1
|
Ferretti G, Strapazzon G. A revision of maximal oxygen consumption and exercise capacity at altitude 70 years after the first climb of Mount Everest. J Physiol 2024; 602:5419-5433. [PMID: 38299739 DOI: 10.1113/jp285606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) at altitude follows. In this section, we discuss the reasons for the non-linear fall ofV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at altitude, we support the statement that it is a mirror image of the oxygen equilibrium curve, and we propose an analogue of Hill's model of the oxygen equilibrium curve to analyse theV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ fall. In the following section, we discuss the role of the ventilatory and pulmonary resistances to oxygen flow in limitingV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , which becomes progressively greater while moving toward higher altitudes. On top of Everest, these resistances provide most of theV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ limitation, and the oxygen equilibrium curve and the respiratory system provide linear responses. This phenomenon is more accentuated in athletes with elevatedV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , due to exercise-induced arterial hypoxaemia. The large differences inV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that we observe at sea level disappear at altitude. There is no need for a very highV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at sea level to climb the highest peaks on Earth.
Collapse
Affiliation(s)
- Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- SIMeM Italian Society of Mountain Medicine, Padova, Italy
| |
Collapse
|
2
|
Scott GR, Garvey KM, Wearing OH. The role of the heart in the evolution of aerobic performance. J Exp Biol 2024; 227:jeb247642. [PMID: 39045710 DOI: 10.1242/jeb.247642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Kayla M Garvey
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Oliver H Wearing
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 2A1
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7
| |
Collapse
|
3
|
Mandić M, Eriksson LMJ, Melin M, Skott V, Sundblad P, Gustafsson T, Rullman E. Reply to 'Reevaluating central versus peripheral contributions to maximal oxygen uptake: the role of muscle diffusive capacity'. J Physiol 2024; 602:5397-5399. [PMID: 39308454 DOI: 10.1113/jp287527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Mirko Mandić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa M J Eriksson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Melin
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Cardiology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Viktoria Skott
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Sundblad
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Goulding RP. Re-evaluating central versus peripheral contributions to maximal oxygen uptake: the role of muscle diffusive capacity. J Physiol 2024; 602:5391-5393. [PMID: 39216088 DOI: 10.1113/jp287378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Richie P Goulding
- Department of Human Movement Science, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Baek S, Ha HS, Park JS, Cho MJ, Kim HS, Yu SE, Chung S, Kim C, Kim J, Lee JY, Lee Y, Kim H, Nam Y, Cho S, Lee K, Yoon JK, Choi JS, Han DH, Sung HJ. Chip collection of hepatocellular carcinoma based on O 2 heterogeneity from patient tissue. Nat Commun 2024; 15:5117. [PMID: 38879551 PMCID: PMC11180182 DOI: 10.1038/s41467-024-49386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Hepatocellular carcinoma frequently recurs after surgery, necessitating personalized clinical approaches based on tumor avatar models. However, location-dependent oxygen concentrations resulting from the dual hepatic vascular supply drive the inherent heterogeneity of the tumor microenvironment, which presents challenges in developing an avatar model. In this study, tissue samples from 12 patients with hepatocellular carcinoma are cultured directly on a chip and separated based on preference of oxygen concentration. Establishing a dual gradient system with drug perfusion perpendicular to the oxygen gradient enables the simultaneous separation of cells and evaluation of drug responsiveness. The results are further cross-validated by implanting the chips into mice at various oxygen levels using a patient-derived xenograft model. Hepatocellular carcinoma cells exposed to hypoxia exhibit invasive and recurrent characteristics that mirror clinical outcomes. This chip provides valuable insights into treatment prognosis by identifying the dominant hepatocellular carcinoma type in each patient, potentially guiding personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Su Ha
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong Su Park
- Department of Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Jeong Cho
- Department of Clinical Pharmacology & Therapeutics, Catholic University of Korea, Seoul St. Mary's Hospital, 222, BanpoDaero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansik Kim
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jueun Kim
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Youn Lee
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yerin Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunjae Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yujin Nam
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwoo Cho
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Ja Kyung Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Sub Choi
- Department of Surgery, Division of Hepato-biliary and Pancreatic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Division of Hepato-biliary and Pancreatic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Hak-Joon Sung
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Rissanen APE, Mikkola T, Gagnon DD, Lehtonen E, Lukkarinen S, Peltonen JE. Wagner diagram for modeling O 2pathway-calculation and graphical display by the Helsinki O 2Pathway Tool. Physiol Meas 2024; 45:055028. [PMID: 38749432 DOI: 10.1088/1361-6579/ad4c36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Objective.Maximal O2uptake (V˙O2max) reflects the individual's maximal rate of O2transport and utilization through the integrated whole-body pathway composed of the lungs, heart, blood, circulation, and metabolically active tissues. As such,V˙O2maxis strongly associated with physical capacity as well as overall health and thus acts as one predictor of physical performance and as a vital sign in determination of status and progress of numerous clinical conditions. Quantifying the contribution of single parts of the multistep O2pathway toV˙O2maxprovides mechanistic insights into exercise (in)tolerance and into therapy-, training-, or disuse-induced adaptations at individual or group levels. We developed a desktop application (Helsinki O2Pathway Tool-HO2PT) to model numerical and graphical display of the O2pathway based on the 'Wagner diagram' originally formulated by Peter D. Wagner and his colleagues.Approach.The HO2PT was developed and programmed in Python to integrate the Fick principle and Fick's law of diffusion into a computational system to import, calculate, graphically display, and export variables of the Wagner diagram.Main results.The HO2PT models O2pathway both numerically and graphically according to the Wagner diagram and pertains to conditions under which the mitochondrial oxidative capacity of metabolically active tissues exceeds the capacity of the O2transport system to deliver O2to the mitochondria. The tool is based on the Python open source code and libraries and freely and publicly available online for Windows, macOS, and Linux operating systems.Significance.The HO2PT offers a novel functional and demonstrative platform for those interested in examiningV˙O2maxand its determinants by using the Wagner diagram. It will improve access to and usability of Wagner's and his colleagues' integrated physiological model and thereby benefit users across the wide spectrum of contexts such as scientific research, education, exercise testing, sports coaching, and clinical medicine.
Collapse
Affiliation(s)
- Antti-Pekka E Rissanen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Mikkola
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- School of Information and Communication Technology, Metropolia University of Applied Sciences, Helsinki, Finland
| | - Dominique D Gagnon
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON, Canada
| | - Elias Lehtonen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sakari Lukkarinen
- School of Information and Communication Technology, Metropolia University of Applied Sciences, Helsinki, Finland
| | - Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Tripp TR, McDougall RM, Frankish BP, Wiley JP, Lun V, MacInnis MJ. Contraction intensity affects NIRS-derived skeletal muscle oxidative capacity but not its relationships to mitochondrial protein content or aerobic fitness. J Appl Physiol (1985) 2024; 136:298-312. [PMID: 38059287 DOI: 10.1152/japplphysiol.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Broxterman RM, Wagner PD, Richardson RS. Endurance exercise training changes the limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the capacity to utilize O 2 to the capacity to transport O 2. J Physiol 2024; 602:445-459. [PMID: 38048175 PMCID: PMC10841684 DOI: 10.1113/jp285650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Maximal oxygen (O2 ) uptake (V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ ) is an important parameter with utility in health and disease. However, the relative importance of O2 transport and utilization capacities in limiting muscleV ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscleV ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venousP O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation (1 H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O2 both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellularP O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ using an O2 half-saturation pressure of 3.2 mmHg. Pre-training muscleV ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was not significantly different across inspired O2 conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min-1 , all q > 0.174), despite significantly greater muscle mean capillary-intracellularP O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscleV ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was significantly different across all inspired O2 conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellularP O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscleV ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria. KEY POINTS: Maximal O2 uptake is an important parameter with utility in health and disease. The relative importance of O2 transport and utilization capacities in limiting muscle maximal O2 uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O2 uptake with the measurement of muscle intracellularP O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ before and after 8 weeks of endurance exercise training. We show that increasing O2 availability did not increase muscle maximal O2 uptake before training, whereas increasing O2 availability did increase muscle maximal O2 uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O2 uptake in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria.
Collapse
Affiliation(s)
- Ryan M. Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
| | - Peter D. Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Russell S. Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Porcelli S, Pilotto A, Rossiter HB. NIRS-Based Muscle Oxygenation Is Not Suitable to Compute Convective and Diffusive Components of O 2 Transport at V̇O 2max. Med Sci Sports Exerc 2023; 55:2106-2109. [PMID: 37343384 PMCID: PMC10592547 DOI: 10.1249/mss.0000000000003239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, ITALY
- Institute of Biomedical Technologies, National Research Council, Milan, ITALY
| | - A.M. Pilotto
- Department of Molecular Medicine, University of Pavia, Pavia, ITALY
- Department of Medicine, University of Udine, Udine, ITALY
| | - Harry B. Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| |
Collapse
|
10
|
Manferdelli G, Barstow TJ, Millet GP. NIRS-Based Muscle Oxygenation Is Suitable for Computation of the Convective and Diffusive Components of O 2 Transport at V̇O 2max : Response to Porcelli, Pilotto, and Rossiter. Med Sci Sports Exerc 2023; 55:2110-2111. [PMID: 37343388 DOI: 10.1249/mss.0000000000003241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
11
|
Manferdelli G, Barstow TJ, Millet GP. NIRS-Based Muscle Oxygenation Is Suitable for Computation of the Convective and Diffusive Components of O 2 Transport at V̇O 2max. Med Sci Sports Exerc 2023; 55:2103-2105. [PMID: 37343383 DOI: 10.1249/mss.0000000000003238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
12
|
Wagner PD. Blood Gas Transport: Implications for O2 and CO2 Exchange in Lungs and Tissues. Semin Respir Crit Care Med 2023; 44:584-593. [PMID: 37567252 DOI: 10.1055/s-0043-1771161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The well-known ways in which O2 and CO2 (and other gases) are carried in the blood were presented in the preceding chapter. However, what the many available texts about O2 and CO2 transport do not emphasize is why knowing how gases are carried in blood matters, and this second, companion, article specifically addresses that critical aspect of gas exchange physiology. During gas exchange, both at the lungs and in the peripheral tissues, it is the shapes and the slopes of the O2 and CO2 binding curves that explain almost all of the behaviors of each gas and the quantitative differences observed between them. This conclusion is derived from first principle considerations of the gas exchange processes. Dissociation curve shape and slope differences explain most of the differences between O2 and CO2 in both diffusive exchange in the lungs and tissues and convective exchange/transport in, and between, the lungs and tissues. In fact, each of the chapters in this volume describes physiological behavior that depends more or less directly on the dissociation curves of O2 and CO2.
Collapse
Affiliation(s)
- Peter D Wagner
- Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
13
|
Wagner PD. Determinants of maximal oxygen consumption. J Muscle Res Cell Motil 2023; 44:73-88. [PMID: 36434438 DOI: 10.1007/s10974-022-09636-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
This article lays out the determinants of maximal O2 consumption (VO2max) achieved during high intensity endurance exercise. It is not a traditional topical review but rather an educational essay that intertwines chance observations made during an unrelated research project with a subsequent program of stepwise thought, analysis and experimentation to reveal how O2 is delivered to and used by the mitochondria. The centerpiece is the recognition that O2 is delivered by an inter-dependent system of transport components functioning as a "bucket brigade", made up of the lungs, heart, blood and circulation, and the muscles themselves, each of which affects O2 transport by similar amounts as they change. There is thus no single "limiting factor" to VO2max. Moreover, each component is shown to quantitatively affect the performance of the others. Mitochondrial respiration is integrated into the O2 transport system analysis to reveal its separate contribution to VO2max, and to show that mitochondrial PO2 at VO2max must be extremely low. Clinical application of the O2 transport systems analysis is described to separate central cardiopulmonary from peripheral tissue contributions to exercise limitation, illustrated by a study of patients with COPD. Finally, a short discussion of why muscles operating maximally must endure an almost anoxic state is offered. The hope is that in sum, both the increased understanding of O2 transport and the scientific approach to achieving that understanding described in the review can serve as a model for solving other complex problems going forward.
Collapse
|
14
|
Manferdelli G, Narang BJ, Bourdillon N, Debevec T, Millet GP. Physiological Responses to Exercise in Hypoxia in Preterm Adults: Convective and Diffusive Limitations in the O 2 Transport. Med Sci Sports Exerc 2023; 55:482-496. [PMID: 36459101 DOI: 10.1249/mss.0000000000003077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
PURPOSE Premature birth induces long-term sequelae on the cardiopulmonary system, leading to reduced exercise capacity. However, the mechanisms of this functional impairment during incremental exercise remain unclear. Also, a blunted hypoxic ventilatory response was found in preterm adults, suggesting an increased risk for adverse effects of hypoxia in this population. This study aimed to investigate the oxygen cascade during incremental exercise to exhaustion in both normoxia and hypobaric hypoxia in prematurely born adults with normal lung function and their term born counterparts. METHODS Noninvasive measures of gas exchange, cardiac hemodynamics, and both muscle and cerebral oxygenation were continuously performed using metabolic cart, transthoracic impedance, and near-infrared spectroscopy, respectively, during an incremental exercise test to exhaustion performed at sea level and after 3 d of high-altitude exposure in healthy preterm ( n = 17; gestational age, 29 ± 1 wk; normal lung function) and term born ( n = 17) adults. RESULTS At peak, power output, oxygen uptake, stroke volume indexed for body surface area, and cardiac output were lower in preterm compared with term born in normoxia ( P = 0.042, P = 0.027, P = 0.030, and P = 0.018, respectively) but not in hypoxia, whereas pulmonary ventilation, peripheral oxygen saturation, and muscle and cerebral oxygenation were similar between groups. These later parameters were modified by hypoxia ( P < 0.001). Hypoxia increased muscle oxygen extraction at submaximal and maximal intensity in term born ( P < 0.05) but not in preterm participants. Hypoxia decreased cerebral oxygen saturation in term born but not in preterm adults at rest and during exercise ( P < 0.05). Convective oxygen delivery was decreased by hypoxia in term born ( P < 0.001) but not preterm adults, whereas diffusive oxygen transport decreased similarly in both groups ( P < 0.001 and P < 0.001, respectively). CONCLUSIONS These results suggest that exercise capacity in preterm is primarily reduced by impaired convective, rather than diffusive, oxygen transport. Moreover, healthy preterm adults may experience blunted hypoxia-induced impairments during maximal exercise compared with their term counterparts.
Collapse
Affiliation(s)
| | | | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
15
|
Manferdelli G, Raberin A, Millet GP. Muscle O 2 diffusion capacity by NIRS: A new approach in the air. J Physiol 2022; 600:5163-5164. [PMID: 36205221 DOI: 10.1113/jp283882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Pilotto AM, Adami A, Mazzolari R, Brocca L, Crea E, Zuccarelli L, Pellegrino MA, Bottinelli R, Grassi B, Rossiter HB, Porcelli S. Near-infrared spectroscopy estimation of combined skeletal muscle oxidative capacity and O 2 diffusion capacity in humans. J Physiol 2022; 600:4153-4168. [PMID: 35930524 PMCID: PMC9481735 DOI: 10.1113/jp283267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023] Open
Abstract
The final steps of the O2 cascade during exercise depend on the product of the microvascular-to-intramyocyteP O 2 ${P}_{{{\rm{O}}}_{\rm{2}}}$ difference and muscle O2 diffusing capacity (D m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ ). Non-invasive methods to determineD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ in humans are currently unavailable. Muscle oxygen uptake (mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) recovery rate constant (k), measured by near-infrared spectroscopy (NIRS) using intermittent arterial occlusions, is associated with muscle oxidative capacity in vivo. We reasoned that k would be limited byD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ when muscle oxygenation is low (kLOW ), and hypothesized that: (i) k in well oxygenated muscle (kHIGH ) is associated with maximal O2 flux in fibre bundles; and (ii) ∆k (kHIGH - kLOW ) is associated with capillary density (CD). Vastus lateralis k was measured in 12 participants using NIRS after moderate exercise. The timing and duration of arterial occlusions were manipulated to maintain tissue saturation index within a 10% range either below (LOW) or above (HIGH) half-maximal desaturation, assessed during sustained arterial occlusion. Maximal O2 flux in phosphorylating state was 37.7 ± 10.6 pmol s-1 mg-1 (∼5.8 ml min-1 100 g-1 ). CD ranged 348 to 586 mm-2 . kHIGH was greater than kLOW (3.15 ± 0.45 vs. 1.56 ± 0.79 min-1 , P < 0.001). Maximal O2 flux was correlated with kHIGH (r = 0.80, P = 0.002) but not kLOW (r = -0.10, P = 0.755). Δk ranged -0.26 to -2.55 min-1 , and correlated with CD (r = -0.68, P = 0.015). mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ k reflects muscle oxidative capacity only in well oxygenated muscle. ∆k, the difference in k between well and poorly oxygenated muscle, was associated with CD, a mediator ofD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ . Assessment of muscle k and ∆k using NIRS provides a non-invasive window on muscle oxidative and O2 diffusing capacity. KEY POINTS: We determined post-exercise recovery kinetics of quadriceps muscle oxygen uptake (mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) measured by near-infrared spectroscopy (NIRS) in humans under conditions of both non-limiting (HIGH) and limiting (LOW) O2 availability, for comparison with biopsy variables. The mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ recovery rate constant in HIGH O2 availability was hypothesized to reflect muscle oxidative capacity (kHIGH ) and the difference in k between HIGH and LOW O2 availability (∆k) was hypothesized to reflect muscle O2 diffusing capacity. kHIGH was correlated with phosphorylating oxidative capacity of permeabilized muscle fibre bundles (r = 0.80). ∆k was negatively correlated with capillary density (r = -0.68) of biopsy samples. NIRS provides non-invasive means of assessing both muscle oxidative and oxygen diffusing capacity in vivo.
Collapse
Affiliation(s)
- Andrea M. Pilotto
- Department of MedicineUniversity of UdineUdineItaly
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | - Alessandra Adami
- Department of KinesiologyUniversity of Rhode IslandKingstonRIUSA
| | - Raffaele Mazzolari
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Department of Physical Education and SportUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Lorenza Brocca
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | - Emanuela Crea
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | | | - Maria A. Pellegrino
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Interdipartimental Centre for Biology and Sport MedicineUniversity of PaviaPaviaItaly
| | - Roberto Bottinelli
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Interdipartimental Centre for Biology and Sport MedicineUniversity of PaviaPaviaItaly
| | - Bruno Grassi
- Department of MedicineUniversity of UdineUdineItaly
| | - Harry B. Rossiter
- Division of Respiratory and Critical Care Physiology and MedicineThe Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical CenterTorranceCAUSA
| | - Simone Porcelli
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| |
Collapse
|
17
|
Ferretti G, Fagoni N, Taboni A, Vinetti G, di Prampero PE. A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 2022; 122:1317-1365. [PMID: 35217911 PMCID: PMC9132876 DOI: 10.1007/s00421-022-04901-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
After a short historical account, and a discussion of Hill and Meyerhof's theory of the energetics of muscular exercise, we analyse steady-state rest and exercise as the condition wherein coupling of respiration to metabolism is most perfect. The quantitative relationships show that the homeostatic equilibrium, centred around arterial pH of 7.4 and arterial carbon dioxide partial pressure of 40 mmHg, is attained when the ratio of alveolar ventilation to carbon dioxide flow ([Formula: see text]) is - 21.6. Several combinations, exploited during exercise, of pertinent respiratory variables are compatible with this equilibrium, allowing adjustment of oxygen flow to oxygen demand without its alteration. During exercise transients, the balance is broken, but the coupling of respiration to metabolism is preserved when, as during moderate exercise, the respiratory system responds faster than the metabolic pathways. At higher exercise intensities, early blood lactate accumulation suggests that the coupling of respiration to metabolism is transiently broken, to be re-established when, at steady state, blood lactate stabilizes at higher levels than resting. In the severe exercise domain, coupling cannot be re-established, so that anaerobic lactic metabolism also contributes to sustain energy demand, lactate concentration goes up and arterial pH falls continuously. The [Formula: see text] decreases below - 21.6, because of ensuing hyperventilation, while lactate keeps being accumulated, so that exercise is rapidly interrupted. The most extreme rupture of the homeostatic equilibrium occurs during breath-holding, because oxygen flow from ambient air to mitochondria is interrupted. No coupling at all is possible between respiration and metabolism in this case.
Collapse
Affiliation(s)
- Guido Ferretti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy.
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland.
| | - Nazzareno Fagoni
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Anna Taboni
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland
| | - Giovanni Vinetti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | | |
Collapse
|
18
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
19
|
Oxygen flux from capillary to mitochondria: integration of contemporary discoveries. Eur J Appl Physiol 2022; 122:7-28. [PMID: 34940908 PMCID: PMC8890444 DOI: 10.1007/s00421-021-04854-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2's passage across the body's final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh-Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.
Collapse
|
20
|
Ferretti G. Comment on Poole et al (2022) review on oxygen flux from capillaries to mitochondria. Eur J Appl Physiol 2021; 122:5-6. [PMID: 34921605 DOI: 10.1007/s00421-021-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Guido Ferretti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy. .,Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Geneva, Switzerland.
| |
Collapse
|
21
|
Smith JR, Berg JD, Curry TB, Joyner MJ, Olson TP. Respiratory muscle work influences locomotor convective and diffusive oxygen transport in human heart failure during exercise. Physiol Rep 2021; 8:e14484. [PMID: 32562374 PMCID: PMC7305241 DOI: 10.14814/phy2.14484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction It remains unclear if naturally occurring respiratory muscle (RM) work influences leg diffusive O2 transport during exercise in heart failure patients with reduced ejection fraction (HFrEF). In this retrospective study, we hypothesized that RM unloading during submaximal exercise will lead to increases in locomotor muscle O2 diffusion capacity (DMO2) contributing to the greater leg VO2. Methods Ten HFrEF patients and 10 healthy control matched participants performed two submaximal exercise bouts (i.e., with and without RM unloading). During exercise, leg blood flow was measured via constant infusion thermodilution. Intrathoracic pressure was measured via esophageal balloon. Radial arterial and femoral venous blood gases were measured and used to calculate leg arterial and venous content (CaO2 and CvO2, respectively), VO2, O2 delivery, and DMO2. Results From CTL to RM unloading, leg VO2, O2 delivery, and DMO2 were not different in healthy participants during submaximal exercise (all, p > .15). In HFrEF, leg VO2 (CTL: 0.7 ± 0.3 vs. RM unloading: 1.0 ± 0.4 L/min, p < .01), leg O2 delivery (CTL: 0.9 ± 0.4 vs. RM unloading: 1.4 ± 0.5 L/min, p < .01), and leg DMO2 (CTL: 31.5 ± 11.4 vs. RM unloading: 49.7 ± 18.6 ml min−1 mmHg−1) increased from CTL to RM unloading during submaximal exercise (all, p < .01), whereas CaO2‐CvO2 was not different (p = .51). The degree of RM unloading (i.e., % decrease in esophageal pressure‐time integral during inspiration) was related to the % increase in leg DMO2 with RM unloading (r = −.76, p = .01). Conclusion Our data suggest RM unloading leads to increased leg VO2 due to greater convective and diffusive O2 transport during submaximal exercise in HFrEF patients.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jessica D Berg
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Abstract
Since ancient times, the health benefits of regular physical activity/exercise have been recognized and the classic studies of Morris and Paffenbarger provided the epidemiological evidence in support of such an association. Cardiorespiratory fitness, often measured by maximal oxygen uptake, and habitual physical activity levels are inversely related to mortality. Thus, studies exploring the biological bases of the health benefits of exercise have largely focused on the cardiovascular system and skeletal muscle (mass and metabolism), although there is increasing evidence that multiple tissues and organ systems are influenced by regular exercise. Communication between contracting skeletal muscle and multiple organs has been implicated in exercise benefits, as indeed has other interorgan "cross-talk." The application of molecular biology techniques and "omics" approaches to questions in exercise biology has opened new lines of investigation to better understand the beneficial effects of exercise and, in so doing, inform the optimization of exercise regimens and the identification of novel therapeutic strategies to enhance health and well-being.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Stewart GM, Cross TJ, Joyner MJ, Chase SC, Curry T, Lehrer-Graiwer J, Dufu K, Vlahakis NE, Johnson BD. Impact of Pharmacologically Left Shifting the Oxygen-Hemoglobin Dissociation Curve on Arterial Blood Gases and Pulmonary Gas Exchange During Maximal Exercise in Hypoxia. High Alt Med Biol 2021; 22:249-262. [PMID: 34152867 DOI: 10.1089/ham.2020.0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stewart, Glenn M., Troy J. Cross, Michael J. Joyner, Steven C. Chase, Timothy Curry, Josh Lehrer-Graiwer, Kobina Dufu, Nicholas E. Vlahakis, and Bruce D. Johnson. Impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve on arterial blood gases and pulmonary gas exchange during maximal exercise in hypoxia. High Alt Med Biol. 22:249-262, 2021. Introduction: Physiological and pathological conditions, which reduce the loading of oxygen onto hemoglobin (Hb), can impair exercise capacity and cause debilitating symptoms. Accordingly, this study examined the impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve (ODC) on arterial oxygen saturation (SaO2) and exercise capacity. Methods: Eight healthy subjects completed a maximal incremental exercise test in hypoxia (FIO2: 0.125) and normoxia (FIO2: 0.21) before (Day 1) and after (Day 15) daily ingestion of 900 mg of voxelotor (an oxygen/Hb affinity modulator). Pulmonary gas exchange and arterial blood gases were assessed throughout exercise and at peak. Data for a 1,500 mg daily drug dose are reported in a limited cohort (n = 3). Results: Fourteen days of drug administration left shifted the ODC (p50 measured under standard conditions, Day 1: 28.0 ± 2.1 mmHg vs. Day 15: 26.1 ± 1.8 mmHg, p < 0.05). Throughout incremental exercise in hypoxia, SaO2 was systematically higher after drug (peak exercise SaO2 on Day 1: 71 ± 2 vs. Day 15: 81% ± 2%, p < 0.001), whereas oxygen extraction (Ca-vO2 diff) and consumption (VO2) were similar (peak exercise Ca-vO2 diff on Day 1: 11.5 ± 1.7 vs. Day 15: 11.0 ± 1.8 ml/100 ml blood, p = 0.417; peak VO2 on Day 1: 2.59 ± 0.39 vs. Day 15: 2.47 ± 0.43 l/min, p = 0.127). Throughout incremental exercise in normoxia, SaO2 was systematically higher after drug, whereas peak VO2 was reduced (peak exercise SaO2 on Day 1: 93.9 ± 1.8 vs. Day 15: 95.8% ± 1.0%, p = 0.008; peak VO2 on Day 1: 3.62 ± 0.55 vs. Day 15: 3.26 ± 52 l/min, p = 0.001). Conclusion: Pharmacologically increasing the affinity of Hb for oxygen improved SaO2 during hypoxia without impacting exercise capacity; however, left shifting the ODC in healthy individuals appears detrimental to exercise capacity in normoxia. Left shifting the ODC to different magnitudes and under more chronic forms of hypoxia warrants further study.
Collapse
Affiliation(s)
- Glenn M Stewart
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Troy J Cross
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael J Joyner
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven C Chase
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kobina Dufu
- Global Blood Therapeutics, South San Francisco, California, USA
| | | | - Bruce D Johnson
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Porcelli S, Rasica L, Ferguson BS, Kavazis AN, McDonald J, Hogan MC, Grassi B, Gladden LB. Effect of acute nitrite infusion on contractile economy and metabolism in isolated skeletal muscle in situ during hypoxia. J Physiol 2021; 598:2371-2384. [PMID: 32537774 DOI: 10.1113/jp279789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Increased plasma nitrite concentrations may have beneficial effects on skeletal muscle function. The physiological basis explaining these observations has not been clearly defined and it may involve positive effects on muscle contraction force, microvascular O2 delivery and skeletal muscle oxidative metabolism. In the isolated canine gastrocnemius model, we evaluated the effects of acute nitrite infusion on muscle force and skeletal muscle oxidative metabolism. Under hypoxic conditions, but in the presence of normal convective O2 delivery, an elevated plasma nitrite concentration affects neither muscle force, nor muscle contractile economy. In accordance with previous results suggesting limited or no effects of nitrate/nitrite administrations in highly oxidative and highly perfused muscle, our data suggest that neither mitochondrial respiration, nor muscle force generation are affected by acute increased concentrations of NO precursors in hypoxia. ABSTRACT Contrasting findings have been reported concerning the effects of augmented nitric oxide (NO) on skeletal muscle force production and oxygen consumption ( V ̇ O 2 ). The present study examined skeletal muscle mitochondrial respiration and contractile economy in an isolated muscle preparation during hypoxia (but normal convective O2 delivery) with nitrite infusion. Isolated canine gastrocnemius muscles in situ (n = 8) were studied during 3 min of electrically stimulated isometric tetanic contractions corresponding to ∼35% of V ̇ O 2 peak . During contractions, sodium nitrite (NITRITE) or sodium chloride (SALINE) was infused into the popliteal artery. V ̇ O 2 was calculated from the Fick principle. Experiments were carried out in hypoxia ( F I O 2 = 0.12), whereas convective O2 delivery was maintained at normal levels under both conditions by pump-driven blood flow ( Q ̇ ). Muscle biopsies were taken and mitochondrial respiration was evaluated by respirometry. Nitrite infusion significantly increased both nitrite and nitrate concentrations in plasma. No differences in force were observed between conditions. V ̇ O 2 was not significantly different between NITRITE (6.1 ± 1.8 mL 100 g-1 min-1 ) and SALINE (6.2 ± 1.8 mL 100 g-1 min-1 ), even after being 'normalized' per unit of developed force (muscle contractile economy). No differences between conditions were found for maximal ADP-stimulated mitochondrial respiration (both for complex I and complex II), leak respiration and oxidative phosphorylation coupling. In conclusion, in the absence of changes in convective O2 delivery, muscle force, muscle contractile economy and mitochondrial respiration were not affected by acute infusion of nitrite. The previously reported positive effects of elevated plasma nitrite concentrations are presumably mediated by the increased microvascular O2 availability.
Collapse
Affiliation(s)
- Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Letizia Rasica
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - James McDonald
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
25
|
Broxterman RM, Wagner PD, Richardson RS. Exercise training in COPD: muscle O 2 transport plasticity. Eur Respir J 2021; 58:13993003.04146-2020. [PMID: 33446612 DOI: 10.1183/13993003.04146-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022]
Abstract
Both convective oxygen (O2) transport to, and diffusive transport within, skeletal muscle are markedly diminished in patients with COPD. However, it is unknown how these determinants of peak muscle O2 uptake (V'mO2peak) respond to exercise training in patients with COPD. Therefore, the purpose of this study was to assess the plasticity of skeletal muscle O2 transport determinants of V'mO2peak in patients with COPD.Adaptations to 8 weeks of single-leg knee-extensor exercise training were measured in eight patients with severe COPD (mean±sem forced expiratory volume in 1 s (FEV1) 0.9±0.1 L) and eight healthy, well-matched controls. Femoral arterial and venous blood samples, and thermodilution-assessed leg blood flow were used to determine muscle O2 transport and utilisation at maximal exercise pre- and post-training.Training increased V'mO2peak in both COPD (by ∼26% from 271±29 to 342±35 mL·min-1) and controls (by ∼32% from 418±37 to 553±41 mL·min-1), restoring V'mO2peak in COPD to only ∼80% of pre-training control V'mO2peak Muscle diffusive O2 transport increased similarly in both COPD (by ∼38% from 6.6±0.9 to 9.1±0.9 mL·min-1·mmHg-1) and controls (by ∼36% from 10.4±0.7 to 14.1±0.8 mL·min-1·mmHg-1), with the patients reaching ∼90% of pre-training control values. In contrast, muscle convective O2 transport increased significantly only in controls (by ∼26% from 688±57 to 865±69 mL·min-1), leaving patients with COPD (438±45 versus 491±51 mL·min-1) at ∼70% of pre-training control values.While muscle diffusive O2 transport in COPD was largely restored by exercise training, V'mO2peak remained constrained by limited plasticity in muscle convective O2 transport.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA .,Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, USA
| | - Peter D Wagner
- Dept of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Russell S Richardson
- Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, USA.,Dept of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Skattebo Ø, Calbet JAL, Rud B, Capelli C, Hallén J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 2020; 230:e13486. [PMID: 32365270 PMCID: PMC7540168 DOI: 10.1111/apha.13486] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
We analysed the importance of systemic and peripheral arteriovenous O2 difference (
a-v¯O2 difference and a‐vfO2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake (
V˙O2max). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion versus perfusion limitations vary with
V˙O2max. Articles (n = 17) publishing individual data (n = 154) on
V˙O2max, maximal cardiac output (
Q˙max; indicator‐dilution or the Fick method),
a-v¯O2 difference (catheters or the Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group‐mean data (articles: n = 27; subjects: n = 234) on leg blood flow (LBF; thermodilution), a‐vfO2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained.
Q˙max and two‐LBF increased linearly by 4.9‐6.0 L · min–1 per 1 L · min–1 increase in
V˙O2max (R2 = .73 and R2 = .67, respectively; both P < .001). The
a-v¯O2 difference increased from 118‐168 mL · L–1 from a
V˙O2max of 2‐4.5 L · min–1 followed by a reduction (second‐order polynomial: R2 = .27). After accounting for a hypoxemia‐induced decrease in arterial O2 content with increasing
V˙O2max (R2 = .17; P < .001), systemic O2 extraction fraction increased up to ~90% (
V˙O2max: 4.5 L · min–1) with no further change (exponential decay model: R2 = .42). Likewise, leg O2 extraction fraction increased with
V˙O2max to approach a maximal value of ~90‐95% (R2 = .83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with
V˙O2max (R2 = .77 and R2 = .31, respectively; both P < .01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to
V˙O2max, enhanced O2 extraction fraction (≥90%) contributes to the remarkably high
V˙O2max in endurance‐trained individuals.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Jose A. L. Calbet
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Bjarne Rud
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Carlo Capelli
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Jostein Hallén
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
27
|
Deschenes MR, Tufts HL, Oh J, Li S, Noronha AL, Adan MA. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol Aging 2020; 95:1-8. [PMID: 32739557 DOI: 10.1016/j.neurobiolaging.2020.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
The neuromuscular junction (NMJ) connects the motor neuron with myofibers allowing muscle contraction. Both aging and increased activity result in NMJ remodeling. Here, the effects of exercise were examined in young and aged soleus muscles. Using immunofluorescent staining procedures, cellular and active zone components of the NMJ were quantified following a treadmill running program. Immunofluorescence was employed to determine myofiber profiles (size and type). Two-way analysis of variance procedures with main effects of age and treatment showed that when analyzing NMJs at the cellular level, significant (p ≤ 0.05) effects were identified for age, but not treatment. However, when examining subcellular active zones, effects for exercise, but not for age, were detected. Myofiber cross-sectional area showed that aging elicited atrophy and that among younger muscles endurance exercise training yielded decrements in myofiber size. Conversely, among aged muscles training elicited whole muscle and myofiber trends (p < 0.10) toward hypertrophy. Thus, different components of the neuromuscular system harbor unique sensitivities to various stimuli enabling proper adaptations to attain optimal function under differing conditions.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA.
| | - Hannah L Tufts
- Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA
| | - Jeongeun Oh
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Shuhan Li
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Alexa L Noronha
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Matthew A Adan
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
28
|
Zamani P, Proto EA, Mazurek JA, Prenner SB, Margulies KB, Townsend RR, Kelly DP, Arany Z, Poole DC, Wagner PD, Chirinos JA. Peripheral Determinants of Oxygen Utilization in Heart Failure With Preserved Ejection Fraction: Central Role of Adiposity. ACTA ACUST UNITED AC 2020; 5:211-225. [PMID: 32215346 PMCID: PMC7091498 DOI: 10.1016/j.jacbts.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
ΔAVo2 during exercise is a complex metric that incorporates into its calculation skeletal muscle blood flow and DmO2 across the skeletal muscle capillary membrane. Although ΔAVo2 was reduced in patients with HFpEF during both systemic and local (forearm) exercise, there was no difference in forearm DmO2 among subjects with HFpEF, those with hypertension, and healthy control subjects; therefore, abnormalities in forearm DmO2 cannot explain the reduced forearm ΔAVo2 seen in subjects with HFpEF. Local forearm exercise performance predicted about one-third of the variability in systemic aerobic capacity, demonstrating that peripheral factors are important in determining whole-body exercise tolerance. Degree of adiposity strongly correlated with ΔAVo2 during both local and whole-body exercise, suggesting that adipose tissue may play an active role in limiting exercise capacity in subjects with HFpEF.
The aim of this study was to determine the arteriovenous oxygen content difference (ΔAVo2) in adult subjects with and without heart failure with preserved ejection fraction (HFpEF) during systemic and forearm exercise. Subjects with HFpEF had reduced ΔAVo2. Forearm diffusional conductance for oxygen, a lumped conductance parameter that incorporates all impediments to the movement of oxygen from red blood cells in skeletal muscle capillaries into the mitochondria within myocytes, was estimated. Forearm diffusional conductance for oxygen was not different among adults with HFpEF, those with hypertension, and healthy control subjects; therefore, diffusional conductance cannot explain the reduced forearm ΔAVo2. Instead, adiposity was strongly associated with ΔAVo2, suggesting an active role for adipose tissue in reducing exercise capacity in patients with HFpEF.
Collapse
Key Words
- CO, cardiac output
- DEXA, dual-energy x-ray absorptiometry
- DmO2, skeletal muscle diffusional conductance for oxygen
- FIo2, fraction of inspired oxygen
- HFpEF
- HFpEF, heart failure with preserved ejection fraction
- MVC, maximal voluntary contraction force
- NT-proBNP, N-terminal pro–brain natriuretic peptide
- Po2, partial pressure of oxygen
- Vo2, oxygen consumption
- adiposity
- aerobic capacity
- exercise
- oxygen transport
- ΔAVo2, arteriovenous oxygen content difference
Collapse
Affiliation(s)
- Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth A Proto
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy A Mazurek
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stuart B Prenner
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raymond R Townsend
- Division of Nephrology/Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel P Kelly
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoltan Arany
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas
| | - Peter D Wagner
- Division of Pulmonary Medicine, University of California-San Diego, San Diego, California
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Guirgis L, Khraiche D, Ladouceur M, Iserin L, Bonnet D, Legendre A. Cardiac performance assessment during cardiopulmonary exercise test can improve the management of children with repaired congenital heart disease. Int J Cardiol 2020; 300:121-126. [DOI: 10.1016/j.ijcard.2019.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022]
|
30
|
Azevedo RDA, Béjar Saona JE, Inglis EC, Iannetta D, Murias JM. The effect of the fraction of inspired oxygen on the NIRS-derived deoxygenated hemoglobin "breakpoint" during ramp-incremental test. Am J Physiol Regul Integr Comp Physiol 2019; 318:R399-R409. [PMID: 31850819 DOI: 10.1152/ajpregu.00291.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During ramp-incremental (RI) exercise to exhaustion, the near-infrared spectroscopy-derived deoxygenated hemoglobin ([HHb]) signal in the vastus lateralis muscle shows a linear increase up to a point at which a plateau-like response is manifested ([HHb]bp). This study investigated if 1) the [HHb]bp is affected by different fractions of inspired O2 (FIO2) [hypoxia (16%; HYPO); normoxia (21%; NORM); hyperoxia (30%; HYPER)]; and 2) an abrupt change to hyperoxic-inspired gas just before the occurrence of the [HHb]bp (HYPERSWITCH) would affect the [HHb] plateau-like response. Ten physically active male participants reported to the laboratory on four separate occasions to perform an RI test to exhaustion in NORM, HYPO, and HYPER and an RI test to exhaustion with an abrupt increase in FIO2 (30%; HYPERSWITCH) 15 W before the power output (PO) associated with [HHb]bp in normoxia. PO, [HHb], tissue O2 (StO2), and pulse O2 saturation (SpO2) were recorded continuously. Peak PO was significantly lower in HYPO (290 ± 21 W) and higher in HYPER (321 ± 22 W) and HYPERSWITCH (320 ± 19 W) compared with NORM (311 ± 18 W). The PO associated with [HHb]bp was not different between NORM and HYPER (246 ± 23 vs. 247 ± 24 W), but it was lower in HYPO (198 ± 31 W) than NORM and HYPER. The PO associated with the [HHb]bp in HYPERSWITCH (240 ± 23) was not different compared with NORM. HYPER and HYPERSWITCH resulted in greater StO2 and SpO2 compared with NORM. These results suggest that the [HHb]bp response is not dependent of O2 driving pressure and that other physiological mechanisms might determine its occurrence.
Collapse
Affiliation(s)
| | | | | | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
31
|
Van Iterson EH. Left Ventricular Assist Device Support Complicates the Exercise Physiology of Oxygen Transport and Uptake in Heart Failure. Card Fail Rev 2019; 5:162-168. [PMID: 31768273 PMCID: PMC6848979 DOI: 10.15420/cfr.2019.10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
Low-output forward flow and impaired maximal exercise oxygen uptake (VO2 max) are hallmarks of patients in advanced heart failure. The continuous-flow left ventricular assist device is a cutting-edge therapy proven to increase forward flow, yet this therapy does not yield consistent improvements in VO2 max. The science of how adjustable artificial forward flow impacts the exercise physiology of heart failure and physical O2 transport between the central and peripheral systems is unclear. This review focuses on the exercise physiology of axial continuous-flow left ventricular assist device support and the impact that pump speed has on the interactive convective and diffusive components of whole-body physical O2 transport and VO2.
Collapse
Affiliation(s)
- Erik H Van Iterson
- Section of Preventive Cardiology and Rehabilitation, Heart and Vascular Institute, Cleveland Clinic, Cleveland OH, US
| |
Collapse
|
32
|
Iannetta D, Passfield L, Qahtani A, MacInnis MJ, Murias JM. Interlimb differences in parameters of aerobic function and local profiles of deoxygenation during double-leg and counterweighted single-leg cycling. Am J Physiol Regul Integr Comp Physiol 2019; 317:R840-R851. [PMID: 31617749 DOI: 10.1152/ajpregu.00164.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is typically assumed that in the context of double-leg cycling, dominant (DOMLEG) and nondominant legs (NDOMLEG) have similar aerobic capacity and both contribute equally to the whole body physiological responses. However, there is a paucity of studies that have systematically investigated maximal and submaximal aerobic performance and characterized the profiles of local muscle deoxygenation in relation to leg dominance. Using counterweighted single-leg cycling, this study explored whether peak O2 consumption (V̇o2peak), maximal lactate steady-state (MLSSp), and profiles of local deoxygenation [HHb] would be different in the DOMLEG compared with the NDOMLEG. Twelve participants performed a series of double-leg and counterweighted single-leg DOMLEG and NDOMLEG ramp-exercise tests and 30-min constant-load trials. V̇o2peak was greater in the DOMLEG than in the NDOMLEG (2.87 ± 0.42 vs. 2.70 ± 0.39 L/min, P < 0.05). The difference in V̇o2peak persisted even after accounting for lean mass (P < 0.05). Similarly, MLSSp was greater in the DOMLEG than in the NDOMLEG (118 ± 31 vs. 109 ± 31 W; P < 0.05). Furthermore, the amplitude of the [HHb] signal during ramp exercise was larger in the DOMLEG than in the NDOMLEG during both double-leg (26.0 ± 8.4 vs. 20.2 ± 8.8 µM, P < 0.05) and counterweighted single-leg cycling (18.5 ± 7.9 vs. 14.9 ± 7.5 µM, P < 0.05). Additionally, the amplitudes of the [HHb] signal were highly to moderately correlated with the mode-specific V̇o2peak values (ranging from 0.91 to 0.54). These findings showed in a group of young men that maximal and submaximal aerobic capacities were greater in the DOMLEG than in the NDOMLEG and that superior peripheral adaptations of the DOMLEG may underpin these differences.NEW & NOTEWORTHY It is typically assumed that the dominant and nondominant legs contribute equally to the whole physiological responses. In this study, we found that the dominant leg achieved greater peak O2 uptake values, sustained greater power output while preserving whole body metabolic stability, and showed larger amplitudes of deoxygenation responses. These findings highlight heterogeneous aerobic capacities of the lower limbs, which have important implications when whole body physiological responses are examined.
Collapse
Affiliation(s)
- Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Louis Passfield
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Ahmad Qahtani
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Rosenberry R, Tucker WJ, Haykowsky MJ, Trojacek D, Chamseddine HH, Arena-Marshall CA, Zhu Y, Wang J, Kellawan JM, Tian F, Nelson MD. Determinants of skeletal muscle oxygen consumption assessed by near-infrared diffuse correlation spectroscopy during incremental handgrip exercise. J Appl Physiol (1985) 2019; 127:698-706. [PMID: 31318612 DOI: 10.1152/japplphysiol.00273.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) is a rapidly evolving optical imaging technique for the assessment of skeletal muscle O2 utilization (mVO2). We compared DCS-derived determinants of mVO2 with conventional measures [blood flow by brachial artery Doppler ultrasound and venous O2 saturation (SVO2)] in eight volunteers at rest and during incremental handgrip exercise. Brachial artery blood flow and DCS-derived blood flow index (BFI) were linearly related (R2 = 0.57) and increased with each workload, whereas SVO2 decreased from 65.3 ± 2.5% (rest) to 39.9 ± 3.0% (light exercise; P < 0.01) with no change thereafter. In contrast, DCS-derived tissue O2 saturation decreased progressively with each incremental stage (P < 0.01), driven almost entirely by an initial steep rise in deoxyhemoglobin/myoglobin, followed by a linear increase thereafter. Whereas seemingly disparate at first glance, we believe these two approaches provide similar information. Indeed, by plotting the mean convective O2 delivery and diffusive O2 conductance, we show that the initial increase in mVO2 during the transition from rest to exercise was achieved by a greater increase in diffusive O2 conductance versus convective O2 delivery (10-fold vs. 4-fold increase, respectively), explaining the initial decline in SVO2. In contrast, the increase in mVO2 from light to heavy exercise was achieved by equal increases (1.8-fold) in convective O2 delivery and diffusive O2 conductance, explaining the plateau in SVO2. That DCS-derived BFI and deoxyhemoglobin/myoglobin (surrogate measure of O2 extraction) share the same general biphasic pattern suggests that both DCS and conventional approaches provide complementary information regarding the determinants of mVO2.NEW & NOTEWORTHY Near-infrared diffuse correlation spectroscopy (DCS) is an emerging optical imaging technique for quantifying skeletal muscle O2 delivery and utilization at the microvascular level. Here, we show that DCS provides complementary insight into the determinants of muscle O2 consumption across a wide range of exercise intensities, further establishing the utility of DCS.
Collapse
Affiliation(s)
- Ryan Rosenberry
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Wesley J Tucker
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas.,College of Nursing, University of Texas at Arlington, Arlington, Texas
| | - Mark J Haykowsky
- College of Nursing, University of Texas at Arlington, Arlington, Texas
| | - Darian Trojacek
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Houda H Chamseddine
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | | | - Ye Zhu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Jing Wang
- College of Nursing, University of Texas at Arlington, Arlington, Texas
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma
| | - Fenghua Tian
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
34
|
Simonson TS. Giants in Chest Medicine: Emeritus Professor Peter D. Wagner, MD. Chest 2019; 155:9-11. [DOI: 10.1016/j.chest.2018.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022] Open
|
35
|
Roy TK, Secomb TW. Effects of pulmonary flow heterogeneity on oxygen transport parameters in exercise. Respir Physiol Neurobiol 2018; 261:75-79. [PMID: 30321626 DOI: 10.1016/j.resp.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022]
Abstract
Under resting normoxic conditions, the healthy lung has ample oxygen uptake capacity relative to oxygen demand, but during exercise, increased oxygen demand and utilization become increasingly dependent on ventilation-perfusion matching. A mathematical model is used to investigate the effect of pulmonary flow heterogeneity, as characterized by the coefficient of variation (CV) of capillary blood flow, on pulmonary oxygen uptake in exercise. The model reveals that any level of heterogeneity up to a CV of 3 is consistent with the observed level of arterial oxygen tension under resting conditions, but that such high levels of heterogeneity are incompatible with the levels of oxygen uptake observed during exercise. If a normal diffusing capacity is assumed, the best fit to literature data on arterial oxygen content of exercising humans under normoxic and hypoxic conditions is found with a relatively low CV of 0.48, suggesting that local flow regulation mechanisms such as hypoxic pulmonary vasoconstriction play an important role in ventilation-perfusion matching during exercise.
Collapse
Affiliation(s)
- Tuhin K Roy
- Dept. of Anesthesiology, Mayo Clinic, Rochester, MN, 55905, United States.
| | - Timothy W Secomb
- Dept. of Physiology, University of Arizona, Tucson, AZ, 85724-5051, United States
| |
Collapse
|
36
|
Hirai DM, Colburn TD, Craig JC, Hotta K, Kano Y, Musch TI, Poole DC. Skeletal muscle interstitial O 2 pressures: bridging the gap between the capillary and myocyte. Microcirculation 2018; 26:e12497. [PMID: 30120845 DOI: 10.1111/micc.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
Abstract
The oxygen transport pathway from air to mitochondria involves a series of transfer steps within closely integrated systems (pulmonary, cardiovascular, and tissue metabolic). Small and finite O2 stores in most mammalian species require exquisitely controlled changes in O2 flux rates to support elevated ATP turnover. This is especially true for the contracting skeletal muscle where O2 requirements may increase two orders of magnitude above rest. This brief review focuses on the mechanistic bases for increased microvascular blood-myocyte O2 flux (V̇O2 ) from rest to contractions. Fick's law dictates that V̇O2 elevations driven by muscle contractions are produced by commensurate changes in driving force (ie, O2 pressure gradients; ΔPO2 ) and/or effective diffusing capacity (DO2 ). While previous evidence indicates that increased DO2 helps modulate contracting muscle O2 flux, up until recently the role of the dynamic ΔPO2 across the capillary wall was unknown. Recent phosphorescence quenching investigations of both microvascular and novel interstitial PO2 kinetics in health have resolved an important step in the O2 cascade between the capillary and myocyte. Specifically, the significant transmural ΔPO2 at rest was sustained (but not increased) during submaximal contractions. This supports the contention that the blood-myocyte interface provides a substantial effective resistance to O2 diffusion and underscores that modulations in erythrocyte hemodynamics and distribution (DO2 ) are crucial to preserve the driving force for O2 flux across the capillary wall (ΔPO2 ) during contractions. Investigation of the O2 transport pathway close to muscle mitochondria is key to identifying disease mechanisms and develop therapeutic approaches to ameliorate dysfunction and exercise intolerance.
Collapse
Affiliation(s)
- Daniel M Hirai
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Kazuki Hotta
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Timothy I Musch
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
37
|
Gonzalez NC, Kuwahira I. Systemic Oxygen Transport with Rest, Exercise, and Hypoxia: A Comparison of Humans, Rats, and Mice. Compr Physiol 2018; 8:1537-1573. [PMID: 30215861 DOI: 10.1002/cphy.c170051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this article is to compare and contrast the known characteristics of the systemic O2 transport of humans, rats, and mice at rest and during exercise in normoxia and hypoxia. This analysis should help understand when rodent O2 transport findings can-and cannot-be applied to human responses to similar conditions. The O2 -transport system was analyzed as composed of four linked conductances: ventilation, alveolo-capillary diffusion, circulatory convection, and tissue capillary-cell diffusion. While the mechanisms of O2 transport are similar in the three species, the quantitative differences are naturally large. There are abundant data on total O2 consumption and on ventilatory and pulmonary diffusive conductances under resting conditions in the three species; however, there is much less available information on pulmonary gas exchange, circulatory O2 convection, and tissue O2 diffusion in mice. The scarcity of data largely derives from the difficulty of obtaining blood samples in these small animals and highlights the need for additional research in this area. In spite of the large quantitative differences in absolute and mass-specific O2 flux, available evidence indicates that resting alveolar and arterial and venous blood PO2 values under normoxia are similar in the three species. Additionally, at least in rats, alveolar and arterial blood PO2 under hypoxia and exercise remain closer to the resting values than those observed in humans. This is achieved by a greater ventilatory response, coupled with a closer value of arterial to alveolar PO2 , suggesting a greater efficacy of gas exchange in the rats. © 2018 American Physiological Society. Compr Physiol 8:1537-1573, 2018.
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University School of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
38
|
Okerblom J, Fletes W, Patel HH, Schenk S, Varki A, Breen EC. Human-like Cmah inactivation in mice increases running endurance and decreases muscle fatigability: implications for human evolution. Proc Biol Sci 2018; 285:rspb.2018.1656. [PMID: 30209232 PMCID: PMC6158528 DOI: 10.1098/rspb.2018.1656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Compared to other primates, humans are exceptional long-distance runners, a feature that emerged in genus Homo approximately 2 Ma and is classically attributed to anatomical and physiological adaptations such as an enlarged gluteus maximus and improved heat dissipation. However, no underlying genetic changes have currently been defined. Two to three million years ago, an exon deletion in the CMP-Neu5Ac hydroxylase (CMAH) gene also became fixed in our ancestral lineage. Cmah loss in mice exacerbates disease severity in multiple mouse models for muscular dystrophy, a finding only partially attributed to differences in immune reactivity. We evaluated the exercise capacity of Cmah-/- mice and observed an increased performance during forced treadmill testing and after 15 days of voluntary wheel running. Cmah-/- hindlimb muscle exhibited more capillaries and a greater fatigue resistance in situ Maximal coupled respiration was also higher in Cmah null mice ex vivo and relevant differences in metabolic pathways were also noted. Taken together, these data suggest that CMAH loss contributes to an improved skeletal muscle capacity for oxygen use. If translatable to humans, CMAH loss could have provided a selective advantage for ancestral Homo during the transition from forest dwelling to increased resource exploration and hunter/gatherer behaviour in the open savannah.
Collapse
Affiliation(s)
- Jonathan Okerblom
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Glycobiology Research and Training Center (GRTC), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - William Fletes
- Glycobiology Research and Training Center (GRTC), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Initiative for Maximizing Student Development (IMSD) Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA .,Glycobiology Research and Training Center (GRTC), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Salvi P, Faini A, Castiglioni P, Brunacci F, Montaguti L, Severi F, Gautier S, Pretolani E, Benetos A, Parati G. Increase in slow-wave vasomotion by hypoxia and ischemia in lowlanders and highlanders. J Appl Physiol (1985) 2018; 125:780-789. [PMID: 29927733 DOI: 10.1152/japplphysiol.00977.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological relevance of slow-wave vasomotion is still unclear, even though it has been hypothesized that it could be a compensatory mechanism for enhancing tissue oxygenation in conditions of reduced oxygen supply. The aim of our study was to explore the effects of hypoxia and ischemia on slow-wave vasomotion in microcirculation. Peripheral oxygen saturation and forearm microcirculation flow (laser-Doppler flowmetry) were recorded at baseline and during postocclusive reactive hyperemia in the Himalaya region from 8 European lowlanders (6 men; aged 29-39 yr) at 1,350, 3,400, and 5,050 m and from 10 Nepalese male highlanders (aged 21-39 yr) at 3,400 and 5,050 m of altitude. The same measurements were also performed at sea level in 16 healthy volunteers (aged 23-61 yr) during a short-term exposure to normobaric hypoxia. In lowlanders, exposure to progressively higher altitude under baseline flow conditions progressively increased 0.06-0.15 Hz vasomotion amplitude [power spectral density % was expressed as geometric means (geometric standard deviation) = 14.0 (3.6) at 1,350 m; 87.0(2.3) at 3,400 m and 249.8 (3.6) at 5,050 m; P = 0.006 and P < 0.001 vs. 1,350 m, respectively]. In highlanders, low frequency vasomotion amplitude was similarly enhanced at different altitudes [power spectral density % = 183.4 (4.1) at 3,400 m vs. 236.0 (3.0) at 5,050 m; P = 0.139]. In both groups at altitude, it was further increased after ischemic stimulus ( P < 0.001). At baseline, acute short lasting normobaric hypoxia did not induce low frequency vasomotion, which was conversely induced by ischemia, even under normal oxygenation and barometric pressure. This study offers the demonstration of a significant increase in slow-wave vasomotion under prolonged hypobaric-hypoxia exposure at high altitude, with a further enhancement after ischemia induction. NEW & NOTEWORTHY This study offers the demonstration in humans of the occurrence of enhanced slow-wave vasomotion in microcirculation induced by exposure to hypobaric hypoxia, ischemia, and their combination. This phenomenon, where vasomotion can be hypothesized to behave as a "peripheral heart," may represent a compensating adaptive change aimed at improving peripheral flow and tissue oxygenation in conditions of reduced oxygen supply, such as altitude-induced hypobaric hypoxia and postocclusion ischemia.
Collapse
Affiliation(s)
- Paolo Salvi
- Istituto Auxologico Italiano, Istituti di Ricovero e Cura a Carattere Scientifico, Department of Cardiovascular, Neural, and Metabolic Sciences, Milan , Italy
| | - Andrea Faini
- Istituto Auxologico Italiano, Istituti di Ricovero e Cura a Carattere Scientifico, Department of Cardiovascular, Neural, and Metabolic Sciences, Milan , Italy
| | - Paolo Castiglioni
- Istituti di Ricovero e Cura a Carattere Scientifico Fondazione Don Carlo Gnocchi, Milan , Italy
| | - Fausto Brunacci
- Department of Internal Medicine, 'M. Bufalini' Hospital, Romagna Local Healthcare Unit, Cesena , Italy
| | - Luca Montaguti
- Department of Internal Medicine, 'M. Bufalini' Hospital, Romagna Local Healthcare Unit, Cesena , Italy
| | - Francesca Severi
- Department of Internal Medicine, 'M. Bufalini' Hospital, Romagna Local Healthcare Unit, Cesena , Italy
| | - Sylvie Gautier
- Department of Geriatrics, Centre Hospitalier Régional Universitaire de Nancy, Nancy , France
| | - Enzo Pretolani
- Department of Internal Medicine, 'M. Bufalini' Hospital, Romagna Local Healthcare Unit, Cesena , Italy
| | - Athanase Benetos
- Department of Geriatrics, Centre Hospitalier Régional Universitaire de Nancy, Nancy , France.,INSERM U1117, Université de Lorraine , Nancy , France
| | - Gianfranco Parati
- Istituto Auxologico Italiano, Istituti di Ricovero e Cura a Carattere Scientifico, Department of Cardiovascular, Neural, and Metabolic Sciences, Milan , Italy.,Department of Medicine and Surgery, University of Milano-Bicocca , Milan , Italy
| |
Collapse
|
40
|
Berg OK, Nyberg SK, Windedal TM, Wang E. Maximal strength training-induced improvements in forearm work efficiency are associated with reduced blood flow. Am J Physiol Heart Circ Physiol 2017; 314:H853-H862. [PMID: 29351462 DOI: 10.1152/ajpheart.00435.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maximal strength training (MST) improves work efficiency. However, since blood flow is greatly dictated by muscle contractions in arms during exercise and vascular conductance is lower, it has been indicated that arms rely more upon adapting oxygen extraction than legs in response to the enhanced work efficiency. Thus, to investigate if metabolic and vascular responses are arm specific, we used Doppler-ultrasound and a catheter placed in the subclavian vein to measure blood flow and the arteriovenous oxygen difference during steady-state work in seven young men [24 ± 3 (SD) yr] following 6 wk of handgrip MST. As expected, MST improved maximal strength (49 ± 9 to 62 ± 10 kg) and the rate of force development (923 ± 224 to 1,086 ± 238 N/s), resulting in a reduced submaximal oxygen uptake (30 ± 9 to 24 ± 10 ml/min) and concomitantly increased work efficiency (9.3 ± 2.5 to 12.4 ± 3.9%) (all P < 0.05). In turn, the work efficiency improvement was associated with reduced blood flow (486 ± 102 to 395 ± 114 ml/min), mediated by a lower blood velocity (43 ± 8 to 32 ± 6 cm/s) (all P < 0.05). Conduit artery diameter and the arteriovenous oxygen difference remained unaltered. The maximal work test revealed an increased time to exhaustion (949 ± 239 to 1,102 ± 292 s) and maximal work rate (both P < 0.05) but no change in peak oxygen uptake. In conclusion, despite prior indications of metabolic and vascular limb-specific differences, these results reveal that improved work efficiency after small muscle mass strength training in the upper extremities is accompanied by a blood flow reduction and coheres with what has been documented for lower extremities. NEW & NOTEWORTHY Maximal strength training increases skeletal muscle work efficiency. Oxygen extraction has been indicated to be the adapting component with this increased work efficiency in arms. However, we document that decreased blood flow, achieved by blood velocity reduction, is the adapting mechanism responding to the improved aerobic metabolism in the forearm musculature.
Collapse
Affiliation(s)
- Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Stian Kwak Nyberg
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Tobias Midtvedt Windedal
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
41
|
Wagner PD. Operation Everest II and the 1978 Habeler/Messner ascent of Everest without bottled O2: what might they have in common? J Appl Physiol (1985) 2017; 123:1682-1688. [DOI: 10.1152/japplphysiol.00140.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In 1978, Peter Habeler and Reinhold Messner climbed Everest without supplemental O2. Subsequently, Oelz et al. (Oelz O, Howald H, Di Prampero PE, Hoppeler H, Claassen H, Jenni R, Bühlmann A, Ferretti G, Brückner JC, Veicsteinas A, Gussoni M, Cerretelli P. J Appl Physiol (1985) 60: 1734–1742, 1986) assessed their cardiopulmonary function, finding no advantageous physiological attributes to explain their success, and leading West (West JB. High Life: A History of High-Altitude Physiology and Medicine. New York: Oxford University, 1998) to suggest that grit and determination were more important. In 1985, Charlie Houston, John Sutton, and Al Cymerman hosted a scientific project assessing a simulated ascent of Everest (OE II) at the U.S. Army Research Institute of Environmental Medicine. Included were measurements of O2 transport. In particular, mixed venous Po2 was measured at/near maximal exercise, for calculating pulmonary O2-diffusing capacity. A serendipitous observation was made: while both V̇o2max and mixed venous Po2 fell with altitude (as expected), it was how they fell—in direct proportion—that was remarkable. It later became clear that this reflected diffusion limitation of O2 transport from muscle microvessels to the mitochondria, and that this last step in O2 transport plays a major role in limiting V̇o2max. Thus, how Habeler and Messner made it up Everest without bottled O2 and no special cardiopulmonary attributes might be explained if their muscle O2-diffusing capacity, which depends largely on muscle capillarity, was unusually high. Oelz et al. mention that muscle capillary density was substantially—40%—above normal, but did not suggest that this accounted for the climbersʼ success. Therefore, high muscle capillarity, enhancing diffusive unloading of O2, may have been a major enabling physiological attribute for Habeler and Messner and that OE II, by chance, played a key role in bringing this to light.
Collapse
Affiliation(s)
- Peter D. Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
42
|
The physiology of submaximal exercise: The steady state concept. Respir Physiol Neurobiol 2017; 246:76-85. [PMID: 28818484 DOI: 10.1016/j.resp.2017.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 11/24/2022]
Abstract
The steady state concept implies that the oxygen flow is invariant and equal at each level along the respiratory system. The same is the case with the carbon dioxide flow. This condition has several physiological consequences, which are analysed. First, we briefly discuss the mechanical efficiency of exercise and the energy cost of human locomotion, as well as the roles played by aerodynamic work and frictional work. Then we analyse the equations describing the oxygen flow in lungs and in blood, the effects of ventilation and of the ventilation - perfusion inequality, and the interaction between diffusion and perfusion in the lungs. The cardiovascular responses sustaining gas flow increase in blood are finally presented. An equation linking ventilation, circulation and metabolism is developed, on the hypothesis of constant oxygen flow in mixed venous blood. This equation tells that, if the pulmonary respiratory quotient stays invariant, any increase in metabolic rate is matched by a proportional increase in ventilation, but by a less than proportional increase in cardiac output.
Collapse
|
43
|
Grassi B, Majerczak J, Bardi E, Buso A, Comelli M, Chlopicki S, Guzik M, Mavelli I, Nieckarz Z, Salvadego D, Tyrankiewicz U, Skórka T, Bottinelli R, Zoladz JA, Pellegrino MA. Exercise training in Tgα q*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism. J Appl Physiol (1985) 2017; 123:326-336. [PMID: 28522765 DOI: 10.1152/japplphysiol.00342.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgαq*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgαq*44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgαq*44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance.NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O2 delivery, were mainly responsible for the functional improvement.
Collapse
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy; .,Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Eleonora Bardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessia Buso
- Department of Medicine, University of Udine, Udine, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Guzik
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Zenon Nieckarz
- Institute of Physics, Jagiellonian University, Krakow, Poland; and
| | - Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Urszula Tyrankiewicz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Skórka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | | | - Jerzy A Zoladz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland
| | | |
Collapse
|
44
|
Montero D, Lundby C. Reduced arteriovenous oxygen difference in heart failure with preserved ejection fraction patients: Is the muscle oxidative phenotype certainly involved? Eur J Prev Cardiol 2017; 24:1157-1160. [DOI: 10.1177/2047487317706587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David Montero
- Department of Cardiology, University Hospital Zurich, Switzerland
| | - Carsten Lundby
- Centre for Physical Activity Research, Rigshospitalet, Denmark
| |
Collapse
|
45
|
Mukai K, Hiraga A, Takahashi T, Matsui A, Ohmura H, Aida H, Jones JH. Effects of maintaining different exercise intensities during detraining on aerobic capacity in Thoroughbreds. Am J Vet Res 2017; 78:215-222. [PMID: 28140647 DOI: 10.2460/ajvr.78.2.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether racehorses undergoing regular exercise at 2 intensities or stall rest during a period of reduced training (detraining) would differentially maintain their cardiopulmonary and oxygen-transport capacities. ANIMALS 27 Thoroughbreds. PROCEDURES Horses trained on a treadmill for 18 weeks underwent a period of detraining for 12 weeks according to 1 of 3 protocols: cantering at 70% of maximal rate of oxygen consumption ([Formula: see text]o2max) for 3 min/d for 5 d/wk (canter group); walking for 1 h/d for 5 d/wk (walk group); or stall rest (stall group). Standardized treadmill exercise protocols (during which cardiopulmonary and oxygen-transport variables were measured) were performed before and after detraining. RESULTS Mass-specific [Formula: see text]o2max, maximal cardiac output, and maximal cardiac stroke volume of all groups decreased after 12 weeks of detraining with no differences among groups. After detraining, arterial-mixed-venous oxygen concentration difference did not decrease in any group, and maximal heart rate decreased in the walk and stall groups. Run time to exhaustion and speeds eliciting [Formula: see text]o2max and maximal heart rate and at which plasma lactate concentration reached 4mM did not change in the canter group but decreased in the walk and stall groups. CONCLUSIONS AND CLINICAL RELEVANCE Horses following the cantering detraining protocol maintained higher values of several performance variables compared with horses following the walking or stall rest protocols. These results suggested that it may be possible to identify a minimal threshold exercise intensity or protocol during detraining that would promote maintenance of important performance-related variables and minimize reductions in oxygen-transport capacity in horses.
Collapse
|
46
|
Ade CJ, Broxterman RM, Moore AD, Barstow TJ. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O 2 transport mechanisms. J Appl Physiol (1985) 2017; 122:968-975. [PMID: 28153941 DOI: 10.1152/japplphysiol.00280.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
We have previously predicted that the decrease in maximal oxygen uptake (V̇o2max) that accompanies time in microgravity reflects decrements in both convective and diffusive O2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O2 transport (Q̇o2) and O2 diffusing capacity (Do2) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o2max, maximal cardiac output (Q̇Tmax), and differences in arterial and venous O2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o2 and Do2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o2 (-11.4 ± 10.5%, P = 0.02). Do2 significantly decreased from pre- to postflight by -27.5 ± 24.5% (P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o2max were significantly correlated with changes in Do2 (R2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O2 transport pathway.NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions.
Collapse
Affiliation(s)
- C J Ade
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma; .,Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - R M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - A D Moore
- Department of Health and Kinesiology, Lamar University, Beaumont, Texas; and
| | - T J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
47
|
Wagner PD. A re-analysis of the 1968 Saltin et al. "Bedrest" paper. Scand J Med Sci Sports 2016; 25 Suppl 4:83-7. [PMID: 26589121 DOI: 10.1111/sms.12597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 11/30/2022]
Abstract
In 1968, Saltin et al. published a landmark paper describing the alterations in VO2max resulting from two sequential interventions--20 days of bed rest and almost 8 weeks of training. They concluded that bed rest reduced VO2max through reductions in maximal cardiac output, while training enhanced VO2max by an equal combination of increased maximal cardiac output and increased arterio-venous [O2] difference (A-V Δ [O2]). At the time, A-V Δ [O2] was taken as an index of peripheral (skeletal muscle) adaptation. A key interpretive element that was not featured was consideration of how alterations in cardiac output affect the O2 extraction process secondary to changes in red cell transit time through the muscle microcirculation, even in the absence of adaptive changes in the skeletal muscles per se. For the 2015 Saltin Symposium, it was therefore thought appropriate to re-examine the 1968 O2 transport data and re-evaluate the roles central cardiovascular and peripheral muscle changes after bed rest and training allowing for their interaction. The analysis supports the conclusion that bed rest reduced VO2max mainly through reduction in cardiac output, but after training, it is proposed that the 1968 conclusions should be modified: the majority of the increase in VO2max from the control state can be attributed to an improvement in diffusive unloading of O2 from the muscle microcirculation, with a much smaller role for enhanced blood flow.
Collapse
Affiliation(s)
- P D Wagner
- Distinguished Professor of Medicine & Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
48
|
Lundby C, Montero D. Rebuttal from Carsten Lundby and David Montero. J Physiol 2016; 593:3765. [PMID: 26331829 DOI: 10.1113/jp270741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carsten Lundby
- Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Department of Food and Nutrition, and Sport Science, Gothenburg University, Gothenburg, Sweden
| | - David Montero
- Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
49
|
Lundby C, Montero D. CrossTalk opposing view: Diffusion limitation of O2 from microvessels into muscle does not contribute to the limitation of V̇O2 max. J Physiol 2016; 593:3759-61. [PMID: 26331827 DOI: 10.1113/jp270550] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carsten Lundby
- Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Department of Food and Nutrition, and Sport Science, Gothenburg University, Gothenburg, Sweden
| | - David Montero
- Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
50
|
Wagner PD. CrossTalk proposal: Diffusion limitation of O2 from microvessels into muscle does contribute to the limitation of V̇O2 max. J Physiol 2016; 593:3757-8. [PMID: 26331826 DOI: 10.1113/jp270551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Peter D Wagner
- Department of Medicine, Division of Physiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0623, USA
| |
Collapse
|