydrate oxidation. Direct measurement of the labile CO(2) store and non-respiratory CO(2) excretion during exercise is difficult. Therefore, physicochemical models were derived to illustrate the likely behaviour of compartmental CO(2) stores during 8 W.min(-1) incremental cycling exercise to formulate correction factors to the RER for the non-respiratory CO(2) component. From these models, a polynomial regression equation was derived to describe the change in the total labile CO(2) store volume during incremental exercise from the relationship with blood HCO(3) (-) content: CO(2) volume (ml) = -17x(2)+464x+650, where x is the arterialised blood standard HCO(3) (-) concentration (mmol.l(-1)), relative to resting conditions. Non-respiratory CO(2) excretion (ml.min(-1)) was then determined from the rate of change in CO(2) volume. The modelling method could allow for straightforward calculation of the non-respiratory CO(2) excretion rate for future validation work.
Collapse
Affiliation(s)
- David S Rowlands
- Sport and Exercise Sciences, Institute of Food, Nutrition, and Human Health, Massey University, Private Bag 756, Wellington, New Zealand.
| |
Collapse
|
28
|
Bishop D, Edge J, Goodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 2004; 92:540-7. [PMID: 15168128 DOI: 10.1007/s00421-004-1150-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to a high aerobic fitness, the ability to buffer hydrogen ions (H+) may also be important for repeated-sprint ability (RSA). We therefore investigated the relationship between muscle buffer capacity (betamin vivo and betamin vitro) and RSA. Thirty-four untrained females [mean (SD): age 19 (1) years, maximum oxygen uptake (VO2peak) 42.3 (7.1) ml x kg(-1) x min(-1)] completed a graded exercise test (GXT), followed by a RSA cycle test (five 6-s sprints, every 30 s). Capillary blood was sampled during the GXT and before and after the RSA test to determine blood pH (pHb) and lactate concentration ([La-]b). Muscle biopsies were taken before (n=34) and after (n=23) the RSA test to determine muscle lactate concentration ([La-]i), hydrogen ion concentration ([H+]i) pHi, betamin vivo and betamin vitro. There were significant correlations between work decrement (%) and betamin vivo (r=-0.72, P<0.05), VO2peak (r=-0.62, P<0.05), lactate threshold (LT) (r=-0.56, P<0.05) and changes in [H+]i (r=0.41, P<0.05). There were however, no significant correlations between work decrement and betamin vitro, or changes in [La-]i, or [La-]b. There were also no significant correlations between total work (J x kg(-1)) during the RSA test and betamin vitro, betamin vivo, or changes in [La-]i, pHi, [La-]b, or pHb. There were significant correlations between total work (J x kg(-1)) and both VO2peak (r=0.60, P<0.05) and LT(r=0.54, P<0.05). These results support previous research, identifying a relationship between RSA and aerobic fitness. This study is the first to identify a relationship between betamin vivo and RSA. This suggests that the ability to buffer H+ may be important for maintaining performance during brief, repeated sprints.
Collapse
Affiliation(s)
- David Bishop
- Team Sport Research Group, School of Human Movement and Exercise Science, The University of Western Australia, WA 6009 Crawley, Australia.
| | | | | |
Collapse
|
29
|
Affiliation(s)
- Michael I Lindinger
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
30
|
Sangkabutra T, Crankshaw DP, Schneider C, Fraser SF, Sostaric S, Mason K, Burge CM, Skinner SL, McMahon LP, McKenna MJ. Impaired K+ regulation contributes to exercise limitation in end-stage renal failure. Kidney Int 2003; 63:283-90. [PMID: 12472794 DOI: 10.1046/j.1523-1755.2003.00739.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Patients with end-stage renal failure (ESRF) exhibit grossly impaired maximal exercise performance. This study investigated whether K+ regulation during exercise is impaired in ESRF and whether this is related to reduced exercise performance. METHODS Nine stable hemodialysis patients and eight controls (CON) performed incremental cycling exercise to volitional fatigue, with measurement of peak oxygen consumption (VO2 peak). Arterial blood was sampled during and following exercise and analyzed for plasma [K+] (PK). RESULTS The VO2 peak was approximately 44% less in ESRF than in CON (P < 0.001), whereas peak exercise PK was greater (7.23 +/- 0.38 vs. 6.23 +/- 0.14 mmol x L-1, respectively, P < 0.001). In ESRF, the rate of rise in PK during exercise was twofold greater (0.43 +/- 0.05 vs. 0.23 +/- 0.03 mmol. L-1x min-1, P < 0.005) and the ratio of rise in PK relative to work performed was 3.7-fold higher (90.1 +/- 13.5 vs. 24.7 +/- 3.3 nmol. L-1. J-1, P < 0.001). A strong inverse relationship was found between VO2 peak and the DeltaPK. work-1 ratio (r = -0.80, N = 17, P < 0.001). CONCLUSIONS Patients with ESRF exhibit grossly impaired extrarenal K+ regulation during exercise, demonstrated by an excessive rise in PK relative to work performed. We further show that K+ regulation during exercise was correlated with aerobic exercise performance. These results suggest that disturbed K+ regulation in ESRF contributes to early muscle fatigue during exercise, thus causing reduced exercise performance.
Collapse
Affiliation(s)
- Termboon Sangkabutra
- School of Human Movement, Recreation and Performance, Centre for Rehabilitation, Exercise and Sports Science,Victoria University of Technology, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kelley KM, Hamann JJ, Navarre C, Gladden LB. Lactate metabolism in resting and contracting canine skeletal muscle with elevated lactate concentration. J Appl Physiol (1985) 2002; 93:865-72. [PMID: 12183479 DOI: 10.1152/japplphysiol.01119.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was undertaken to quantitatively account for the metabolic disposal of lactate in skeletal muscle exposed to an elevated lactate concentration during rest and mild-intensity contractions. The gastrocnemius plantaris muscle group (GP) was isolated in situ in seven anesthetized dogs. In two experiments, the muscles were perfused with an artificial perfusate with a blood lactate concentration of ~9 mM while normal blood gas/pH status was maintained with [U-(14)C]lactate included to follow lactate metabolism. Lactate uptake and metabolic disposal were measured during two consecutive 40-min periods, during which the muscles rested or contracted at 1.25 Hz. Oxygen consumption averaged 10.1 +/- 2.0 micromol. 100 g(-1). min(-1) (2.26 +/- 0.45 ml. kg(-1). min(-1)) at rest and 143.3 +/- 16.2 micromol. 100 g(-1). min(-1) (32.1 +/- 3.63 ml. kg(-1). min(-1)) during contractions. Lactate uptake was positive during both conditions, increasing from 10.5 micromol. 100 g(-1). min(-1) at rest to 25.0 micromol. 100 g(-1). min(-1) during contractions. Oxidation and glycogen synthesis represented minor pathways for lactate disposal during rest at only 6 and 15%, respectively, of the [(14)C]lactate removed by the muscle. The majority of the [(14)C]lactate removed by the muscle at rest was recovered in the muscle extracts, suggesting that quiescent muscle serves as a site of passive storage for lactate carbon during high-lactate conditions. During contractions, oxidation was the dominant means for lactate disposal at >80% of the [(14)C]lactate removed by the muscle. These results suggest that oxidation is a limited means for lactate disposal in resting canine GP exposed to elevated lactate concentrations due to the muscle's low resting metabolic rate.
Collapse
Affiliation(s)
- Kevin M Kelley
- Department of Health and Human Performance, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | |
Collapse
|
32
|
Preston RJ, Heenan AP, Wolfe LA. Physicochemical analysis of phasic menstrual cycle effects on acid-base balance. Am J Physiol Regul Integr Comp Physiol 2001; 280:R481-7. [PMID: 11208578 DOI: 10.1152/ajpregu.2001.280.2.r481] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In accordance with Stewart's physicochemical approach, the three independent determinants of plasma hydrogen ion concentration ([H(+)]) were measured at rest and during exercise in the follicular (FP) and luteal phase (LP) of the human menstrual cycle. Healthy, physically active women with similar physical characteristics were tested during either the FP (n = 14) or LP (n = 14). Arterialized blood samples were obtained at rest and after 5 min of upright cycling at both 70 and 110% of the ventilatory threshold (T(Vent)). Measurements included plasma [H(+)], arterial carbon dioxide tension (Pa(CO(2))), total weak acid ([A(Tot)]) as reflected by total protein, and the strong-ion difference ([SID]). The transition from rest to exercise in both groups resulted in a significant increase in [H(+)] at 70% T(Vent) versus rest and at 110% T(Vent) versus both rest and 70% T(Vent). No significant between-group differences were observed for [H(+)] at rest or in response to exercise. At rest in the LP, [A(Tot)] and Pa(CO(2)) were significantly lower (acts to decrease [H(+)]) compared with the FP. This effect was offset by a reduction in [SID] (acts to increase [H(+)]). After the transition from rest to exercise, significantly lower [A(Tot)] during the LP was again observed. Although the [SID] and Pa(CO(2)) were not significantly different between groups, trends for changes in these two variables were similar to changes in the resting state. In conclusion, mechanisms regulating [H(+)] exhibit phase-related differences to ensure [H(+)] is relatively constant regardless of progesterone-mediated ventilatory changes during the LP.
Collapse
Affiliation(s)
- R J Preston
- Department of Physiology and School of Physical and Health Education, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
33
|
Kowalchuk JM, Smith SA, Weening BS, Marsh GD, Paterson DH. Forearm muscle metabolism studied using (31)P-MRS during progressive exercise to fatigue after Acz administration. J Appl Physiol (1985) 2000; 89:200-9. [PMID: 10904053 DOI: 10.1152/jappl.2000.89.1.200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of acetazolamide (Acz)-induced carbonic anhydrase inhibition (CAI) on muscle intracellular thresholds (T) for intracellular pH (pH(i)) and inorganic phosphate-to-phosphate creatine ratio (P(i)/PCr) and the plasma lactate (La(-)) threshold were examined in nine adult male subjects performing forearm wrist flexion exercise to fatigue. Exercise consisted of raising and lowering (1-s contraction, 1-s relaxation) a cylinder whose volume increased at a rate of 200 ml/min. The protocol was performed during control (Con) and after 45 min of CAI with Acz (10 mg/kg body wt iv). T(pH(i)) and T(P(i)/PCr), determined using (31)P-labeled magnetic resonance spectroscopy (MRS), were similar in Acz (722 +/- 50 and 796 +/- 75 mW, respectively) and Con (855 +/- 211 and 835 +/- 235 mW, respectively). The pH(i) was similar at end-exercise (6.38 +/- 0.10 Acz and 6.43 +/- 0.22 Con), but pH(i) recovery was slowed in Acz. In a separate experiment, blood was sampled from a deep arm vein at the elbow for determination of plasma lactate concentration ([La(-)](pl)) and T(La(-)). [La(-)](pl) was lower (P < 0.05) in Acz than Con (3.7 +/- 1.7 vs. 5.0 +/- 1.7 mmol/l) at end-exercise and in early recovery, but T(La(-)) was higher (1,433 +/- 243 vs. 1,041 +/- 414 mW, respectively). These data suggest that the lower [La(-)](pl) seen with CAI was not due to a delayed onset or rate of muscle La(-) accumulation but may be related to impaired La(-) removal from muscle.
Collapse
Affiliation(s)
- J M Kowalchuk
- The Centre for Activity and Ageing, School of Kinesiology, University of Western Ontario, London, Ontario N6A 3K7.
| | | | | | | | | |
Collapse
|
34
|
Putman CT, Matsos MP, Hultman E, Jones NL, Heigenhauser GJ. Pyruvate dehydrogenase activation in inactive muscle during and after maximal exercise in men. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E483-8. [PMID: 10070014 DOI: 10.1152/ajpendo.1999.276.3.e483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate dehydrogenase activity (PDHa) and acetyl-group accumulation were examined in the inactive deltoid muscle in response to maximal leg exercise in men. Seven subjects completed three consecutive 30-s bouts of maximal isokinetic cycling, with 4-min rest intervals between bouts. Biopsies of the deltoid were obtained before exercise, after bouts 1 and 3, and after 15 min of rest recovery. Inactive muscle lactate (LA) and pyruvate (PYR) contents increased more than twofold (P < 0.05) after exercise (bout 3) and remained elevated after 15 min of recovery (P < 0.05). Increased PYR accumulation secondary to LA uptake by the inactive deltoid was associated with greater PDHa, which progressively increased from 0.71 +/- 0.23 mmol. min-1. kg wet wt-1 at rest to a maximum of 1.83 +/- 0.30 mmol. min-1. kg wet wt-1 after bout 3 (P < 0.05) and remained elevated after 15 min of recovery (1.63 +/- 0.24 mmol. min-1. kg wet wt-1; P < 0.05). Acetyl-CoA and acetylcarnitine accumulations were unaltered. Increased PDHa allowed and did not limit the oxidation of LA and PYR in inactive human skeletal muscle after maximal exercise.
Collapse
Affiliation(s)
- C T Putman
- Department of Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
35
|
MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985) 1998; 84:2138-42. [PMID: 9609810 DOI: 10.1152/jappl.1998.84.6.2138] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our purpose was to examine the effects of sprint interval training on muscle glycolytic and oxidative enzyme activity and exercise performance. Twelve healthy men (22 +/- 2 yr of age) underwent intense interval training on a cycle ergometer for 7 wk. Training consisted of 30-s maximum sprint efforts (Wingate protocol) interspersed by 2-4 min of recovery, performed three times per week. The program began with four intervals with 4 min of recovery per session in week 1 and progressed to 10 intervals with 2.5 min of recovery per session by week 7. Peak power output and total work over repeated maximal 30-s efforts and maximal oxygen consumption (VO2 max) were measured before and after the training program. Needle biopsies were taken from vastus lateralis of nine subjects before and after the program and assayed for the maximal activity of hexokinase, total glycogen phosphorylase, phosphofructokinase, lactate dehydrogenase, citrate synthase, succinate dehydrogenase, malate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase. The training program resulted in significant increases in peak power output, total work over 30 s, and VO2 max. Maximal enzyme activity of hexokinase, phosphofructokinase, citrate synthase, succinate dehydrogenase, and malate dehydrogenase was also significantly (P < 0.05) higher after training. It was concluded that relatively brief but intense sprint training can result in an increase in both glycolytic and oxidative enzyme activity, maximum short-term power output, and VO2 max.
Collapse
Affiliation(s)
- J D MacDougall
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
36
|
Chin ER, Lindinger MI, Heigenhauser GJF. Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Kemp JG, Greer FA, Wolfe LA. Acid-base regulation after maximal exercise testing in late gestation. J Appl Physiol (1985) 1997; 83:644-51. [PMID: 9262463 DOI: 10.1152/jappl.1997.83.2.644] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study employed Stewart's physicochemical approach to quantify the effects of pregnancy and strenuous exercise on the independent determinants of plasma H+ concentration ([H+]). Subjects were nine physically active pregnant women [mean gestational age = 33 +/- 1 (SE) wk] and 14 age-matched nonpregnant controls. Venous blood samples and respiratory data were obtained at rest and during 15 min of recovery from a maximal cycle ergometer test that involved 20 W/min increases in work rate to exhaustion. Mean values for [H+], PCO2, and total protein increased, whereas those for bicarbonate concentration ([HCO-3]) and the strong ion difference ([SID]) decreased in the transition from rest to maximal exercise within both groups. At rest and throughout postexercise recovery, the pregnant group exhibited significantly lower mean values for PCO2, [HCO-3], and total protein, whereas [SID] was significantly lower at rest and early recovery from exercise. [H+] was also lower at all sampling times in the pregnant group, but this effect was significant only at rest. Our results support the hypothesis that reduced PCO2 and weak acid concentration are important mechanisms to regulate plasma [H+] and to maintain a less acidic plasma environment at rest and after exercise in late gestation compared with the nonpregnant state. These effects are established in the resting state and appear to be maintained after maximal exertion.
Collapse
Affiliation(s)
- J G Kemp
- Department of Physiology, School of Physical and Health Education, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
38
|
McKenna MJ, Heigenhauser GJ, McKelvie RS, Obminski G, MacDougall JD, Jones NL. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men. J Physiol 1997; 501 ( Pt 3):703-16. [PMID: 9218229 PMCID: PMC1159470 DOI: 10.1111/j.1469-7793.1997.703bm.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in active muscles after sprint training. Enhanced aerobic metabolism after sprint training may contribute to reduced fatigability during maximal exercise, whilst greater pulmonary CO2 output may improve acid-base control after training.
Collapse
Affiliation(s)
- M J McKenna
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Bogdanis GC, Nevill ME, Lakomy HK, Graham CM, Louis G. Effects of active recovery on power output during repeated maximal sprint cycling. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1996; 74:461-9. [PMID: 8954294 DOI: 10.1007/bf02337727] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of active recovery on metabolic and cardiorespiratory responses and power output were examined during repeated sprints. Male subjects (n = 13) performed two maximal 30-s cycle ergometer sprints, 4 min apart, on two separate occasions with either an active [cycling at 40 (1)% of maximal oxygen uptake; mean (SEM)] or passive recovery. Active recovery resulted in a significantly higher mean power output (W) during sprint 2, compared with passive recovery [W] 603 (17) W and 589 (15) W, P < 0.05]. This improvement was totally attributed to a 3.1 (1.0)% higher power generation during the initial 10 s of sprint 2 following the active recovery (P < 0.05), since power output during the last 20 s sprint 2 was the same after both recoveries. Despite the higher power output during sprint 2 after active recovery, no differences were observed between conditions in venous blood lactate and pH, but peak plasma ammonia was significantly higher in the active recovery condition [205 (23) vs 170 (20) mumol .l-1; P < 0.05]. No differences were found between active and passive recovery in terms of changes in plasma volume or arterial blood pressure throughout the test. However, heart rate between the two 30-s sprints and oxygen uptake during the second sprint were higher for the active compared with passive recovery [148 (3) vs 130 (4) beats.min-1; P < 0.01) and 3.3 (0.1) vs 2.8 (0.1) l.min-1; P < 0.01]. These data suggest that recovery of power output during repeated sprint exercise is enhanced when low-intensity exercise is performed between sprints. The beneficial effects of an active recovery are possibly mediated by an increased blood flow to the previously exercised muscle.
Collapse
Affiliation(s)
- G C Bogdanis
- Department of Physical Education, Sports Science and Recreation Management, Loughborough University, UK
| | | | | | | | | |
Collapse
|
40
|
Hebestreit H, Meyer F, Heigenhauser GJ, Bar-Or O. Plasma metabolites, volume and electrolytes following 30-s high-intensity exercise in boys and men. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1996; 72:563-9. [PMID: 8925832 DOI: 10.1007/bf00242291] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been shown that boys recover faster than men following brief, high-intensity exercise. Better to understand this difference, plasma metabolite concentration, volume, electrolyte concentration [electrolyte], and hydrogen ion concentration [H+] changes were compared in five prepubescent boys [mean age 9.6 (SD 0.9) years] and 5 men [mean age 24.9 (SD 4.3) years] following 30-s, all-out cycling. Blood was collected prior to, at the end, and at the 1st, 3rd and 10th min following exercise. At the 10th min of recovery, the men's lactate concentration was 14.2 (SD 1.8) mmol.l-1 and [H+] was 66.1 (SD 5.9) nmol.l-1, compared with 5.7 (SD 0.7) mmol.l-1 and 47.5 (SD 1.2) nmol.l-1 respectively, in the boys (P < 0.01 for both). The glycerol concentration was higher in the boys at the end of exercise and until the 3rd min of recovery. Plasma volume (PV) decreased more in the men [16.9 (SD 3.0)%] than in the boys [9.4 (SD 2.8)%]. In both groups, [electrolyte] increased after exercise, tending to be higher in the men. Recovery of plasma [electrolyte] and PV started earlier in the boys (1st min) than in the men (3rd min). These findings would support the notion of a lesser reliance on glycolytic energy pathways in children and may explain the faster recovery of muscle power in boys compared to men.
Collapse
Affiliation(s)
- H Hebestreit
- Children's Exercise and Nutrition Centre, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Bangsbo J, Aagaard T, Olsen M, Kiens B, Turcotte LP, Richter EA. Lactate and H+ uptake in inactive muscles during intense exercise in man. J Physiol 1995; 488 ( Pt 1):219-29. [PMID: 8568658 PMCID: PMC1156715 DOI: 10.1113/jphysiol.1995.sp020960] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The present study examined how uptake of lactate and H+ in resting muscle is affected by blood flow, arterial lactate concentration and muscle metabolism. 2. Six males subjects performed intermittent arm exercise in two separate 32 min periods (Part I and Part II) and in one subsequent 20 min period in which one leg knee-extensor exercise was also performed (Part III). The exercise was performed at various intensities in order to obtain different steady-state arterial blood lactate concentrations. In the inactive leg, femoral venous blood flow (draining about 7.7 kg of muscles) was measured and femoral arterial and venous blood was collected frequently. Biopsies were taken from m. vastus lateralis of the inactive leg at rest and 10 and 30 min into both Part I and Part II as well as 10 min into recovery from Part II. 3. The arterial plasma lactate concentrations were 7, 9 and 16 mmol l-1 after 10 min of Parts I, II and III, respectively, and the corresponding arterial-venous difference (a-vdiff) for lactate in the resting leg was 1.3, 1.4 and 2.0 mmol l-1. The muscle lactate concentration was 2.8 mmol (kg wet wt)-1 after 10 min of Part I and remained constant throughout the experiment. During Parts I and II, a-vdiff lactate decreased although the arterial lactate concentration and plasma-muscle lactate gradient were unaltered throughout each period. Thus, membrane transport of lactate decreased during each period. 4. Blood flow in the inactive leg was about 2-fold higher during arm exercise compared to the rest periods, resulting in a 2-fold higher lactate uptake. Thus, lactate uptake by inactive muscles was closely related to blood flow. 5. Throughout the experiment a-vdiff for actual base excess and for lactate were of similar magnitude. Thus, in inactive muscles lactate uptake appears to be coupled to the transport of H+.
Collapse
Affiliation(s)
- J Bangsbo
- Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Kowalchuk JM, Scheuermann BW. Acid-base balance: origin of plasma [H+] during exercise. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 1995; 20:341-56. [PMID: 8541797 DOI: 10.1139/h95-027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
According to physicochemical principles, the plasma concentration of hydrogen ions ([H+]), bicarbonate ([HCO3-]), and other acid-base-dependent variables are determined by the plasma PCO2; the strong ion difference ([SID+] = sigma [strong cations] - sigma [strong anions]); and the concentration of weak acids ([ATOT] = [HA] + [A-]). The physicochemical interactions between the acid-base-independent and dependent variables must recognize the constraints imposed by the law of electrical neutrality, dissociation equilibrium of weak acids and water, and the conservation of mass. This review demonstrates the usefulness of the physicochemical approach in studying plasma acid-base control during progressive exercise to exhaustion where the work rate was increased as either a slow (8 W/min) or fast (65 W/min) ramp function. The factors contributing to changes in the concentration of the acid-base-independent variables, and the contribution of the acid-base-independent variables to the plasma [H+] and [HCO3-] during exercise will be discussed.
Collapse
Affiliation(s)
- J M Kowalchuk
- Faculty of Kinesiology, University of Western Ontario, London
| | | |
Collapse
|
43
|
Heigenhauser GJ. A quantitative approach to acid-base chemistry. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 1995; 20:333-40. [PMID: 8541796 DOI: 10.1139/h95-026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- G J Heigenhauser
- McMaster University Medical Centre, Hamilton, Ontario. Hamilton, Ontario
| |
Collapse
|
44
|
Gilfix BM, Bique M, Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 1993; 8:187-97. [PMID: 8305955 DOI: 10.1016/0883-9441(93)90001-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluated the clinical application of a model of acid-base balance, which is based on quantitative physical chemical principles (Stewart model). This model postulates that acid-base balance is normally determined by the difference in concentration between strong cations and anions (strong ion difference [SID]), PCO2, and weak acids (primarily proteins). We measured electrolytes and blood gases in arterial blood samples from 21 patients in a medical or surgical intensive care unit or emergency room of a tertiary care hospital. The measured SID frequently differed from SID calculated from the measured blood components, which indicates that unmeasured cations or anions are present; these could not be accounted for by lactate, ketones, or other readily identifiable ions. We used an approach to acid-base analysis that is based on changes in base excess or deficit due to changes in: (1) free water as assessed by [Na+]; (2) in [Cl-]; (3) protein concentration; and (4) "other species" (ie, anion and cations other than [Na+], [K+], and [Cl-]). The contribution of "other species" was obtained from the difference between the SID measured and that predicted from Stewart's equation. It could also be calculated from the difference between the standard Siggaard-Anderson calculation of base excess and base excess attributable to free water, [Cl-], and proteins (ie, base-excess gap). Our results indicate that the SID gap, base excess gap, and anion gap reflect the presence of unmeasured ions, and both the anion-gap and base-excess gap provide readily available estimates of the SID gap. This provides a simple bedside approach for using the Stewart model to analyze the nonrespiratory component of clinical acid-base disorders and indicates that, in addition to unmeasured anions, unmeasured cations can be present.
Collapse
Affiliation(s)
- B M Gilfix
- Critical Care Division, Royal Victoria Hospital, Montreal, Quebec
| | | | | |
Collapse
|
45
|
Hirakoba K. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise. Eur J Appl Physiol 1993. [DOI: 10.1007/bf01427062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Hirakoba K, Maruyama A, Misaka K. Effect of acute sodium bicarbonate ingestion on excess CO2 output during incremental exercise. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1993; 66:536-41. [PMID: 8394808 DOI: 10.1007/bf00634306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of bicarbonate ingestion on total excess volume of CO2 output (CO2 excess), due to bicarbonate buffering of lactic acid in exercise, was studied in eight healthy male volunteers during incremental exercise on a cycle ergometer performed after ingestion (0.3 g.kg-1 body mass) of CaCO3 (control) and NaHCO3 (alkalosis). The resting arterialized venous blood pH (P < 0.05) and bicarbonate concentration ([HCO3-]b; P < 0.01) were significantly higher in acute metabolic alkalosis [AMA; pH, 7.44 (SD 0.03); [HCO3-]b, 29.4 (SD 1.5) mmol.l-1] than in the control [pH, 7.39 (SD 0.03); [HCO3-]b, 25.5 (SD 1.0) mmol.l-1]. The blood lactate concentrations ([la-]b) during exercise below the anaerobic threshold (AT) were not affected by AMA, while significantly higher [la-]b at exhaustion [12.29 (SD 1.87) vs 9.57 (SD 2.14) mmol.l-1, P < 0.05] and at 3 min after exercise [14.41 (SD 1.75) vs 12.26 (SD 1.40) mmol.l-1, P < 0.05] were found in AMA compared with the control. The CO2 excess increased significantly from the control [3177 (SD 506) ml] to AMA [3897 (SD 381) ml; P < 0.05]. The CO2 excess per body mass was found to be significantly correlated with both the increase of [la-]b from rest to 3 min after exercise (delta[la-]b; r = 0.926, P < 0.001) and with the decrease of [HCO3-]b from rest to 3 min after exercise (delta [HCO3-]b; r = 0.872, P < 0.001), indicating that CO2 excess per body mass increased linearly with both delta [la-]b and delta [HCO3-]b.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Hirakoba
- Department of Health and Physical Education, Kagoshima Keizai University, Japan
| | | | | |
Collapse
|
47
|
Hirakoba K, Maruyama A, Inaki M, Misaka K. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1992; 64:73-7. [PMID: 1735416 DOI: 10.1007/bf00376444] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We attempted to determine the change in total excess volume of CO2 output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19-22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for CO2 excess per unit of body mass per unit of blood lactate accumulation (delta la-) in exercise (CO2 excess.mass-1.delta la-), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml.kg-1.l-1.mmol-1, 97.8 m, 4.4 ml.kg-1. min-1 and 7.3 ml.kg-1.min-1, respectively. The percentage change in CO2 excess.mass-1.delta la- (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess.mass-1.delta la-, and the absolute amount of change in AT-VO2 (r = 0.94, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Hirakoba
- Department of Health and Physical Education, Kagoshima Keizai University, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
The concentrations of extracellular and intracellular potassium (K+) in skeletal muscle influence muscle cell function and are also important determinants of cardiovascular and respiratory function. Several studies over the years have shown that exercise results in a release of K+ ions from contracting muscles which produces a decrease in intracellular K+ concentrations and an increase in plasma K+ concentrations. Following exercise there is a recovery of intracellular K+ concentrations in previously contracting muscle and plasma K+ concentrations rapidly return to resting values. The cardiovascular and respiratory responses to K+ released by contracting muscle produce some changes which aid exercise performance. Increases in the interstitial K+ concentrations of contracting muscles stimulate CIII and CIV afferents to directly stimulate heart rate and the rate of ventilation. Localised K+ release causes a vasodilatation of the vascular bed within contracting muscle. This, together with the increase in cardiac output (through increased heart rate), results in an increase in blood flow to isometrically contracted muscle upon cessation of contraction and to dynamically contracting muscle. This exercise hyperaemia aids in the delivery of metabolic substrates to, and in the removal of metabolic endproducts from, contracting and recovering muscle tissues. In contrast to the beneficial respiratory and cardiovascular effects of elevations in interstitial and plasma K+ concentrations, the responses of contracting muscle to decreases in intracellular K+ concentrations and increases in intracellular Na+ concentrations and extracellular K+ concentrations contribute to a reduction in the strength of muscular contraction. Muscle K+ loss has thus been cited as a major factor associated with or contributing to muscle fatigue. The sarcolemma, because of changes in intracellular and extracellular K+ concentrations and Na+ concentrations on the membrane potential and cell excitability, contributes to a fatigue 'safety mechanism'. The purpose of this safety mechanism would be to prevent the muscle cell from the self-destruction which is evident upon overload (metabolic insufficiency) of the tissues. The net loss of K+ and associated net gain of Na+ by contracting muscles may contribute to the pain and degenerative changes seen with prolonged exercise. During exercise, mechanisms are brought into play which serve to regulate cellular and whole body K+ homeostasis. Increased rates of uptake of K+ by contracting muscles and inactive tissues through activation of the Na(+)-K+ pump serve to restore active muscle intracellular K+ concentrations towards precontraction levels and to prevent plasma K+ concentrations from rising to toxic levels. These effects are at least partially mediated by exercise-induced increases in plasma catecholamines, particularly adrenaline.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M I Lindinger
- School of Human Biology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
49
|
O'Neill AV, Johnson DC. Transition from exercise to rest. Ventilatory and arterial blood gas responses. Chest 1991; 99:1145-50. [PMID: 1902160 DOI: 10.1378/chest.99.5.1145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms leading to rapid changes in arterial blood gas values soon after exercise ends have not been well established. To further study these phenomena, we exercised seven normal male volunteers to exhaustion on a cycle ergometer with a 25-W/min ramped protocol measuring arterial blood gas values, and breath-by-breath gas exchange from rest to exercise and through 15 minutes of recovery. Arterial PO2 (PaO2) increased from 108 mm Hg at peak exercise to 125 mm Hg at 2 minutes of recovery. There was a smaller rise in calculated alveolar PO2 (PAO2) from 121 to 128 mm Hg over the same period. Arterial PCO2 (PaCO2) fell from 35.0 mm Hg to 31.9 mm Hg. The gas exchange ratio R rose from 1.21 to 1.52, after having peaked at 1.68 at 1 minute. The alveolar-arterial O2 gradient (P[A-a]O2) fell from 12.3 mm Hg at peak exercise to 3.2 mm Hg at 2 minutes. Following exercise, the rise in R is related to a more rapid fall in O2 uptake than in CO2 output, and the fall in P(A-a)O2 is probably related to improved V/Q relationships and to a rise in mixed venous PO2. We conclude that the rise in PaO2 in the recovery period after progressive nonsteady state exercise is due to several factors, including a fall in P(A-a)O2 and a rise in PAO2 due primarily to an elevation of R and also to a fall in PaCO2.
Collapse
Affiliation(s)
- A V O'Neill
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston 02114
| | | |
Collapse
|
50
|
Chick TW, Cagle TG, Vegas FA, Poliner JK, Murata GH. Recovery of gas exchange variables and heart rate after maximal exercise in COPD. Chest 1990; 97:276-9. [PMID: 2298051 DOI: 10.1378/chest.97.2.276] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Studies of the limited exercise capacity in patients with COPD have not assessed the recovery phase, although the phenomenon of increased oxygen uptake after exercise has been thoroughly investigated in normal subjects. Therefore, we compared the recovery of gas exchange variables and HR after maximal cycle ergometry in 16 patients with varying severities of airflow obstruction and ten aged control subjects. Aerobic capacity was reduced in the patients with COPD, and the rates of recovery of VE, VO2, VCO2, excess VCO2, and HR were all significantly slower in the patients with COPD than in the controls. When expressed as the half-time for recovery, patients with COPD had values which were approximately twice that of control subjects for gas exchange and HR. The extent of recovery was similar in patients and controls. We conclude that in patients with COPD, postexercise relative hyperpnea and hypermetabolism are significantly prolonged. In addition, impaired elimination of increased body stores of carbon dioxide may contribute to impaired adjustment to acid-base disorders in these patients.
Collapse
Affiliation(s)
- T W Chick
- Pulmonary Section, VA Medical Center, Albuquerque 87108
| | | | | | | | | |
Collapse
|