1
|
Olmos AA, Sterczala AJ, Parra ME, Dimmick HL, Miller JD, Deckert JA, Sontag SA, Gallagher PM, Fry AC, Herda TJ, Trevino MA. Sex-related differences in motor unit behavior are influenced by myosin heavy chain during high- but not moderate-intensity contractions. Acta Physiol (Oxf) 2023; 239:e14024. [PMID: 37551144 DOI: 10.1111/apha.14024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
AIMS Motor unit recruitment and firing rate patterns of the vastus lateralis (VL) have not been compared between sexes during moderate- and high-intensity contraction intensities. Additionally, the influence of fiber composition on potential sex-related differences remains unquantified. METHODS Eleven males and 11 females performed 40% and 70% maximal voluntary contractions (MVCs). Surface electromyographic (EMG) signals recorded from the VL were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMP ), initial firing rates (IFRs), mean firing rates (MFRs), and normalized EMG amplitude (N-EMGRMS ) at steady torque were analyzed. Y-intercepts and slopes were calculated for MUAPAMP , IFR, and MFR versus RT relationships. Type I myosin heavy chain isoform (MHC) was determined with muscle biopsies. RESULTS There were no sex-related differences in MU characteristics at 40% MVC. At 70% MVC, males exhibited greater slopes (p = 0.002) for the MUAPAMP , whereas females displayed greater slopes (p = 0.001-0.007) for the IFR and MFR versus RT relationships. N-EMGRMS at 70% MVC was greater for females (p < 0.001). Type I %MHC was greater for females (p = 0.006), and was correlated (p = 0.018-0.031) with the slopes for the MUAPAMP , IFR, and MFR versus RT relationships at 70% MVC (r = -0.599-0.585). CONCLUSION Both sexes exhibited an inverse relationship between MU firing rates and recruitment thresholds. However, the sex-related differences in MU recruitment and firing rate patterns and N-EMGRMS at 70% MVC were likely due to greater type I% MHC and smaller twitch forces of the higher threshold MUs for the females. Evidence is provided that muscle fiber composition may explain divergent MU behavior between sexes.
Collapse
Affiliation(s)
- Alex A Olmos
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mandy E Parra
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA
| | - Hannah L Dimmick
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Miller
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jake A Deckert
- Department of Human Physiology, Gonzaga University, Spokane, Washington, USA
| | - Stephanie A Sontag
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Philip M Gallagher
- Applied Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Andrew C Fry
- Jayhawk Athletic Performance Laboratory - Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Lim JY, Frontera WR. Skeletal muscle aging and sarcopenia: Perspectives from mechanical studies of single permeabilized muscle fibers. J Biomech 2023; 152:111559. [PMID: 37027961 PMCID: PMC10164716 DOI: 10.1016/j.jbiomech.2023.111559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The decline in muscle mass and strength with age is well documented and associated with weakness, decreased flexibility, vulnerability to diseases and/or injuries, and impaired functional restoration. The term sarcopenia has been used to refer to the loss of muscle mass, strength and impaired physical performance with advanced adult age and recently has become a major clinical entity in a super-aged society. To understand the pathophysiology and clinical manifestations of sarcopenia, it is essential to explore the age-related changes in the intrinsic properties of muscle fibers. Mechanical experiments with single muscle fibers have been conducted during the last 80 years and applied to human muscle research in the last 45 years as an in-vitro muscle function test. Fundamental active and passive mechanical properties of skeletal muscle can be evaluated using the isolated permeabilized (chemically skinned) single muscle fiber preparation. Changes in the intrinsic properties of older human single muscle fibers can be useful biomarkers of aging and sarcopenia. In this review, we summarize the historical development of single muscle fiber mechanical studies, the definition and diagnosis of muscle aging and sarcopenia, and age-related change of active and passive mechanical properties in single muscle fibers and discuss how these changes can be used to assess muscle aging and sarcopenia.
Collapse
Affiliation(s)
- Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si Gyeonggi-do, South Korea
| | - Walter R Frontera
- Department of Physiology and Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.
| |
Collapse
|
3
|
Grosicki GJ, Zepeda CS, Sundberg CW. Single muscle fibre contractile function with ageing. J Physiol 2022; 600:5005-5026. [PMID: 36268622 PMCID: PMC9722590 DOI: 10.1113/jp282298] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 01/05/2023] Open
Abstract
Ageing is accompanied by decrements in the size and function of skeletal muscle that compromise independence and quality of life in older adults. Developing therapeutic strategies to ameliorate these changes is critical but requires an in-depth mechanistic understanding of the underlying physiology. Over the past 25 years, studies on the contractile mechanics of isolated human muscle fibres have been instrumental in facilitating our understanding of the cellular mechanisms contributing to age-related skeletal muscle dysfunction. The purpose of this review is to characterize the changes that occur in single muscle fibre size and contractile function with ageing and identify key areas for future research. Surprisingly, most studies observe that the size and contractile function of fibres expressing slow myosin heavy chain (MHC) I are well-preserved with ageing. In contrast, there are profound age-related decrements in the size and contractile function of the fibres expressing the MHC II isoforms. Notably, lifelong aerobic exercise training is unable to prevent most of the decrements in fast fibre contractile function, which have been implicated as a primary mechanism for the age-related loss in whole-muscle power output. These findings reveal a critical need to investigate the effectiveness of other nutritional, pharmaceutical or exercise strategies, such as lifelong resistance training, to preserve fast fibre size and function with ageing. Moreover, integrating single fibre contractile mechanics with the molecular profile and other parameters important to contractile function (e.g. phosphorylation of regulatory proteins, innervation status, mitochondrial function, fibre economy) is necessary to comprehensively understand the ageing skeletal muscle phenotype.
Collapse
Affiliation(s)
- Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Carlos S. Zepeda
- Exercise and Rehabilitation Sciences Graduate Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Christopher W. Sundberg
- Exercise and Rehabilitation Sciences Graduate Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging. Eur J Appl Physiol 2022; 122:1383-1395. [DOI: 10.1007/s00421-022-04924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 12/25/2022]
|
5
|
Abstract
The Exercise Boom of the 1970's resulted in the adoption of habitual exercise in a significant portion of the population. Many of these individuals are defying the cultural norms by remaining physically active and competing at a high level in their later years. The juxtaposition between masters athletes and non-exercisers demonstrate the importance of remaining physically active throughout the lifespan on physiological systems related to healthspan (years of healthy living). This includes ~50% improved maximal aerobic capacity (VO2max) and enhanced skeletal muscle health (size, function, as well as metabolic and communicative properties) compared to non-exercisers at a similar age. By taking a reductionist approach to VO2max and skeletal muscle health, we can gain insight into how aging and habitual exercise affects the aging process. Collectively, this review provides a physiological basis for the elite performances seen in masters athletes, as well as the health implications of lifelong exercise with a focus on VO2max, skeletal muscle metabolic fitness, whole muscle size and function, single muscle fiber physiology, and communicative properties of skeletal muscle. This review has significant public health implications due to the potent health benefits of habitual exercise across the lifespan.
Collapse
Affiliation(s)
- Kevin J Gries
- Exercise and Sports Science, Marian University, Indianapolis, United States
| | - S W Trappe
- Human Performance Laboratory, Ball State University, Muncie, United States
| |
Collapse
|
6
|
Trevino MA, Dimmick HL, Parra ME, Sterczala AJ, Miller JD, Deckert JA, Gallagher PM, Fry AC, Weir JP, Herda TJ. Effects of continuous cycling training on motor unit firing rates, input excitation, and myosin heavy chain of the vastus lateralis in sedentary females. Exp Brain Res 2022; 240:825-839. [DOI: 10.1007/s00221-021-06278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
|
7
|
Culver MN, Langan SP, Hutchison ZJ. What's all the hype with fibre type? Selective single fibre adaptations with lifelong endurance exercise. J Physiol 2021; 599:4413-4414. [PMID: 34464451 DOI: 10.1113/jp281986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Meral N Culver
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Sean P Langan
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Zach J Hutchison
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Grosicki GJ, Gries KJ, Minchev K, Raue U, Chambers TL, Begue G, Finch H, Graham B, Trappe TA, Trappe S. Single muscle fibre contractile characteristics with lifelong endurance exercise. J Physiol 2021; 599:3549-3565. [PMID: 34036579 DOI: 10.1113/jp281666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A hallmark trait of ageing skeletal muscle health is a reduction in size and function, which is most pronounced in the fast muscle fibres. We studied older men (74 ± 4 years) with a history of lifelong (>50 years) endurance exercise to examine potential benefits for slow and fast muscle fibre size and contractile function. Lifelong endurance exercisers had slow muscle fibres that were larger, stronger, faster and more powerful than young exercisers (25 ± 1 years) and age-matched non-exercisers (75 ± 2 years). Limited benefits with lifelong endurance exercise were noted in the fast muscle fibres. These findings suggest that additional exercise modalities (e.g. resistance exercise) or other therapeutic interventions are needed to target fast muscle fibres with age. ABSTRACT We investigated single muscle fibre size and contractile function among three groups of men: lifelong exercisers (LLE) (n = 21, 74 ± 4 years), old healthy non-exercisers (OH) (n = 10, 75 ± 2 years) and young exercisers (YE) (n = 10, 25 ± 1 years). On average, LLE had exercised ∼5 days week-1 for ∼7 h week-1 over the past 53 ± 6 years. LLE were subdivided based on lifelong exercise intensity into performance (LLE-P) (n = 14) and fitness (LLE-F) (n = 7). Muscle biopsies (vastus lateralis) were examined for myosin heavy chain (MHC) slow (MHC I) and fast (MHC IIa) fibre size and function (strength, speed, power). LLE MHC I size (7624 ± 2765 μm2 ) was 25-40% larger (P < 0.001) than YE (6106 ± 1710 μm2 ) and OH (5476 ± 2467 μm2 ). LLE MHC I fibres were ∼20% stronger, ∼10% faster and ∼30% more powerful than YE and OH (P < 0.05). By contrast, LLE MHC IIa size (6466 ± 2659 μm2 ) was similar to OH (6237 ± 2525 μm2 ; P = 0.854), with both groups ∼20% smaller (P < 0.001) than YE (7860 ± 1930 μm2 ). MHC IIa contractile function was variable across groups, with a hierarchical pattern (OH > LLE > YE; P < 0.05) in normalized power among OH (16.7 ± 6.4 W L-1 ), LLE (13.9 ± 4.5 W L-1 ) and YE (12.4 ± 3.5 W L-1 ). The LLE-P and LLE-F had similar single fibre profiles with MHC I power driven by speed (LLE-P) or force (LLE-F), suggesting exercise intensity impacted slow muscle fibre mechanics. These data suggest that lifelong endurance exercise benefited slow muscle fibre size and function. Comparable fast fibre characteristics between LLE and OH, regardless of training intensity, suggest other exercise modes (e.g. resistance training) or myotherapeutics may be necessary to preserve fast muscle fibre size and performance with age.
Collapse
Affiliation(s)
- Gregory J Grosicki
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Gwénaëlle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Bruce Graham
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
9
|
Piasecki J, Inns TB, Bass JJ, Scott R, Stashuk DW, Phillips BE, Atherton PJ, Piasecki M. Influence of sex on the age-related adaptations of neuromuscular function and motor unit properties in elite masters athletes. J Physiol 2021; 599:193-205. [PMID: 33006148 DOI: 10.1113/jp280679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Masters athletes maintain high levels of activity into older age and allow an examination of the effects of aging dissociated from the effects of increased sedentary behaviour. Evidence suggests masters athletes are more successful at motor unit remodelling, the reinnervation of denervated fibres acting to preserve muscle fibre number, but little data are available in females. Here we used intramuscular electromyography to demonstrate that motor units sampled from the tibialis anterior show indications of remodelling from middle into older age and which does not differ between males and females. The age-related trajectory of motor unit discharge characteristic differs according to sex, with female athletes progressing to a slower firing pattern that was not observed in males. Our findings indicate motor unit remodelling from middle to older age occurs to a similar extent in male and female athletes, with discharge rates progressively slowing in females only. ABSTRACT Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, although the majority of studies have focused on males, with little available data on female athletes. Functional assessments of strength, balance and motor control were performed in 30 masters athletes (16 male) aged 44-83 years. Intramuscular needle electrodes were used to sample individual motor unit potentials (MUPs) and near-fibre MUPs in the tibialis anterior (TA) during isometric contractions at 25% maximum voluntary contraction, and used to determine discharge characteristics (firing rate, variability) and biomarkers of peripheral MU remodelling (MUP size, complexity, stability). Multilevel mixed-effects linear regression models examined effects of age and sex. All aspects of neuromuscular function deteriorated with age (P < 0.05) with no age × sex interactions, although males were stronger (P < 0.001). Indicators of MU remodelling also progressively increased with age to a similar extent in both sexes (P < 0.05), whilst MU firing rate progressively decreased with age in females (p = 0.029), with a non-significant increase in males (p = 0.092). Masters athletes exhibit age-related declines in neuromuscular function that are largely equal across males and females. Notably, they also display features of MU remodelling with advancing age, probably acting to reduce muscle fibre loss. The age trajectory of MU firing rate assessed at a single contraction level differed between sexes, which may reflect a greater tendency for females to develop a slower muscle phenotype.
Collapse
Affiliation(s)
- Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Joseph J Bass
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Reece Scott
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Straight CR, Ringham OR, Bartley JM, Keilich SR, Kuchel GA, Haynes L, Miller MS. Influenza Infection has Fiber Type-Specific Effects on Cellular and Molecular Skeletal Muscle Function in Aged Mice. J Gerontol A Biol Sci Med Sci 2020; 75:2333-2341. [PMID: 32492709 DOI: 10.1093/gerona/glaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 11/14/2022] Open
Abstract
Skeletal muscle myopathies represent a common non-pulmonary manifestation of influenza infection, leading to reduced physical function and hospitalization in older adults. However, underlying mechanisms remain poorly understood. Our study examined the effects of influenza virus A pulmonary infection on contractile function at the cellular (single fiber) and molecular (myosin-actin interactions and myofilament properties) levels in soleus and extensor digitorum longus muscles of aged (20 months) C57BL/6 male mice that were healthy or flu-infected for 7 (7-days post-infection; 7-DPI) or 12 days (12-DPI). Cross-sectional area (CSA) of myosin heavy chain (MHC) IIA and IIB fibers was reduced at 12-DPI relative to 7-DPI and healthy. Maximal isometric force in MHC IIA fibers was also reduced at 12-DPI relative to 7-DPI and healthy, resulting in no change in specific force (maximal isometric force divided by CSA). In contrast, MHC IIB fibers produced greater isometric force and specific force at 7-DPI compared to 12-DPI or healthy. The increased specific force in MHC IIB fibers was likely due to greater myofilament lattice stiffness and/or an increased number or stiffness of strongly bound myosin-actin cross-bridges. At the molecular level, cross-bridge kinetics were slower in MHC IIA fibers with infection, while changes in MHC IIB fibers were largely absent. In both fiber types, greater myofilament lattice stiffness was positively related to specific force. This study provides novel evidence that cellular and molecular contractile function is impacted by influenza infection in a fiber type-specific manner, suggesting potential molecular mechanisms to help explain the impact of flu-induced myopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Haynes
- University of Connecticut School of Medicine, Farmington
| | | |
Collapse
|
11
|
Giacomello E, Crea E, Torelli L, Bergamo A, Reggiani C, Sava G, Toniolo L. Age Dependent Modification of the Metabolic Profile of the Tibialis Anterior Muscle Fibers in C57BL/6J Mice. Int J Mol Sci 2020; 21:ijms21113923. [PMID: 32486238 PMCID: PMC7312486 DOI: 10.3390/ijms21113923] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle aging is accompanied by mass reduction and functional decline, as a result of multiple factors, such as protein expression, morphology of organelles, metabolic equilibria, and neural communication. Skeletal muscles are formed by multiple fibers that express different Myosin Heavy Chains (MyHCs) and have different metabolic properties and different blood supply, with the purpose to adapt their contraction to the functional need. The fine interplay between the different fibers composing a muscle and its architectural organization determine its functional properties. Immunohistochemical and histochemical analyses of the skeletal muscle tissue, besides evidencing morphological characteristics, allow for the precise determination of protein expression and metabolic properties, providing essential information at the single-fiber level. Aiming to gain further knowledge on the influence of aging on skeletal muscles, we investigated the expression of the MyHCs, the Succinate Dehydrogenase (SDH) activity, and the presence of capillaries and Tubular Aggregates (TAs) in the tibialis anterior muscles of physiologically aging C57BL/6J mice aged 8 (adult), 18 (middle aged), and 24 months (old). We observed an increase of type-IIB fast-contracting fibers, an increase of the oxidative capacity of type-IIX and -IIA fibers, a general decrease of the capillarization, and the onset of TAs in type-IIB fibers. These data suggest that aging entails a selective modification of the muscle fiber profiles.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (E.C.); (L.T.)
- Correspondence: (E.G.); (L.T.)
| | - Emanuela Crea
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (E.C.); (L.T.)
| | - Lucio Torelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (E.C.); (L.T.)
| | - Alberta Bergamo
- Department of Life Sciences, University of Trieste, Trieste, Italy, and Callerio Foundation, Onlus, 34127 Trieste, Italy; (A.B.); (G.S.)
| | - Carlo Reggiani
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Gianni Sava
- Department of Life Sciences, University of Trieste, Trieste, Italy, and Callerio Foundation, Onlus, 34127 Trieste, Italy; (A.B.); (G.S.)
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Correspondence: (E.G.); (L.T.)
| |
Collapse
|
12
|
Teigen LE, Sundberg CW, Kelly LJ, Hunter SK, Fitts RH. Ca 2+ dependency of limb muscle fiber contractile mechanics in young and older adults. Am J Physiol Cell Physiol 2020; 318:C1238-C1251. [PMID: 32348175 DOI: 10.1152/ajpcell.00575.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-induced declines in skeletal muscle contractile function have been attributed to multiple cellular factors, including lower peak force (Po), decreased Ca2+ sensitivity, and reduced shortening velocity (Vo). However, changes in these cellular properties with aging remain unresolved, especially in older women, and the effect of submaximal Ca2+ on contractile function is unknown. Thus, we compared contractile properties of muscle fibers from 19 young (24 ± 3 yr; 8 women) and 21 older adults (77 ± 7 yr; 7 women) under maximal and submaximal Ca2+ and assessed the abundance of three proteins thought to influence Ca2+ sensitivity. Fast fiber cross-sectional area was ~44% larger in young (6,479 ± 2,487 µm2) compared with older adults (4,503 ± 2,071 µm2, P < 0.001), which corresponded with a greater absolute Po (young = 1.12 ± 0.43 mN; old = 0.79 ± 0.33 mN, P < 0.001). There were no differences in fast fiber size-specific Po, indicating the age-related decline in force was explained by differences in fiber size. Except for fast fiber size and absolute Po, no age or sex differences were observed in Ca2+ sensitivity, rate of force development (ktr), or Vo in either slow or fast fibers. Submaximal Ca2+ depressed ktr and Vo, but the effects were not altered by age in either sex. Contrary to rodent studies, regulatory light chain (RLC) and myosin binding protein-C abundance and RLC phosphorylation were unaltered by age or sex. These data suggest the age-associated reductions in contractile function are primarily due to the atrophy of fast fibers and that caution is warranted when extending results from rodent studies to humans.
Collapse
Affiliation(s)
- Laura E Teigen
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin.,Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Lauren J Kelly
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Wang ZM, Leng X, Messi ML, Choi SJ, Marsh AP, Nicklas B, Delbono O. Relationship of Physical Function to Single Muscle Fiber Contractility in Older Adults: Effects of Resistance Training With and Without Caloric Restriction. J Gerontol A Biol Sci Med Sci 2019; 74:412-419. [PMID: 29546320 DOI: 10.1093/gerona/gly047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies support beneficial effects of both resistance exercise training (RT) and caloric restriction (CR) on skeletal muscle strength and physical performance. The goal of this study was to determine the effects of adding CR to RT on single-muscle fiber contractility responses to RT in older overweight and obese adults. METHODS We analyzed contractile properties in 1,253 single myofiber from muscle biopsies of the vastus lateralis, as well as physical performance and thigh muscle volume, in 31 older (65-80 years), overweight or obese (body mass index = 27-35 kg/m2) men (n = 19) and women (n = 12) who were randomly assigned to a standardized, progressive RT intervention with CR (RT+CR; n = 15) or without CR (RT; n = 16) for 5 months. RESULTS Both interventions evoked an increase in force normalized to cross-sectional area (CSA), in type-I and type-II fibers and knee extensor quality. However, these improvements were not different between intervention groups. In the RT group, changes in total thigh fat volume inversely correlated with changes in type-II fiber force (r = -.691; p = .019). Within the RT+CR group, changes in gait speed correlated positively with changes in type-I fiber CSA (r = .561; p = .030). In addition, increases in type-I normalized fiber force were related to decreases in thigh intermuscular fat volume (r = -0.539; p = .038). CONCLUSION Single muscle fiber force and knee extensor quality improve with RT and RT+CR; however, CR does not enhance improvements in single muscle fiber contractility or whole muscle in response to RT in older overweight and obese men and women.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
| | - Xiaoyan Leng
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
| | - Seung J Choi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
- The Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
14
|
Gries KJ, Minchev K, Raue U, Grosicki GJ, Begue G, Finch WH, Graham B, Trappe TA, Trappe S. Single-muscle fiber contractile properties in lifelong aerobic exercising women. J Appl Physiol (1985) 2019; 127:1710-1719. [PMID: 31670601 PMCID: PMC6962607 DOI: 10.1152/japplphysiol.00459.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to examine the effects of lifelong aerobic exercise on single-muscle fiber performance in trained women (LLE; n = 7, 72 ± 2 yr) by comparing them to old healthy nonexercisers (OH; n = 10, 75 ± 1 yr) and young exercisers (YE; n = 10, 25 ± 1 yr). On average, LLE had exercised ~5 days/wk for ~7 h/wk over the past 48 ± 2 yr. Each subject had a vastus lateralis muscle biopsy to examine myosin heavy chain (MHC) I and IIa single-muscle fiber size and function (strength, speed, power). MHC I fiber size was similar across all three cohorts (YE = 5,178 ± 157, LLE = 4,983 ± 184, OH = 4,902 ± 159 µm2). MHC IIa fiber size decreased (P < 0.05) 36% with aging (YE = 4,719 ± 164 vs. OH = 3,031 ± 153 µm2), with LLE showing a similar 31% reduction (3,253 ± 189 µm2). LLE had 17% more powerful (P < 0.05) MHC I fibers and offset the 18% decline in MHC IIa fiber power observed with aging (P < 0.05). The LLE contractile power was driven by greater strength (+11%, P = 0.056) in MHC I fibers and elevated contractile speed (+12%, P < 0.05) in MHC IIa fibers. These data indicate that lifelong exercise did not benefit MHC I or IIa muscle fiber size. However, LLE had contractile function adaptations that enhanced MHC I fiber power and preserved MHC IIa fiber power through different contractile mechanisms (strength vs. speed). The single-muscle fiber contractile properties observed with lifelong aerobic exercise are unique and provide new insights into aging skeletal muscle plasticity in women at the myocellular level.NEW & NOTEWORTHY This is the first investigation to examine the effects of lifelong exercise on single-muscle fiber physiology in women. Nearly 50 yr of moderate to vigorous aerobic exercise training resulted in enhanced slow-twitch fiber power primarily by increasing force production, whereas fast-twitch fiber power was preserved primarily by increasing contractile speed. These unique muscle fiber power profiles helped offset the effects of fast-twitch fiber atrophy and highlight the benefits of lifelong aerobic exercise for myocellular health.
Collapse
Affiliation(s)
- Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | | - Gwénaëlle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - W Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bruce Graham
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
15
|
Murach KA, Dungan CM, Kosmac K, Voigt TB, Tourville TW, Miller MS, Bamman MM, Peterson CA, Toth MJ. Fiber typing human skeletal muscle with fluorescent immunohistochemistry. J Appl Physiol (1985) 2019; 127:1632-1639. [PMID: 31697594 DOI: 10.1152/japplphysiol.00624.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle myosin heavy chain (MyHC) fiber type composition is a critical determinant of overall muscle function and health. Various approaches interrogate fiber type at the single cell, but the two most commonly utilized are single-muscle fiber sodium dodecyl sulfate-polyacrylamide gel electrophoresis (smfSDS-PAGE) and fluorescent immunohistochemistry (IHC). Although smfSDS-PAGE is generally considered the "gold standard," IHC is more commonly used because of its time-effectiveness and relative ease. Unfortunately, there is lingering inconsistency on how best to accurately and quickly determine fiber type via IHC and an overall misunderstanding regarding pure fiber type proportions, specifically the abundance of fibers exclusively expressing highly glycolytic MyHC IIX in humans. We therefore 1) present information and data showing the low abundance of pure MyHC IIX muscle fibers in healthy human skeletal muscle and 2) leverage this information to provide straightforward protocols that are informed by human biology and employ inexpensive, easily attainable antibodies for the accurate determination of fiber type.
Collapse
Affiliation(s)
- Kevin A Murach
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Cory M Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Thomas B Voigt
- Departments of Medicine and Molecular Physiology and Biophysics, College of Medicine and College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Mark S Miller
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Marcas M Bamman
- Departments of Cell, Developmental, and Integrative Biology, Medicine, and Neurology, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama
| | - Charlotte A Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Michael J Toth
- Departments of Medicine and Molecular Physiology and Biophysics, College of Medicine and College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
16
|
Passive force and viscoelastic properties of single fibers in human aging muscles. Eur J Appl Physiol 2019; 119:2339-2348. [DOI: 10.1007/s00421-019-04221-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
17
|
Naro F, Venturelli M, Monaco L, Toniolo L, Muti E, Milanese C, Zhao J, Richardson RS, Schena F, Reggiani C. Skeletal Muscle Fiber Size and Gene Expression in the Oldest-Old With Differing Degrees of Mobility. Front Physiol 2019; 10:313. [PMID: 30971947 PMCID: PMC6443969 DOI: 10.3389/fphys.2019.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
The oldest-old, in the ninth and tenth decades of their life, represent a population characterized by neuromuscular impairment, which often implies a loss of mobility and independence. As recently documented by us and others, muscle atrophy and weakness are accompanied by an unexpected preservation of the size and contractile function of skeletal muscle fibers. This suggests that, while most fibers are likely lost with their respective motoneurons, the surviving fibers are well preserved. Here, we investigated the mechanisms behind this fiber preservation and the relevance of physical activity, by comparing a group of 6 young healthy controls (YG: 22-28 years) with two groups of oldest-old (81-96 years), one able to walk (OW: n = 6, average 86 years) and one confined to a wheelchair (ONW n = 9, average 88 years). We confirmed previous results of fiber preservation and, additionally, observed a shift in fiber type, toward slow predominance in OW and fast predominance in ONW. Myonuclear density was increased in muscles of ONW, compared to YG and OW, potentially indicative of an ongoing atrophy process. We analyzed, by RT-qPCR, the expression of genes relevant for fiber size and type regulation in a biopsy sample from the vastus lateralis. In all oldest-old both myostatin and IGF-1 expression were attenuated compared to YG, however, in ONW two specific IGF-1 isoforms, IGF-1EA and MGF, demonstrated a further significant decrease compared to OW. Surprisingly, atrogenes (MURF1 and atrogin) expression was also significantly reduced compared to YG and this was accompanied by a close to statistically significantly attenuated marker of autophagy, LC3. Among the determinants of the metabolic fiber type, PGC1α was significantly reduced in both OW and ONW compared to YG, while AMPK was down-regulated only in ONW. We conclude that, in contrast to the shift of the balance in favor of pro-atrophy factors found by other studies in older adults (decreased IGF-1, increase of myostatin, increase of atrogenes), in the oldest-old the pro-atrophy factors also appear to be down-regulated, allowing a partial recovery of the proteostasis balance. Furthermore, the impact of muscle activity, as a consequence of lost or preserved walking ability, is limited.
Collapse
Affiliation(s)
- Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Ettore Muti
- Monsignor Arrigo Mazzali Foundation, Mantova, Italy
| | - Chiara Milanese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jia Zhao
- Division of Geriatrics, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, United States.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, United States
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, United States.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, United States
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia
| |
Collapse
|
18
|
Lavin KM, Roberts BM, Fry CS, Moro T, Rasmussen BB, Bamman MM. The Importance of Resistance Exercise Training to Combat Neuromuscular Aging. Physiology (Bethesda) 2019; 34:112-122. [PMID: 30724133 PMCID: PMC6586834 DOI: 10.1152/physiol.00044.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Older adults undergoing age-related decrements in muscle health can benefit substantially from resistance exercise training, a potent stimulus for whole muscle and myofiber hypertrophy, neuromuscular performance gains, and improved functional mobility. With the use of advancing technologies, research continues to elucidate the mechanisms of and heterogeneity in adaptations to resistance exercise training beyond differences in exercise prescription. This review highlights the current knowledge in these areas and emphasizes knowledge gaps that require future attention of the field.
Collapse
Affiliation(s)
- Kaleen M Lavin
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Brandon M Roberts
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas ; and
- Sealy Center on Aging, University of Texas Medical Branch , Galveston, Texas
| | - Tatiana Moro
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas ; and
- Sealy Center on Aging, University of Texas Medical Branch , Galveston, Texas
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch , Galveston, Texas ; and
- Sealy Center on Aging, University of Texas Medical Branch , Galveston, Texas
| | - Marcas M Bamman
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
19
|
Layec G, Trinity JD, Hart CR, Le Fur Y, Zhao J, Reese V, Jeong EK, Richardson RS. Impaired Muscle Efficiency but Preserved Peripheral Hemodynamics and Mitochondrial Function With Advancing Age: Evidence From Exercise in the Young, Old, and Oldest-Old. J Gerontol A Biol Sci Med Sci 2018; 73:1303-1312. [PMID: 29584857 PMCID: PMC6132121 DOI: 10.1093/gerona/gly050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Muscle weakness in the elderly has been linked to recurrent falls and morbidity; therefore, elucidating the mechanisms contributing to the loss of muscle function and mobility with advancing age is critical. To this aim, we comprehensively examined skeletal muscle metabolic function and hemodynamics in 11 young (23 ± 2 years), 11 old (68 ± 2 years), and 10 oldest-old (84 ± 2 years) physical activity-matched participants. Specifically, oxidative stress markers, mitochondrial function, and the ATP cost of contraction as well as peripheral hemodynamics were assessed during dynamic plantar flexion exercise at 40 per cent of maximal work rate (WRmax). Both the PCr recovery time constant and the peak rate of mitochondrial ATP synthesis were not significantly different between groups. In contrast, the ATP cost of dynamic contractions (young: 1.5 ± 1.0, old: 3.4 ± 2.1, oldest-old: 6.1 ± 3.6 mM min-1 W-1) and systemic markers of oxidative stress were signficantly increased with age, with the ATP cost of contraction being negatively correlated with WRmax (r = .59, p < .05). End-of-exercise blood flow per Watt rose significantly with increasing age (young: 37 ± 20, old: 82 ± 68, oldest-old: 154 ± 93 mL min-1 W-1). These findings suggest that the progressive deterioration of muscle contractile efficiency with advancing age may play an important role in the decline in skeletal muscle functional capacity in the elderly.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM, UMR, Marseille, France
| | - Jia Zhao
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Sundberg CW, Hunter SK, Trappe SW, Smith CS, Fitts RH. Effects of elevated H + and P i on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol 2018; 596:3993-4015. [PMID: 29806714 PMCID: PMC6117549 DOI: 10.1113/jp276018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS The mechanisms responsible for the loss in muscle power and increased fatigability with ageing are unresolved. We show that the contractile mechanics of fibres from the vastus lateralis of old men were well-preserved compared to those of young men, but the selective loss of fast myosin heavy chain II muscle was strongly associated with age-related decrements in whole-muscle strength and power. We reveal that the combination of acidosis (H+ ) and inorganic phosphate (Pi ) is an important mediator of muscle fatigue in humans by inhibiting the low- to high-force state of the cross-bridge cycle and peak power, but the depressive effects of these ions on cross-bridge function were similar in fibres from young and old men. These findings suggest that the age-related loss in muscle power is primarily determined by the atrophy of fast fibres, but the age-related increased fatigability cannot be explained by an increased sensitivity of the cross-bridge to H+ and Pi . ABSTRACT The present study aimed to identify the mechanisms responsible for the loss in muscle power and increased fatigability with ageing by integrating measures of whole-muscle function with single fibre contractile mechanics. After adjusting for the 22% smaller muscle mass in old (73-89 years, n = 6) compared to young men (20-29 years, n = 6), isometric torque and power output of the knee extensors were, respectively, 38% and 53% lower with age. Fatigability was ∼2.7-fold greater with age and strongly associated with reductions in the electrically-evoked contractile properties. To test whether cross-bridge mechanisms could explain age-related decrements in knee extensor function, we exposed myofibres (n = 254) from the vastus lateralis to conditions mimicking quiescent muscle and fatiguing levels of acidosis (H+ ) (pH 6.2) and inorganic phosphate (Pi ) (30 mm). The fatigue-mimicking condition caused marked reductions in force, shortening velocity and power and inhibited the low- to high-force state of the cross-bridge cycle, confirming findings from non-human studies that these ions act synergistically to impair cross-bridge function. Other than severe age-related atrophy of fast fibres (-55%), contractile function and the depressive effects of the fatigue-mimicking condition did not differ in fibres from young and old men. The selective loss of fast myosin heavy chain II muscle was strongly associated with the age-related decrease in isometric torque (r = 0.785) and power (r = 0.861). These data suggest that the age-related loss in muscle strength and power are primarily determined by the atrophy of fast fibres, but the age-related increased fatigability cannot be explained by an increased sensitivity of the cross-bridge to H+ and Pi .
Collapse
Affiliation(s)
- Christopher W. Sundberg
- Exercise Science ProgramMilwaukeeWIUSA
- Clinical & Translational Rehabilitation Health Sciences ProgramDepartment of Physical TherapyMarquette UniversityMilwaukeeWIUSA
| | - Sandra K. Hunter
- Exercise Science ProgramMilwaukeeWIUSA
- Clinical & Translational Rehabilitation Health Sciences ProgramDepartment of Physical TherapyMarquette UniversityMilwaukeeWIUSA
| | - Scott W. Trappe
- Human Performance LaboratoryBall State UniversityMuncieINUSA
| | | | - Robert H. Fitts
- Department of Biological SciencesMarquette UniversityMilwaukeeWIUSA
| |
Collapse
|
21
|
Murach KA. To hypertrophy and beyond! Myostatin and its association to intermuscular adipose tissue with exercise and aging. Am J Physiol Regul Integr Comp Physiol 2018; 315:R423-R424. [PMID: 29741932 DOI: 10.1152/ajpregu.00122.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, College of Health Sciences, Department of Rehabilitation Sciences, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
22
|
Venturelli M, Richardson RS, Reggiani C, Schena F. Age-related changes in skeletal muscle function: the sum of the parts could be greater than the whole. J Appl Physiol (1985) 2018; 121:1234. [PMID: 27881625 DOI: 10.1152/japplphysiol.00770.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy;
| | - Russell S Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; and
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy
| |
Collapse
|
23
|
Machek SB. Mechanisms of sarcopenia: motor unit remodelling and muscle fibre type shifts with ageing. J Physiol 2018; 596:3467-3468. [PMID: 29989170 DOI: 10.1113/jp276586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Steven Brian Machek
- Muscle Physiology Laboratory, San Francisco State University, San Francisco, California, USA
| |
Collapse
|
24
|
Franzke B, Neubauer O, Cameron-Smith D, Wagner KH. Dietary Protein, Muscle and Physical Function in the Very Old. Nutrients 2018; 10:E935. [PMID: 30037048 PMCID: PMC6073115 DOI: 10.3390/nu10070935] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
There is an ongoing debate as to the optimal protein intake in older adults. An increasing body of experimental studies on skeletal muscle protein metabolism as well as epidemiological data suggest that protein requirements with ageing might be greater than many current dietary recommendations. Importantly, none of the intervention studies in this context specifically investigated very old individuals. Data on the fastest growing age group of the oldest old (aged 85 years and older) is very limited. In this review, we examine the current evidence on protein intake for preserving muscle mass, strength and function in older individuals, with emphasis on data in the very old. Available observational data suggest beneficial effects of a higher protein intake with physical function in the oldest old. Whilst, studies estimating protein requirements in old and very old individuals based on whole-body measurements, show no differences between these sub-populations of elderly. However, small sample sizes preclude drawing firm conclusions. Experimental studies that compared muscle protein synthetic (MPS) responses to protein ingestion in young and old adults suggest that a higher relative protein intake is required to maximally stimulate skeletal muscle MPS in the aged. Although, data on MPS responses to protein ingestion in the oldest old are currently lacking. Collectively, the data reviewed for this article support the concept that there is a close interaction of physical activity, diet, function and ageing. An attractive hypothesis is that regular physical activity may preserve and even enhance the responsiveness of ageing skeletal muscle to protein intake, until very advanced age. More research involving study participants particularly aged ≥85 years is warranted to better investigate and determine protein requirements in this specific growing population group.
Collapse
Affiliation(s)
- Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, 1090 Vienna, Austria.
| | - Oliver Neubauer
- Research Platform Active Ageing, University of Vienna, 1090 Vienna, Austria.
- School of Biomedical Sciences, Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Venturelli M, Reggiani C, Richardson RS, Schena F. Skeletal Muscle Function in the Oldest-Old: The Role of Intrinsic and Extrinsic Factors. Exerc Sport Sci Rev 2018; 46:188-194. [PMID: 29672349 PMCID: PMC6005743 DOI: 10.1249/jes.0000000000000155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although skeletal muscle function is diminished with advanced age, single muscle fiber function seems to be preserved. Therefore, this review examines the hypothesis that the skeletal muscle fiber, per se, is not the predominant factor responsible for the reduction in force-generating capacity in the oldest-old, but, rather, is attributable to a combination of factors external to the muscle fibers.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia
| | - Russell S. Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Italy
| |
Collapse
|
26
|
Grosicki GJ, Fielding RA, Lustgarten MS. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif Tissue Int 2018; 102:433-442. [PMID: 29058056 PMCID: PMC5858871 DOI: 10.1007/s00223-017-0345-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a highly plastic tissue that plays a central role in human health and disease. Aging is associated with a decrease in muscle mass and function (sarcopenia) that is associated with a loss of independence and reduced quality of life. Gut microbiota, the bacteria, archaea, viruses, and eukaryotic microbes residing in the gastrointestinal tract are emerging as a potential contributor to age-associated muscle decline. Specifically, advancing age is characterized by a dysbiosis of gut microbiota that is associated with increased intestinal permeability, facilitating the passage of endotoxin and other microbial products (e.g., indoxyl sulfate) into the circulation. Upon entering the circulation, LPS and other microbial factors promote inflammatory signaling and skeletal muscle changes that are hallmarks of the aging muscle phenotype. This review will summarize existing literature suggesting cross-talk between gut microbiota and skeletal muscle health, with emphasis on the significance of this axis for mediating changes in aging skeletal muscle size, composition, and function.
Collapse
Affiliation(s)
- Gregory J Grosicki
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
27
|
Abstract
A substantial loss of muscle mass and strength (sarcopenia), a decreased regenerative capacity, and a compromised physical performance are hallmarks of aging skeletal muscle. These changes are typically accompanied by impaired muscle metabolism, including mitochondrial dysfunction and insulin resistance. A challenge in the field of muscle aging is to dissociate the effects of chronological aging per se on muscle characteristics from the secondary influence of lifestyle and disease processes. Remarkably, physical activity and exercise are well-established countermeasures against muscle aging, and have been shown to attenuate age-related decreases in muscle mass, strength, and regenerative capacity, and slow or prevent impairments in muscle metabolism. We posit that exercise and physical activity can influence many of the changes in muscle during aging, and thus should be emphasized as part of a lifestyle essential to healthy aging.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
28
|
Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, Petersen AC, Anderson MJ, Murphy RM. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. J Physiol 2017; 595:3345-3359. [PMID: 28251664 DOI: 10.1113/jp273950] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. ABSTRACT Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole muscle and Mfn2 content decreased in type II fibres. Increases in citrate synthase activity (55%) and mitochondrial respiratory chain subunits COXIV (37%) and NDUFA9 (48%) and mitochondrial respiratory chain complexes (∼70-100%) were observed in homogenates and/or single fibres. These findings reveal (i) a similar amount of mitochondria in muscle from young and healthy older adults and (ii) a robust increase of mitochondrial content following 12 weeks of HIT exercise in older adults.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Mitchell J Anderson
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Grosicki GJ, Standley RA, Murach KA, Raue U, Minchev K, Coen PM, Kritchevsky S, Goodpaster BH, Trappe S. Reply to Venturelli and colleagues. J Appl Physiol (1985) 2016; 121:1235. [PMID: 27881626 DOI: 10.1152/japplphysiol.00832.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Greg J Grosicki
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Robert A Standley
- Translational Research for Metabolism and Diabetes, Orlando, Florida; and
| | - Kevin A Murach
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Paul M Coen
- Translational Research for Metabolism and Diabetes, Orlando, Florida; and
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Bret H Goodpaster
- Translational Research for Metabolism and Diabetes, Orlando, Florida; and
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana;
| |
Collapse
|