1
|
Airway Exposure to Polyethyleneimine Nanoparticles Induces Type 2 Immunity by a Mechanism Involving Oxidative Stress and ATP Release. Int J Mol Sci 2021; 22:ijms22169071. [PMID: 34445774 PMCID: PMC8396525 DOI: 10.3390/ijms22169071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor, 10Panx (50 μM), the VDAC-1 inhibitor, DIDS (100 μM), and was nearly abolished by pretreatment with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked by oxidized ATP (oATP, 300 μM) and another that was blocked by the TRPV-1 antagonist A784168 (100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33 receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens derived from Alternaria.
Collapse
|
2
|
Yu M, Chang C, Undem BJ, Yu S. Capsaicin-Sensitive Vagal Afferent Nerve-Mediated Interoceptive Signals in the Esophagus. Molecules 2021; 26:3929. [PMID: 34203134 PMCID: PMC8271978 DOI: 10.3390/molecules26133929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
Heartburn and non-cardiac chest pain are the predominant symptoms in many esophageal disorders, such as gastroesophageal reflux disease (GERD), non-erosive reflux disease (NERD), functional heartburn and chest pain, and eosinophilic esophagitis (EoE). At present, neuronal mechanisms underlying the process of interoceptive signals in the esophagus are still less clear. Noxious stimuli can activate a subpopulation of primary afferent neurons at their nerve terminals in the esophagus. The evoked action potentials are transmitted through both the spinal and vagal pathways to their central terminals, which synapse with the neurons in the central nervous system to induce esophageal nociception. Over the last few decades, progress has been made in our understanding on the peripheral and central neuronal mechanisms of esophageal nociception. In this review, we focus on the roles of capsaicin-sensitive vagal primary afferent nodose and jugular C-fiber neurons in processing nociceptive signals in the esophagus. We briefly compare their distinctive phenotypic features and functional responses to mechanical and chemical stimulations in the esophagus. Then, we summarize activation and/or sensitization effects of acid, inflammatory cells (eosinophils and mast cells), and mediators (ATP, 5-HT, bradykinin, adenosine, S1P) on these two nociceptive C-fiber subtypes. Lastly, we discuss the potential roles of capsaicin-sensitive esophageal afferent nerves in processing esophageal sensation and nociception. A better knowledge of the mechanism of nociceptive signal processes in primary afferent nerves in the esophagus will help to develop novel treatment approaches to relieve esophageal nociceptive symptoms, especially those that are refractory to proton pump inhibitors.
Collapse
Affiliation(s)
| | | | | | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Ave, Baltimore, MD 21205, USA; (M.Y.); (C.C.); (B.J.U.)
| |
Collapse
|
3
|
Patowary P, Pathak MP, Kishor S, Roy PK, Das S, Chattopadhyay P, Zaman K. Cardiopulmonary function and dysregulated cardiopulmonary reflexes following acute oleoresin capsicum exposure in rats. Toxicol Appl Pharmacol 2020; 405:115188. [PMID: 32805267 DOI: 10.1016/j.taap.2020.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
Cardiopulmonary functions such as respiratory depression, severe irritation, inflamed respiratory tract, hyperventilation and, tachycardia are the most affected ones when it comes to the riot control agent oleoresin capsicum (OC) exposure. However, no studies have been done to elucidate the mechanism underlying deterioration of the combined cardiopulmonary functions. Parameters such as acute respiratory, cardiac, parameters and ultrasonography (USG) measurements were investigated in an in vivo setup using Wistar rats at 1 h and 24 h post inhalation exposure to 2%, 6% and 10% OC, whereas, cell migration in rat peritoneal mast cells (RPMCs), metabolomics and eosinophil peroxidase (EPO) activity in bronchoalveolar lavage fluid (BALF) were investigated in an in vitro setup. Results obtained from electrophysiological recording indicated that OC exposure produces apnea and decrease in mean arterial pressure (MAP) was obtained from hemodynamic parameters whereas cardiac parameters assessment revealed increase in the level of cardiac output (CO) and decrease in stroke volume (SV) with recovery towards the post-exposure period. A decrease in the percentage area of certain fatty acid pathway metabolites in BALF appropriately linked the lung injury following OC exposure which was further cemented by increasing concentration of EPO. Histopathology and SEM also proved to be favorable techniques for the detection of OC induced physiological cardiac and pulmonary modifications respectively. Furthermore, Boyden chamber experiment established the chemoattractant property of OC. It may be concluded from the above studies that these newly reported facets may be utilized pharmacologically to mitigate cardiopulmonary adverse effects owing to OC exposure.
Collapse
Affiliation(s)
- Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784 001, Assam, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786 004, Assam, India
| | - Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784 001, Assam, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786 004, Assam, India
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784 001, Assam, India
| | - Probin Kumar Roy
- Department of Pharmaceutics, Regional Institute of Paramedical and Nursing Sciences, Aizawl, Mizoram, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784 001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur 784 001, Assam, India.
| | - Kamaruz Zaman
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786 004, Assam, India
| |
Collapse
|
4
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Airway hypersensitivity induced by eosinophil granule-derived cationic proteins. Pulm Pharmacol Ther 2019; 57:101804. [PMID: 31096035 DOI: 10.1016/j.pupt.2019.101804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 01/05/2023]
Abstract
Vagal bronchopulmonary C-fiber sensory nerves play an important role in the manifestation of airway hypersensitivity, a common and prominent pathophysiological feature of airway inflammatory diseases. Eosinophil granule-derived cationic proteins are known to be involved in the mucosal damage and development of bronchial hyperresponsiveness during allergic airway inflammation. In view of these background information, we have carried out a series of studies to investigate the effect of cationic proteins on these C-fiber afferents and the mechanism(s) possibly involved; a summary of these studies is presented in this mini-review. Intra-tracheal instillation of either eosinophil granule-derived (e.g., major basic protein, MBP) or synthetic cationic proteins (e.g., poly-l-lysine) induced a sporadic, but intense and lingering discharge of pulmonary C-fibers, and greatly enhanced the chemical and mechanical sensitivities of these afferents in anesthetized rats. The stimulatory and sensitizing effects of these proteins were completely nullified when their cationic charges were neutralized or removed. Furthermore, in isolated rat bronchopulmonary capsaicin-sensitive neurons, eosinophil granule cationic proteins induced a direct and long-lasting (>60 min) but reversible sensitizing effect on their responses to chemical and electrical stimulations. More importantly, our study showed that these cationic proteins exerted an inhibitory effect on the sustained delayed-rectifier voltage-gated K+ current and the A-type, fast-inactivating K+ current; these actions were at least in part responsible for the sensitizing effect in these neurons. In awake mice, intra-tracheal instillation of MBP also induced a slowly developing (peaking in 2-3 days), progressive and sustained (lasting for 3-7 days) elevation of the cough responses to inhaled irritant gases. Taken together, these findings suggest that the enhanced sensitivity of bronchopulmonary C-fibers induced by the eosinophil granule cationic proteins may be a contributing factor in the pathogenesis of bronchial hyperresponsiveness and chronic cough associated with eosinophilic infiltration of the airways.
Collapse
|
6
|
Lin AH, Athukorala A, Gleich GJ, Lee LY. Cough responses to inhaled irritants are enhanced by eosinophil major basic protein in awake mice. Am J Physiol Regul Integr Comp Physiol 2019; 317:R93-R97. [PMID: 30995073 DOI: 10.1152/ajpregu.00081.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A distinct association between airway eosinophilia and chronic cough is well documented. Eosinophil granule-derived cationic proteins, such as major basic protein (MBP), have been shown to activate and enhance the excitability of bronchopulmonary C-fiber sensory nerves, which may then lead to an increase in cough sensitivity. This study was carried out to determine whether cough responses to inhaled irritant gases were altered by delivery of MBP into the airways. An awake mouse moved freely in a recording chamber that was ventilated with a constant flow of air or irritant gas mixture. Cough responses to separate inhalation challenges of sulfur dioxide (SO2; 300 and 600 ppm) and ammonia (NH3; 0.1 and 0.2%), each for 5-min duration, were measured daily for 3 days before and for up to 8 days after MBP (10-20 µg) instillation into the trachea. During control, inhalations of SO2 and NH3 consistently elicited cough responses in a dose-dependent manner. After MBP treatment, cough responses to both SO2 and NH3 increased significantly and progressively and reached peaks 2-3 days after the treatment before returning to control level in 3-7 days. In sharp contrast, cough responses to these irritant gases were not affected by the treatment with the vehicle of MBP. These results suggest that the MBP-induced lingering elevation of cough responsiveness may be a contributing factor in the pathogenesis of chronic cough associated with eosinophilic infiltration of the airways.
Collapse
Affiliation(s)
- An-Hsuan Lin
- Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - Ashami Athukorala
- Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - Gerald J Gleich
- Department of Dermatology, University of Utah , Salt Lake City, Utah.,Department of Medicine, University of Utah , Salt Lake City, Utah
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
7
|
Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, Fryer AD, Costello RW, Jacoby DB. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med 2018; 10:eaar8477. [PMID: 30185653 PMCID: PMC6592848 DOI: 10.1126/scitranslmed.aar8477] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Gregory D Scott
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Amber KT, Valdebran M, Kridin K, Grando SA. The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease. Front Med (Lausanne) 2018; 5:201. [PMID: 30042946 PMCID: PMC6048777 DOI: 10.3389/fmed.2018.00201] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant mortality and morbidity. While historically BP has been characterized as an IgG driven disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in recent years have further elucidated the role of eosinophils and IgE autoantibodies. In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP. Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin, and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is released by eosinophils at the site of blisters; eosinophil degranulation proteins are found on the affected basement membrane zone as well as in serum corresponding with clinical disease; eosinophil extracellular DNA traps directed against the basement membrane zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of BP in numerous other ways that have yet to be explored based on the known biology of eosinophils. We herein will review the role of eosinophils in BP and provide a framework for understanding eosinophil pathogenic mechanisms in mucocutaneous disease.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Manuel Valdebran
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Khalaf Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States.,Departments of Dermatology and Biological Chemistry, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Zhang C, Lin RL, Hong J, Khosravi M, Lee LY. Cough and expiration reflexes elicited by inhaled irritant gases are intensified in ovalbumin-sensitized mice. Am J Physiol Regul Integr Comp Physiol 2017; 312:R718-R726. [PMID: 28228416 DOI: 10.1152/ajpregu.00444.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
This study was designed to determine the effect of active sensitization with ovalbumin (Ova) on cough responses to inhaled irritant gases in mice. Conscious mice moved freely in a recording chamber, while the pressure change in the chamber and audio and video signals of the mouse movements were recorded simultaneously to measure the frequencies of cough reflex (CR) and expiration reflex (ER). To further verify the accuracy of cough analysis, the intrapleural pressure was also recorded by a telemetry sensor surgically implanted in the intrapleural space in a subgroup of mice. During the irritant gas inhalation challenge, sulfur dioxide (SO2; 200 and 400 ppm) or ammonia (NH3; 0.1% and 0.2%) was drawn into the chamber at a constant flow rate for 8 min. Ova sensitization and sham sensitization with vehicle (Veh) were performed over a 25-day period in separate groups of mice. Our results showed that 1) both SO2 and NH3 inhalation challenges increased CR and ER frequencies in a concentration-dependent manner before Ova sensitization; 2) the baseline CR frequency was significantly elevated after Ova sensitization, accompanied by pronounced airway inflammation; and 3) Ova sensitization also markedly augmented the responses of CR and ER to both SO2 and NH3 inhalation challenges; in sharp contrast, the cough responses did not change after sham sensitization in the Veh group. In conclusion, Ova sensitization caused distinct and lingering increases in baseline cough frequency, and also intensified both CR and ER responses to inhaled irritant gases, which probably resulted from an allergic inflammation-induced hypersensitivity of airway sensory nerves.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ruei-Lung Lin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Jeff Hong
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Mehdi Khosravi
- Department of Medicine, University of Kentucky, Lexington, Kentucky; and
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky;
| |
Collapse
|
10
|
Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell 2017; 165:801-11. [PMID: 27153494 DOI: 10.1016/j.cell.2016.04.041] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
11
|
Song WJ, Chang YS. Cough hypersensitivity as a neuro-immune interaction. Clin Transl Allergy 2015; 5:24. [PMID: 26180629 PMCID: PMC4503292 DOI: 10.1186/s13601-015-0069-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022] Open
Abstract
Cough is an intrinsic protective reflex. However, chronic cough affects a considerable proportion of general population and has a major impact on quality of life. A recent paradigm shift to ‘cough hypersensitivity syndrome’ suggests that chronic cough arises from hypersensitivity of the airway sensory nerves. As cough reflex is determined by interaction of the nervous system with immune system, persistent dysregulation of one or both of these systems may lead to chronic cough hypersensitivity. Here we review the current evidence for the neuro-immune interactions that underlie cough hypersensitivity and discuss future therapeutic strategies.
Collapse
Affiliation(s)
- Woo-Jung Song
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul, 110-744 South Korea ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul, 110-744 South Korea ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do South Korea
| |
Collapse
|
12
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
13
|
Niimi A, Brightling CE, Dicpinigaitis PV. Cough in asthma is due to eosinophilic airway inflammation: a pro/con debate. Lung 2013; 192:33-8. [PMID: 24337175 DOI: 10.1007/s00408-013-9543-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Multiple prospective studies have demonstrated that asthma is among the most common etiologies of chronic cough, along with upper-airway cough syndrome (formerly known as postnasal drip syndrome) and gastroesophageal reflux disease. More recently, the entity of nonasthmatic eosinophilic bronchitis has been appreciated as a significant cause of chronic cough worldwide. Chronic cough associated with both of these conditions typically responds well to therapy with systemic or inhaled corticosteroids, thus leading to a general assumption that the suppression of eosinophilic airway inflammation explains the improvement in cough. However, some recent studies challenge a causal relationship between eosinophilic airway inflammation and cough in asthmatics. The 4th American Cough Conference, held in New York in June 2013, provided an ideal forum for discussion and debate of this issue between two internationally recognized experts in the field of asthma and chronic cough.
Collapse
Affiliation(s)
- Akio Niimi
- Division of Respiratory Medicine, Department of Medical Oncology and Immunology, University Graduate School of Medical Sciences, Nagoya City University Hospital, Nagoya, Japan
| | | | | |
Collapse
|
14
|
O'Neill J, McMahon SB, Undem BJ. Chronic cough and pain: Janus faces in sensory neurobiology? Pulm Pharmacol Ther 2013; 26:476-85. [PMID: 23831712 DOI: 10.1016/j.pupt.2013.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Both chronic cough and chronic pain are critical clinical issues in which a large number of patients remain unsatisfied with available treatments. These conditions have considerable effects on sufferers' quality of life, who often show co-morbidities such as anxiety and depression. There is therefore a pressing need to find new effective therapies. The basic neurobiological mechanisms and pathologies of these two conditions show substantial homologies. However, whilst chronic pain has received a great deal of attention over the last few decades, the same cannot be said for the neurological underpinnings of chronic cough. There is a substantial literature around mechanisms of chronic pain which is likely to be useful in advancing knowledge about the pathologies of chronic cough. Here we compare the basic pain and cough pathways, in addition to the clinical features and possible pathophysiologies of each; including mechanisms of peripheral and central sensitisation which may underlie symptoms such as hyperalgesia and allodynia, and hypertussitvity and allotussivity. Due to the substantial overlap that emerges, it is likely that therapies may be effective over both areas.
Collapse
Affiliation(s)
- Jessica O'Neill
- Neuroscience, Physiology and Pharmacology, University College London, UK. Jessica.o'
| | | | | |
Collapse
|
15
|
Lee KZ, Fuller DD, Hwang JC. Pulmonary C-fiber activation attenuates respiratory-related tongue movements. J Appl Physiol (1985) 2012; 113:1369-76. [PMID: 22936725 DOI: 10.1152/japplphysiol.00031.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional impact of pulmonary C-fiber activation on upper airway biomechanics has not been evaluated. Here, we tested the hypothesis that pulmonary C-fiber activation alters the respiratory-related control of tongue movements. The force produced by tongue movements was quantified in spontaneously breathing, anesthetized adult rats before and after stimulation of pulmonary C fibers via intrajugular delivery of capsaicin (0.625 and 1.25 μg/kg). Brief occlusion of the trachea was used to increase the respiratory drive to the tongue muscles, and hypoglossal (XII) nerve branches were selectively sectioned to denervate the protrusive and retrusive tongue musculature. Tracheal occlusion triggered inspiratory-related tongue retrusion in rats with XII nerves intact or following section of the medial XII nerve branch, which innervates the genioglossus muscle. Inspiratory-related tongue protrusion was only observed after section of the lateral XII branch, which innervates the primary tongue retrusor muscles. The tension produced by inspiratory-related tongue movement was significantly attenuated by capsaicin, but tongue movements remained retrusive, unless the medial XII branch was sectioned. Capsaicin also significantly delayed the onset of tongue movements such that tongue forces could not be detected until after onset of the inspiratory diaphragm activity. We conclude that altered neural drive to the tongue muscles following pulmonary C-fiber activation has a functionally significant effect on tongue movements. The diminished tongue force and delay in the onset of tongue movements following pulmonary C-fiber activation are potentially unfavorable for upper airway patency.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
16
|
Zhuang J, Zhang Z, Zhang C, Xu F. 8-OH-DPAT abolishes the pulmonary C-fiber-mediated apneic response to fentanyl largely via acting on 5HT1A receptors in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2012; 303:R449-58. [PMID: 22696579 DOI: 10.1152/ajpregu.00016.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intravenous bolus injection of morphine causes a vagal-mediated brief apnea (∼3 s), while continuous injection, via action upon central μ-opioid receptor (MOR), arrests ventilation (>20 s) that is eliminated by stimulating central 5-hydroxytryptamine 1A receptors (5HT(1A)Rs). Bronchopulmonary C-fibers (PCFs) are essential for triggering a brief apnea, and their afferents terminate at the caudomedial region of the nucleus tractus solitarius (mNTS) that densely expresses 5HT(1A)Rs. Thus we asked whether the vagal-mediated apneic response to MOR agonists was PCF dependent, and if so, whether this apnea was abolished by systemic administration of 8-hydroxy-2-(di-n-propylamino)tetral (8-OH-DPAT) largely through action upon mNTS 5HT(1A)Rs. Right atrial bolus injection of fentanyl (5.0 μg/kg, a MOR agonist) was performed in the anesthetized and spontaneously breathing rats before and after: 1) selective blockade of PCFs' conduction and subsequent bivagotomy; 2) intravenous administration of 5HT(1A)R agonist 8-OH-DPAT; 3) intra-mNTS injection of 8-OH-DPAT; and 4) intra-mNTS injection of 5HT(1A)R antagonist WAY-100635 followed by 8-OH-DPAT (iv). We found the following: First, fentanyl evoked an immediate apnea (2.5 ± 0.4 s, ∼6-fold longer than the baseline expiratory duration, T(E)), which was abolished by either blocking PCFs' conduction or bivagotomy. Second, this apnea was prevented by systemic 8-OH-DPAT challenge. Third, intra-mNTS injection of 8-OH-DPAT greatly attenuated the apnea by 64%. Finally, intra-mNTS microinjection of WAY-100635 significantly attenuated (58%) the apneic blockade by 8-OH-DPAT (iv). We conclude that the vagal-mediated apneic response to MOR activation depends on PCFs, which is fully antagonized by systemic 8-OH-DPAT challenge largely via acting on mNTS 5HT(1A)Rs.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | |
Collapse
|
17
|
Yu S, Ouyang A. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1052-8. [PMID: 21960520 PMCID: PMC3233783 DOI: 10.1152/ajpgi.00015.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.
Collapse
Affiliation(s)
- Shaoyong Yu
- 1Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Ann Ouyang
- 2Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
18
|
Vagal afferent nerves with the properties of nociceptors. Auton Neurosci 2009; 153:12-20. [PMID: 19751993 DOI: 10.1016/j.autneu.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
Vagal afferent nerves are essential for optimal neural regulation of visceral organs, but are not often considered important for their defense. However, there are well-defined subsets of vagal afferent nerves that have activation properties indicative of specialization to detect potentially harmful stimuli (nociceptors). This is clearly exemplified by the vagal bronchopulmonary C-fibers that are quiescent in healthy lungs but are readily activated by noxious chemicals and inflammatory molecules. Vagal afferent nerves with similar activation properties have been also identified in the esophagus and probably exist in other visceral tissues. In addition, these putative vagal nociceptors often initiate defensive reflexes, can be sensitized, and have the capacity to induce central sensitization. This set of properties is a characteristic of nociceptors in somatic tissues.
Collapse
|
19
|
Fisher JT. The TRPV1 ion channel: Implications for respiratory sensation and dyspnea. Respir Physiol Neurobiol 2009; 167:45-52. [DOI: 10.1016/j.resp.2009.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/05/2023]
|
20
|
Gu Q, Lim ME, Gleich GJ, Lee LY. Mechanisms of eosinophil major basic protein-induced hyperexcitability of vagal pulmonary chemosensitive neurons. Am J Physiol Lung Cell Mol Physiol 2009; 296:L453-61. [PMID: 19136577 DOI: 10.1152/ajplung.90467.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have reported recently that eosinophil-derived basic proteins directly enhance the capsaicin- and electrical stimulation-evoked whole cell responses in rat pulmonary sensory neurons (19). Our present study further elucidates the mechanisms underlying the sensitization of pulmonary afferent nerves induced by these cationic proteins. Our results show that pretreatment with eosinophil major basic protein (MBP; 2 microM, 60 s) significantly enhanced the excitability of isolated rat vagal pulmonary chemosensitive neurons to acid and ATP in the current-clamp mode, but this potentiating effect was absent in the voltage-clamp recordings. The hyperexcitability induced by MBP was not prevented by the blockade of either transient receptor potential vanilloid type-1 receptor (TRPV1) selectively (inhibitor: AMG 9810; 1 microM, 2 min) or all TRPV1-4 channels (inhibitor: ruthenium red; 5 microM, 2 min). In addition, MBP also markedly potentiated the excitability of mouse pulmonary chemosensitive neurons, and no detectable difference was found between those isolated from wild-type and TRPV1 knockout mice. Furthermore, MBP pretreatment affected the decay time and recovery phase of the action potentials evoked by current injections and significantly inhibited both the sustained delayed-rectifier voltage-gated K(+) current (IK(dr)) and the A-type, fast-inactivating K(+) current (IK(a)) in these sensory neurons. In conclusion, our results indicate that the inhibition of IK(dr) and IK(a) should, at least in part, account for the hyperexcitability of pulmonary chemosensitive neurons induced by eosinophil-derived cationic proteins, whereas an interaction with TRPV1 channels does not seem to be required for the sensitizing effect of these proteins.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
21
|
Gu Q, Wiggers ME, Gleich GJ, Lee LY. Sensitization of isolated rat vagal pulmonary sensory neurons by eosinophil-derived cationic proteins. Am J Physiol Lung Cell Mol Physiol 2008; 294:L544-52. [DOI: 10.1152/ajplung.00271.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown that airway exposure to eosinophil-derived cationic proteins stimulated vagal pulmonary C fibers and markedly potentiated their responses to lung inflation in anesthetized rats (Lee LY, Gu Q, Gleich GJ, J Appl Physiol 91: 1318–1326, 2001). However, whether the effects resulted from a direct action of these proteins on the sensory nerves was not known. The present study was therefore carried out to determine the effects of these proteins on isolated rat vagal pulmonary sensory neurons. Our results obtained from perforated whole cell patch-clamp recordings showed that pretreatment with eosinophil major basic protein (MBP; 2 μM, 60 s) significantly increased the capsaicin-evoked inward current in these neurons; this effect peaked ∼10 min after MBP and lasted for >60 min; in current-clamp mode, MBP substantially increased the number of action potentials evoked by both capsaicin and electrical stimulation. Pretreatment with MBP did not significantly alter the input resistance of these sensory neurons. In addition, the sensitizing effect of MBP was completely abolished when its cationic charge was neutralized by mixing with a polyanion, such as low-molecular-weight heparin or poly-l-glutamic or poly-l-aspartic acid, before its delivery to the neurons. Moreover, a similar sensitizing effect was also generated by other eosinophil granule-derived proteins (e.g., eosinophil peroxidase). These results demonstrate a direct, charge-dependent, and long-lasting sensitizing effect of cationic proteins on pulmonary sensory neurons, which may contribute to the airway hyperresponsiveness associated with airway infiltration of eosinophils under pathophysiological conditions.
Collapse
|
22
|
Nassenstein C, Kammertoens T, Veres TZ, Uckert W, Spies E, Fuchs B, Krug N, Braun A. Neuroimmune crosstalk in asthma: dual role of the neurotrophin receptor p75NTR. J Allergy Clin Immunol 2007; 120:1089-96. [PMID: 17716721 DOI: 10.1016/j.jaci.2007.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/21/2007] [Accepted: 07/09/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurotrophins have been implicated in the pathogenesis of asthma because of their ability to induce airway inflammation and to promote hyperreactivity of sensory neurons, which reflects an important mechanism in the pathogenesis of airway hyperreactivity. Neurotrophins use a dual-receptor system consisting of Trk-receptor tyrosine kinases and the structurally unrelated p75NTR. Previous studies revealed an important role of p75NTR in the pathogenesis of allergic asthma. OBJECTIVES The aim of the study was to investigate the precise mechanisms of neurotrophins in neuroimmune interaction, which can lead to both airway inflammation and sensory nerve hyperreactivity in vivo. METHODS Mice selectively expressing p75NTR in immune cells or nerves, respectively, were generated. After sensitization and allergen provocation, hyperreactivity of sensory nerves was tested in response to capsaicin. Airway inflammation was analyzed on the basis of differential cell counts and cytokine levels in bronchoalveolar lavage fluids. RESULTS Allergic mice selectively expressing p75NTR in immune cells showed normal inflammation but no sensory nerve hyperreactivity, whereas mice selectively expressing p75NTR in nerve cells had a diminished inflammation and a distinct sensory nerve hyperreactivity. CONCLUSION Our data indicate that p75NTR plays a dual role by promoting hyperreactivity of sensory nerves and airway inflammation. Additionally, our study provides experimental evidence that development of sensory nerve hyperreactivity depends on an established airway inflammation in asthma. In contrast, development of airway inflammation seems to be independent from sensory nerve hyperreactivity. CLINICAL IMPLICATIONS Because of its dual function, antagonization of p75NTR-mediated signals might be a novel approach in asthma therapy.
Collapse
Affiliation(s)
- Christina Nassenstein
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
1. Cough is a primary defensive reflex that protects the airways from potentially harmful stimuli. 2. During many respiratory diseases, the cough reflex threshold is lowered and coughing becomes excessive. 3. Currently available therapeutics are mostly ineffective at suppressing excessive coughing. 4. In the present review, we describe the sensory neural pathways involved in cough, how these pathways may become dysfunctional in airway disease and the most recent advances that have been made in identifying future targets for cough suppression.
Collapse
Affiliation(s)
- Stuart B Mazzone
- Howard Florey Institute, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
24
|
Bianchimano P, Frías AI, Richeri A, Brauer MM. Effects of dexamethasone on estrogen- and pregnancy-induced plasticity in rat uterine sympathetic nerves. Cell Tissue Res 2007; 330:413-25. [PMID: 17901987 DOI: 10.1007/s00441-007-0444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
Estrogen and glucocorticoids are known to evoke opposing effects on the uterus. We analyzed the effects of dexamethasone (DEX) on uterine sympathetic denervation elicited by short- and long-term exposure to estrogen of intact prepubertal rats. We also studied the effects of DEX on the physiological degeneration of uterine sympathetic nerves at term pregnancy. Changes in innervation were assessed quantitatively by using computer-assisted methods on uterine cryostat tissue sections stained for tyrosine hydroxylase. At 24 h following treatment of prepubertal rats (25 days of age) with 1 microg or 2.5 microg estrogen, marked increases in uterine size and reductions in the percentage nerve area were observed. Co-administration of DEX (4 mg/kg) attenuated both these short-term estrogen-induced effects. Treatment of 19-day-old rats with a single dose of 25 mug estrogen provoked, at 26 days of age, a 54% reduction in the total nerve area. This reduction was abolished by the co-administration of nine doses of DEX (0.5 mg/kg) at 18-26 days of age. Treatment of rats with the same regime of DEX alone increased the total nerve area by 46% of the control values. Studies of control pregnant rats revealed the unexpected presence of intrauterine nerve fibers at term. Treatment of pregnant rats with six doses of DEX (4 mg/kg) at 16-21 days of age had no effects on the density of uterine sympathetic nerves. These results suggest that DEX has growth-promoting effects on immature uterine sympathetic nerves and may antagonize the degenerative effects elicited by long-term exposure to estrogen.
Collapse
Affiliation(s)
- P Bianchimano
- Laboratorio de Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | | | | | | |
Collapse
|
25
|
Jia Y, Lee LY. Role of TRPV receptors in respiratory diseases. Biochim Biophys Acta Mol Basis Dis 2007; 1772:915-27. [PMID: 17346945 DOI: 10.1016/j.bbadis.2007.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 12/24/2022]
Abstract
Transient receptor potential vanilloid type channels (TRPVs) are expressed in several cell types in human and animal lungs. Increasing evidence has demonstrated important roles of these cation channels, particularly TRPV1 and TRPV4, in the regulation of airway function. These TRPVs can be activated by a number of endogenous substances (hydrogen ion, certain lipoxygenase products, etc.) and changes in physiological conditions (e.g., temperature, osmolarity, etc.). Activation of these channels can evoke Ca(2+) influx and excitation of the neuron. TRPV1 channels are generally expressed in non-myelinated afferents innervating the airways and lungs, which also contain sensory neuropeptides such as tachykinins. Upon stimulation, these sensory nerves elicit centrally-mediated reflex responses as well as local release of tachykinins, and result in cough, airway irritation, reflex bronchoconstriction and neurogenic inflammation in the airways. Recent studies clearly demonstrated that the excitability of TRPV1 channels is up-regulated by certain autacoids (e.g., prostaglandin E(2), bradykinin) released during airway inflammatory reaction. Under these conditions, the TRPV1 can be activated by a slight increase in airway temperature or tissue acidity. Indirect evidence also suggests that TRPV channels may play a part in the pathogenesis of certain respiratory diseases such as asthma and chronic cough. Therefore, the potential use of TRPV antagonists as a novel therapy for these diseases certainly merits further investigation.
Collapse
Affiliation(s)
- Yanlin Jia
- Neurobiology, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
26
|
|
27
|
Gu Q, Lee LY. Hypersensitivity of pulmonary chemosensitive neurons induced by activation of protease-activated receptor-2 in rats. J Physiol 2006; 574:867-76. [PMID: 16709636 PMCID: PMC1817730 DOI: 10.1113/jphysiol.2006.110312] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study was carried out to determine the effect of protease-activated receptor-2 (PAR2) activation on the pulmonary chemoreflex responses and on the sensitivity of isolated rat vagal pulmonary chemosensitive neurons. In anaesthetized, spontaneously breathing rats, intratracheal instillation of trypsin (0.8 mg ml(-1), 0.1 ml), an endogenous agonist of PAR2, significantly amplified the capsaicin-induced pulmonary chemoreflex responses. The enhanced responses were completely abolished by perineural capsaicin treatment of both cervical vagi, suggesting the involvement of pulmonary C-fibre afferents. In patch-clamp recording experiments, pretreatment with trypsin (0.1 microM, 2 min) potentiated the capsaicin-induced whole-cell inward current in isolated pulmonary sensory neurons. The potentiating effect of trypsin was mimicked by PAR2-activating peptide (PAR2-AP) in a concentration-dependent manner. PAR2-AP pretreatment (100 microM, 2 min) also markedly enhanced the acid-evoked inward currents in these sensory neurons. Furthermore, the sensitizing effect of PAR2 was completely abolished by pretreatment with either U73122 (1 microM, 4 min), a phospholipase C inhibitor, or chelerythrine (10 microM, 4 min), a protein kinase C (PKC) inhibitor. In summary, our results have demonstrated that activation of PAR2 upregulates the pulmonary chemoreflex sensitivity in vivo and the excitability of isolated pulmonary chemosensitive neurons in vitro, and this effect of PAR2 activation was mediated through the PKC-dependent transduction pathway. These results further suggest that the hypersensitivity of these neurons may play a part in the development of airway hyper-responsiveness resulting from PAR2 activation.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
28
|
Gu Q, Lin RL, Vanaman TC, Lee LY. Hypersensitivity of pulmonary chemoreflex induced by poly-l-lysine: Role of cationic charge. Respir Physiol Neurobiol 2006; 151:31-43. [PMID: 15996907 DOI: 10.1016/j.resp.2005.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
This study was carried out to investigate the role of cationic charge in the hypersensitivity of pulmonary C-fibers induced by airway exposure to synthetic cationic protein poly-L-lysine (PLL) in anesthetized rats. Inhalation of PLL aerosol induced a distinctly irregular breathing pattern, and significantly enhanced the pulmonary chemoreflex responses to capsaicin. However, after the cationic charges were completely removed from PLL by succinylation, the succinylated PLL no longer produced any change in either the baseline breathing pattern or the reflex responses to capsaicin. In addition, the effects of PLL were also abolished after premixing it with a polyanion, poly-L-glutamic or poly-L-aspartic acid, before delivery. In sharp contrast, when delivered within 5 min after the PLL aerosol, these two polyanions were completely ineffective in reversing the effects of PLL. Electrophysiological recording of the afferent activity of single pulmonary C-fibers further supported our conclusion that the cationic charge carried by this protein is primarily responsible for generating the stimulatory and sensitizing effects of PLL on these afferents.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, 40536-0298, USA
| | | | | | | |
Collapse
|
29
|
Bischoff SC, Gebhardt T. Role of Mast Cells and Eosinophils in Neuroimmune Interactions Regulating Mucosal Inflammation in Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 579:177-208. [PMID: 16620019 DOI: 10.1007/0-387-33778-4_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan C Bischoff
- Division of Clinical Nutrition/Prevention and Immunology, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
30
|
Lin RL, Gu Q, Lin YS, Lee LY. Stimulatory effect of CO2 on vagal bronchopulmonary C-fiber afferents during airway inflammation. J Appl Physiol (1985) 2005; 99:1704-11. [PMID: 15994240 PMCID: PMC1533319 DOI: 10.1152/japplphysiol.00532.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated 1) whether pulmonary C fibers are activated by a transient increase in the CO2 concentration of alveolar gas; and 2) if the CO2 sensitivity of these afferents is altered during airway inflammation. Single-unit pulmonary C-fiber activity was recorded in anesthetized, open-chest rats. Transient alveolar hypercapnia (HPC) was induced by administering a CO2-enriched gas mixture (25-30% CO2, 21% O2, balance N2) for five to eight breaths, which increased alveolar CO2 concentration progressively to near or above 13% for 3-5 s and lowered the arterial pH transiently to 7.10 +/- 0.05. Our results showed the following. 1) HPC evoked only a mild stimulation in a small fraction (4/47) of pulmonary C fibers, and there was no significant change in fiber activity (change in fiber activity = 0.22 +/- 0.16 imp/s; P > 0.1, n = 47). 2) In sharp contrast, after airway exposure to poly-L-lysine, a cationic protein known to induce mucosal injury, the same challenge of transient HPC activated 87.5% of the pulmonary C fibers tested and evoked a distinct stimulatory effect on these afferents (change in fiber activity = 6.59 +/- 1.78 imp/s; P < 0. 01, n = 8). 3) Similar potentiation of the C-fiber response to HPC was also observed after acute exposure to ozone (n = 6) and during a constant infusion of inflammatory mediators such as adenosine (n = 15) or prostaglandin E2 (n = 12). 4) The enhanced C-fiber sensitivity to CO2 after poly-L-lysine was completely abrogated by infusion of NaHCO3 (1.82 mmol.kg(-1).min(-1)) that prevented the reduction in pH during HPC (n = 6). In conclusion, only a small percentage (<10%) of the bronchopulmonary C fibers exhibit CO2 sensitivity under control conditions, but alveolar HPC exerts a consistent and pronounced stimulatory effect on the C-fiber endings during airway inflammation. This effect of CO2 is probably mediated through the action of hydrogen ions.
Collapse
Affiliation(s)
| | | | | | - Lu-Yuan Lee
- Address for correspondence: Lu-Yuan Lee, Ph.D., Department of Physiology, University of Kentucky Medical Center, 800 Rose Street Lexington, KY 40536-0298, U.S.A. Telephone: (859) 323-6339, Fax: (859) 323-1070, E-mail:
| |
Collapse
|
31
|
Hohlfeld JM, Schmiedl A, Erpenbeck VJ, Venge P, Krug N. Eosinophil cationic protein alters pulmonary surfactant structure and function in asthma. J Allergy Clin Immunol 2004; 113:496-502. [PMID: 15007353 DOI: 10.1016/j.jaci.2003.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired surfactant function has been demonstrated in patients with asthma. Inhibitory proteins originating from plasma or inflammatory mediators are good candidates to contribute to this dysfunction. Eosinophils are potent effector cells in asthma, which, on activation, release inflammatory mediators, especially reactive granula proteins such as eosinophil cationic protein (ECP). OBJECTIVE Because the potential role of ECP in the inhibition of surfactant function is not known, we tested the hypothesis of whether ECP levels in bronchoalveolar lavage fluid (BALF) of patients with asthma after segmental allergen provocation correlate to surfactant dysfunction. Furthermore, we tested the effect of purified ECP on surfactant function and structure in vitro. METHODS Surfactant isolated from BALF of asthmatic patients was assessed for biophysical function with the Pulsating Bubble Surfactometer and the Capillary Surfactometer and correlated to ECP levels. Purified ECP and plasma proteins at various concentrations were incubated with natural surfactant. Surfactant function was studied with the Capillary Surfactometer, and surfactant structure was determined by electron microscopy. RESULTS ECP is elevated in BALF from patients with asthma after allergen challenge compared with baseline. ECP levels after allergen challenge correlate well to surfactant dysfunction. In vitro, ECP induces a concentration-dependent inhibition of surfactant function that can be inhibited by antibodies against ECP. ECP is more potent compared with albumin or fibrinogen. Finally, ECP induces severe ultrastructural changes to surfactant vesicles that are more pronounced than changes induced by either fibrinogen or albumin. CONCLUSIONS ECP contributes to surfactant dysfunction in asthma, which in turn could lead to airway obstruction.
Collapse
Affiliation(s)
- Jens M Hohlfeld
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
Although alteration of airway pH may serve an innate host defense capacity, it also is implicated in the pathophysiology of obstructive airway diseases. Acid-induced asthma appears in association with gastroesophageal reflux after accidental inhalation of acid (fog, pollution, and workplace exposure) and in the presence of altered airway pH homeostasis. Endogenous and exogenous exposures to acids evoke cough, bronchoconstriction, airway hyperreactivity, microvascular leakage, and heightened production of mucous, fluid, and nitric oxide. Abnormal acidity of the airways is reflected in exhaled breath assays. The intimate mechanisms of acid-induced airway obstruction are dependent on activation of capsaicin-sensitive sensory nerves. Protons activate these nerves with the subsequent release of tachykinins (major mediators of this pathway) that, in conjunction with kinins, nitric oxide, oxygen radicals, and proteases, modulate diverse aspects of airway dysfunction and inflammation. The recognition that acid stress might initiate or exacerbate airway obstructive symptomatology has prompted the consideration of new therapies targeting pH homeostasis.
Collapse
|
33
|
Abstract
Cationic proteins secreted by inflammatory cells infiltrating into the airways are known to cause mucosal injury and bronchial hyperresponsiveness. Although an involvement of bronchopulmonary C-fiber afferents in the cationic protein-induced airway hyperresponsiveness has been suggested, direct electrophysiological evidence has not been established. Accordingly, a series of studies was recently carried out using the single-fiber recording technique to determine the responses of pulmonary C fibers to cationic proteins and to investigate the mechanisms possibly underlying these effects. Intratracheal instillation of either human eosinophil granule-derived cationic proteins or synthetic cationic proteins induced a sporadic but intense stimulatory effect on pulmonary C fibers and greatly enhanced the sensitivities of these afferents to both lung inflation and chemical stimuli in anesthetized rats. These responses developed slowly (latency: 20-40s), reached peak in 2-10 min, then gradually declined. The effects of synthetic cationic proteins sustained for >60 min. When administered by intravenous injection or instilled into a different region of the lung, the same cationic proteins had no effect on the C-fiber endings, even at a higher dose. Furthermore, the stimulatory and sensitizing effects of these proteins were completely nullified when their cationic charges were neutralized with negatively charged heparin before delivery. However, heparin administered 5-10 min after the delivery of cationic proteins was ineffective in reversing the effects. In conclusion, intratracheal instillation of cationic proteins consistently induces intense stimulation and sensitization of pulmonary C fibers, and an interaction between the cationic charges carried by these proteins and the airway mucosa is probably responsible.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
34
|
Abstract
Cough is initiated by activation of afferent nerve fibers with rapidly adapting receptors (RAR) that conduct action potentials in the Adelta range. In addition, various stimuli that activate airway unmylenated C-fibres evoke cough reflexes. We have used a vagally innervated, larynx-trachea-bronchus preparation, isolated from guinea pigs, to study the pharmacology of RARs and C-fibres in vitro. In this preparation afferent fibres with the RAR phenotype are exquisitely sensitive to mechanical perturbation of their receptive fields, but are unaffected by a variety of mediators (e.g. prostaglandins, histamine, bradykinin, serotonin) and by capsaicin. By contrast, C-fibres are much less sensitive to mechanical stimulation, but can be activated by capsaicin and bradykinin. Preliminary evidence supports the hypothesis that bradykinin activate C-fibre by stimulating the capsaicin (vanilloid) receptor VR1. Acids activate both C-fibres and RARs. Acids stimulate RAR fibres by a mechanism that is rapidly inactivated. C-fibres are stimulated by both a rapidly inactivating mechanism, as well as a slowly inactivating mechanism. Drugs that block VR1 inhibit the latter mechanism. Airway inflammation substantially increases the mechanical sensitivity of RAR fibres without affecting their adaptive properties. Airway inflammation also causes a phenotypic switch in neuropeptide innervation of the airways that RAR neurons begin to synthesis neurokinins and calcitonin gene related peptide. In non-inflamed animals these peptides are expressed only in C-fibre neurons. Thus, airway inflammation may not only increase the sensitivity of cough fibres, but may also qualitatively change the role played by sensory neuropeptides in cough reflexes.
Collapse
Affiliation(s)
- Bradley J Undem
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
35
|
Abstract
Afferent nerves, derived from the trigeminal ganglion, and postganglionic autonomic nerves, derived from sympathetic and parasympathetic ganglia expressing many different neurotransmitters, innervate the nose. Reflexes that serve to optimize the air-conditioning function of the nose by altering sinus blood flow, or serve to protect the nasal mucosal surface by mucus secretion, vasodilatation, and sneezing, can be initiated by a variety of stimuli, including allergen, cold air, and chemical irritation. Activation of nasal afferent nerves can also have profound effects on respiration, heart rate, blood pressure, and airway caliber (the diving response). Dysregulation of the nerves in the nose plays an integral role in the pathogenesis of allergic rhinitis. Axon reflexes can precipitate inflammatory responses in the nose, resulting in plasma extravasation and inflammatory cell recruitment, while allergic inflammation can produce neuronal hyper-responsiveness. Targeting the neuronal dysregulation in the nose may be beneficial in treating upper airway disease.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| |
Collapse
|