1
|
Behera J, Ison J, Voor MJ, Tyagi N. Exercise-Linked Skeletal Irisin Ameliorates Diabetes-Associated Osteoporosis by Inhibiting the Oxidative Damage-Dependent miR-150-FNDC5/Pyroptosis Axis. Diabetes 2022; 71:2777-2792. [PMID: 35802043 PMCID: PMC9750954 DOI: 10.2337/db21-0573] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/22/2022] [Indexed: 01/25/2023]
Abstract
Recent evidence suggests that physical exercise (EX) promotes skeletal development. However, the impact of EX on the progression of bone loss and deterioration of mechanical strength in mice with type 2 diabetic mellitus (T2DM) remains unexplored. In the current study, we investigated the effect of EX on bone mass and mechanical quality using a diabetic mouse model. The T2DM mouse model was established with a high-fat diet with two streptozotocin injections (50 mg/kg/body wt) in C57BL/6 female mice. The diabetic mice underwent treadmill exercises (5 days/week at 7-11 m/min for 60 min/day) for 8 weeks. The data showed that diabetes upregulated miR-150 expression through oxidative stress and suppressed FNDC5/Irisin by binding to its 3'-untranslated region. The decreased level of irisin further triggers the pyroptosis response in diabetic bone tissue. EX or N-acetyl cysteine or anti-miRNA-150 transfection in T2DM mice restored FNDC5/Irisin expression and bone formation. Furthermore, EX or recombinant irisin administration prevented T2DM-Induced hyperglycemia and improved glucose intolerance in diabetic mice. Furthermore, osteoblastic knockdown of Nlrp3 silencing (si-Nlrp3) or pyroptosis inhibitor (Ac-YVADCMK [AYC]) treatment restores bone mineralization in diabetic mice. Micro-computed tomography scans and mechanical testing revealed that trabecular bone microarchitecture and bone mechanical properties were improved after EX in diabetic mice. Irisin, either induced by skeleton or daily EX or directly administered, prevents bone loss by mitigating inflammasome-associated pyroptosis signaling in diabetic mice. This study demonstrates that EX-induced skeletal irisin ameliorates diabetes-associated glucose intolerance and bone loss and possibly provides a mechanism of its effects on metabolic osteoporosis.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY
| | - Jessica Ison
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY
| | - Michael J. Voor
- Departments of Orthopaedic Surgery and Bioengineering, School of Medicine, University of Louisville, Louisville, KY
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
2
|
Ju YI, Sone T. Effects of Different Types of Mechanical Loading on Trabecular Bone Microarchitecture in Rats. J Bone Metab 2021; 28:253-265. [PMID: 34905673 PMCID: PMC8671029 DOI: 10.11005/jbm.2021.28.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanical loading is generally considered to have a positive impact on the skeleton; however, not all types of mechanical loading have the same beneficial effect. Many researchers have investigated which types of mechanical loading are more effective for improving bone mass and strength. Among the various mechanical loads, high-impact loading, such as jumping, appears to be more beneficial for bones than low-impact loadings such as walking, running, or swimming. Therefore, the different forms of mechanical loading exerted by running, swimming, and jumping exercises may have different effects on bone adaptations. However, little is known about the relationships between the types of mechanical loading and their effects on trabecular bone structure. The purpose of this article is to review the recent reports on the effects of treadmill running, jumping, and swimming on the trabecular bone microarchitecture in small animals. The effects of loading on trabecular bone architecture appear to differ among these different exercises, as several reports have shown that jumping increases the trabecular bone mass by thickening the trabeculae, whereas treadmill running and swimming add to the trabecular bone mass by increasing the trabecular number, rather than the thickness. This suggests that different types of exercise promote gains in trabecular bone mass through different architectural patterns in small animals.
Collapse
Affiliation(s)
- Yong-In Ju
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
3
|
Popp KL, Ackerman KE, Rudolph SE, Johannesdottir F, Hughes JM, Tenforde AS, Bredella MA, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Changes in Volumetric Bone Mineral Density Over 12 Months After a Tibial Bone Stress Injury Diagnosis: Implications for Return to Sports and Military Duty. Am J Sports Med 2021; 49:226-235. [PMID: 33259223 DOI: 10.1177/0363546520971782] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone stress injuries (BSIs) occur in up to 20% of runners and military personnel. Typically, after a period of unloading and gradual return to weightbearing activities, athletes return to unrestricted sports participation or military duty approximately 4 to 14 weeks after a BSI diagnosis, depending on the injury location and severity. However, the time course of the recovery of the bone's mechanical competence is not well-characterized, and reinjury rates are high. PURPOSE To assess the bone microarchitecture and volumetric bone mineral density (vBMD) over 12 months after a tibial BSI diagnosis. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS We enrolled 30 female athletes from the local community (aged 18-35 years) with a tibial BSI (grade ≥2 of 4 on magnetic resonance imaging) for this prospective observational study. Participants completed a baseline visit within 3 weeks of the diagnosis. At baseline and 6, 12, 24, and 52 weeks after the BSI diagnosis, we collected high-resolution peripheral quantitative computed tomography scans of the ultradistal tibia (4% of tibial length) of the injured and uninjured legs as well as pain and physical activity assessment findings. RESULTS From baseline to 12 weeks after the diagnosis, total, trabecular, and cortical vBMD declined by 0.58% to 0.94% (P < .05 for all) in the injured leg. Total and trabecular vBMD also declined by 0.61% and 0.67%, respectively, in the uninjured leg (P < .05 for both). At 24 weeks, mean values for all bone parameters were nearly equivalent to baseline values, and by 52 weeks, several mean values had surpassed baseline values. Of the 30 participants, 10 incurred a subsequent BSI during the course of the study, and 1 of these 10 incurred 2 subsequent BSIs. Participants who suffered an additional BSI were younger and had a later age of menarche, a greater incidence of previous fractures, and lower serum parathyroid hormone levels (P < .05 for all). CONCLUSION Bone density declined in both the injured and the uninjured legs and, on average, did not return to baseline for 3 to 6 months after a tibial BSI diagnosis. The observed time to the recovery of baseline vBMD, coupled with the high rate of recurrent BSIs, suggests that improved return-to-sports and military duty guidelines may be in order.
Collapse
Affiliation(s)
- Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Kathryn E Ackerman
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sara E Rudolph
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fjola Johannesdottir
- Harvard Medical School, Boston, Massachusetts, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Adam S Tenforde
- Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chun Xu
- Biotechnology High Performance Computing Software Applications Institute, Department of Defense, Frederick, Maryland, USA
| | - Ginu Unnikrishnan
- Biotechnology High Performance Computing Software Applications Institute, Department of Defense, Frederick, Maryland, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Department of Defense, Frederick, Maryland, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kawao N, Ishida M, Kaji H. Roles of leptin in the recovery of muscle and bone by reloading after mechanical unloading in high fat diet-fed obese mice. PLoS One 2019; 14:e0224403. [PMID: 31648235 PMCID: PMC6812756 DOI: 10.1371/journal.pone.0224403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/11/2019] [Indexed: 01/31/2023] Open
Abstract
Muscle and bone masses are elevated by the increased mechanical stress associated with body weight gain in obesity. However, the mechanisms by which obesity affects muscle and bone remain unclear. We herein investigated the roles of obesity and humoral factors from adipose tissue in the recovery phase after reloading from disuse-induced muscle wasting and bone loss using normal diet (ND)- or high fat diet (HFD)-fed mice with hindlimb unloading (HU) and subsequent reloading. Obesity did not affect decreases in trabecular bone mineral density (BMD), muscle mass in the lower leg, or grip strength in HU mice. Obesity significantly increased trabecular BMD, muscle mass in the lower leg, and grip strength in reloading mice over those in reloading mice fed ND. Among the humoral factors in epididymal and subcutaneous adipose tissue, leptin mRNA levels were significantly higher in reloading mice fed HFD than in mice fed ND. Moreover, circulating leptin levels were significantly higher in reloading mice fed HFD than in mice fed ND. Leptin mRNA levels in epididymal adipose tissue or serum leptin levels positively correlated with the increases in trabecular BMD, total muscle mass, and grip strength in reloading mice fed ND and HFD. The present study is the first to demonstrate that obesity enhances the recovery of bone and muscle masses as well as strength decreased by disuse after reloading in mice. Leptin may contribute to the recovery of muscle and bone enhanced by obesity in mice.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
- * E-mail:
| |
Collapse
|
5
|
Popp KL, Turkington V, Hughes JM, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Skeletal loading score is associated with bone microarchitecture in young adults. Bone 2019; 127:360-366. [PMID: 31265923 DOI: 10.1016/j.bone.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
UNLABELLED Physical activity that involves high strain magnitudes and high rates of loading is reported to be most effective in eliciting an osteogenic bone response. Whether a history of participation in osteogenic activities during youth, as well as current participation in osteogenic activities, contributes to young adult bone microarchitecture and strength is unknown. PURPOSE We determined the association between a new skeletal loading (SkL) score reflecting physical activity from age 11 to adulthood, the bone specific physical activity questionnaire (BPAQ) and bone microarchitecture in young Black and White men and women. METHODS We conducted a cross-sectional study of young ([mean ± SD] 23.7 ± 3.3 years) Black (n = 51 women, n = 31 men) and White (n = 50 women, n = 49 men) adults. Microarchitecture and estimated bone strength (by micro-finite element analysis) were assessed at the ultradistal tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT). Physical activity questionnaires were administered and a SkL score was derived based on ground reaction force, rate of loading, frequency, duration, and life period of participation per activity from age 11 onwards. BPAQ score was also calculated. We used multiple linear regression to determine associations between both SkL score and BPAQ score and bone outcomes, adjusting for age, height, weight, sex, and race. RESULTS We found that SkL score, which accounts for current and historical physical activity, was significantly associated with most cortical bone parameters at the tibia including area, area fraction, porosity, thickness, and tissue mineral density (R2 = 0.27-0.55, all p < 0.01). Further, trabecular thickness, separation, number, and bone mineral density (R2 = 0.22-0.32, all p < 0.01), as well as stiffness and failure load (R2 = 0.63-0.65, all p < 0.01), were associated with the SkL score. The BPAQ was also significantly associated with most bone parameters, but to a lesser degree than SkL score. CONCLUSION These findings suggest that among young adults, greater amounts of osteogenic physical activity, as assessed by the SkL score and BPAQ are associated with improved bone microarchitecture and strength. With the potential to predict bone parameters in young adults, these scores may ultimately serve to identify those most vulnerable to fracture.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA; Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA.
| | - Victoria Turkington
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Chun Xu
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, One Overland Street, Boston, MA 02215, USA
| |
Collapse
|
6
|
Song H, Cho S, Lee HY, Lee H, Song W. The Effects of Progressive Resistance Exercise on Recovery Rate of Bone and Muscle in a Rodent Model of Hindlimb Suspension. Front Physiol 2018; 9:1085. [PMID: 30150940 PMCID: PMC6099092 DOI: 10.3389/fphys.2018.01085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Purpose: This study aimed to examine the exercise-mediated musculoskeletal recovery following hindlimb suspension (HS) in order to identify whether bone modeling and muscle hypertrophy would eventuate in a synchronized manner during recovery stage. Methods: To identify whether 2-week HS would be sufficient to induce a significant reduction of physiological indices in both tibia and adjacent hindlimb muscles, a total of 20 rats was randomized into 2-week HS (n = 10) and age-matched control group (n = 10, CON). Another batch of rats were randomly assigned to three different groups to identify recovery intervention effects following suspension: (1) 2-week HS followed by 4-week spontaneous reloading recovery (HRE, n = 7). (2) 2-week HS followed by 4-week progressive resistance ladder climbing exercise (HEX, n = 7). (3) Age-matched control (CON, n = 7). DXA, micro-CT, and 18F-sodium fluoride (NaF) imaging, and EIA analysis were utilized to measure tibia bone indices. Hindlimb muscle wet weight and grip strength were measured to evaluate muscle mass and strength, respectively. Results: In study 1, bone quality values [bone volume/total volume (BV/TV): -27%, areal bone mineral density (aBMD): -23%, mineral contents: -7.9%, mineral density: –4.1%, and bone density: -38.9%] and skeletal muscle weight (soleus: -46.8%, gastrocnemius: -19.6%, plantaris: -20.8%, TA: -22.8%, and EDL: -9.9%) were significantly lower in HS group compared to CON group. In study 2, micro-CT and DXA-based bone morphology (bone density, BT/TV, and aBMD) were fully recovered in HRE or HEX group. However, suspension-induced dysregulation of bone mineral metabolism was returned to age-matched control group in only HEX group, but not in HRE group. A greater level of biomarkers of bone formation (P1NF) and resorption (CTX-1) was observed in only HRE group compared to CON. The hindlimb skeletal muscle mass was significantly lower in both HRE and HEX groups compared to CON group. Hindlimb grip strength was the greatest in HEX group, followed by CON and HRE groups. Conclusion: Following HS, progressive resistance exercise promotes recovery rates of bone and skeletal muscle strength without a significant increase in muscular mass, suggesting that exercise-induced reacquisition of bone and muscle strength is independent of muscle hypertrophy during early recovery stage.
Collapse
Affiliation(s)
- Hansol Song
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Suhan Cho
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hojun Lee
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Sports and Health Science, Kyungsung University, Busan, South Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Angelis KD, Rodrigues B, Zanesco A, Oliveira EMD, Evangelista FDS, Coelho Junior HJ, Andreia Delbin M, Chakur Brum P, Ramires PR, Soares PP, Wichi RB, Amaral SL, Sanches IC. The importance of animal studies in Exercise Science. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Angelina Zanesco
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil; Universidade Camilo Castelo Branco, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Boudreaux RD, Swift JM, Gasier HG, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased resistance during jump exercise does not enhance cortical bone formation. Med Sci Sports Exerc 2014; 46:982-9. [PMID: 24743108 DOI: 10.1249/mss.0000000000000195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. METHODS Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. RESULTS Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. CONCLUSION These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.
Collapse
Affiliation(s)
- Ramon D Boudreaux
- 1Department of Biomedical Engineering, Texas A&M University, College Station, TX; 2Department of Health and Kinesiology, Texas A&M University, College Station, TX; and 3Department of Mechanical Engineering, Texas A&M University, College Station, TX
| | | | | | | | | | | | | |
Collapse
|
9
|
Shirazi-Fard Y, Metzger CE, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Moderate intensity resistive exercise improves metaphyseal cancellous bone recovery following an initial disuse period, but does not mitigate decrements during a subsequent disuse period in adult rats. Bone 2014; 66:296-305. [PMID: 24929241 DOI: 10.1016/j.bone.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Spaceflight provides a unique environment for skeletal tissue causing decrements in structural and densitometric properties of bone. Previously, we used the adult hindlimb unloaded (HU) rat model to show that previous exposure to HU had minimal effects on bone structure after a second HU exposure followed by recovery. Furthermore, we found that the decrements during second HU exposure were milder than the initial HU cycle. In this study, we used a moderate intensity resistance exercise protocol as an anabolic stimulus during recovery to test the hypothesis that resistance exercise following an exposure to HU will significantly enhance recovery of densitometric, structural, and, more importantly, mechanical properties of trabecular and cortical bone. We also hypothesized that resistance exercise during recovery, and prior to the second unloading period, will mitigate the losses during the second exposure. The hypothesis that exercise during recovery following hindlimb unloading will improve bone quality was supported by our data, as total BMC, total vBMD, and cancellous bone formation at the proximal tibia metaphysis increased significantly during exercise period, and total BMC/vBMD exceeded age-matched control and non-exercised values significantly by the end of recovery. However, our results did not support the hypothesis that resistance exercise prior to a subsequent unloading period will mitigate the detrimental effects of the second exposure, as the losses during the second exposure in total BMC, total vBMD, and cortical area at the proximal tibia metaphysis for the exercised animals were similar to those of the non-exercised group. Therefore, exercise did not mitigate effects of the second HU exposure in terms of pre-to-post HU changes in these variables, but it did produce beneficial effects in a broader sense.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Corinne E Metzger
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Andrea T Kwaczala
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Harry A Hogan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. ScientificWorldJournal 2014; 2014:617032. [PMID: 24574904 PMCID: PMC3916098 DOI: 10.1155/2014/617032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/20/2013] [Indexed: 01/10/2023] Open
Abstract
Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.
Collapse
|
11
|
AHLES CAMMIEP, SINGH HARPREET, JOO WOOJIN, LEE YVONNE, Lee LUCYC, COLAZAS WILLIAM, PIERCE RANDER, PRAKASH ANURADHA, JAQUE SVICTORIA, SUMIDA KEND. High Volumes of Resistance Exercise Are Not Required for Greater Bone Mineral Density during Growth. Med Sci Sports Exerc 2013; 45:36-42. [DOI: 10.1249/mss.0b013e31826a5710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zarrinkalam MR, Mulaibrahimovic A, Atkins GJ, Moore RJ. Changes in osteocyte density correspond with changes in osteoblast and osteoclast activity in an osteoporotic sheep model. Osteoporos Int 2012; 23:1329-36. [PMID: 21626447 DOI: 10.1007/s00198-011-1672-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/10/2011] [Indexed: 01/20/2023]
Abstract
UNLABELLED Histomorphometric assessment of trabecular bone in osteoporotic sheep showed that bone volume, osteoid surface area, bone formation rate, and osteocyte density were reduced. In contrast, eroded surface area and empty lacunae density were increased. Changes in osteocyte density correlated with changes in osteoblast and osteoclast activity. INTRODUCTION Osteocytes contribute to the regulation of the activity of osteoclasts and osteoblasts that together control bone mass. Osteocytes therefore likely play a role in the loss of bone mass associated with osteoporosis. The purpose of this study was to investigate the relationships between osteocyte lacunar density and other bone histomorphometric parameters in the iliac crest (IC) and lumbar spine (LS) of osteoporotic sheep. METHODS Osteoporosis was induced in ten mature ewes by an established protocol involving a combination of ovariectomy, dexamethasone injection, and low calcium diet for 6 months. Five ewes were used as controls. Post-mortem IC and LS biopsies were collected and processed for further histomorphometric assessment. RESULTS Bone volume, osteoid surface, and bone formation rate in the IC and LS of osteoporotic sheep were reduced compared to those of the controls. In contrast, eroded surface area was increased in osteoporotic sheep. In the osteoporotic group, osteocyte density was reduced in the LS region and to a greater extent in the IC region. The empty osteocyte lacunae were increased 1.7-fold in LS and 2.1-fold in IC in the osteoporotic group. The osteocyte density correlated positively with markers of osteoblast activity and negatively with those of osteoclast activity. CONCLUSIONS Depletion of osteocytes and an increase in the empty lacunae could be important factors contributing to bone loss in this model since they may adversely affect intercellular communication between osteoblasts and osteoclasts. The regional differences in histology suggest that there may be different pathological mechanisms operating at different anatomical sites.
Collapse
Affiliation(s)
- M R Zarrinkalam
- The Adelaide Centre for Spinal Research, SA Pathology, Institute of Medical and Veterinary Science (IMVS), Frome Road, Adelaide, SA 5000, Australia.
| | | | | | | |
Collapse
|
13
|
Li Z, Tan C, Wu Y, Ding Y, Wang H, Chen W, Zhu Y, Ma H, Yang H, Liang W, Jiang S, Wang D, Wang L, Tang G, Wang J. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects. Eur J Appl Physiol 2012; 112:3743-53. [DOI: 10.1007/s00421-012-2355-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 02/10/2012] [Indexed: 11/25/2022]
|
14
|
Gasier HG, Riechman SE, Wiggs MP, Buentello A, Previs SF, Fluckey JD. Cumulative responses of muscle protein synthesis are augmented with chronic resistance exercise training. Acta Physiol (Oxf) 2011; 201:381-9. [PMID: 20804462 DOI: 10.1111/j.1748-1716.2010.02183.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM The purpose of this study was to determine the anabolic response of a single bout of high intensity resistance exercise (RE) following 5 weeks of RE training. METHODS To complete these studies, Sprague-Dawley rats were assigned by body mass to RE, exercise control (EC), or sedentary cage control (CC) groups and studied over 36 h after 5 weeks of RE (squat-like) training. Cumulative (final 36 h) fractional rates of muscle protein synthesis (FSR) were determined by ²H₂O, and acute (16 h post-RE) rates of muscle protein synthesis (RPS) were determined by flooding with l-[2,3,4,5,6-³H]phenylalanine. Regulators of peptide-chain initiation, 4E-BP1, eIF4E and the association of the two were determined by Western blotting and immunoprecipitation respectively. RESULTS No differences were observed with acute measures of RPS obtained 16 h following the final exercise bout in the plantaris or soleus muscles (P > 0.05). Consistent with this observation, 4E-BP1 was similarly phosphorylated and bound to eIF4E among all groups. However, upon determination of the cumulative response, FSR was significantly increased in the plantaris of RE vs. EC and CC (0.929±0.094, 0.384±0.039, 0.300±0.022% h(-1) respectively; P<0.001), but not the soleus. CONCLUSION With the advantage of determining cumulative FSR, the present study demonstrates that anabolic responses to RE are still evident after chronic RE training, primarily in muscle composed of fast-twitch fibres.
Collapse
Affiliation(s)
- H G Gasier
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
15
|
Swift JM, Gasier HG, Swift SN, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol (1985) 2010; 109:1600-7. [PMID: 20930128 DOI: 10.1152/japplphysiol.00596.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.
Collapse
Affiliation(s)
- J M Swift
- Department of Health and Kinesiology, MS 4243, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Nilsson MI, Greene NP, Dobson JP, Wiggs MP, Gasier HG, Macias BR, Shimkus KL, Fluckey JD. Insulin resistance syndrome blunts the mitochondrial anabolic response following resistance exercise. Am J Physiol Endocrinol Metab 2010; 299:E466-74. [PMID: 20606077 DOI: 10.1152/ajpendo.00118.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic risk factors associated with insulin resistance syndrome may attenuate augmentations in skeletal muscle protein anabolism following contractile activity. The purpose of this study was to investigate whether or not the anabolic response, as defined by an increase in cumulative fractional protein synthesis rates (24-h FSR) following resistance exercise (RE), is blunted in skeletal muscle of a well-established rodent model of insulin resistance syndrome. Four-month-old lean (Fa/?) and obese (fa/fa) Zucker rats engaged in four lower body RE sessions over 8 days, with the last bout occurring 16 h prior to muscle harvest. A priming dose of deuterium oxide ((2)H(2)O) and (2)H(2)O-enriched drinking water were administered 24 h prior to euthanization for assessment of cumulative FSR. Fractional synthesis rates of mixed (-5%), mitochondrial (-1%), and cytosolic (+15%), but not myofibrillar, proteins (-16%, P = 0.012) were normal or elevated in gastrocnemius muscle of unexercised obese rats. No statistical differences were found in the anabolic response of cytosolic and myofibrillar subfractions between phenotypes, but obese rats were not able to augment 24-h FSR of mitochondria to the same extent as lean rats following RE (+14% vs. +28%, respectively). We conclude that the mature obese Zucker rat exhibits a mild, myofibrillar-specific suppression in basal FSR and a blunted mitochondrial response to contractile activity in mixed gastrocnemius muscle. These findings underscore the importance of assessing synthesis rates of specific myocellular subfractions to fully elucidate perturbations in basal protein turnover rates and differential adaptations to exercise stimuli in metabolic disease.
Collapse
Affiliation(s)
- Mats I Nilsson
- Dept. of Health and Kinesiology, Texas A & M University, College Station, 77843-4243, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res 2010; 25:564-74. [PMID: 19653816 DOI: 10.1359/jbmr.090811] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to determine the effectiveness of simulated resistance training (SRT) without weight bearing in attenuating bone and muscle loss during 28 day hindlimb unloading (HU) in mature male rats. An ambulatory control group (CC) and four groups of HU rats were used: HU, HU + anesthesia (ANHU), HU + eccentric muscle contractions (HU + ECC), and HU + isometric and eccentric muscle contractions (HU + ISO/ECC). Animals in the two SRT groups were trained once every other day at 100% daily peak isometric torque (P(0)). HU resulted in significantly lower plantarflexor muscle mass (-33% versus CC) and reduced isometric strength (-10%), which reductions were partially attenuated in both training groups. Significantly reduced total and cancellous volumetric bone mineral density (vBMD) and total bone mineral content (BMC) at the proximal tibia metaphysis (PTM) also was evidenced in HU and ANHU groups compared with both SRT groups (p < .05). Training resulted in greater increases in cortical bone mass and area compared with all other groups (p < .05). Fourfold higher material properties of PTM cancellous bone were demonstrated in SRT animals versus HU or CC animals. A significant reduction in midshaft periosteal bone formation rate (BFR) in the HU group (-99% versus CC) was completely abolished in HU + ECC (+656% versus CC). These results demonstrate that high-intensity muscle contractions, independent of weight-bearing forces, can effectively mitigate losses in muscle strength and provide a potent stimulus to bone during prolonged disuse.
Collapse
|
18
|
Aguiar AF, Agati LB, Müller SS, Pereira OC, Dal-Pai-Silva M. Efeitos do treinamento físico sobre a resistência mecânica do terço proximal do fêmur de ratos. ACTA ORTOPEDICA BRASILEIRA 2010. [DOI: 10.1590/s1413-78522010000500002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Analisar o comportamento mecânico do terço proximal do fêmur de ratos submetidos ao treinamento aeróbio e resistido crônicos. MÉTODOS: Ratos Wistar machos (80 dias, 300 a 350 g) foram divididos em 3 grupos (n=8 por grupo): Treinamento aeróbio/8 semanas (TA), Treinamento resistido/8 semanas (TR) e controle/8 semanas (CO). Ao término do período de treinamento os animais foram sacrificados e o fêmur direito coletado. Para análise do comportamento mecânico do fêmur foram realizados ensaios de flexo-compressão. RESULTADOS: O treinamento resistido ocasionou redução significante da força máxima (Fmáx) do fêmur. Por outro lado, promoveu um aumento (23,7%) relevante, porém não significante, da deformação da força máxima (DFmáx). O treinamento aeróbio não afetou a Fmáx, porém promoveu uma redução (26,6%) considerável, também não significante, da DFmáx. CONCLUSÕES: Os resultados demonstram que o treinamento resistido e aeróbio, promoveram redução da Fmáx e da DFmáx óssea, respectivamente. Os dados evidenciam uma ação diferencial de ambos os modelos de treinamento físico sobre as propriedades mecânicas do fêmur de ratos.
Collapse
|
19
|
Chuin A, Labonté M, Tessier D, Khalil A, Bobeuf F, Doyon CY, Rieth N, Dionne IJ. Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporos Int 2009; 20:1253-8. [PMID: 19020919 DOI: 10.1007/s00198-008-0798-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
SUMMARY We determined the effect of antioxidants and resistance training on bone mineral density of postmenopausal women. After 6 months, we observed a significant decrease in the lumbar spine BMD of the placebo group while other groups remained stable. Antioxidants may offer protection against bone loss such as resistance training. INTRODUCTION The purpose of this pilot study was to determine the effects of antioxidant supplements combined to resistance training on bone mineral density (BMD) in healthy elderly women. METHODS Thirty-four postmenopausal women (66.1 +/- 3.3 years) were randomized in four groups (placebo, n = 7; antioxidants, n = 8; exercise and placebo, n = 11; and exercise and antioxidants, n = 8). The 6-month intervention consisted in antioxidant supplements (600 mg vitamin E and 1,000 mg vitamin C daily) or resistance exercise (3x/week). Femoral neck and lumbar spine BMD (DXA) and dietary intakes (3-day food record) were measured before and after the intervention. A repeated measure ANOVA and non-parametric Mann-Whitney U tests were used. RESULTS We observed a significant decrease in the placebo group for lumbar spine BMD (pre, 1.01 +/- 0.17 g/cm(2); post, 1.00 +/- 0.16 g/cm(2); P < 0.05 respectively) while it remained stable in all other groups. No changes were observed for femoral neck BMD. CONCLUSIONS Antioxidant vitamins may offer some protection against bone loss in the same extent as resistance exercise although combining both does not seem to produce additional effects. Our results suggest to further investigate the impact of antioxidant supplements on the prevention of osteoporosis.
Collapse
Affiliation(s)
- A Chuin
- Research Centre on Aging, Sherbrooke Geriatric University Institute, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shimano M, Volpon J. Biomechanics and structural adaptations of the rat femur after hindlimb suspension and treadmill running. Braz J Med Biol Res 2009; 42:330-8. [DOI: 10.1590/s0100-879x2009000400004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 01/16/2009] [Indexed: 11/22/2022] Open
|
21
|
Lima RM, Bezerra LMA, Rabelo HT, Silva MAF, Silva AJR, Bottaro M, de Oliveira RJ. Fat-free mass, strength, and sarcopenia are related to bone mineral density in older women. J Clin Densitom 2009; 12:35-41. [PMID: 19084449 DOI: 10.1016/j.jocd.2008.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/12/2008] [Accepted: 10/15/2008] [Indexed: 11/26/2022]
Abstract
This study examined the association between fat-free mass (FFM) and muscle strength with bone mineral density (BMD), and compared the BMD values between sarcopenic and nonsarcopenic older women. After the exclusion criteria were applied, a total of 246 volunteers (age: 66.51+/-6.37 yr) participated in the analysis. Subjects underwent FFM and BMD evaluation by dual-energy X-ray absorptiometry and quadriceps strength by an isokinetic dynamometer. To address the potential for confounding by height, FFM values were considered relative to body height squared. For fat mass correction, fat-adjusted FFM was calculated. Individuals were classified as sarcopenic if their appendicular FFM was less than 5.45 kg/m2. All the evaluated FFM indexes were significantly correlated with the measured BMD sites. Sarcopenic individuals presented significantly lower whole body and trochanter BMD, and were significantly more prone to have low BMD. Muscle strength was also correlated with BMD sites; however, when it was expressed relative to body weight, the significance disappeared. Nevertheless, volunteers with low relative strength had higher risk of having low trochanter BMD. It can be concluded, in older women, that FFM is significantly correlated with BMD independently of height and fat mass. Muscle strength was also correlated with BMD, although the correlation was weaker when corrected for body weight. Finally, sarcopenic elderly women were more likely to have low BMD and muscle strength.
Collapse
Affiliation(s)
- Ricardo M Lima
- Programa de Pós-graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil.
| | | | | | | | | | | | | |
Collapse
|
22
|
Middleton KM, Kelly SA, Garland T. Selective breeding as a tool to probe skeletal response to high voluntary locomotor activity in mice. Integr Comp Biol 2008; 48:394-410. [PMID: 21669801 PMCID: PMC6515713 DOI: 10.1093/icb/icn057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present a novel mouse-model for the study of skeletal structure and evolution, based on selective breeding for high levels of voluntary wheel running. Whereas traditional models (originally inbred strains, more recently knockouts and transgenics) rely on the study of mutant or laboratory-manipulated phenotypes, we have studied changes in skeletal morphometrics resulting from many generations of artificial selection for high activity in the form of wheel running, in which mice engage voluntarily. Mice from the four replicate High Runner (HR) lines run nearly three times as many revolutions during days 5 and 6 of a 6-day exposure to wheels (1.12 m circumference). We have found significant changes in skeletal dimensions of the hind limbs, including decreased directional asymmetry, larger femoral heads, and wider distal femora. The latter two have been hypothesized as evolutionary adaptations for long-distance locomotion in hominids. Exercise-training studies involving experimental groups with and without access to wheels have shown increased diameters of both femora and tibiafibulae, and suggest genetic effects on trainability (genotype-by-environment interactions). Reanalysis of previously published data on bone masses of hind limbs revealed novel patterns of change in bone mass associated with access to wheels for 2 months. Without access to wheels, HR mice have significantly heavier tibiafibulae and foot bones, whereas with chronic access to wheels, a significant increase in foot bone mass that was linearly related to increases in daily wheel running was observed. Mice exhibiting a recently discovered small-muscle phenotype ("mini-muscle," [MM] caused by a Mendelian recessive gene), in which the mass of the triceps surae muscle complex is ∼50% lower than in normal individuals, have significantly longer and thinner bones in the hind limb. We present new data for the ontogenetic development of muscle mass in Control, HR, and MM phenotypes in mice of 1-7 weeks postnatal age. Statistical comparisons reveal highly significant differences both in triceps surae mass and mass-corrected triceps surae mass between normal and MM mice at all but the postnatal age of 1 week. Based on previously observed differences in distributions of myosin isoforms in adult MM mice, we hypothesize that a reduction of myosin heavy-chain type-IIb isoforms with accounts for our observed ontogenetic changes in muscle mass.
Collapse
Affiliation(s)
- Kevin M. Middleton
- *Department of Biology, California State University–San Bernardino, San Bernardino, CA 92507, USA
| | - Scott A. Kelly
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
23
|
Modlesky CM, Majumdar S, Dudley GA. Trabecular bone microarchitecture in female collegiate gymnasts. Osteoporos Int 2008; 19:1011-8. [PMID: 18074110 DOI: 10.1007/s00198-007-0522-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Using high-resolution magnetic resonance imaging, we observed more developed trabecular bone microarchitecture in the proximal tibia of female collegiate gymnasts vs. matched controls. This suggests that high-load physical activity may have a positive effect on the trabecular microarchitecture in weight-bearing bone. INTRODUCTION Participation in physical activities that overload the skeleton, such as artistic gymnastics, is associated with increased areal bone mineral density (aBMD); however, the status of trabecular microarchitecture in the weight-bearing bone of gymnasts is unknown. METHODS Eight female collegiate artistic gymnasts and eight controls matched for age, height, body mass, gender and race were recruited for the study. Apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), thickness (appTb.Th) and trabecular separation (appTb.Sp) were determined using high resolution magnetic resonance imaging. Areal bone mineral density, bone mineral content (BMC) and bone area in the proximal tibia were determined using dual-energy X-ray absorptiometry. Group differences were determined using t-tests. The magnitude of group differences was expressed using Cohen's d (d). RESULTS Gymnasts had higher appBV/TV (13.6%, d = 1.22) and appTb.N (8.4%, d = 1.45), and lower appTb.Sp (13.7%, d = 1.33) than controls (p < 0.05). Gymnasts had higher aBMD and BMC in the proximal tibia, although the differences were smaller in magnitude (d = 0.75 and 0.74, respectively) and not statistically significant (p > 0.05). CONCLUSION The findings suggest that high-load physical activity, such as performed during gymnastics training, may enhance the trabecular microarchitecture of weight-bearing bone.
Collapse
Affiliation(s)
- C M Modlesky
- Department of Health, Nutrition and Exercise Sciences, University of Delaware, Newark, DE, 19716, USA.
| | | | | |
Collapse
|
24
|
Dunkin BS, Nyland J, Duffee AR, Brunelli JA, Burden R, Caborn D. Soft tissue tendon graft fixation in serially dilated or extraction-drilled tibial tunnels: a porcine model study using high-resolution quantitative computerized tomography. Am J Sports Med 2007; 35:448-57. [PMID: 17218658 DOI: 10.1177/0363546506294359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tibial tunnel preparation may contribute to improved soft tissue graft fixation. HYPOTHESIS Step dilation produces greater tunnel wall bone volume than does extraction drilling and increases fixation strength. Bioabsorbable interference screw divergence decreases fixation strength, regardless of tunnel preparation method. STUDY DESIGN Controlled laboratory study. METHODS Twenty porcine tibias were divided into 2 groups of 10 with matching mean apparent bone mineral density. One group received 9-mm-diameter extraction-drilled tunnels, and the other group received 7-mm-diameter extraction-drilled tunnels followed by step dilation to 9 mm. High-resolution quantitative computerized tomography scans and voxel analysis techniques determined tunnel wall bone volume fraction. Screws secured 8.5-mm-diameter porcine grafts in the tunnels. Repeat scans were used to determine screw divergence. Cyclic loading was performed in a servohydraulic device before load to failure testing. RESULTS The step dilation group had greater tunnel wall bone volume/total volume than did the extraction drilled group; however, a significant increase in fixation strength was not detected. Specimens with screw divergence angles less than 15 degrees had superior fixation and insertion torques compared with specimens with angles 15 degrees or more. Screw divergence correlated more strongly with fixation strength than did mean apparent bone mineral density or screw insertion torque. CONCLUSION Step dilation increased tunnel wall bone volume/total volume, but fixation strength did not improve. Screw divergence >or=15 degrees decreases graft-bone tunnel fixation whether or not step dilation is performed. CLINICAL RELEVANCE Screw alignment plays a greater role in anterior cruciate ligament graft fixation than does extraction drilling or step dilation tunnel preparation methods in healthy bone.
Collapse
Affiliation(s)
- Brad S Dunkin
- Division of Sports Medicine, Department of Orthopaedic Surgery, University of Louisville, 210 East Gray Street, Suite 1003, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kim CS, Park DH. Effects of chronic NH4Cl dosage and swimming exercise on bone metabolic turnover in rats. ACTA ACUST UNITED AC 2006; 24:595-600. [PMID: 16377944 DOI: 10.2114/jpa.24.595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To determine the effects of ammonium chloride (NH4Cl) dosage and swimming exercise training during 4 weeks on bone metabolic turnover in rats, seven-week-old female 24 Wister-Kyoto (WKY) rats were investigated by bone status including bone mineral density (BMD) and biomechanical markers from blood and urine. Twenty-four rats (initial weight: 191.2+/-7.6 g) were randomly divided into four groups: baseline (8 weeks old) control group (n=6, BC), 4-week control group (n=6, Con), 4-week swimming exercise loading group (n=6, Swim) and 4-week chronic NH4Cl dosage group (n=6, Acid). All rats were fed an AIN93M diet (Ca: 0.5%, P: 0.3%), and both Con and Swim groups were pair-fed by feeding volume of the NH4Cl dosage group. The acid group only received 0.25 M NH4Cl distilled water ad libitum. At the end of the experimental period, rats were sacrificed with blood drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the Swim group, 24-hour urinary deoxypiridinoline (Dpd) excretion, reflecting bone resorption, was significantly increased (p<0.05) with a tendency towards decrease of BMD (N.S.), and body weight and abdominal fat weight were decreased in approximately 7% (p<0.05) and 58% (p<0.001), as compared with age matched Con rats. In the Acid group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased approximately 2.1-fold (p<0.05) and 2.0-fold (p<0.01), respectively, with increase of kidney weight as much as in the Con groups. Serum Ca and P concentration, as well as urinary Dpd excretion were, however, not significantly changed. These results suggest that blood Ca and P concentrations in the chronic acidosis condition during the 4-weeks might be maintained by hypercalciuria and hyperphosphaturia with kidney disorder, and swimming exercise training leads to decrease in BMD with stimulation of bone resorption and reduction of body fat.
Collapse
|
26
|
Fluckey JD, Knox M, Smith L, Dupont-Versteegden EE, Gaddy D, Tesch PA, Peterson CA. Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway. Am J Physiol Endocrinol Metab 2006; 290:E1205-11. [PMID: 16418205 DOI: 10.1152/ajpendo.00593.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have implicated the mTOR-signaling pathway as a primary component for muscle growth in mammals. The purpose of this investigation was to examine signaling pathways for muscle protein synthesis after resistance exercise. Sprague-Dawley rats (male, 6 mo old) were assigned to either resistance exercise or control groups. Resistance exercise was accomplished in operantly conditioned animals using a specially designed flywheel apparatus. Rats performed two sessions of resistance exercise, separated by 48 h, each consisting of 2 sets of 25 repetitions. Sixteen hours after the second session, animals were killed, and soleus muscles were examined for rates of protein synthesis with and without insulin and/or rapamycin (mTOR inhibitor) and/or PD-098059 (PD; MEK kinase inhibitor). Results of this study demonstrated that rates of synthesis were higher (P < 0.05) with insulin after exercise compared with without insulin, or to control muscles, regardless of insulin. Rapamycin lowered (P < 0.05) rates of synthesis in controls, with or without insulin, and after exercise without insulin. However, insulin was able to overcome the inhibition of rapamycin after exercise (P < 0.05). PD had no effect on protein synthesis in control rats, but the addition of PD to exercised muscle resulted in lower (P < 0.05) rates of synthesis, and this inhibition was not rescued by insulin. Western blot analyses demonstrated that the inhibitors used in the present study were selective and effective for preventing activation of specific signaling proteins. Together, these results suggest that the insulin-facilitated increase of muscle protein synthesis after resistance exercise requires multiple signaling pathways.
Collapse
Affiliation(s)
- James D Fluckey
- Muscle Biology Laboratory, Dept. of Health and Kinesiology, Mail Stop 4243, Texas A&M University, College Station, TX 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Banu J, Bhattacharya A, Rahman M, O'Shea M, Fernandes G. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice. Lipids Health Dis 2006; 5:7. [PMID: 16556311 PMCID: PMC1440862 DOI: 10.1186/1476-511x-5-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA) has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX). However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO) sedentary (SED); 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT). The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.
Collapse
Affiliation(s)
- Jameela Banu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Arunabh Bhattacharya
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | | | - Gabriel Fernandes
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| |
Collapse
|
28
|
Yoshimatsu M, Shibata Y, Kitaura H, Chang X, Moriishi T, Hashimoto F, Yoshida N, Yamaguchi A. Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice. J Bone Miner Metab 2006; 24:20-7. [PMID: 16369894 DOI: 10.1007/s00774-005-0641-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 07/06/2005] [Indexed: 11/25/2022]
Abstract
Orthodontic tooth movement is achieved by mechanical loading; however, the biological mechanism involved in this process is not clearly understood owing to the lack of a suitable experimental model. In the present study, we established an orthodontic tooth movement model in mice using a Ni-Ti closed coil spring that was inserted between the upper incisors and the upper first molar. Histological examination demonstrated that the orthodontic force moved the first upper molar mesially without necrosis of the periodontium during tooth movement. The number of TRAP-positive osteoclasts on the pressure side significantly increased in a time-dependent manner. Quantitative real time-based reverse transcription-polymerase chain reaction analysis demonstrated increased levels of mRNA for cathepsin K. Immunohistochemical staining revealed the expression of tumor necrosis factor-alpha (TNFalpha) in periodontium on the pressure side of the first molar during orthodontic tooth movement. When this tooth movement system was applied to TNF type 1 receptor-deficient mice and TNF type 2 receptor-deficient mice, tooth movement observed in TNF type 2 receptor-deficient mice was smaller than that in the wild-type mice and TNF type 1 receptor-deficient mice. The number of TRAP-positive osteoclasts on the pressure side was significantly small in TNF type 2 receptor-deficient mice compared with that in TNF type 1 receptor-deficient mice on day 6 after application of the appliance. The present study indicates that TNFalpha signaling plays some important roles in orthodontic tooth movement.
Collapse
Affiliation(s)
- Masako Yoshimatsu
- Division of Oral Pathology and Bone Metabolism, Department of Developmental and Reconstructive Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kelly SA, Czech PP, Wight JT, Blank KM, Garland T. Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. J Morphol 2006; 267:360-74. [PMID: 16380968 DOI: 10.1002/jmor.10407] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies of rodents have shown that both forced and voluntary chronic exercise cause increased hindlimb bone diameter, mass, and strength. Among species of mammals, "cursoriality" is generally associated with longer limbs as well as relative lengthening of distal limb segments, resulting in an increased metatarsal/femur (MT/F) ratio. Indeed, we show that phylogenetic analyses of previously published data indicate a positive correlation between body mass-corrected home range area and both hindlimb length and MT/F in a sample of 19 species of Carnivora, although only the former is statistically significant in a multiple regression. Therefore, we used an experimental evolution approach to test for possible adaptive changes (in response to selective breeding and/or chronic exercise) in hindlimb bones of four replicate lines of house mice bred for high voluntary wheel running (S lines) for 21 generations and in four nonselected control (C) lines. We examined femur, tibiafibula, and longest metatarsal of males housed either with or without wheel access for 2 months beginning at 25-28 days of age. As expected from previous studies, mice from S lines ran more than C (primarily because the former ran faster) and were smaller in body size (both mass and length). Wheel access reduced body mass (but not length) of both S and C mice. Analysis of covariance (ANCOVA) revealed that body mass was a statistically significant predictor of all bone measures except MT/F ratio; therefore, all results reported are from ANCOVAs. Bone lengths were not significantly affected by either linetype (S vs. C) or wheel access. However, with body mass as a covariate, S mice had significantly thicker femora and tibiafibulae, and wheel access also significantly increased diameters. Mice from S lines also had heavier feet than C, and wheel access increased both foot and tibiafibula mass. Thus, the directions of evolutionary and phenotypic adaptation are generally consistent. Additionally, S-line individuals with the mini-muscle phenotype (homozygous for a Mendelian recessive allele that halves hindlimb muscle mass [Garland et al., 2002, Evolution 56:1,267-1,275]) exhibited significantly longer and thinner femora and tibiafibulae, with no difference in bone masses. Two results were considered surprising. First, no differences were found in the MT/F ratio (the classic indicator of cursoriality). Second, we did not find a significant interaction between linetype and wheel access for any trait, despite the higher running rate of S mice.
Collapse
Affiliation(s)
- Scott A Kelly
- Department of Biology, University of California, Riverside, Riverside, 92521, USA
| | | | | | | | | |
Collapse
|
30
|
Smith BJ, Lucas EA, Turner RT, Evans GL, Lerner MR, Brackett DJ, Stoecker BJ, Arjmandi BH. Vitamin E provides protection for bone in mature hindlimb unloaded male rats. Calcif Tissue Int 2005; 76:272-9. [PMID: 15742232 DOI: 10.1007/s00223-004-0269-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 09/09/2004] [Indexed: 01/24/2023]
Abstract
The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.
Collapse
Affiliation(s)
- B J Smith
- Department of Surgery, Research University of Oklahoma Health Sciences Center, O'Donoghue Research Building, room 335, 1122 N.E. 13th St., Oklahoma City, OK 73117, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 2005; 36:1985-96. [PMID: 15514517 DOI: 10.1249/01.mss.0000142662.21767.58] [Citation(s) in RCA: 558] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Fluckey JD, Dupont-Versteegden EE, Knox M, Gaddy D, Tesch PA, Peterson CA. Insulin facilitation of muscle protein synthesis following resistance exercise in hindlimb-suspended rats is independent of a rapamycin-sensitive pathway. Am J Physiol Endocrinol Metab 2004; 287:E1070-5. [PMID: 15304378 DOI: 10.1152/ajpendo.00329.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hindlimb suspension (HS) results in rapid losses of muscle mass, which may in part be explained by attenuated rates of protein synthesis. Mammalian target of rapamycin (mTOR) regulates protein synthesis and has been implicated as a potential mediator of the muscle mass decrement with HS. This study examined the effect of resistance exercise, a muscle hypertrophy stimulant, on rates of protein synthesis after 4 days of HS in mature male Sprague-Dawley rats. Flywheel resistance exercise (2 sets x 25 repetitions) was conducted on days 2 and 4 of HS (HSRE). Sixteen hours after the last exercise bout, soleus muscles were assessed for in vitro rates of protein synthesis, with and without insulin (signaling agonist) and/or rapamycin (mTOR inhibitor). Results demonstrated that soleus mass was reduced (P < 0.05) with HS, but this loss of mass was not observed (P > 0.05) with HSRE. Muscle protein synthesis was diminished (P < 0.05) with HS, with or without insulin. HSRE also had reduced rates of synthesis without insulin; however, insulin administration yielded higher (P < 0.05) rates in HSRE compared with HS or control. Rapamycin diminished protein synthesis in all groups (P < 0.05), but insulin rescued synthesis rates in HS and HSRE to levels similar to insulin alone for each group, suggesting that alternate signaling pathways develop to increase protein synthesis with HS. These results demonstrate that the capacity for an augmented anabolic response to resistance exercise is maintained after 4 days of HS and is independent of a rapamycin-sensitive pathway.
Collapse
Affiliation(s)
- James D Fluckey
- Nutrition, Metabolism and Exercise Laboratory, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 806, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Nakano H, Maki K, Shibasaki Y, Miller AJ. Three-dimensional changes in the condyle during development of an asymmetrical mandible in a rat: A microcomputed tomography study. Am J Orthod Dentofacial Orthop 2004; 126:410-20. [PMID: 15470344 DOI: 10.1016/j.ajodo.2004.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rapidly growing postnatal animal model was used to study changes in the calcified tissue of the mandibular condyle during altered muscle function. A maxillary occlusal splint was designed to shift the mandible laterally (left) during closure. Groups of 5 Wistar rats were killed at 5, 9, 15, 21, 30, and 40 weeks (n = 30), with an equal number of controls. The experimental animals developed shorter, asymmetrical mandibles compared with the control animals. The left condyle became larger and thicker than the right condyle. Microcomputed tomography assessment of the left and right condylar trabecular bone indicated that both had less bone volume than the control condyle. The right masseter muscle significantly lost fiber size and type IIA oxidative fibers, suggesting that the right masseter muscle was used with less tension development. In contrast, the left masseter maintained its fiber size and was similar to the control masseter fiber diameters. Comparison in the sequence of changes indicated that the morphologic changes occurred first in the ramus (age, 5 weeks), before the corpus (age, 15 weeks), and before changes in masseter fiber size and composition (age, 9 weeks). This study showed that both the mandible and the condyle modified their shape and size, as well as the trabecular bone of the condyle, during shifting of the mandible to one side as it closed.
Collapse
|
34
|
Ducher G, Prouteau S, Courteix D, Benhamou CL. Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing. J Clin Densitom 2004; 7:399-405. [PMID: 15618600 DOI: 10.1385/jcd:7:4:399] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/02/2004] [Accepted: 07/02/2004] [Indexed: 11/11/2022]
Abstract
Bone responds to impact-loading activity by increasing its size and/or density. The aim of this study was to compare the magnitude and modality of the bone response between cortical and trabecular bone in the forearms of tennis players. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the ulna and radius were measured by dual-energy X-ray absorptiometry (DXA) in 57 players (24.5 +/- 5.7 yr old), at three sites: the ultradistal region (50% trabecular bone), the mid-distal regions, and third-distal (mainly cortical bone). At the ultradistal radius, the side-to-side difference in BMD was larger than in bone area (8.4 +/- 5.2% and 4.9 +/- 4.0%, respectively, p < 0.01). In the cortical sites, the asymmetry was lower (p < 0.01) in BMD than in bone area (mid-distal radius: 4.0 +/- 4.3% vs 11.7 +/- 6.8%; third-distal radius: 5.0 +/- 4.8% vs 8.4 +/- 6.2%). The asymmetry in bone area explained 33% of the variance of the asymmetry in BMC at the ultradistal radius, 66% at the mid-distal radius, and 53% at the third-distal radius. The ulna displayed similar results. Cortical and trabecular bone seem to respond differently to mechanical loading. The first one mainly increases its size, whereas the second one preferentially increases its density.
Collapse
Affiliation(s)
- Gaële Ducher
- Laboratoire Architecture du lisse Osseux et Exercise Physique, UFR STAPS, Université d'Orléans et Inserm ERIT-M0101, CHR Orléans, Orléans, France.
| | | | | | | |
Collapse
|
35
|
Mori T, Okimoto N, Sakai A, Okazaki Y, Nakura N, Notomi T, Nakamura T. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. J Bone Miner Res 2003; 18:2002-9. [PMID: 14606513 DOI: 10.1359/jbmr.2003.18.11.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED To investigate the relationship between the effects of bone turnover and bone marrow cell development in bone cells, we developed a mouse voluntary climbing exercise model. Climbing exercise increased bone volume and transient osteogenic potential of bone marrow. This model would be suitable for investigating the mechanistic roles of mechanical loading. INTRODUCTION The relationship between bone mass gain and local bone formation and resorption in mechanically loaded bone is not well understood. MATERIALS AND METHODS Sixty-five C57BL/6J mice, 8 weeks of age, were assigned to five groups: a baseline control and two groups each of ground control and climbing exercise mice for 2 and 4 weeks. Mice were housed in a 100-cm tower and had to climb toward a bottle placed at the top to drink water. RESULTS Compared with the ground control, bone mineral density of the left femur increased in the climbing mice at 4 weeks. At 2 and 4 weeks, bone formation rate (BFR/BS) of periosteal surface, the cross-sectional area, and moment of inertia were increased in the climbing mice, whereas BFR/BS and eroded surface (ES/BS) of endosteal surface did not differ. The trabecular bone volume (BV/TV) of the proximal tibia increased in climbing mice, and osteoclast surface (Oc.S/BS) and osteoclast number decreased at 2 weeks. At 4 weeks, there were increases in BV/TV and parameters of bone formation, including mineralized surface, mineral apposition rate, and bone formation rate. In marrow cell cultures from the tibia, the number of alkaline phosphatase+ colony forming units-fibroblastic and the area of mineralized nodule formation in climbing mice were increased, and the number of osteoclast-like TRACP+ multinucleated cells was lower at 2 weeks. At 4 weeks, these parameters recovered to the levels of the ground controls. CONCLUSION Our results indicate that climbing increased trabecular bone volume and reduced bone resorption, with a subsequent increase in bone formation. Intermittent climbing downregulates marrow osteoclastogenic cells and upregulates osteogenic cells initially, but further exercise seemed to desensitize them. Cortical envelopes were enlarged earlier, but the response seems to differ from trabecular bone.
Collapse
Affiliation(s)
- Toshiharu Mori
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Joo YI, Sone T, Fukunaga M, Lim SG, Onodera S. Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 2003; 33:485-93. [PMID: 14555251 DOI: 10.1016/s8756-3282(03)00212-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Appropriate endurance exercise is capable of increasing bone mass and strength in both animals and humans. We examined the skeletal changes induced by treadmill running exercise in young growing rats with a particular emphasis on three-dimensional trabecular bone microarchitecture. Fourteen male Wistar rats were divided into sedentary (CON; n = 7) and exercised (RUN; n = 7) groups at the age of 4 weeks. The rats in the RUN group performed the treadmill running exercise of 30 m/min for 60 min, 5 times a week. After 10 weeks of exercise, bone mineral density (BMD), cortical geometry, diaphyseal breaking force, and trabecular bone microarchitecture in the femur were measured. Three-dimensional trabecular bone microarchitecture was evaluated at the distal femoral metaphysis using microcomputed tomography. The running exercise significantly increased BMD, bone volume, bone volume fraction, trabecular thickness, and trabecular number, whereas trabecular bone pattern factor, the parameter associated with decreased trabecular connectivity, was significantly lower in the RUN group than the CON group. On the other hand, no significant difference in the degree of anisotropy and structure model index was observed between the two groups. At the femoral diaphysis, running exercise significantly increased cortical bone area, width, and maximum load without affecting bending stress, implying that the material properties of bone had not changed in the exercised rats. These results suggest that the increase in bone strength induced by endurance exercise is mediated by changes in trabecular bone microarchitecture as well as density and cortical geometry.
Collapse
Affiliation(s)
- Y-I Joo
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | | | | | | | | |
Collapse
|
37
|
Fluckey JD, Dupont-Versteegden EE, Montague DC, Knox M, Tesch P, Peterson CA, Gaddy-Kurten D. A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:293-300. [PMID: 12444935 DOI: 10.1046/j.1365-201x.2002.01040.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure to microgravity and/or spaceflight causes dramatic losses in both muscle and bone mass. In normal gravity, resistance exercise has been effectively used to increase muscle and bone mass. We tested a novel form of resistance exercise training using flywheel technology as a countermeasure to offset the loss of musculoskeletal mass during 4 weeks of adult rat hindlimb suspension (HS), an unloading model of microgravity. Male, Sprague-Dawley rats (6-month old) were operantly conditioned to perform resistance exercise, and then randomly assigned to groups of sedentary control (CON), HS, and HS with resistance exercise training (HSRT; 2 sets of approximately 21 repetitions, 3 days week(-1) for 4 weeks during suspension). In soleus, HS resulted in lower (P < 0.05) muscle mass to body mass ratio (approximately 50% of controls) and rates of protein synthesis. HSRT significantly attenuated the loss of muscle mass in soleus muscle, and rates of protein synthesis for soleus were similar for HSRT and controls. There were no differences among groups for mass or rates of protein synthesis in extensor digitorum longus. In cancellous regions of the distal femur, HS resulted in significant reductions of bone mineral density (BMD), but this was restored to control levels with HSRT. Cortical regions of the femur were not different among HS, HSRT or control groups. Together, these data suggest that resistance training using flywheel technology may be a promising tool to attenuate losses of the musculoskeletal system during periods of hindlimb unloading.
Collapse
Affiliation(s)
- J D Fluckey
- Nutrition, Metabolism and Exercise Laboratory, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Notomi T, Okazaki Y, Okimoto N, Tanaka Y, Nakamura T, Suzuki M. Effects of tower climbing exercise on bone mass, strength, and turnover in orchidectomized growing rats. J Appl Physiol (1985) 2002; 93:1152-8. [PMID: 12183513 DOI: 10.1152/japplphysiol.01221.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the effects of a tower climbing exercise on mass, strength, and local turnover of bone, 70 9-wk-old Sprague-Dawley rats were assigned to seven groups: a baseline control and three groups of sham-operated sedentary, orchidectomized (ORX)-sedentary and ORX-exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 4 wk, the periosteal bone formation rate (BFR), moment of inertia, bone mineral content, bone mineral density, and bending load at the midfemur were maintained in ORX-exercise rats, whereas these parameters were reduced in ORX-sedentary rats. At 8 wk, the periosteal mineral apposition rate and BFR in ORX-exercise rats were significantly higher, whereas the parameters in ORX-sedentary rats did not differ compared with sham-sedentary rats. In ORX-exercise rats, the trabecular mineralizing surface, BFR, and bone volume of the lumbar vertebrae were maintained at the same levels as those in the sham-sedentary group, whereas the osteoclast surface decreased compared with the ORX-sedentary group. However, the climbing exercise did not affect bone mineral content, bone mineral density, or the compression load of the lumbar vertebrae. These results show that, in the midfemur, the voluntary climbing exercise maintained cortical bone mass and strength by stimulating periosteal bone formation and partially prevented ORX-induced trabecular bone loss, depressing the elevation of turnover. Interestingly, in ORX rats, the climbing exercise had the opposite effect on bone formation at the periosteal femoral cortical bone, where the exercise increased the bone formation compared with vertebral trabecular bone, where the exercise decreased it.
Collapse
Affiliation(s)
- Takuya Notomi
- Laboratory and Biochemistry of Exercise and Nutrition, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Reed AH, McCarty HL, Evans GL, Turner RT, Westerlind KC. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02666.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Nakajima D, Kim CS, Oh TW, Yang CY, Naka T, Igawa S, Ohta F. Suppressive effects of genistein dosage and resistance exercise on bone loss in ovariectomized rats. JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY AND APPLIED HUMAN SCIENCE 2001; 20:285-91. [PMID: 11759267 DOI: 10.2114/jpa.20.285] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This study was designed to determine whether combined treatments with genistein dosage and moderate resistance exercise would exhibit synergistically preventive effects on bone loss following the onset of menopause. Forty-one 12 wk-old female SD rats were assigned to five groups: 1) Sham operated (Sham); 2) ovariectomized (OVX-Cont); 3) OVX received genistein (OVX-GEN); 4) OVX exercised (OVX-EXE); and 5) OVX treated with both genistein and exercise (OVX-GEN-EXE). All rats were fed a low Ca (0.1%) diet ad libitum. Daily genistein dosage was 12 mg/kg body weight. Exercising rats took 40 sets of 1-min run interspersed with 1-min rest with a 100 g weight on the back on an uphill treadmill at 20 m/min. The experimental duration consisted of the adaptation and treatment periods of 4 weeks each. Uterine weight in OVX-Cont, OVX-GEN, OVX-EXE and OVX-GEN-EXE decreased to about 15% of that in Sham (p < 0.001). The femoral BMD (mg/cm2; mean +/- SE), assessed by DEXA (Lunar), of OVX-Cont was significantly lowered to 206 +/- 5 by -9%, as compared to 226 +/- 2 of Sham (p < 0.001). The BMD of OVX-GEN, OVX-EXE and OVX-GEN-EXE were 217 +/- 2, 217 +/- 2 and 222 +/- 2, respectively, and genistein dosage and resistance exercise equally increased the BMD of OVX rats by 5% (p < 0.01). Combined treatment of genistein and exercise more successfully recovered their decreased BMD by 8% (p < 0.001). BMD of the fourth lumbar vertebrae in OVX-Cont was declined to 191 +/- 7 by -15%, as compared to 225 +/- 4 in Sham (p < 0.001). OVX-EXE and OVX-GEN-EXE gained the BMD by 6% to 205 +/- 4 and 203 +/- 3, respectively, as compared to that of OVX-Cont (p < 0.01). These results suggest the possibility that the combined treatment of genistein dosage and resistance exercise have more beneficial effects by acting rather independently than their separate trials on the prevention of ovx-induced bone loss in femurs.
Collapse
Affiliation(s)
- D Nakajima
- Department of Sports Sciences, School of Human Sciences, Waseda University.
| | | | | | | | | | | | | |
Collapse
|
41
|
Banu J, Orhii PB, Okafor MC, Wang L, Kalu DN. Analysis of the effects of growth hormone, exercise and food restriction on cancellous bone in different bone sites in middle-aged female rats. Mech Ageing Dev 2001; 122:849-64. [PMID: 11337013 DOI: 10.1016/s0047-6374(01)00243-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study is to determine the effects of growth hormone (GH), exercise (EX), GH+EX and food restriction on cancellous bone in middle-aged female rats. Female F344 rats aged 13 months were divided into (1) age-matched controls; (2) GH treated (2.5 mg/kg. 5 day/week); (3) EX (voluntary wheel running); (4) GH+EX; and (5) food restricted (FR) (fed 60% of the ad libitum food intake). The animals were treated for 18 weeks, at the end of which they were sacrificed. Cancellous bone and cortical bone in the fourth lumbar vertebra, proximal tibial metaphysis (PTM), distal femoral metaphysis (DFM) and femoral neck (NF) were analyzed using peripheral quantitative computerized tomography (pQCT) densitometry. Growth hormone increased cancellous bone area, cancellous bone mineral content, cortical bone area and cortical bone mineral content in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly after GH treatment. Exercise increased the cancellous bone area in the vertebra, PTM and DFM. Cortical bone area and cortical bone mineral content increased after EX in the vertebra, PTM, DFM and NF. No significant change was seen in the tibial muscle wet weight after EX. Growth hormone+EX increased cancellous bone area in the vertebra PTM and DFM but had no effect in neck of the femur. Cancellous bone mineral content, cortical bone area and cortical bone mineral content increased with GH+EX in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly with GH+EX. Food restriction decreased cancellous bone area and cancellous bone mineral content in all the bones studied. The decrease was statistically significant only at the distal femoral metaphysis. The tibial muscle wet weight decreased when compared with the age-matched control, but this decrease was not statistically significant. We conclude that the effect of the dose of GH used and the levels of voluntary wheel running EX used increased cancellous bone in intact rats; the effect of GH is much greater and different bones respond with varying intensities. The effects of combined treatment of GH and EX on cancellous bone are not always significantly higher than those of GH alone. FR at the level studied has a mostly negative effect on cancellous bone.
Collapse
Affiliation(s)
- J Banu
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
42
|
Buhl KM, Jacobs CR, Turner RT, Evans GL, Farrell PA, Donahue HJ. Aged bone displays an increased responsiveness to low-intensity resistance exercise. J Appl Physiol (1985) 2001; 90:1359-64. [PMID: 11247935 DOI: 10.1152/jappl.2001.90.4.1359] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of bone to respond to increased loading as a function of age was tested by use of three-point bending and histomorphometry. The hindlimbs of male Fischer 344 rats of three age groups (young = 4 mo, adult = 12 mo, and old = 22 mo; n = 10 per age group) were progressively overloaded by training the rats to depress a lever high on the side of a cage while wearing a weighted backpack. This squatlike movement required full extension of the hindlimbs. Exercised (Exer) rats performed 50 repetitions three times per week for 9 wk. Pack weight was gradually increased to 65% of body weight. Controls (n = 10 per age group) performed the same exercise without additional weight. Neither the mechanical properties of the femur nor histomorphometry in the proximal tibia was significantly affected in young or adult rats. However, old Exer rats were found to have significantly smaller medullary areas and a decreased trabecular spacing than their age-matched controls. These results suggest a greater sensitivity to increased loading in aged rats.
Collapse
Affiliation(s)
- K M Buhl
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
43
|
Notomi T, Okimoto N, Okazaki Y, Tanaka Y, Nakamura T, Suzuki M. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. J Bone Miner Res 2001; 16:166-74. [PMID: 11149481 DOI: 10.1359/jbmr.2001.16.1.166] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine the effects of tower climbing exercise on mass, strength, and local turnover of bone, 50 Sprague-Dawley rats, 10 weeks of age, were assigned to five groups: a baseline control and two groups of sedentary and exercise rats. Rats voluntarily climbed the 200-cm tower to drink water from the bottle set at the top of it. In 4 weeks, the trabecular bone formation rate (BFR/bone surface [BS]), bone volume (BV/TV), and trabecular thickness (Tb.Th) of both the lumbar vertebra and tibia and the bone mineral density (BMD) of the tibia increased, while the osteoclast surface (Oc.S) decreased. The parameter values in the midfemur, such as the total cross-sectional area, the moment of inertia, the periosteal mineralizing surface (MS/BS), mineral apposition rate (MAR), BFR/BS, and bending load increased, while the endosteal MAR decreased. In 8 weeks, the increases in the bone mineral content (BMC), BMD of the femur and tibia, and the bending load values of the femur were significant, but the climbing exercise did not increase BMC, BMD, or the compression load of the lumbar vertebra. Although the periosteal MS/BS, MAR, and BFR/BS increased, the endosteal MS/BS, MAR, and BFR/BS decreased. These results show that climbing exercise has a beneficial effect on the femoral cortex and tibia trabecular, rather than the vertebral trabecular. In the midfemur, effects on bone formation are site specific, supporting accelerated cortical drift by mechanical stimulation.
Collapse
Affiliation(s)
- T Notomi
- Laboratory and Biochemistry of Exercise and Nutrition, Institute of Health and Sport Sciences, University of Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kim CS, Nakajima D, Yang CY, Oh TW, Igawa S, Miyazaki M, Fukuoka H, Ohta F. Prolonged swimming exercise training induce hypophosphatemic osteopenia in stroke-prone spontaneously hypertensive rats (SHRSP). JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY AND APPLIED HUMAN SCIENCE 2000; 19:271-7. [PMID: 11204874 DOI: 10.2114/jpa.19.271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) induce spontaneous osteoporosis. To elucidate the specific characteristics of bone metabolism, the SHRSP was compared with age matched Wistar-Kyoto (WKY) rats. We investigated the effects of prolonged swimming exercise training on bone mineral density (BMD) and metabolism in the SHRSP. Seven-week-old male SHRSP and WKY were divided into three groups; the sedentary control WKY group (n = 6, WKY), the sedentary control SHRSP group (n = 6, SP) and the swimming exercise training SHRSP group (n = 6, SWIM) (in pool with 60 min./day, 5 days/week for 12 weeks). The femoral BMD, bone mineral content (BMC), strength, Ca and P contents (%) of SHRSP were approximately 17, 27, 25, 20 and 9%, respectively, lower than that of WKY (p < 0.001). Serum alkaline phosphatase (AlP) had not changed between both of SP and WKY, but tartrate-resistant acid phosphatase (TrAcP) of SP approximately 3-fold higher than that of WKY (p < 0.05). Both serum calcium (Ca) and intact parathyroid hormone (i-PTH) were similar between SP and WKY. However, serum phosphate (P) of SP was approximately 18% lower than that of WKY (N.S.). These results suggested that SHRSP induces osteopenia by the bone turnover of the promoted osteoclast activity with disturbed phosphate homeostasis. On the other hand, the femoral BMD and strength were approximately 7% and 20%, respectively, decreased in the SWIM (p < 0.001), and femoral bone Ca and P contents (%) were also approximately 11% and 14%, respectively, lower than that of SP (p < 0.001). There were no significant difference between SWIM and SP on serum Ca, but serum P of SWIM was significantly lower than that of SP (p < 0.05). These results suggested that the prolonged swimming exercise training in the SHRSP induces more cruelly hypophosphatemia, and leading to osteopenia eventually. We conclude that SHRSP induces osteopenia with disturbance of phosphate homeostasis, and the prolonged swimming exercise in the SHRSP might deteriorate hypophosphatemia and osteopenia.
Collapse
Affiliation(s)
- C S Kim
- Department of Sports Sciences, School of Human Sciences, Waseda University.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao W, Jee WS, Chen J, Tam CS, Setterberg RB, Frost HM. Erect bipedal stance exercise partially prevents orchidectomy-induced bone loss in the lumbar vertebrae of rats. Bone 2000; 27:667-75. [PMID: 11062354 DOI: 10.1016/s8756-3282(00)00377-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigates the responses of the fourth and fifth lumbar vertebral bodies of 6-month-old male Sprague-Dawley (SD) rats to orchidectomy (orx) and to erect bipedal stance for feeding for 12 weeks in specially designed raised cages (RC) for which the heights were raised from 20 cm to 35.5 cm. A total of 30 rats were divided into groups of: baseline; sham + housed in normal height cage (NC); orx + NC; sham + RC; and orx + RC. Bone histomorphometry was performed on the triple-labeled undecalcified fourth sagittal (LVL-4) and fifth transverse (LVX-5) sections. We found that orchidectomy induced high-turnover trabecular and cortical bone loss in the lumbar vertebrae. Forcing the rats to rise to erect stance for feeding reduced trabecular and cortical bone loss caused by orx. Apparently, depressing the elevated bone resorption next to the marrow induced by orx, and stimulating bone formation at the ventral periosteal surfaces, caused these effects. Orchidectomy and raised cage had similar effects on the two vertebrae except that the percentage of trabecular bone loss was greater in the LVL-4 than in LVX-5, and that bipedal stance exercise increased the total tissue area and mineral apposition rates (0-80 day interval) of ventral periosteal and dorsal endocortical surfaces of LVX-5 to a greater extent than it did in LVL-4. Such findings suggest that forcing rats to rise to an erect bipedal stance for feeding helps prevent loss of trabecular and cortical bone "mass," and presumably bone strength, in orchidectomized rats. This method also provides an inexpensive, noninvasive, reliable model to increase in vivo vertebral loading in rats that is similar in humans.
Collapse
Affiliation(s)
- W Yao
- Radiobiology Division, University of Utah, Salt Lake City, UT 84108-1218, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Influence of age and sex on serum osteocalcin concentrations in horses at weaning and during physical conditioning. J Equine Vet Sci 2000. [DOI: 10.1016/s0737-0806(00)80471-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Bennell K, Page C, Khan K, Warmington S, Plant D, Thomas D, Palamara J, Williams D, Wark JD. Effects of resistance training on bone parameters in young and mature rats. Clin Exp Pharmacol Physiol 2000; 27:88-94. [PMID: 10696534 DOI: 10.1046/j.1440-1681.2000.03211.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Osteoporosis is a major public health problem that is predicted to worsen over the next decade and preventative strategies that increase bone strength have become the focus of substantial research. 2. Although mechanical load is a primary factor in the acquisition and maintenance of skeletal tissue, the type of exercise used and when in life it is most effectively prescribed remain inconclusive. 3. The present study compared 10 weeks of resistance training in both young and mature female Sprague-Dawley rats and measured bone density and body composition by dual energy X-ray absorptiometry and biomechanical properties by three point bending tests of the tibia and femur. 4. No significant differences were observed for any of the bone parameters when comparing exercise and control groups at either age. This was despite using a comparable training protocol to that in humans and using loads of approximately 150% bodyweight. 5. The present study concludes that more intensive work programmes of resistance training or different outcome measures are required when using animal models for skeletal research.
Collapse
Affiliation(s)
- K Bennell
- School of Physiotherapy, University of Melbourne, Carlton, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|