1
|
Fischer M, Jeppesen JS, Vigh‐Larsen JF, Stöhr EJ, Mohr M, Wickham KA, Gliemann L, Bangsbo J, Hellsten Y, Hostrup M. Intensified training augments cardiac function, but not blood volume, in male youth elite ice hockey team players. Exp Physiol 2025; 110:755-766. [PMID: 39014554 PMCID: PMC12053869 DOI: 10.1113/ep091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/29/2024] [Indexed: 07/18/2024]
Abstract
While it is well-established that a period of interval training performed at near maximal effort, such as speed endurance training (SET), enhances intense exercise performance in well-trained individuals, less is known about its effect on cardiac morphology and function as well as blood volume. To investigate this, we subjected 12 Under-20 Danish national team ice hockey players (age 18 ± 1 years, mean ± SD) to 4 weeks of SET, consisting of 6-10 × 20 s skating bouts at maximal effort interspersed by 2 min of recovery conducted three times weekly. This was followed by 4 weeks of regular training (follow-up). We assessed resting cardiac function and dimensions using transthoracic echocardiography and quantified total blood volume with the carbon monoxide rebreathing technique at three time points: before SET, after SET and after the follow-up period. After SET, stroke volume had increased by 10 (2-18) mL (mean (95% CI)), left atrial end-diastolic volume by 10 (3-17) mL, and circumferential strain improved by 0.9%-points (1.7-0.1) (all P < 0.05). At follow-up, circumferential strain and left atrial end-diastolic volume were reverted to baseline levels, while stroke volume remained elevated. Blood volume and morphological parameters for the left ventricle, including mass and end-diastolic volume, did not change during the study. In conclusion, our findings demonstrate that a brief period of SET elicits beneficial central cardiac adaptations in elite ice hockey players independent of changes in blood volume.
Collapse
Affiliation(s)
- Mads Fischer
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Jan S. Jeppesen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Jeppe F. Vigh‐Larsen
- Section of Sport Science, Department of Public HealthAarhus UniversityAarhusDenmark
| | - Eric J. Stöhr
- COR‐HELIX (Cardiovascular Regulation and Exercise Laboratory – Integration and Xploration), Institute of Sports ScienceLeibniz UniversityHannoverGermany
- Department of Medicine, Division of CardiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC)University of Southern DenmarkOdenseDenmark
- Centre of Health Sciences, Faculty of HealthUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Kate A. Wickham
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Lasse Gliemann
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Jens Bangsbo
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Azariah J, Terranova U. Microgravity and Cardiovascular Health in Astronauts: A Narrative Review. Health Sci Rep 2025; 8:e70316. [PMID: 39777279 PMCID: PMC11705478 DOI: 10.1002/hsr2.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background Space exploration has become a major interest for scientific and medical research. With increasing duration and frequency of manned space missions, it is crucial to understand the impact of microgravity on the cardiovascular health of astronauts. We focus on this relationship by reviewing literature that explores how microgravity affects several hemodynamic parameters and cardiovascular biomarkers. Methods We conducted a search updated to November 2024 across several databases, including PubMed, Cochrane Library, ESA, NASA and DLR, using relevant MeSH terms and selection criteria. Results The 22 selected articles detail how microgravity impacts the cardiovascular system and its adaptations. We identify some clear patterns, such as loss of ventricular mass and increased QT intervals (corrected for heart rate) indicating increased risk of arrhythmias. Our analysis confirms that head-down tilt is an accurate analog of microgravity. Conclusions While a direct link between microgravity and cardiovascular disease, such as coronary heart disease and myocardial infarction, remains elusive, the documented physiological changes pose a potential threat to the astronauts' health. We suggest that future research focus on long-term effects, particularly on female subjects.
Collapse
Affiliation(s)
- John Azariah
- Faculty of Medicine and Health ScienceCrewe Campus, University of BuckinghamCreweUK
| | - Umberto Terranova
- Faculty of Medicine and Health ScienceCrewe Campus, University of BuckinghamCreweUK
| |
Collapse
|
3
|
Matsushima S, Hirasawa A, Suzuki R, Murata H, Kimura M, Shibata S. Effect of low-frequency neuromuscular electrical stimulation combined with passive cycle ergometry on hemodynamics in healthy adults. Am J Physiol Regul Integr Comp Physiol 2025; 328:R81-R89. [PMID: 39585683 DOI: 10.1152/ajpregu.00141.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
There have been few studies that have examined hemodynamic responses to low-frequency neuromuscular electrical stimulation (LF-NMES), and the effects of combining passive cycle ergometry are still unclear. The purpose of this study was to examine the effects of a combination of LF-NMES and passive cycle ergometry on hemodynamic responses with a primary focus on the Fick principle in healthy adults. A randomized, crossover trial was conducted to evaluate the responses to three types of supine exercises (LF-NMES alone, LF-NMES with passive cycle ergometry, and voluntary cycle ergometry) adjusted to the same exercise intensity as the oxygen consumption of 14 mL/kg/min in 13 healthy adult men. Blood pressure, heart rate, blood lactate concentration, stroke volume (SV), cardiac output (CO), and left ventricular end-diastolic volume (LVEDV) were measured during each exercise in all subjects. The arterial-venous oxygenation difference (A-V̇o2 difference) was calculated based on Fick's equation. LVEDV, SV, and CO were lower, and the A-V̇o2 difference and blood lactate concentration were higher in LF-NMES alone than those in voluntary cycle ergometry and LF-NMES with passive cycle ergometry (P < 0.05). The blood lactate concentration was lower in LF-NMES with passive cycle ergometry than that in LF-NMES alone, but slightly higher than that in voluntary cycle ergometry (P < 0.05). Hemodynamic and metabolic responses of exercise with LF-NMES alone seemed consistent with insufficient peripheral perfusion based on the elevation of A-V̇o2 difference and blood lactate concentration. The findings suggest that combining passive cycle ergometry with LF-NMES improves the insufficient peripheral perfusion induced by LF-NMES alone.NEW & NOTEWORTHY This is the first study to evaluate cardiac output, oxygen consumption, and A-V̇o2 difference during LF-NMES of endurance exercise modality. LF-NMES alone may not demonstrate hemodynamic responses induced by voluntary endurance exercise, however, demonstrates those when combined with passive cycle ergometry. LF-NMES with passive cycle ergometry may be a more effective approach in cardiac rehabilitation for patients without the ability of voluntary exercise because it may increase cardiac output and venous return as represented by the LVEDV.
Collapse
Affiliation(s)
- Shinya Matsushima
- Department of Physical Therapy, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Ai Hirasawa
- Department of Health and Welfare, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Rina Suzuki
- Department of Physical Therapy, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Hiroyasu Murata
- Department of Rehabilitation Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Masahiko Kimura
- Department of Physical Therapy, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Shigeki Shibata
- Department of Physical Therapy, Faculty of Health Science, Kyorin University, Tokyo, Japan
| |
Collapse
|
4
|
Zhang X, Zhou X, Tu Z, Qiang L, Lu Z, Xie Y, Liu CH, Zhang L, Fu Y. Proteomic and ubiquitinome analysis reveal that microgravity affects glucose metabolism of mouse hearts by remodeling non-degradative ubiquitination. PLoS One 2024; 19:e0313519. [PMID: 39541295 PMCID: PMC11563481 DOI: 10.1371/journal.pone.0313519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Long-term exposure to a microgravity environment leads to structural and functional changes in hearts of astronauts. Although several studies have reported mechanisms of cardiac damage under microgravity conditions, comprehensive research on changes at the protein level in these hearts is still lacking. In this study, proteomic analysis of microgravity-exposed hearts identified 156 differentially expressed proteins, and ubiquitinomic analysis of these hearts identified 169 proteins with differential ubiquitination modifications. Integrated ubiquitinomic and proteomic analysis revealed that differential proteomic changes caused by transcription affect the immune response in microgravity-exposed hearts. Additionally, changes in ubiquitination modifications under microgravity conditions excessively activated certain kinases, such as hexokinase and phosphofructokinase, leading to cardiac metabolic disorders. These findings provide new insights into the mechanisms of cardiac damage under microgravity conditions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xuemei Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhiwei Tu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lihua Qiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhe Lu
- Institute of Microbiology (Chinese Academy of Sciences), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuping Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- Institute of Microbiology (Chinese Academy of Sciences), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
5
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
6
|
Mastrandrea CJ, Hedge ET, Hughson RL. The Detrimental Effects of Bedrest: Premature Cardiovascular Aging and Dysfunction. Can J Cardiol 2024; 40:1468-1482. [PMID: 38759726 DOI: 10.1016/j.cjca.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Bedrest as an experimental paradigm or as an in-patient stay for medical reasons has negative consequences for cardiovascular health. The effects of severe inactivity parallel many of the changes experienced with natural aging but over a much shorter duration. Cardiac function is reduced, arteries stiffen, neural reflex responses are impaired, and metabolic and oxidative stress responses impose burden on the heart and vascular systems. The effect of these changes is revealed in studies of integrative function. Aerobic fitness progressively deteriorates with bedrest and tolerance of upright posture is rapidly impaired. In this review we consider the similarities of aging and bedrest-induced cardiovascular deconditioning. We concur with many recent clinical recommendations that early and regular mobility with upright posture will reduce likelihood of hospital-associated disability related to bedrest.
Collapse
Affiliation(s)
- Carmelo J Mastrandrea
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada.
| |
Collapse
|
7
|
Popova OV, Kashirina DN, Pastushkova LK, Goncharova AG, Larina IM. The Level of Markers Stimulating Growth Factor 2 (ST2), N-Terminal Prohormone of Brain Natriuretic Peptide (NT-proBNP), and D-Dimer in Healthy Volunteer Testers in 21-Day Head-Down -6° Tilt Bed Rest as a Model of Hypodynamia. Bull Exp Biol Med 2024; 177:401-405. [PMID: 39259468 DOI: 10.1007/s10517-024-06197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 09/13/2024]
Abstract
The paper presents an analysis of the proteomic composition in relation to both the risk of thrombosis and changes in the state of cardiomyocytes associated with the risk of cardiac fibrosis and heart failure. We examined 12 practically healthy male volunteers exposed to head-down -6° tilt bed rest (HDBR) for 21 days. The revealed decrease in the level of stimulating growth factor 2 (ST2) on days 10 and 21 relative to the initial values (background; 5 days before HDBR) indicated a decrease in the myocardial load and cardiomyocyte extensibility. The level of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) increased on day 2, decreased on days 10 and 21 of HDBR relative to the background levels, and returned to baseline values after the recovery period (5 days after HDBR). The revealed changes in the level of NT-proBNP reflected the increase in circulating blood volume corresponding to HDBR duration and the role of the gravity component in increasing the functional load on the myocardium. Unchanged blood level of D-dimer at all points of the study indicates that there is no risk of thrombosis under the conditions of this study.
Collapse
Affiliation(s)
- O V Popova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| | - D N Kashirina
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - L Kh Pastushkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - A G Goncharova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I M Larina
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Mendes Zambetta R, Signini ÉDF, Ocamoto GN, Catai AM, Uliam NR, Santarnecchi E, Russo TL. Effects of weightlessness on the cardiovascular system: a systematic review and meta-analysis. Front Physiol 2024; 15:1438089. [PMID: 39129756 PMCID: PMC11310543 DOI: 10.3389/fphys.2024.1438089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background: The microgravity environment has a direct impact on the cardiovascular system due to the fluid shift and weightlessness that results in cardiac dysfunction, vascular remodeling, and altered Cardiovascular autonomic modulation (CAM), deconditioning and poor performance on space activities, ultimately endangering the health of astronauts. Objective: This study aimed to identify the acute and chronic effects of microgravity and Earth analogues on cardiovascular anatomy and function and CAM. Methods: CINAHL, Cochrane Library, Scopus, Science Direct, PubMed, and Web of Science databases were searched. Outcomes were grouped into cardiovascular anatomic, functional, and autonomic alterations, and vascular remodeling. Studies were categorized as Spaceflight (SF), Chronic Simulation (CS), or Acute Simulation (AS) based on the weightlessness conditions. Meta-analysis was performed for the most frequent outcomes. Weightlessness and control groups were compared. Results: 62 articles were included with a total of 963 participants involved. The meta-analysis showed that heart rate increased in SF [Mean difference (MD) = 3.44; p = 0.01] and in CS (MD = 4.98; p < 0.0001), whereas cardiac output and stroke volume decreased in CS (MD = -0.49; p = 0.03; and MD = -12.95; p < 0.0001, respectively), and systolic arterial pressure decreased in AS (MD = -5.20; p = 0.03). According to the qualitative synthesis, jugular vein cross-sectional area (CSA) and volume were greater in all conditions, and SF had increased carotid artery CSA. Heart rate variability and baroreflex sensitivity, in general, decreased in SF and CS, whereas both increased in AS. Conclusion: This review indicates that weightlessness impairs the health of astronauts during and after spaceflight, similarly to the effects of aging and immobility, potentially increasing the risk of cardiovascular diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020215515.
Collapse
Affiliation(s)
| | - Étore De Favari Signini
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Gabriela Nagai Ocamoto
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
- Brain4care Inc., São Carlos, SP, Brazil
| | - Aparecida Maria Catai
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Nicoly Ribeiro Uliam
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | | | - Thiago Luiz Russo
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Tahimic CGT, Steczina S, Sebastian A, Hum NR, Abegaz M, Terada M, Cimini M, Goukassian DA, Schreurs AS, Hoban-Higgins TM, Fuller CA, Loots GG, Globus RK, Shirazi-Fard Y. Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes (Basel) 2024; 15:975. [PMID: 39202335 PMCID: PMC11353732 DOI: 10.3390/genes15080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model. We hypothesized that exposure to prolonged simulated microgravity and subsequent recovery would lead to increased oxidative damage and altered expression of genes involved in the oxidative response. To test this hypothesis, we examined hearts of male (three and nine months of age) and female (3 months of age) Long-Evans rats that underwent HU for various durations up to 90 days and reambulated up to 90 days post-HU. Results indicate sex-dependent changes in oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) and antioxidant gene expression in left ventricular tissue. Three-month-old females displayed elevated 8-OHdG levels after 14 days of HU while age-matched males did not. In nine-month-old males, there were no differences in 8-OHdG levels between HU and normally loaded control males at any of the timepoints tested following HU. RNAseq analysis of left ventricular tissue from nine-month-old males after 14 days of HU revealed upregulation of pathways involved in pro-inflammatory signaling, immune cell activation and differential expression of genes associated with cardiovascular disease progression. Taken together, these findings provide a rationale for targeting antioxidant and immune pathways and that sex differences should be taken into account in the development of countermeasures to maintain cardiovascular health in space.
Collapse
Affiliation(s)
- Candice G. T. Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Masahiro Terada
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Maria Cimini
- Temple University School of Medicine, Philadelphia, PA 19140, USA;
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Tana M. Hoban-Higgins
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Charles A. Fuller
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
- Department of Orthopedic Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| |
Collapse
|
10
|
Haapala EA, Leppänen MH, Lee E, Savonen K, Laukkanen JA, Kähönen M, Brage S, Lakka TA. Accumulating Sedentary Time and Physical Activity From Childhood to Adolescence and Cardiac Function in Adolescence. J Am Heart Assoc 2024; 13:e031837. [PMID: 38497441 PMCID: PMC11010014 DOI: 10.1161/jaha.123.031837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Increased physical activity (PA) may mitigate the negative cardiovascular health effects of sedentary behavior in adolescents. However, the relationship of PA and sedentary time from childhood with cardiac function in adolescence remains underexplored. Therefore, we investigated the associations of cumulative sedentary time and PA from childhood to adolescence with cardiac function in adolescence. METHODS AND RESULTS Participants were 153 adolescents (69 girls) who were aged 6 to 8 years at baseline, 8 to 10 years at 2-year follow-up, and 15 to 17 years at 8-year follow-up. Cumulative sedentary time and PA exposure between baseline and 2-year follow-up and between baseline and 8-year follow-up were measured using a combined accelerometer and heart rate monitor. Cardiac function was assessed using impedance cardiography at 8-year follow-up. The data were analyzed using linear regression analyses adjusted for age and sex. Cumulative moderate to vigorous PA (standardized regression coefficient [β]=-0.323 [95% CI, -0.527 to -0.119]) and vigorous PA (β=-0.295 [95% CI, -0.508 to -0.083]) from baseline to 8-year follow-up were inversely associated with cardiac work at 8-year follow-up. Conversely, cumulative sedentary time had a positive association (β=0.245 [95% CI, 0.092-0.398]). Cumulative vigorous PA from baseline to 8-year follow-up was inversely associated with cardiac work index at 8-year follow-up (β=-0.218 [95% CI, -0.436 to 0.000]). CONCLUSIONS Higher levels of sedentary time and lower levels of PA during childhood were associated with higher cardiac work in adolescence, highlighting the importance of increasing PA and reducing sedentary time from childhood.
Collapse
Affiliation(s)
- Eero A. Haapala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Marja H. Leppänen
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
- Faculty of MedicineUniversity of HelsinkiFinland
| | - Earric Lee
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Kai Savonen
- Foundation for Research in Health Exercise and NutritionKuopio Research Institute of Exercise MedicineKuopioFinland
| | - Jari A. Laukkanen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
- Department of MedicineWellbeing Services County of Central FinlandJyväskyläFinland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Soren Brage
- MRC Epidemiology UnitUniversity of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - Timo A. Lakka
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
- Foundation for Research in Health Exercise and NutritionKuopio Research Institute of Exercise MedicineKuopioFinland
- Department of Clinical Physiology and Nuclear ImagingUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| |
Collapse
|
11
|
Pastushkova LH, Goncharova AG, Rusanov VB, Nosovsky AM, Kashirina DN, Popova OV, Larina IM. Correlation between proteome changes and synchrony of cardiac electrical excitation under 3-day «dry immersion» conditions. Front Physiol 2023; 14:1285802. [PMID: 38107479 PMCID: PMC10722197 DOI: 10.3389/fphys.2023.1285802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
| | | | | | | | | | - O. V. Popova
- State Scientific Center of the Russian Federation, Institute of Medical and Biological Problems Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
12
|
Shibata S, Wakeham DJ, Thomas JD, Abdullah SM, Platts S, Bungo MW, Levine BD. Cardiac Effects of Long-Duration Space Flight. J Am Coll Cardiol 2023; 82:674-684. [PMID: 37587578 DOI: 10.1016/j.jacc.2023.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Ventricular mass responds to changes in physical activity and loading, with cardiac hypertrophy after exercise training, and cardiac atrophy after sustained inactivity. Ventricular wall stress (ie, loading) decreases during microgravity. Cardiac atrophy does not plateau during 12 weeks of simulated microgravity but is mitigated by concurrent exercise training. OBJECTIVES The goal of this study was to determine whether the current exercise countermeasures on the International Space Station (ISS) offset cardiac atrophy during prolonged space flight. METHODS We measured left ventricular (LV) and right ventricular (RV) mass and volumes (via magnetic resonance imaging) in 13 astronauts (4 females; age 49 ± 4 years), between 75 and 60 days before and 3 days after 155 ± 31 days aboard the ISS. Furthermore, we assessed total cardiac work between 21 and 7 days before space flight and 15 days before the end of the mission. Data were compared via paired-samples t-tests. RESULTS Total cardiac work was lower during space flight (P = 0.008); however, we observed no meaningful difference in LV mass postflight (pre: 115 ± 30 g vs post: 118 ± 29 g; P = 0.053), with marginally higher LV stroke volume (P = 0.074) and ejection fraction postflight (P = 0.075). RV mass (P = 0.999), RV ejection fraction (P = 0.147), and ventricular end-diastolic (P = 0.934) and end-systolic volumes (P = 0.145) were not different postflight. There were strong positive correlations between the relative change in LV mass with the relative changes in total cardiac output (r = 0.73; P = 0.015) and total cardiac work (r = 0.53; P = 0.112). CONCLUSIONS The current exercise countermeasures used on the ISS appear effective in offsetting reductions in cardiac mass and volume, despite overall reductions in total cardiac work, during prolonged space flight.
Collapse
Affiliation(s)
- Shigeki Shibata
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, USA; University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Denis J Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, USA; University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Michael W Bungo
- University of Texas Health Science Center, Houston, Texas, USA
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, USA; University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
13
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|
14
|
Mechanical deconditioning of the heart due to long-term bed rest as observed on seismocardiogram morphology. NPJ Microgravity 2022; 8:25. [PMID: 35821029 PMCID: PMC9276739 DOI: 10.1038/s41526-022-00206-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
During head-down tilt bed rest (HDT) the cardiovascular system is subject to headward fluid shifts. The fluid shift phenomenon is analogous to weightlessness experienced during spaceflight microgravity. The purpose of this study was to investigate the effect of prolonged 60-day bed rest on the mechanical performance of the heart using the morphology of seismocardiography (SCG). Three-lead electrocardiogram (ECG), SCG and blood pressure recordings were collected simultaneously from 20 males in a 60-day HDT study (MEDES, Toulouse, France). The study was divided into two campaigns of ten participants. The first commenced in January, and the second in September. Signals were recorded in the supine position during the baseline data collection (BDC) before bed rest, during 6° HDT bed rest and during recovery (R), post-bed rest. Using SCG and blood pressure at the finger, the following were determined: Pulse Transit Time (PTT); and left-ventricular ejection time (LVET). SCG morphology was analyzed using functional data analysis (FDA). The coefficients of the model were estimated over 20 cycles of SCG recordings of BDC12 and HDT52. SCG fiducial morphology AO (aortic valve opening) and AC (aortic valve closing) amplitudes showed significant decrease between BDC12 and HDT52 (p < 0.03). PTT and LVET were also found to decrease through HDT bed rest (p < 0.01). Furthermore, PTT and LVET magnitude of response to bed rest was found to be different between campaigns (p < 0.001) possibly due to seasonal effects on of the cardiovascular system. Correlations between FDA and cardiac timing intervals PTT and LVET using SCG suggests decreases in mechanical strength of the heart and increased arterial stiffness due to fluid shifts associated with the prolonged bed rest.
Collapse
|
15
|
Ekman R, Green DA, Scott JPR, Huerta Lluch R, Weber T, Herssens N. Introducing the Concept of Exercise Holidays for Human Spaceflight - What Can We Learn From the Recovery of Bed Rest Passive Control Groups. Front Physiol 2022; 13:898430. [PMID: 35874509 PMCID: PMC9307084 DOI: 10.3389/fphys.2022.898430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In an attempt to counteract microgravity-induced deconditioning during spaceflight, exercise has been performed in various forms on the International Space Station (ISS). Despite significant consumption of time and resources by daily exercise, including around one third of astronauts' energy expenditure, deconditioning-to variable extents-are observed. However, in future Artemis/Lunar Gateway missions, greater constraints will mean that the current high volume and diversity of ISS in-flight exercise will be impractical. Thus, investigating both more effective and efficient multi-systems countermeasure approaches taking into account the novel mission profiles and the associated health and safety risks will be required, while also reducing resource requirements. One potential approach is to reduce mission exercise volume by the introduction of exercise-free periods, or "exercise holidays". Thus, we hypothesise that by evaluating the 'recovery' of the no-intervention control group of head-down-tilt bed rest (HDTBR) campaigns of differing durations, we may be able to define the relationship between unloading duration and the dynamics of functional recovery-of interest to future spaceflight operations within and beyond Low Earth Orbit (LEO)-including preliminary evaluation of the concept of exercise holidays. Hence, the aim of this literature study is to collect and investigate the post-HDTBR recovery dynamics of current operationally relevant anthropometric outcomes and physiological systems (skeletal, muscular, and cardiovascular) of the passive control groups of HDTBR campaigns, mimicking a period of 'exercise holidays', thereby providing a preliminary evaluation of the concept of 'exercise holidays' for spaceflight, within and beyond LEO. The main findings were that, although a high degree of paucity and inconsistency of reported recovery data is present within the 18 included studies, data suggests that recovery of current operationally relevant outcomes following HDTBR without exercise-and even without targeted rehabilitation during the recovery period-could be timely and does not lead to persistent decrements differing from those experienced following spaceflight. Thus, evaluation of potential exercise holidays concepts within future HDTBR campaigns is warranted, filling current knowledge gaps prior to its potential implementation in human spaceflight exploration missions.
Collapse
Affiliation(s)
- Robert Ekman
- Riga Stradins University, Faculty of Medicine, Riga, Latvia
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathon P. R. Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Institut Médecine Physiologie Spatiale (MEDES), Toulouse, France
| | - Roger Huerta Lluch
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Jirak P, Mirna M, Rezar R, Motloch LJ, Lichtenauer M, Jordan J, Binneboessel S, Tank J, Limper U, Jung C. How spaceflight challenges human cardiovascular health. Eur J Prev Cardiol 2022; 29:1399-1411. [PMID: 35148376 DOI: 10.1093/eurjpc/zwac029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/08/2022] [Accepted: 02/06/2022] [Indexed: 11/14/2022]
Abstract
The harsh environmental conditions in space, particularly weightlessness and radiation exposure, can negatively affect cardiovascular function and structure. In the future, preventive cardiology will be crucial in enabling safe space travel. Indeed, future space missions destined to the Moon and from there to Mars will create new challenges to cardiovascular health while limiting medical management. Moreover, commercial spaceflight evolves rapidly such that older persons with cardiovascular risk factors will be exposed to space conditions. This review provides an overview on studies conducted in space and in terrestrial models, particularly head-down bedrest studies. These studies showed that weightlessness elicits a fluid shift towards the head, which likely predisposes to the spaceflight-associated neuro-ocular syndrome, neck vein thrombosis, and orthostatic intolerance after return to Earth. Moreover, cardiovascular unloading produces cardiopulmonary deconditioning which may be associated with cardiac atrophy. In addition to limiting physical performance, the mechanism further worsens orthostatic tolerance after return to Earth. Finally, space conditions may directly affect vascular health, however, the clinical relevance of these findings in terms of morbidity and mortality is unknown. Targeted preventive measures, which are referred to as countermeasures in aerospace medicine, and technologies to identify vascular risks early on will be required to maintain cardiovascular performance and health during future space missions.
Collapse
Affiliation(s)
- Peter Jirak
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Moritz Mirna
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Richard Rezar
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas J Motloch
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Medical Faculty, University of Cologne, Germany
| | - Stephan Binneboessel
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| |
Collapse
|
17
|
Petek BJ, Groezinger EY, Pedlar CR, Baggish AL. Cardiac effects of detraining in athletes: A narrative review. Ann Phys Rehabil Med 2021; 65:101581. [PMID: 34624549 DOI: 10.1016/j.rehab.2021.101581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Routine physical activity stimulates numerous morphologic and functional adaptations of the cardiac system, which are commonly referred to as exercise-induced cardiac remodeling (EICR). EICR has been well documented in elite and recreational athletes, but comparatively little is known about the "reverse" cardiac adaptations during detraining in an athletic population. OBJECTIVE To assess the morphologic and functional cardiac effects of detraining in athletes. METHODS Eligible studies were identified in PubMed from inception to May 2020. Studies were included if they assessed the cardiac effects of detraining periods in athletes. RESULTS A total of 16 studies from the literature search were identified and included in this review. These studies included athletes from multiple different sporting disciplines and detraining periods ranged from 3 weeks to 13 years. Detraining periods led to significantly decreased right ventricular and left (LV) ventricular dimensions, LV mass, and LV wall thickness, but only limited changes in systolic and diastolic functional parameters were observed. CONCLUSIONS From the limited data available in this population, cardiac atrophy has been observed with short periods of detraining (1-8 weeks) but often spares systolic and diastolic heart function. Supplemental exercise training during times of rehabilitation to combat cardiac regression has not been vigorously studied in athletes, so the ideal frequency, intensity, and modality of exercise needed to maintain EICR remains unclear.
Collapse
Affiliation(s)
- Bradley J Petek
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, United States
| | - Erich Y Groezinger
- Cardiovascular Performance Program, Massachusetts General Hospital, Yawkey Suite 5B, 55 Fruit Street, Boston, MA 02114, United States
| | - Charles R Pedlar
- Faculty of Sport, Health and Applied Science, St. Mary's University, Twickenham, United Kingdom
| | - Aaron L Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Yawkey Suite 5B, 55 Fruit Street, Boston, MA 02114, United States.
| |
Collapse
|
18
|
Zhong G, Zhao D, Li J, Liu Z, Pan J, Yuan X, Xing W, Zhao Y, Ling S, Li Y. WWP1 Deficiency Alleviates Cardiac Remodeling Induced by Simulated Microgravity. Front Cell Dev Biol 2021; 9:739944. [PMID: 34733849 PMCID: PMC8558417 DOI: 10.3389/fcell.2021.739944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.
Collapse
Affiliation(s)
- Guohui Zhong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zifan Liu
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Junjie Pan
- Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinglong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
19
|
Berdy AE, Upadhya B, Ponce S, Swett K, Stacey RB, Kaplan R, Vasquez PM, Qi Q, Schneiderman N, Hurwitz BE, Daviglus ML, Kansal M, Evenson KR, Rodriguez CJ. Associations between physical activity, sedentary behaviour and left ventricular structure and function from the Echocardiographic Study of Latinos (ECHO-SOL). Open Heart 2021; 8:e001647. [PMID: 34261776 PMCID: PMC8311330 DOI: 10.1136/openhrt-2021-001647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE The cross-sectional association between accelerometer-measured physical activity (PA), sedentary behaviour (SB) and cardiac structure and function is less well described. This study's primary aim was to compare echocardiographic measures of cardiac structure and function with accelerometer measured PA and SB. METHODS Participants included 1206 self-identified Hispanic/Latino men and women, age 45-74 years, from the Echocardiographic Study of Latinos. Standard echocardiographic measures included M-mode, two-dimensional, spectral, tissue Doppler and myocardial strain. Participants wore an Actical accelerometer at the hip for 1 week. RESULTS The mean±SE age for the cohort was 56±0.4 years, 57% were women. Average moderate to vigorous PA (MVPA) was 21±1.1 min/day, light PA was 217±4.2 min/day and SB was 737±8.1 min/day. Both higher levels of light PA and MVPA (min/day) were associated with lower left ventricular (LV) mass index (LVMI)/end-diastolic volume and a lower E/e' ratio. Higher levels of MVPA (min/day) were associated with better right ventricular systolic function. Higher levels of SB were associated with increased LVMI. In a multivariable linear regression model adjusted for demographics and cardiovascular disease modifiable factors, every 10 additional min/day of light PA was associated with a 0.03 mL/m2 increase in left atrial volume index (LAVI) (p<0.01) and a 0.004 cm increase in tricuspid annular plane systolic excursion (p<0.01); every 10 additional min/day of MVPA was associated with a 0.18 mL/m2 increase in LAVI (p<0.01) and a 0.24% improvement in global circumferential strain (p<0.01). CONCLUSIONS Our findings highlight the potential positive association between the MVPA and light PA on cardiac structure and function.
Collapse
Affiliation(s)
- Andrew E Berdy
- Cardiology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Bharathi Upadhya
- Cardiology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Sonia Ponce
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Katrina Swett
- Department of Medicine, Epidemiology & Population Health, Albert Einstein College of Medicine Department of Neurology, Bronx, New York, USA
| | - Richard B Stacey
- Cardiology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Robert Kaplan
- Department of Medicine, Epidemiology & Population Health, Albert Einstein College of Medicine Department of Neurology, Bronx, New York, USA
| | - Priscilla M Vasquez
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Qibin Qi
- Department of Medicine, Epidemiology & Population Health, Albert Einstein College of Medicine Department of Neurology, Bronx, New York, USA
| | - Neil Schneiderman
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Barry E Hurwitz
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Martha L Daviglus
- Cardiovascular Medicine, University of Illinois Hospital and Health Sciences, Chicago, Illinois, USA
| | - Mayank Kansal
- Cardiovascular Medicine, University of Illinois Hospital and Health Sciences, Chicago, Illinois, USA
| | - Kelly R Evenson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carlos J Rodriguez
- Department of Medicine, Epidemiology & Population Health, Albert Einstein College of Medicine Department of Neurology, Bronx, New York, USA
| |
Collapse
|
20
|
Cardiorespiratory responses to exercise related to post-stroke fatigue severity. Sci Rep 2021; 11:12780. [PMID: 34140566 PMCID: PMC8211681 DOI: 10.1038/s41598-021-92127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Physical deconditioning after stroke may induce post-stroke fatigue. However, research on this association is limited. Our primary objective was to investigate the associations of post-stroke fatigue severity with oxygen uptake ([Formula: see text]O2) at peak exercise and the time constant of [Formula: see text]O2 kinetics (τ[Formula: see text]O2) at exercise onset. The secondary objective was to examine the associations between fatigue and cardiorespiratory variables potentially affecting [Formula: see text]O2 during exercise. Twenty-three inpatients from a subacute rehabilitation ward were enrolled in this study. The median (interquartile range) Fatigue Severity Scale (FSS) score, as a measure of fatigue, was 32 (range 27-42) points. The FSS score was not associated with [Formula: see text]O2 at peak exercise during a symptom-limited graded exercise test (rho = - 0.264; p = 0.224), whereas it was significantly associated with τ[Formula: see text]O2 during a submaximal constant-load exercise test (rho = 0.530; p = 0.009). A higher FSS score also significantly correlated with a longer time constant of cardiac output (CO) kinetics (rho = 0.476; p = 0.022). Our findings suggest that severe post-stroke fatigue is associated with delayed increases in [Formula: see text]O2 and CO at the onset of exercise. Our findings can contribute to the development of an appropriate rehabilitation programme for individuals with post-stroke fatigue.
Collapse
|
21
|
Whittle RS, Diaz-Artiles A. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis. J Appl Physiol (1985) 2021; 130:1983-2001. [PMID: 33914657 DOI: 10.1152/japplphysiol.00727.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human cardiovascular (CV) system elicits a physiological response to gravitational environments, with significant variation between different individuals. Computational modeling can predict CV response, however model complexity and variation of physiological parameters in a normal population makes it challenging to capture individual responses. We conducted a sensitivity analysis on an existing 21-compartment lumped-parameter hemodynamic model in a range of gravitational conditions to 1) investigate the influence of model parameters on a tilt test CV response and 2) to determine the subset of those parameters with the most influence on systemic physiological outcomes. A supine virtual subject was tilted to upright under the influence of a constant gravitational field ranging from 0 g to 1 g. The sensitivity analysis was conducted using a Latin hypercube sampling/partial rank correlation coefficient methodology with subsets of model parameters varied across a normal physiological range. Sensitivity was determined by variation in outcome measures including heart rate, stroke volume, central venous pressure, systemic blood pressures, and cardiac output. Results showed that model parameters related to the length, resistance, and compliance of the large veins and parameters related to right ventricular function have the most influence on model outcomes. For most outcome measures considered, parameters related to the heart are dominant. Results highlight which model parameters to accurately value in simulations of individual subjects' CV response to gravitational stress, improving the accuracy of predictions. Influential parameters remain largely similar across gravity levels, highlighting that accurate model fitting in 1 g can increase the accuracy of predictive responses in reduced gravity.NEW & NOTEWORTHY Computational modeling is used to predict cardiovascular responses to altered gravitational environments. However, considerable variation between subjects and model complexity makes accurate parameter assignment for individuals challenging. This computational effort studies sensitivity in cardiovascular model outcomes due to varying parameters across a normal physiological range. This allows determination of which parameters have the largest influence on outcomes, i.e., which parameters must be most carefully selected to give accurate predictions of individual responses.
Collapse
Affiliation(s)
- Richard S Whittle
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas.,Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Legg Ditterline BE, Wade S, Ugiliweneza B, Singam NS, Harkema SJ, Stoddard MF, Hirsch GA. Beneficial Cardiac Structural and Functional Adaptations After Lumbosacral Spinal Cord Epidural Stimulation and Task-Specific Interventions: A Pilot Study. Front Neurosci 2020; 14:554018. [PMID: 33192245 PMCID: PMC7643015 DOI: 10.3389/fnins.2020.554018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiac myocyte atrophy and the resulting decreases to the left ventricular mass and dimensions are well documented in spinal cord injury. Therapeutic interventions that increase preload can increase the chamber size and improve the diastolic filling ratios; however, there are no data describing cardiac adaptation to chronic afterload increases. Research from our center has demonstrated that spinal cord epidural stimulation (scES) can normalize arterial blood pressure, so we decided to investigate the effects of scES on cardiac function using echocardiography. Four individuals with chronic, motor-complete cervical spinal cord injury were implanted with a stimulator over the lumbosacral enlargement. We assessed the cardiac structure and function at the following time points: (a) prior to implantation; (b) after scES targeted to increase systolic blood pressure; (c) after the addition of scES targeted to facilitate voluntary (i.e., with intent) movement of the trunk and lower extremities; and (d) after the addition of scES targeted to facilitate independent, overground standing. We found significant improvements to the cardiac structure (left ventricular mass = 10 ± 2 g, p < 0.001; internal dimension during diastole = 0.1 ± 0.04 cm, p < 0.05; internal dimension during systole = 0.06 ± 0.03 cm, p < 0.05; interventricular septum dimension = 0.04 ± 0.02 cm, p < 0.05), systolic function (ejection fraction = 1 ± 0.4%, p < 0.05; velocity time integral = 2 ± 0.4 cm, p < 0.001; stroke volume = 4.4 ± 1.5 ml, p < 0.01), and diastolic function (mitral valve deceleration time = -32 ± 11 ms, p < 0.05; mitral valve deceleration slope = 50 ± 25 cm s-1, p < 0.05; isovolumic relaxation time = -6 ± 1.9 ms, p < 0.05) with each subsequent scES intervention. Despite the pilot nature of this study, statistically significant improvements to the cardiac structure, systolic function, and diastolic function demonstrate that scES combined with task-specific interventions led to beneficial cardiac remodeling, which can reverse atrophic changes that result from spinal cord injury. Long-term improvements to cardiac function have implications for increased quality of life and improved cardiovascular health in individuals with spinal cord injury, decreasing the risk of cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Bonnie E. Legg Ditterline
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of NeuroSurgery, University of Louisville, Louisville, KY, United States
| | - Shelley Wade
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of NeuroSurgery, University of Louisville, Louisville, KY, United States
| | - Narayana Sarma Singam
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of NeuroSurgery, University of Louisville, Louisville, KY, United States
| | - Marcus F. Stoddard
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Glenn A. Hirsch
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
- Division of Cardiology, Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
23
|
Rabineau J, Hossein A, Landreani F, Haut B, Mulder E, Luchitskaya E, Tank J, Caiani EG, van de Borne P, Migeotte PF. Cardiovascular adaptation to simulated microgravity and countermeasure efficacy assessed by ballistocardiography and seismocardiography. Sci Rep 2020; 10:17694. [PMID: 33077727 PMCID: PMC7573608 DOI: 10.1038/s41598-020-74150-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Head-down bed rest (HDBR) reproduces the cardiovascular effects of microgravity. We tested the hypothesis that regular high-intensity physical exercise (JUMP) could prevent this cardiovascular deconditioning, which could be detected using seismocardiography (SCG) and ballistocardiography (BCG). 23 healthy males were exposed to 60-day HDBR: 12 in a physical exercise group (JUMP), the others in a control group (CTRL). SCG and BCG were measured during supine controlled breathing protocols. From the linear and rotational SCG/BCG signals, the integral of kinetic energy ([Formula: see text]) was computed on each dimension over the cardiac cycle. At the end of HDBR, BCG rotational [Formula: see text] and SCG transversal [Formula: see text] decreased similarly for all participants (- 40% and - 44%, respectively, p < 0.05), and so did orthostatic tolerance (- 58%, p < 0.01). Resting heart rate decreased in JUMP (- 10%, p < 0.01), but not in CTRL. BCG linear [Formula: see text] decreased in CTRL (- 50%, p < 0.05), but not in JUMP. The changes in the systolic component of BCG linear iK were correlated to those in stroke volume and VO2 max (R = 0.44 and 0.47, respectively, p < 0.05). JUMP was less affected by cardiovascular deconditioning, which could be detected by BCG in agreement with standard markers of the cardiovascular condition. This shows the potential of BCG to easily monitor cardiac deconditioning.
Collapse
Affiliation(s)
- Jeremy Rabineau
- LPHYS, Université Libre de Bruxelles, Brussels, Belgium. .,TIPs, Université Libre de Bruxelles, Brussels, Belgium.
| | - Amin Hossein
- LPHYS, Université Libre de Bruxelles, Brussels, Belgium
| | - Federica Landreani
- Electronic, Information and Biomedical Engineering Department, Politecnico Di Milano, Milan, Italy
| | - Benoit Haut
- TIPs, Université Libre de Bruxelles, Brussels, Belgium
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Elena Luchitskaya
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Enrico G Caiani
- Electronic, Information and Biomedical Engineering Department, Politecnico Di Milano, Milan, Italy
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
24
|
Laurie SS, Christian K, Kysar J, Lee SMC, Lovering AT, Macias BR, Moestl S, Sies W, Mulder E, Young M, Stenger MB. Unchanged cerebrovascular CO 2 reactivity and hypercapnic ventilatory response during strict head-down tilt bed rest in a mild hypercapnic environment. J Physiol 2020; 598:2491-2505. [PMID: 32196672 DOI: 10.1113/jp279383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Carbon dioxide levels are mildly elevated on the International Space Station and it is unknown whether this chronic exposure causes physiological changes to astronauts. We combined ∼4 mmHg ambient P C O 2 with the strict head-down tilt bed rest model of spaceflight and this led to the development of optic disc oedema in one-half of the subjects. We demonstrate no change in arterialized P C O 2 , cerebrovascular reactivity to CO2 or the hypercapnic ventilatory response. Our data suggest that the mild hypercapnic environment does not contribute to the development of spaceflight associated neuro-ocular syndrome. ABSTRACT Chronically elevated carbon dioxide (CO2 ) levels can occur in confined spaces such as the International Space Station. Using the spaceflight analogue 30 days of strict 6° head-down tilt bed rest (HDTBR) in a mild hypercapnic environment ( P C O 2 = ∼4 mmHg), we investigated arterialized P C O 2 , cerebrovascular reactivity and the hypercapnic ventilatory response in 11 healthy subjects (five females) before, on days 1, 9, 15 and 30 of bed rest (BR), and 6 and 13 days after HDTBR. During all HDTBR time points, arterialized P C O 2 was not significantly different from the pre-HDTBR measured in the 6° HDT posture, with a mean (95% confidence interval) increase of 1.2 mmHg (-0.2 to 2.5 mmHg, P = 0.122) on day 30 of HDTBR. Respiratory acidosis was never detected, although a mild metabolic alkalosis developed on day 30 of HDTBR by a mean (95% confidence interval) pH change of 0.032 (0.022-0.043; P < 0.001), which remained elevated by 0.021 (0.011-0.031; P < 0.001) 6 days after HDTBR. Arterialized pH returned to pre-HDTBR levels 13 days after BR with a change of -0.001 (-0.009 to 0.007; P = 0.991). Compared to pre-HDTBR, cerebrovascular reactivity during and after HDTBR did not change. Baseline ventilation, ventilatory recruitment threshold and the slope of the ventilatory response were similar between pre-HDTBR and all other time points. Taken together, these data suggest that the mildly increased ambient P C O 2 combined with 30 days of strict 6° HDTBR did not change arterialized P C O 2 levels. Therefore, the experimental conditions were not sufficient to elicit a detectable physiological response.
Collapse
Affiliation(s)
| | - Kate Christian
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Jacob Kysar
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ogoh S, Sato K, Abreu S, Denise P, Normand H. Arterial and venous cerebral blood flow responses to long‐term head‐down bed rest in male volunteers. Exp Physiol 2019; 105:44-52. [DOI: 10.1113/ep088057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering Toyo University Kawagoe‐Shi Saitama Japan
| | - Kohei Sato
- Tokyo Gakugei University Koganei Tokyo Japan
| | - Steven Abreu
- Normandie Université, Unicaen; Inserm Comete GIP Cyceron Chu Caen France
| | - Pierre Denise
- Normandie Université, Unicaen; Inserm Comete GIP Cyceron Chu Caen France
| | - Hervé Normand
- Normandie Université, Unicaen; Inserm Comete GIP Cyceron Chu Caen France
| |
Collapse
|
26
|
Effects of exercise countermeasure on myocardial contractility measured by 4D speckle tracking during a 21-day head-down bed rest. Eur J Appl Physiol 2019; 119:2477-2486. [DOI: 10.1007/s00421-019-04228-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023]
|
27
|
Ade CJ, Bemben DA. Differential MicroRNA expression following head-down tilt bed rest: implications for cardiovascular responses to microgravity. Physiol Rep 2019; 7:e14061. [PMID: 31087541 PMCID: PMC6513770 DOI: 10.14814/phy2.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/14/2022] Open
Abstract
Head-down tilt bedrest (HDBR), an analog of spaceflight, elicits changes in cardiovascular function that adversely affect astronaut performance. It is therefore fundamental to elucidate the molecular regulators of these changes. Study aim was to determine if cardiovascular-related circulating microRNA (miRNA) are altered following HDBR and if they relate to changes in cardiac function and peak aerobic capacity. Eleven participants completed 30-days HDBR at an ambient CO2 of 0.5% (replicate the in-flight CO2 levels). Blood samples were obtained 3 days (BDC-3) prior to and immediately (R + 0) following HDBR. 44-targeted circulating miRNAs (c-miRNA) identified from published roles in cardiovascular structure/function were analyzed via RT-qPCR. Resting stroke volume was evaluated via ultrasonography. Peak oxygen uptake ( V ˙ O 2 peak ) was determined using a graded exercise test on an electronically braked cycle ergometer. Ten cardiovascular-related miRNA were significantly increased following HDBR. The differentially expressed c-miRNA were grouped into clusters according to their expression profile. Cluster A included c-miRNA that have been identified as regulators of cardiac function and hypertrophy (c-miRNA-133), atrial fibrillation and mitochondrial function (c-miRNA-1), skeletal muscle atrophy (c-miRNA-1), and vascular control (c-miRNA-155). Cluster B contained c-miRNA identified as regulators of cardiac hypertrophy (c-miRNA-30, -15), fibrosis (c-miRNA-22, -18), mitochondrial function (miRNA-181), and aerobic capacity (c-miRNA-20a). Following HDBR resting stroke volume was decreased and correlated with changes in c-miRNA-378a and -18a. V ˙ O 2 peak was decreased and correlated with changes c-miRNA-133. In conclusion, we found that HDBR induced a distinct and specific cardiovascular-related miRNA response, which were associated with changes in cardiac function and peak aerobic capacity.
Collapse
Affiliation(s)
- Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKansas
| | - Debra A. Bemben
- Department of Health and Exercise ScienceUniversity of OklahomaNormanOklahoma
| |
Collapse
|
28
|
Maggioni MA, Castiglioni P, Merati G, Brauns K, Gunga HC, Mendt S, Opatz OS, Rundfeldt LC, Steinach M, Werner A, Stahn AC. High-Intensity Exercise Mitigates Cardiovascular Deconditioning During Long-Duration Bed Rest. Front Physiol 2018; 9:1553. [PMID: 30510516 PMCID: PMC6252355 DOI: 10.3389/fphys.2018.01553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/16/2018] [Indexed: 02/02/2023] Open
Abstract
Head-down-tilt bed rest (HDT) mimics the changes in hemodynamics and autonomic cardiovascular control induced by weightlessness. However, the time course and reciprocal interplay of these adaptations, and the effective exercise protocol as a countermeasure need further clarification. The overarching aim of this work (as part of a European Space Agency sponsored long-term bed rest study) was therefore to evaluate the time course of cardiovascular hemodynamics and autonomic control during prolonged HDT and to assess whether high-intensity, short-duration exercise could mitigate these effects. A total of n = 23 healthy, young, male participants were randomly allocated to two groups: training (TRAIN, n = 12) and non-training (CTRL, n = 11) before undergoing a 60-day HDT. The TRAIN group underwent a resistance training protocol using reactive jumps (5–6 times per week), whereas the CTRL group did not perform countermeasures. Finger blood pressure (BP), heart rate (HR), and stroke volume were collected beat-by-beat for 10 min in both sitting and supine positions 7 days before HDT (BDC−7) and 10 days after HDT (R+10), as well as on the 2nd (HDT2), 28th (HDT28), and 56th (HDT56) day of HDT. We investigated (1) the isolated effects of long-term HDT by comparing all the supine positions (including BDC−7 and R+10 at 0 degrees), and (2) the reactivity of the autonomic response before and after long-term HDT using a specific postural stimulus (i.e., supine vs. sitting). Two-factorial linear mixed models were used to assess the time course of HDT and the effect of the countermeasure. Starting from HDT28 onwards, HR increased (p < 0.02) and parasympathetic tone decreased exclusively in the CTRL group (p < 0.0001). Moreover, after 60-day HDT, CTRL participants showed significant impairments in increasing cardiac sympathovagal balance and controlling BP levels during postural shift (supine to sitting), whereas TRAIN participants did not. Results show that a 10-day recovery did not compensate for the cardiovascular and autonomic deconditioning following 60-day HDT. This has to be considered when designing rehabilitation programs—not only for astronauts but also in general public healthcare. High-intensity, short-duration exercise training effectively minimized these impairments and should therefore deserve consideration as a cardiovascular deconditioning countermeasure for spaceflight.
Collapse
Affiliation(s)
- Martina A Maggioni
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | | | - Giampiero Merati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Katharina Brauns
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Stefan Mendt
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Oliver S Opatz
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Lea C Rundfeldt
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Mathias Steinach
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Anika Werner
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Université de Normandie, INSERM U 1075 COMETE, Caen, France
| | - Alexander C Stahn
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Koschate J, Thieschäfer L, Drescher U, Hoffmann U. Impact of 60 days of 6° head down tilt bed rest on muscular oxygen uptake and heart rate kinetics: efficacy of a reactive sledge jump countermeasure. Eur J Appl Physiol 2018; 118:1885-1901. [PMID: 29946969 DOI: 10.1007/s00421-018-3915-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE The effects of 60 days of head down tilt bed rest (HDBR) with and without the application of a reactive jump countermeasure were investigated, using a method which enables to discriminate between pulmonary ([Formula: see text]O2pulm) and muscular ([Formula: see text]O2musc) oxygen uptake kinetics to control for hemodynamic influences. METHODS 22 subjects were randomly allocated to either a group performing a reactive jumps countermeasure (JUMP; n = 11, male, 29 ± 7 years, 23.9 ± 1.3 kg m- 2) or a control group (CTRL; n = 11, male, 29 ± 6 years, 23.3 ± 2.0 kg m- 2). Heart rate (HR) and [Formula: see text]O2pulm were measured in response to repeated changes in work rate between 30 and 80 W before (BDC-9) and two times after HDBR (R+ 2, R+ 13). Kinetic responses of HR, [Formula: see text]O2pulm, and [Formula: see text]O2musc were assessed applying time series analysis. Higher maxima in cross-correlation functions (CCFmax(x)) between work rate and the respective parameter indicate faster kinetics responses. Statistical analysis was performed applying multifactorial analysis of variance. RESULTS CCFmax([Formula: see text]O2musc) and CCFmax([Formula: see text]O2pulm) were not significantly different before and after HDBR (P > 0.05). CCFmax(HR) decreased following bed rest (JUMP: BDC-9: 0.30 ± 0.09 vs. R+ 2: 0.28 ± 0.06 vs. R+13: 0.28 ± 0.07; CTRL: 0.35 ± 0.09 vs. 0.27 ± 0.06 vs. 0.33 ± 0.07 P = 0.025). No significant differences between the groups were observed (P > 0.05). Significant alterations were found for CCFmax of mean arterial blood pressure (mBP) after HDBR (JUMP: BDC-9: 0.21 ± 0.07 vs. R+ 2: 0.30 ± 0.13 vs. R+ 13: 0.28 ± 0.08; CTRL: 0.25 ± 0.07 vs. 0.38 ± 0.13 vs. 0.28 ± 0.08; P = 0.008). CONCLUSIONS Despite hemodynamic changes, [Formula: see text]O2 kinetics seem to be preserved for a longer period of HDBR, even without the application of a countermeasure.
Collapse
Affiliation(s)
- J Koschate
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.
| | - L Thieschäfer
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - U Drescher
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - U Hoffmann
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
30
|
Joseph A, Wanono R, Flamant M, Vidal-Petiot E. Orthostatic hypotension: A review. Nephrol Ther 2018; 13 Suppl 1:S55-S67. [PMID: 28577744 DOI: 10.1016/j.nephro.2017.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 11/27/2022]
Abstract
Orthostatic hypotension, defined by a drop in blood pressure of at least 20mmHg for systolic blood pressure and at least 10mmHg for diastolic blood pressure within 3minutes of standing up, is a frequent finding, particularly in elderly patients. It is associated with a significant increase in morbidity and mortality. Although it is often multifactorial, the first favoring factor is medications. Other etiologies are divided in neurogenic orthostatic hypotension, characterized by autonomic failure due to central or peripheral nervous system disorders, and non-neurogenic orthostatic hypotension, mainly favoured by hypovolemia. Treatment always requires education of the patient regarding triggering situations and physiological countermanoeuvers. Pharmacological treatment may sometimes be necessary and mainly relies on volume expansion by fludrocortisone and/or a vasopressor agents such as midodrine. There is no predefined blood pressure target, the goal of therapy being the relief of symptoms and fall prevention.
Collapse
Affiliation(s)
- Adrien Joseph
- Service de physiologie, DHU Fire, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France
| | - Ruben Wanono
- Service de physiologie, DHU Fire, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris-Cité, 46, rue Henri-Huchard, 75018 Paris, France
| | - Martin Flamant
- Service de physiologie, DHU Fire, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris-Cité, 46, rue Henri-Huchard, 75018 Paris, France; Inserm U1149, 46, rue Henri-Huchard, 75018 Paris, France
| | - Emmanuelle Vidal-Petiot
- Service de physiologie, DHU Fire, hôpital Bichat, 46, rue Henri-Huchard, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris-Cité, 46, rue Henri-Huchard, 75018 Paris, France; Inserm U1149, 46, rue Henri-Huchard, 75018 Paris, France.
| |
Collapse
|
31
|
Rivas E, Herndon DN, Beck KC, Suman OE. Children with Burn Injury Have Impaired Cardiac Output during Submaximal Exercise. Med Sci Sports Exerc 2018; 49:1993-2000. [PMID: 28538026 DOI: 10.1249/mss.0000000000001329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Burn trauma damages resting cardiac function; however, it is currently unknown if the cardiovascular response to exercise is likewise impaired. We tested the hypothesis that, in children, burn injury lowers cardiac output (Q˙) and stroke volume (SV) during submaximal exercise. METHODS Five children with 49% ± 4% total body surface area (BSA) burned (two female, 11.7 ± 1 yr, 40.4 ± 18 kg, 141.1 ± 9 cm) and eight similar nonburned controls (five female, 12.5 ± 2 yr, 58.0 ± 17 kg, 147.3 ± 12 cm) with comparable exercise capacity (peak oxygen consumption [peak V˙O2]: 31.9 ± 11 vs 36.8 ± 8 mL O2·kg·min, P = 0.39) participated. The exercise protocol entailed a preexercise (pre-EX) rest period followed by 3-min exercise stages at 20 W and 50 W. V˙O2, HR, Q˙ (via nonrebreathing), SV (Q˙/HR), and arteriovenous O2 difference ([a-v]O2diff, Q˙/ V˙O2) were the primary outcome variables. RESULTS Using a 2-way factorial ANOVA (group [G] × exercise [EX]), we found that Q˙ was approximately 27% lower in the burned than the nonburned group at 20 W of exercise (burned 5.7 ± 1.0 vs nonburned: 7.9 ± 1.8 L·min) and 50 W of exercise (burned 6.9 ± 1.6 vs nonburned 9.2 ± 3.2 L·min) (G-EX interaction, P = 0.012). SV did not change from rest to exercise in burned children but increased by approximately 24% in the nonburned group (main effect for EX, P = 0.046). Neither [a-v] O2diff nor V˙O2 differed between groups at rest or exercise, but HR response to exercise was reduced in the burn group (G-EX interaction, P = 0.004). When normalized to BSA, SV (index) was similar between groups; however, Q˙ (index) remained attenuated in the burned group (G-EX interaction, P < 0.008). CONCLUSIONS Burned children have an attenuated cardiovascular response to submaximal exercise. Further investigation of hemodynamic function during exercise will provide insights important for cardiovascular rehabilitation in burned children.
Collapse
Affiliation(s)
- Eric Rivas
- 1Shriners Hospitals for Children, Galveston, TX, 2Department of Surgery, University of Texas Medical Branch, Galveston, TX; 3Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX; and 4KCBeck Physiological Consulting, LLC, Liberty, UT
| | | | | | | |
Collapse
|
32
|
Ling S, Li Y, Zhong G, Zheng Y, Xu Q, Zhao D, Sun W, Jin X, Li H, Li J, Sun H, Cao D, Song J, Liu C, Yuan X, Wu X, Zhao Y, Liu Z, Li Q, Li Y. Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling. Front Physiol 2018; 9:40. [PMID: 29422872 PMCID: PMC5788970 DOI: 10.3389/fphys.2018.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 02/01/2023] Open
Abstract
Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1) is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG) and wild type mice were hindlimb-suspended (HU) to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.
Collapse
Affiliation(s)
- Shukuan Ling
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yongjun Zheng
- Medical Administration Division, The 261th Hospital of PLA, Beijing, China
| | - Qing Xu
- Core Facility Center, Capital Medical University, Beijing, China
| | - Dingsheng Zhao
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongxing Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jianwei Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Huiyuan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Jinping Song
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Wu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zizhong Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
33
|
Pianosi PT, Emerling E, Mara KC, Weaver AL, Fischer PR. Sex differences in fitness and cardiac function during exercise in adolescents with chronic fatigue. Scand J Med Sci Sports 2017; 28:524-531. [PMID: 28543923 DOI: 10.1111/sms.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/28/2022]
Abstract
Females demonstrate less robust Frank-Starling mechanism with respect to cardiac preload than males at rest. We asked whether this phenomenon would also affect cardiac performance during exercise. We hypothesized that stroke volume (SV) response to exercise would be more limited in deconditioned females such that cardiac output would be mainly rate dependent, compared with males. We conducted a chart audit of clinical exercise tests performed by adolescents with chronic fatigue. Oxygen uptake (V˙O2) was measured breath-by-breath at rest and during cycle ergometry, while cardiac output was measured by acetylene rebreathing at rest plus 2-3 subthreshold workloads. SV response was analyzed in two ways: after normalization for body surface area (SV index, SVI) and as percentage change from resting values. Among 304 adolescents (78% females) with chronic fatigue, 189 (80%) of 236 females and 52 (76%) of 68 males were deconditioned (peakV˙O2 <90% predicted). Heart rate trajectory during exercise was steeper for unfit than fit females, 70 vs 61 beat·min-1 per L·min-1 V˙O2, (P=.003); but not for males, 47 vs 42 beat·min-1 per L·min-1 V˙O2 (P=.23). The highest measured SVI did not differ between unfit vs fit females (42.8 vs 41.5 mL·m-2 , P=.39) while fit males showed larger SV during exercise than their unfit peers (highest SVI 55.9 vs 48.0 mL·m-2 , P=.014). Both qualitative and quantitative sex differences exist in SV responses to exercise among chronically fatigued adolescents, suggesting volume loading may be more efficacious in girls.
Collapse
Affiliation(s)
- P T Pianosi
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - E Emerling
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - K C Mara
- Departments of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - A L Weaver
- Departments of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - P R Fischer
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Seawright JW, Samman Y, Sridharan V, Mao XW, Cao M, Singh P, Melnyk S, Koturbash I, Nelson GA, Hauer-Jensen M, Boerma M. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart. PLoS One 2017; 12:e0180594. [PMID: 28678877 PMCID: PMC5498037 DOI: 10.1371/journal.pone.0180594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 01/31/2023] Open
Abstract
Purpose Space travel is associated with an exposure to low-dose rate ionizing radiation and the microgravity environment, both of which may lead to impairments in cardiac function. We used a mouse model to determine short- and long-term cardiac effects to simulated microgravity (hindlimb unloading; HU), continuous low-dose rate γ-irradiation, or a combination of HU and low-dose rate γ-irradiation. Methods Cardiac tissue was obtained from female, C57BL/6J mice 7 days, 1 month, 4 months, and 9 months following the completion of a 21 day exposure to HU or a 21 day exposure to low-dose rate γ-irradiation (average dose rate of 0.01 cGy/h to a total of 0.04 Gy), or a 21 day simultaneous exposure to HU and low-dose rate γ-irradiation. Immunoblot analysis, rt-PCR, high-performance liquid chromatography, and histology were used to assess inflammatory cell infiltration, cardiac remodeling, oxidative stress, and the methylation potential of cardiac tissue in 3 to 6 animals per group. Results The combination of HU and γ-irradiation demonstrated the strongest increase in reduced to oxidized glutathione ratios 7 days and 1 month after treatment, but a difference was no longer apparent after 9 months. On the other hand, no significant changes in 4-hydroxynonenal adducts was seen in any of the groups, at the measured endpoints. While manganese superoxide dismutase protein levels decreased 9 months after low-dose γ-radiation, no changes were observed in expression of catalase or Nrf2, a transcription factor that determines the expression of several antioxidant enzymes, at the measured endpoints. Inflammatory marker, CD-2 protein content was significantly decreased in all groups 4 months after treatment. No significant differences were observed in α-smooth muscle cell actin protein content, collagen type III protein content or % total collagen. Conclusions This study has provided the first and relatively broad analysis of small molecule and protein markers of oxidative stress, T-lymphocyte infiltration, and cardiac remodeling in response to HU with simultaneous exposure to low-dose rate γ-radiation. Results from the late observation time points suggest that the hearts had mostly recovered from these two experimental conditions. However, further research is needed with larger numbers of animals for a more robust statistical power to fully characterize the early and late effects of simulated microgravity combined with exposure to low-dose rate ionizing radiation on the heart.
Collapse
Affiliation(s)
- John W. Seawright
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
- * E-mail:
| | - Yusra Samman
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Xiao Wen Mao
- Department of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, The United States of America
| | - Maohua Cao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Gregory A. Nelson
- Department of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, The United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, The United States of America
| |
Collapse
|
35
|
Feasibility and Neurobehavioral Changes of 10-Day Simulated Microgravity in Acute Ischemic Stroke Patients. Am J Phys Med Rehabil 2017; 96:838-842. [PMID: 28604410 DOI: 10.1097/phm.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the study was to investigate feasibility and functional changes of simulated microgravity with 6-degree head-down-tilt (HDT) bed rest in acute ischemic stroke. DESIGN Patients without lesions in the cingulate cortex and/or cerebellum were enrolled. They underwent HDT for 30 minutes twice per day for 10 weekdays. Systolic blood pressure, diastolic blood pressure, and heart rate were measured before the HDT, immediately after, and also 30 minutes after the stop. Mini-Mental State Examination, Geriatric Depression Scale, Neurobehavioral Tests (i.e., span test, finger-tapping test, continuous performance test, and trail-making test) were conducted before and after the 10-day HDT. RESULTS One male and four female patients (median age = 64.6 yrs [SD = 10.5 yrs]) were recruited. Changes in the finger-tapping test (57.80 [SD = 40.96 ] vs. 85.80 [SD = 0.46], P = 0.08) and in the digit span backward test (3.60 [SD = 1.14] vs. 1.42 [SD = 1.75], P = 0.07) were noticed. Few changes were found in other scales. No significant changes in systolic blood pressure, diastolic blood pressure, or heart rate were observed, and no adverse effects occurred. CONCLUSIONS The 6-degree HDT revealed no adverse effects on the cardiovascular system, showing nonsignificant increment in the finger-tapping test (representative of motor speed and performance) and nonsignificant reduction in the digit backward span test (representative of spatial memory).
Collapse
|
36
|
Strewe C, Zeller R, Feuerecker M, Hoerl M, Kumprej I, Crispin A, Johannes B, Debevec T, Mekjavic I, Schelling G, Choukèr A. PlanHab study: assessment of psycho-neuroendocrine function in male subjects during 21 d of normobaric hypoxia and bed rest. Stress 2017; 20:131-139. [PMID: 28166699 DOI: 10.1080/10253890.2017.1292246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Immobilization and hypoxemia are conditions often seen in patients suffering from severe heart insufficiency or primary pulmonary diseases (e.g. fibrosis, emphysema). In future planned long-duration and exploration class space missions (including habitats on the moon and Mars), healthy individuals will encounter such a combination of reduced physical activity and oxygen tension by way of technical reasons and the reduced gravitational forces. These overall unconventional extraterrestrial conditions can result in yet unknown consequences for the regulation of stress-permissive, psycho-neuroendocrine responses, which warrant appropriate measures in order to mitigate foreseeable risks. The Planetary Habitat Simulation Study (PlanHab) investigated these two space-related conditions: bed rest as model of reduced gravity and normobaric hypoxia, with the aim of examining their influence on psycho-neuroendocrine responses. We hypothesized that both conditions independently increase measures of psychological stress and enhance neuroendocrine markers of stress, and that these effects would be exacerbated by combined treatment. The cross-over study composed of three interventions (NBR, normobaric normoxic horizontal bed rest; HBR, normobaric hypoxic horizontal bed rest; HAMB, normobaric hypoxic ambulatory confinement) with 14 male subjects during three sequential campaigns separated by 4 months. The psychological state was determined through three questionnaires and principal neuroendocrine responses were evaluated by measuring cortisol in saliva, catecholamine in urine, and endocannabinoids in blood. The results revealed no effects after 3 weeks of normobaric hypoxia on psycho-neuroendocrine responses. Conversely, bed rest induced neuroendocrine alterations that were not influenced by hypoxia.
Collapse
Affiliation(s)
- C Strewe
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - R Zeller
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - M Feuerecker
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - M Hoerl
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - I Kumprej
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - A Crispin
- c Department of Biometry and Epidemiology, Klinikum Großhadern , University of Munich , Munich , Germany
| | - B Johannes
- d Department of Space Physiology , Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne , Germany
| | - T Debevec
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - I Mekjavic
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - G Schelling
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - A Choukèr
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| |
Collapse
|
37
|
Ade CJ, Broxterman RM, Moore AD, Barstow TJ. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O 2 transport mechanisms. J Appl Physiol (1985) 2017; 122:968-975. [PMID: 28153941 DOI: 10.1152/japplphysiol.00280.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
We have previously predicted that the decrease in maximal oxygen uptake (V̇o2max) that accompanies time in microgravity reflects decrements in both convective and diffusive O2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O2 transport (Q̇o2) and O2 diffusing capacity (Do2) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o2max, maximal cardiac output (Q̇Tmax), and differences in arterial and venous O2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o2 and Do2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o2 (-11.4 ± 10.5%, P = 0.02). Do2 significantly decreased from pre- to postflight by -27.5 ± 24.5% (P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o2max were significantly correlated with changes in Do2 (R2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O2 transport pathway.NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions.
Collapse
Affiliation(s)
- C J Ade
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma; .,Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - R M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - A D Moore
- Department of Health and Kinesiology, Lamar University, Beaumont, Texas; and
| | - T J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
38
|
Zhong G, Li Y, Li H, Sun W, Cao D, Li J, Zhao D, Song J, Jin X, Song H, Yuan X, Wu X, Li Q, Xu Q, Kan G, Cao H, Ling S, Li Y. Simulated Microgravity and Recovery-Induced Remodeling of the Left and Right Ventricle. Front Physiol 2016; 7:274. [PMID: 27445861 PMCID: PMC4925715 DOI: 10.3389/fphys.2016.00274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/17/2016] [Indexed: 12/01/2022] Open
Abstract
Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can be reversed. Furthermore, in the early stages of recovery, cardiac remodeling may be intensified. Finally, compared with the LV, the RV is not as easily reversed. Cardiac remodeling pathways, such as, HDAC4, ERK1/2, LC3-II, and AMPK were involved in the process.
Collapse
Affiliation(s)
- Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Hongxing Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Hailin Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Xinxin Yuan
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University Beijing, China
| | - Xiaorui Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Qing Xu
- Medical Experiment and Test Center, Capital Medical University Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Hongqing Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center Beijing, China
| |
Collapse
|
39
|
Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev 2016; 21:191-8. [DOI: 10.1007/s10741-016-9535-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|