1
|
MacGregor K, Ellefsen S, Pillon NJ, Hammarström D, Krook A. Sex differences in skeletal muscle metabolism in exercise and type 2 diabetes mellitus. Nat Rev Endocrinol 2024:10.1038/s41574-024-01058-9. [PMID: 39604583 DOI: 10.1038/s41574-024-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
This Review focuses on currently available literature describing sex differences in skeletal muscle metabolism in humans, as well as highlighting current research gaps within the field. These discussions serve as a call for action to address the current lack of sufficient sex-balanced studies in skeletal muscle research, and the resulting limitations in understanding sex-specific physiological and pathophysiological responses. Although the participation of women in studies has increased, parity between the sexes remains elusive, affecting the validity of conclusions drawn from studies with limited numbers of participants. Changes in skeletal muscle metabolism contribute to the development of metabolic disease (such as type 2 diabetes mellitus), and maintenance of skeletal muscle mass is a key component for health and the ability to maintain an independent life during ageing. Exercise is an important factor in maintaining skeletal muscle health and insulin sensitivity, and offers promise for both prevention and treatment of metabolic disease. With the increased realization of the promise of precision medicine comes the need to increase patient stratification and improve the understanding of responses in different populations. In this context, a better understanding of sex-dependent differences in skeletal muscle metabolism is essential.
Collapse
Affiliation(s)
- Kirstin MacGregor
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stian Ellefsen
- Inland University of Applied Sciences, Lillehammer, Norway
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Krook
- Inland University of Applied Sciences, Lillehammer, Norway.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Osmond AD, Leija RG, Arevalo JA, Curl CC, Duong JJ, Huie MJ, Masharani U, Brooks GA. Aging delays the suppression of lipolysis and fatty acid oxidation in the postprandial period. J Appl Physiol (1985) 2024; 137:1200-1219. [PMID: 39236144 PMCID: PMC11563596 DOI: 10.1152/japplphysiol.00437.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Plasma glycerol and free fatty acid concentrations decrease following oral glucose consumption, but changes in the rate of lipolysis during an oral glucose tolerance test (OGTT) have not been documented in conjunction with changes in fatty acid (FA) oxidation or reesterification rates in healthy individuals. After a 12-h overnight fast, 15 young (21-35 yr; 7 men and 8 women) and 14 older (60-80 yr; 7 men and 7 women) participants had the forearm vein catheterized for primed continuous infusion of [1,1,2,3,3-2H]glycerol. A contralateral hand vein was catheterized for arterialized blood sampling. Indirect calorimetry was performed simultaneously to determine total FA and carbohydrate (CHO) oxidation rates (Rox). Total FA reesterification rates (Rs) were estimated from tracer-measured lipolytic and FA oxidation rates. After a 90-min equilibration period, participants underwent a 120-min, 75-g OGTT. Glycerol rate of appearance (Ra), an index of lipolysis, decreased significantly from baseline 5 min postchallenge in young participants and 30 min in older participants. At 60 min, FA Rox decreased in both groups, but was significantly higher in older participants. Between 5 and 90 min, CHO Rox was significantly lower in older participants. In addition, FA Rs was significantly lower in older participants at 60 and 90 min. The area under the curve (AUC) for FA Rox was greater than that for FA Rs in older, but not in young participants. Our results indicate that, in aging, the postprandial suppression of lipolysis and FA oxidation are delayed such that FA oxidation is favored over CHO oxidation and FA reesterification.NEW & NOTEWORTHY To our knowledge, our investigation is the first to demonstrate changes in lipolysis during an oral glucose tolerance test (OGTT) in healthy young and older individuals. Plasma glycerol and free fatty acid concentrations changed after glycerol rate of appearance (Ra), indicating that plasma concentrations are incomplete surrogates of the lipolytic rate. Moreover, simultaneous determinations of substrate oxidation rates are interpreted to indicate that metabolic inflexibility in aging is characterized by delayed changes in postprandial substrate utilization related to the lipolytic rate.
Collapse
Affiliation(s)
- Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Melvin J Huie
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Umesh Masharani
- Division of Endocrinology, Department of Medicine, University of California, San Francisco, California, United States
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
3
|
Edwards CM, Puranda JL, Miller É, MacDonald ML, Aboudlal M, Adamo KB. Low physical fitness indicates future injury, mental health, menstrual cycle disruptions, and burnout in female emergency service personnel and healthcare providers. Appl Physiol Nutr Metab 2024. [PMID: 39467306 DOI: 10.1139/apnm-2024-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Musculoskeletal injury (MSKi), depression, anxiety, and burnout place a considerable burden on emergency services personnel and healthcare providers (HCP). Physical fitness is related to both mental and physical health in these populations, but females in these are hugely underrepresented in this literature. As female representation in first-responder and HCP roles increases, the need for female-specific research is needed. This study examines physical fitness as a short-term indicator of future reproductive health, MSKi, and mental health for females employed as first-responders or HCP. Thirteen first-responders and 29 HCP completed an initial health and demographics questionnaire, a comprehensive physical assessment (e.g., bone mineral density, muscular strength, muscular endurance, muscular power, flexibility, and aerobic capacity), and a health questionnaire 6-7 months after the physical testing. We found that (i) bone mineral density, relative upper body strength, and lower body power were related to sustaining future MSKi, (ii) better lower body endurance and flexibility were related to future menstrual cycle disruptions, and (iii) low bone mineral density was related to future self-reported burnout and Patient Health Questionnaire score ≥ 10. Physical fitness characteristics can be helpful indicators of future MSKi risk, menstrual cycle disruptions, and mental health status in females employed in arduous occupations.
Collapse
Affiliation(s)
- Chris M Edwards
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke; Research Center, Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5H3, Canada
| | - Jessica L Puranda
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Émilie Miller
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Meaghan L MacDonald
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mohamed Aboudlal
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Sanchez BN, Volek JS, Kraemer WJ, Saenz C, Maresh CM. Sex Differences in Energy Metabolism: A Female-Oriented Discussion. Sports Med 2024; 54:2033-2057. [PMID: 38888855 DOI: 10.1007/s40279-024-02063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
The purpose of this review is to delineate aspects of energy metabolism at rest and during exercise that may be subject to sex differences and the potential underlying mechanisms involved. It focuses on distinct aspects of female physiology with an oriented discussion following the reproductive life stages of healthy, eumenorrheic females, including premenopausal time frames, pregnancy, perimenopause, and menopause. Finally, this review aims to address methodological challenges surrounding sexual dimorphism in energy metabolism investigations and confounding factors in this field. During resting conditions, females tend to have higher rates of non-oxidative free fatty acid clearance, which could contribute to lower respiratory exchange ratio measures. At the same time, carbohydrate energy metabolism findings are mixed. In general, females favor lipid energy metabolism during moderate-intensity exercise, while men favor carbohydrate energy metabolism. Factors such as age, dietary intake, genetics, and methodological decisions confound study findings, including properly identifying and reporting the menstrual cycle phase when female subjects are eumenorrheic. Pregnancy presents a unique shift in physiological systems, including energy metabolism, which can be observed at rest and during exercise. Changes in body composition and hormonal levels during the post-menopausal period directly impact energy metabolism, specifically lipid metabolism. This change in physiological state factors into the evidence showing a reduction in our understanding of sex differences in lipid metabolism during exercise in older adults. This review reveals a need for a focused understanding of female energy metabolism that could help exercise and nutrition professionals optimize female health and performance across the lifespan.
Collapse
Affiliation(s)
- Barbara N Sanchez
- Exercise Science, Department of Health Sciences, College of Education, Nursing and Health Professions, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT, USA.
| | - Jeff S Volek
- Exercise Science, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - William J Kraemer
- Exercise Science, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Catherine Saenz
- Exercise Science, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Carl M Maresh
- Exercise Science, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Olenick AA, Pearson RC, Jenkins NT. Impact of aerobic fitness status, menstrual cycle phase, and oral contraceptive use on exercise substrate oxidation and metabolic flexibility in females. Appl Physiol Nutr Metab 2024; 49:93-104. [PMID: 37657080 DOI: 10.1139/apnm-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The influence of menstrual cycle phase and fitness status on metabolism during high-intensity interval exercise (HIIE) was assessed. Twenty-five females (24.4 (3.6) years) were categorized by normal menstrual cycle (n = 14) vs. oral contraceptive (OC) use (n = 11) and by aerobic fitness, high-fitness females (HFF; n = 13) vs. low-fitness females (LFF; n = 12). HIIE was four sets of four repetitions with a 3 min rest between intervals on a cycle ergometer at a power output halfway between the ventilatory threshold and V̇O2peak and performed during follicular (FOL: days 2-7 or inactive pills) and luteal phases (LUT: day ∼21 or 3rd week of active pills). Substrate oxidation was assessed via indirect calorimetry, blood lactate via finger stick, and recovery of skeletal muscle oxidative metabolism (mV̇O2) via continuous-wave near-infrared spectroscopy. HFF oxidized more fat (g·kg-1) during the full session (FOL: p = 0.050, LUT: p = 0.001), high intervals (FOL: p = 0.048, LUT: p = 0.001), low intervals (FOL: p = 0.032, LUT: p = 0.024), and LUT recovery (p = 0.033). Carbohydrate oxidation area under the curve was greater in HFF during FOL (FOL: p = 0.049, LUT: p = 0.124). Blood lactate was lower in LFF in FOL (p ≤ 0.05) but not in LUT. Metabolic flexibility (Δ fat oxidation g·kg-1·min-1) was greater in HFF than LFF during intervals 2-3 in FOL and 1-4 in LUT (p ≤ 0.05). Fitness status more positively influences exercise metabolic flexibility during HIIE than cycle phase or OC use.
Collapse
Affiliation(s)
- Alyssa A Olenick
- Department of Endocrinology and Metabolism, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Regis C Pearson
- Department of Kinesiology, College of Education, University of Georgia, Athens, GA 30602, USA
| | - Nathan T Jenkins
- Department of Kinesiology, College of Education, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
D'Souza AC, Wageh M, Williams JS, Colenso-Semple LM, McCarthy DG, McKay AKA, Elliott-Sale KJ, Burke LM, Parise G, MacDonald MJ, Tarnopolsky MA, Phillips SM. Menstrual cycle hormones and oral contraceptives: a multimethod systems physiology-based review of their impact on key aspects of female physiology. J Appl Physiol (1985) 2023; 135:1284-1299. [PMID: 37823207 PMCID: PMC10979803 DOI: 10.1152/japplphysiol.00346.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Hormonal changes around ovulation divide the menstrual cycle (MC) into the follicular and luteal phases. In addition, oral contraceptives (OCs) have active (higher hormone) and placebo phases. Although there are some MC-based effects on various physiological outcomes, we found these differences relatively subtle and difficult to attribute to specific hormones, as estrogen and progesterone fluctuate rather than operating in a complete on/off pattern as observed in cellular or preclinical models often used to substantiate human data. A broad review reveals that the differences between the follicular and luteal phases and between OC active and placebo phases are not associated with marked differences in exercise performance and appear unlikely to influence muscular hypertrophy in response to resistance exercise training. A systematic review and meta-analysis of substrate oxidation between MC phases revealed no difference between phases in the relative carbohydrate and fat oxidation at rest and during acute aerobic exercise. Vascular differences between MC phases are also relatively small or nonexistent. Although OCs can vary in composition and androgenicity, we acknowledge that much more work remains to be done in this area; however, based on what little evidence is currently available, we do not find compelling support for the notion that OC use significantly influences exercise performance, substrate oxidation, or hypertrophy. It is important to note that the study of females requires better methodological control in many areas. Previous studies lacking such rigor have contributed to premature or incorrect conclusions regarding the effects of the MC and systemic hormones on outcomes. While we acknowledge that the evidence in certain research areas is limited, the consensus view is that the impact of the MC and OC use on various aspects of physiology is small or nonexistent.
Collapse
Affiliation(s)
- Alysha C D'Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mai Wageh
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Williams JS, Stone JC, Masood Z, Bostad W, Gibala MJ, MacDonald MJ. The impact of natural menstrual cycle and oral contraceptive pill phase on substrate oxidation during rest and acute submaximal aerobic exercise. J Appl Physiol (1985) 2023; 135:642-654. [PMID: 37498292 DOI: 10.1152/japplphysiol.00111.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Previous research has identified sex differences in substrate oxidation during submaximal aerobic exercise including a lower respiratory exchange ratio (RER) in females compared with males. These differences may be related to differences in sex hormones. Our purpose was to examine the impact of the natural menstrual cycle (NAT) and second- and third-generation oral contraceptive pill (OCP2 and OCP3) cycle phases on substrate oxidation during rest and submaximal aerobic exercise. Fifty female participants (18 NAT, 17 OCP2, and 15 OCP3) performed two experimental trials that coincided with the low (i.e., nonactive pill/early follicular) and the high hormone (i.e., active pill/midluteal) phase of their cycle. RER and carbohydrate and lipid oxidation rates were determined from gas exchange measurements performed during 10 min of supine rest, 5 min of seated rest, and two 8-min bouts of submaximal cycling exercise at ∼40% and ∼65% of peak oxygen uptake (V̇o2peak). For all groups, there were no differences in RER between the low and high hormone phases during supine rest (0.73 ± 0.05 vs. 0.74 ± 0.05), seated rest (0.72 ± 0.04 vs. 0.72 ± 0.04), exercise at 40% (0.77 ± 0.04 vs. 0.78 ± 0.04), and 65% V̇o2peak (0.85 ± 0.04 vs. 0.86 ± 0.03; P > 0.19 for all). Similarly, carbohydrate and lipid oxidation rates remained largely unchanged across phases during both rest and exercise, apart from higher carbohydrate oxidation in NAT vs. OCP2 at 40% V̇o2peak (P = 0.019) and 65% V̇o2peak (P = 0.001). NAT and OCPs do not appear to largely influence substrate oxidation at rest and during acute submaximal aerobic exercise.NEW & NOTEWORTHY This study was the first to examine the influence of NAT and two generations of OCPs on substrate oxidation during rest and acute submaximal aerobic exercise. We reported no differences across cycle phases or groups on RER, and minimal impact on carbohydrate or lipid oxidation apart from an increase in carbohydrate oxidation in NAT compared with OCP2 during exercise. Based on these findings, NAT/OCP phase controls may not be necessary in studies investigating substrate oxidation.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jenna C Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zaryan Masood
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - William Bostad
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Understanding the female athlete: molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol 2023; 123:423-450. [PMID: 36402915 DOI: 10.1007/s00421-022-05090-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Research should equitably reflect responses in men and women. Including women in research, however, necessitates an understanding of the ovarian hormones and menstrual phase variations in both cellular and systems physiology. This review outlines recent advances in the multiplicity of ovarian hormone molecular signaling that elucidates the mechanisms for menstrual phase variability in exercise metabolism. The prominent endogenous estrogen, 17-β-estradiol (E2), molecular structure is bioactive in stabilizing plasma membranes and quenching free radicals and both E2 and progesterone (P4) promote the expression of antioxidant enzymes attenuating exercise-induced muscle damage in the late follicular (LF) and mid-luteal (ML) phases. E2 and P4 bind nuclear hormone receptors and membrane-bound receptors to regulate gene expression directly or indirectly, which importantly includes cross-regulated expression of their own receptors. Activation of membrane-bound receptors also regulates kinases causing rapid cellular responses. Careful analysis of these signaling pathways explains menstrual phase-specific differences. Namely, E2-promoted plasma glucose uptake during exercise, via GLUT4 expression and kinases, is nullified by E2-dominant suppression of gluconeogenic gene expression in LF and ML phases, ameliorated by carbohydrate ingestion. E2 signaling maximizes fat oxidation capacity in LF and ML phases, pending low-moderate exercise intensities, restricted nutrient availability, and high E2:P4 ratios. P4 increases protein catabolism during the luteal phase by indeterminate mechanisms. Satellite cell function supported by E2-targeted gene expression is countered by P4, explaining greater muscle strengthening from follicular phase-based training. In totality, this integrative review provides causative effects, supported by meta-analyses for quantitative actuality, highlighting research opportunities and evidence-based relevance for female athletes.
Collapse
|
9
|
Rothschild JA, Kilding AE, Stewart T, Plews DJ. Factors Influencing Substrate Oxidation During Submaximal Cycling: A Modelling Analysis. Sports Med 2022; 52:2775-2795. [PMID: 35829994 PMCID: PMC9585001 DOI: 10.1007/s40279-022-01727-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple factors influence substrate oxidation during exercise including exercise duration and intensity, sex, and dietary intake before and during exercise. However, the relative influence and interaction between these factors is unclear. OBJECTIVES Our aim was to investigate factors influencing the respiratory exchange ratio (RER) during continuous exercise and formulate multivariable regression models to determine which factors best explain RER during exercise, as well as their relative influence. METHODS Data were extracted from 434 studies reporting RER during continuous cycling exercise. General linear mixed-effect models were used to determine relationships between RER and factors purported to influence RER (e.g., exercise duration and intensity, muscle glycogen, dietary intake, age, and sex), and to examine which factors influenced RER, with standardized coefficients used to assess their relative influence. RESULTS The RER decreases with exercise duration, dietary fat intake, age, VO2max, and percentage of type I muscle fibers, and increases with dietary carbohydrate intake, exercise intensity, male sex, and carbohydrate intake before and during exercise. The modelling could explain up to 59% of the variation in RER, and a model using exclusively easily modified factors (exercise duration and intensity, and dietary intake before and during exercise) could only explain 36% of the variation in RER. Variables with the largest effect on RER were sex, dietary intake, and exercise duration. Among the diet-related factors, daily fat and carbohydrate intake have a larger influence than carbohydrate ingestion during exercise. CONCLUSION Variability in RER during exercise cannot be fully accounted for by models incorporating a range of participant, diet, exercise, and physiological characteristics. To better understand what influences substrate oxidation during exercise further research is required on older subjects and females, and on other factors that could explain additional variability in RER.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
10
|
Effect of Green Tea Extract Ingestion on Fat Oxidation during Exercise in the Menstrual Cycle: A Pilot Study. Nutrients 2022; 14:nu14193896. [PMID: 36235549 PMCID: PMC9573010 DOI: 10.3390/nu14193896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
In women, fat oxidation during exercise changes with the menstrual cycle. This study aimed to investigate the effect of green tea extract (GTE) ingestion on fat oxidation during exercise depending on the menstrual cycle phase. Ten women with regular menstrual cycles participated in this randomized, double-blind, crossover study. GTE or placebo was administered during the menstrual cycle’s follicular phase (FP) and luteal phase (LP). Participants cycled for 30 min at 50% maximal workload, and a respiratory gas analysis was performed. Serum estradiol, progesterone, free fatty acid, plasma noradrenaline, blood glucose, and lactate concentrations were assessed before, during, and after the exercise. Fat oxidation, carbohydrate oxidation, and the respiratory exchange ratio (RER) were calculated using respiratory gas. Fat oxidation during the exercise was significantly higher in the FP than in the LP with the placebo (p < 0.05) but did not differ between the phases with GTE. Carbohydrate oxidation, serum-free fatty acid, plasma noradrenaline, blood glucose, and lactate concentrations were not significantly different between the phases in either trial. Our results suggest that GTE ingestion improves the decrease in fat oxidation in the LP.
Collapse
|
11
|
Tracing metabolic flux in vivo: basic model structures of tracer methodology. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1311-1322. [PMID: 36075950 PMCID: PMC9534847 DOI: 10.1038/s12276-022-00814-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
Molecules in living organisms are in a constant state of turnover at varying rates, i.e., synthesis, breakdown, oxidation, and/or conversion to different compounds. Despite the dynamic nature of biomolecules, metabolic research has focused heavily on static, snapshot information such as the abundances of mRNA, protein, and metabolites and/or (in)activation of molecular signaling, often leading to erroneous conclusions regarding metabolic status. Over the past century, stable, non-radioactive isotope tracers have been widely used to provide critical information on the dynamics of specific biomolecules (metabolites and polymers including lipids, proteins, and DNA), in studies in vitro in cells as well as in vivo in both animals and humans. In this review, we discuss (1) the historical background of the use of stable isotope tracer methodology in metabolic research; (2) the importance of obtaining kinetic information for a better understanding of metabolism; and (3) the basic principles and model structures of stable isotope tracer methodology using 13C-, 15N-, or 2H-labeled tracers. Tagging biomolecules with stable isotopes of specific atoms can reveal details of the molecular inter-conversions of metabolism. The masses of the tracer isotopes used are greater than those of the more common atomic forms. This allows their movement through different metabolic pathways to be detected using mass spectrometry and modeling. Il-Young Kim at Gachon University School of Medicine in South Korea and colleagues focus their review on the use of stable, non-radioactive isotope tracers, especially, of carbon, nitrogen, and hydrogen, to study metabolism in live humans and other animals. They cover the basic model structures of tracer methodology that serve as the fundamental basis for various tracer methods available and the most recent applications. Their procedure is especially useful for monitoring the rates of metabolic inter-conversions, which can reveal aspects of health and disease.
Collapse
|
12
|
Matsuda T, Takahashi H, Nakamura M, Kanno M, Ogata H, Ishikawa A, Yamada M, Kamemoto K, Sakamaki-Sunaga M. Influence of menstrual cycle on muscle glycogen utilization during high-intensity intermittent exercise until exhaustion in healthy women. Appl Physiol Nutr Metab 2022; 47:671-680. [PMID: 35856390 DOI: 10.1139/apnm-2021-0532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effects of the menstrual cycle on muscle glycogen and circulating substrates during high-intensity intermittent exercise until exhaustion in healthy women who habitually exercised. In total, 11 women with regular menstrual cycles completed three tests, which comprised the early follicular phase (E-FP), late follicular phase (L-FP), and luteal phase (LP) of the menstrual cycle. High-intensity intermittent exercise until exhaustion was performed on each test day. Evaluation of muscle glycogen concentration by 13C-magnetic resonance spectroscopy and measurement of estradiol, progesterone, blood glucose, lactate, free fatty acids (FFA), and insulin concentrations were conducted before exercise (Pre) and immediately after exercise (Post). Muscle glycogen concentrations from thigh muscles at Pre and Post were not significantly different between menstrual cycle phases (P = 0.57). Muscle glycogen decreases by exercise were significantly greater in L-FP (59.0 ± 12.4 mM) than in E-FP (48.3 ± 14.4 mM, P < 0.05). Nonetheless, blood glucose, blood lactate, serum FFA, serum insulin concentrations, and exercise time until exhaustion in E-FP, L-FP, and LP were similar. The study results suggest that although exercise time does not change according to the menstrual cycle, the menstrual cycle influences muscle glycogen utilization during high-intensity intermittent exercise until exhaustion in women with habitual exercise activity. Novelty: This study compared changes in muscle glycogen concentration across the menstrual cycle during high-intensity intermittent exercise until exhaustion using 13C-magnetic resonance spectroscopy. Our results highlight the influence of the menstrual cycle on muscle glycogen during high-intensity intermittent exercise in healthy women.
Collapse
Affiliation(s)
- Tomoka Matsuda
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Mariko Nakamura
- Department of Sport Science, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Moe Kanno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Hazuki Ogata
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Akira Ishikawa
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Mizuki Yamada
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Kayoko Kamemoto
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
| | | |
Collapse
|
13
|
Boisseau N, Isacco L. Substrate metabolism during exercise: sexual dimorphism and women's specificities. Eur J Sport Sci 2021; 22:672-683. [PMID: 34134602 DOI: 10.1080/17461391.2021.1943713] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this review is to discuss sexual dimorphism of energy metabolism, and to describe the impact of women's hormonal status on substrate oxidation during exercise. Many evidences indicate that sex steroids play a pivotal role in the sex-related differences of body composition and energy substrate storage. Compared with men, women rely more on fat and less on carbohydrates at the same relative exercise intensity. Scientific data suggest that 17-β oestradiol is a key hormone for the regulation of body composition and substrate metabolism. However, in women, measurements with stable isotopic tracers did not highlight any difference in whole-body substrate oxidation rates between the follicular and luteal phases of the menstrual cycle during endurance exercise. The remaining discrepancies about the effect of menstrual cycle-related hormone fluctuations on substrate oxidation could be partly explained by the exercise intensity, which is an important regulator of substrate oxidation. Due to their specific nature and concentration, the synthetic ovarian hormones contained in oral contraceptives also influence substrate metabolism during endurance exercise. However, more studies are needed to confirm that oral contraceptives increase lipolytic activity during endurance exercise without any substantial (or detectable) effect on substrate utilization. Pregnancy and menopause also modify body composition and substrate utilization during exercise through specific hormonal fluctuations.This review highlights that the hormonal status is likely to affect substrate oxidation during exercise in women emphasizing the need to take it into consideration to optimize their health and performance.
Collapse
Affiliation(s)
- Nathalie Boisseau
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological conditions (AME2P), University Clermont Auvergne (UCA), EA 3533, Clermont-Ferrand, France
| | - Laurie Isacco
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological conditions (AME2P), University Clermont Auvergne (UCA), EA 3533, Clermont-Ferrand, France.,EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance Health Innovation (EPSI) platform, Univ. Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
14
|
Farkas GJ, Gordon PS, Swartz AM, Berg AS, Gater DR. Influence of mid and low paraplegia on cardiorespiratory fitness and energy expenditure. Spinal Cord Ser Cases 2020; 6:110. [PMID: 33328437 DOI: 10.1038/s41394-020-00363-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
STUDY DESIGN Observational, Cross-sectional. OBJECTIVE Examine the influence of mid (MP) and low (LP) paraplegia on cardiorespiratory fitness (CRF), energy expenditure (EE), and physical activity levels (PAL), and compare these data to able-bodied (AB) individuals. SETTING Academic medical center. METHODS Persons with MP (n = 6, T6-T8, 83% male, age: 31 ± 11 y, BMI: 24 ± 7 kg/m2) and LP (n = 5; T10-L1, 100% male, age: 39 ± 11 y, BMI: 26 ± 5 kg/m2) and AB controls (n = 6; 67% male, age: 29 ± 12 y, BMI: 26 ± 5 kg/m2) participated. All participants underwent 45-min of arm-crank exercise where CRF and exercise EE were measured. Basal metabolic rate (BMR) was measured, and total daily EE (TDEE) and PAL were estimated. RESULTS Absolute VO2Peak (MP: 1.6 ± 0.2, LP: 1.9 ± 0.1, AB: 2.5 ± 0.7 l/min), peak metabolic equivalents (MP: 6.8 ± 1.3, LP: 5.7 ± 0.7, AB: 8.8 ± 0.8 METs), peak power output (MP: 72.9 ± 11.5, LP: 86.8 ± 6.1, AB: 121.0 ± 34.8 Watts), and maximal heart rate (MP: 177.7 ± 9.8, LP: 157 ± 13.6, AB: 185.2 ± 8.5 bpm) were significantly different between the three groups (p < 0.05). BMR and TDEE did not significantly differ between the three groups (p > 0.05), whereas exercise EE (MP: 7.8 ± 1.2, LP: 9.5 ± 0.7, AB: 12.4 ± 3.5 kcal/min) and PAL (MP: 1.30 ± 0.04, LP: 1.32 ± 0.04, AB: 1.43 ± 0.06) significantly differed (p < 0.05). In the AB group, 33.3% and 66.7% were classified as sedentary or having low activity levels, respectively, while all persons with paraplegia were classified as sedentary according to PAL classifications. CONCLUSION Individuals with MP and LP have lower CRF, exercise EE, and PALs compared to AB individuals.
Collapse
Affiliation(s)
- Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Phillip S Gordon
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ann M Swartz
- Department of Kinesiology, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Arthur S Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
15
|
Kim IY, Park S, Kim Y, Chang Y, Choi CS, Suh SH, Wolfe RR. In Vivo and In Vitro Quantification of Glucose Kinetics: From Bedside to Bench. Endocrinol Metab (Seoul) 2020; 35:733-749. [PMID: 33397035 PMCID: PMC7803595 DOI: 10.3803/enm.2020.406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Like other substrates, plasma glucose is in a dynamic state of constant turnover (i.e., rates of glucose appearance [Ra glucose] into and disappearance [Rd glucose] from the plasma) while staying within a narrow range of normal concentrations, a physiological priority. Persistent imbalance of glucose turnover leads to elevations (i.e., hyperglycemia, Ra>Rd) or falls (i.e., hypoglycemia, Ra
Collapse
Affiliation(s)
- Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Seoul,
Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Seoul,
Korea
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Seoul,
Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Seoul,
Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, Seoul,
Korea
| | - Yewon Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, Seoul,
Korea
| | - Cheol Soo Choi
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Seoul,
Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Seoul,
Korea
| | - Sang-Hoon Suh
- Department of Physical Education, Yonsei University, Seoul,
Korea
| | - Robert R. Wolfe
- Department of Geriatrics, the Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR,
USA
| |
Collapse
|
16
|
Maher JL, Baunsgaard CB, van Gerven J, Palermo AE, Biering-Sorensen F, Mendez A, Irwin RW, Nash MS. Differences in Acute Metabolic Responses to Bionic and Nonbionic Ambulation in Spinal Cord Injured Humans and Controls. Arch Phys Med Rehabil 2019; 101:121-129. [PMID: 31465760 DOI: 10.1016/j.apmr.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To (1) compare energy expenditure during seated rest, standing, and prolonged bionic ambulation or bipedal ambulation in participants with spinal cord injury (SCI) and noninjured controls, respectively, and (2) test effects on postbionic ambulation glycemia in SCI. DESIGN Two independent group comparison of SCI and controls. SETTING Academic Medical Center. PARTICIPANTS Ten participants with chronic SCI (C7-T1, American Spinal Injury Association Impairment Scale A-C) and 10 controls (N=20). INTERVENTIONS A commercial bionic exoskeleton. MAIN OUTCOME MEASURES Absolute and relative (to peak) oxygen consumption, perceived exertion, carbohydrate/fat oxidation, energy expenditure, and postbionic ambulation plasma glucose/insulin. RESULTS Average work intensity accompanying 45 minutes of outdoor bionic ambulation was <40% peak oxygen consumption, with negligible drift after reaching steady state. Rating of perceived exertion (RPE) did not differ between groups and reflected low exertion. Absolute energy costs for bionic ambulation and nonbionic ambulation were not different between groups despite a 565% higher ambulation velocity in controls and 3.3× higher kilocalorie per meter in SCI. Fuel partitioning was similar between groups and the same within groups for carbohydrate and fat oxidation. Nonsignificant (9%) lowering of the area under a glucose tolerance curve following bionic ambulation required 20% less insulin than at rest. CONCLUSION Work intensity during prolonged bionic ambulation for this bionic exoskeleton is below a threshold for cardiorespiratory conditioning but above seated rest and passive standing. Bionic ambulation metabolism is consistent with low RPE and unchanged fuel partitioning from seated rest. Bionic ambulation did not promote beneficial effects on glycemia in well-conditioned, euglycemic participants. These findings may differ in less fit individuals with SCI or those with impaired glucose tolerance. Observed trends favoring this benefit suggest they are worthy of testing.
Collapse
Affiliation(s)
- Jennifer L Maher
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.
| | | | - Jan van Gerven
- Radboud University, Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Anne E Palermo
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Armando Mendez
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Robert W Irwin
- Department of Physical Medicine and Rehabilitation, University of Miami, Miller School of Medicine, Miami, Florida
| | - Mark S Nash
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida; Department of Neurological Surgery and Physical Medicine & Rehabilitation, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Cauci S, Francescato MP, Curcio F. Combined Oral Contraceptives Increase High-Sensitivity C-Reactive Protein but Not Haptoglobin in Female Athletes. Sports Med 2018; 47:175-185. [PMID: 27084393 DOI: 10.1007/s40279-016-0534-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND No studies have examined the effects of oral hormonal contraception on chronic low-grade inflammation as assessed by stratified levels of high-sensitivity C-reactive protein (hsCRP) in athletes. We explored the impact of combined oral contraceptives (OCs) on serum hsCRP, haptoglobin, triglycerides and cholesterol in white female athletes. METHODS Italian sportswomen (n = 205; mean age 24 ± 5.3 years; body mass index 21 ± 2.2 kg m-2; sport activity 8.7 ± 3.65 h week-1) were analyzed according to OC use. RESULTS Progressive hsCRP levels were evaluated in OC users (n = 53) compared to non-OC users (n = 152). Levels of hsCRP from 3.0 to <10.0 mg L-1 (at high risk of future cardiovascular events) were found in 26.4 % (14/53) of OC users and only in 2.6 % (4/153) of non-OC users (OR = 13.3, 95 % CI 4.14-42.6, P < 0.001). Risky hsCRP levels ≥1.0 mg L-1 were found in 62.3 % of OC users versus 13.2 % non-OC users (OR = 10.9, 95 % CI 5.26-22.5, P < 0.001). Protective hsCRP levels (<0.5 mg L-1) were found in 17.0 % of OC users and in 64.5 % of non-OC users (OR = 0.11, 95 % CI 0.05-0.25, P < 0.001). OC use increased serum triglycerides (P < 0.001), total cholesterol (P = 0.027) and HDL cholesterol (P = 0.018), whereas haptoglobin was unaffected. Hours of exercise week-1 had a mild inverse association with hsCRP (P = 0.048) in non-OC users only. CONCLUSIONS OC use markedly elevated chronic low-grade inflammation in athletes, which could predispose to a higher inflammatory response to physical stress and elevate cardiovascular risk. Physical activity without OC use seemed to favor low hsCRP. Further research is needed to extend our results and to elucidate the potential effects on athletic performance of chronically elevated hsCRP. Our findings would be useful for sport physicians interpreting blood tests in athletes.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy.
| | - Maria Pia Francescato
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy
| | - Francesco Curcio
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy.,Clinical Analysis Laboratory, Department of Laboratory Medicine, Institute of Clinical Pathology, Santa Maria della Misericordia University-Hospital, Udine, 33100, Italy
| |
Collapse
|
18
|
Sarafian D, Schutz Y, Montani JP, Dulloo AG, Miles-Chan JL. Sex difference in substrate oxidation during low-intensity isometric exercise in young adults. Appl Physiol Nutr Metab 2016; 41:977-84. [PMID: 27540628 DOI: 10.1139/apnm-2016-0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-intensity physical activity is increasingly promoted as an alternative to sedentary behavior. However, much research to date has focused on moderate- to vigorous-intensity physical activity, and in particular dynamic work, with the effect of low-intensity isometric exercise (<4 METs) on substrate utilization yet to be explored. Here we investigate the effects of such exercise on respiratory quotient (RQ) and determine the extent of intra- and inter-individual variability in response. Energy expenditure, RQ, and substrate oxidation were measured by ventilated-hood indirect calorimetry at rest and in response to standardized, intermittent, low-level isometric leg-press exercises at 5 loads (+5, +10, +15, +20, +25 kg) in 26 healthy, young adults. Nine participants repeated the experiment on 3 separate days to assess within-subject, between-day variability. There was no significant difference in energy cost and heart rate responses to low-intensity isometric exercise (<2 METs) between men and women. However, a sex difference was apparent in terms of substrate oxidation - with men increasing both fat and carbohydrate oxidation, and women only increasing fat oxidation while maintaining carbohydrate oxidation at baseline, resting levels. This sex difference was repeatable and persisted when substrate oxidation was adjusted for differences in body weight or body composition. Individual variability in RQ was relatively low, with both intra- and inter-individual coefficients of variation in the range of 3%-6% in both sexes. These results suggest that women preferentially increase fat oxidation during low-level isometric exercise. Whether such physical activity could be incorporated into treatment/prevention strategies aimed at optimizing fat oxidation in women warrants further investigation.
Collapse
Affiliation(s)
- Delphine Sarafian
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.,Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Yves Schutz
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.,Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Jean-Pierre Montani
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.,Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Abdul G Dulloo
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.,Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Jennifer L Miles-Chan
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.,Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| |
Collapse
|
19
|
Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp Mol Med 2016; 48:e203. [PMID: 26795236 PMCID: PMC4686699 DOI: 10.1038/emm.2015.97] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022] Open
Abstract
The human body is in a constant state of turnover, that is, being synthesized, broken down and/or converted to different compounds. The dynamic nature of in vivo kinetics of human metabolism at rest and in stressed conditions such as exercise and pathophysiological conditions such as diabetes and cancer can be quantitatively assessed with stable, nonradioactive isotope tracers in conjunction with gas or liquid chromatography mass spectrometry and modeling. Although measurements of metabolite concentrations have been useful as general indicators of one's health status, critical information on in vivo kinetics of metabolites such as rates of production, appearance or disappearance of metabolites are not provided. Over the past decades, stable, nonradioactive isotope tracers have been used to provide information on dynamics of specific metabolites. Stable isotope tracers can be used in conjunction with molecular and cellular biology tools, thereby providing an in-depth dynamic assessment of metabolic changes, as well as simultaneous investigation of the molecular basis for the observed kinetic responses. In this review, we will introduce basic principles of stable isotope methodology for tracing in vivo kinetics of human or animal metabolism with examples of quantifying certain aspects of in vivo kinetics of carbohydrate, lipid and protein metabolism.
Collapse
|
20
|
Deldicque L, Francaux M. Recommendations for Healthy Nutrition in Female Endurance Runners: An Update. Front Nutr 2015; 2:17. [PMID: 26075206 PMCID: PMC4443719 DOI: 10.3389/fnut.2015.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
The purpose of this review is to present the basic principles of a healthy nutrition in female endurance runner enriched by the latest scientific recommendations. Female endurance runners are a specific population of athletes who need to take specifically care of daily nutrition due to the high load of training and the necessity to keep a rather low body mass. This paradoxical situation can create some nutritional imbalances and deficiencies. Female endurance athletes should pay attention to their total energy intake, which is often lower than their energy requirement. The minimal energy requirement has been set to 45 kcal/kg fat free mass/day plus the amount of energy needed for physical activity. The usual recommended amount of 1.2–1.4 g protein/kg/day has recently been questioned by new findings suggesting that 1.6 g/kg/day would be more appropriate for female athletes. Although a bit less sensitive to carbohydrate loading than their male counterparts, female athletes can benefit from this nutritional strategy before a race if the amount of carbohydrates reaches 8 g/kg/day and if their daily total energy intake is sufficient. A poor iron status is a common issue in female endurance runners but iron-enriched food as well as iron supplementation may help to counterbalance this poor status. Finally, they should also be aware that they may be at risk for low calcium and vitamin D levels.
Collapse
Affiliation(s)
- Louise Deldicque
- Exercise Physiology Research Group, Department of Kinesiology, Faber, KU Leuven , Leuven , Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain , Louvain-la-Neuve , Belgium
| |
Collapse
|
21
|
Blaize AN, Potteiger JA, Claytor RP, Noe DA. Body fat has no effect on the maximal fat oxidation rate in young, normal, and overweight women. J Strength Cond Res 2015; 28:2121-6. [PMID: 24796985 DOI: 10.1519/jsc.0000000000000512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to examine how fat mass affects the maximal fat oxidation rates of women. Fourteen active, healthy women (age, 21-31 years) with body composition ranging from 18.6 to 30.0% fat were divided into 2 groups (15-24.9% = lower-fat group; 25-35% = higher-fat group). On day 1, subjects performed a graded exercise test on the treadmill to determine maximal oxygen consumption (VO2max). On day 2, subjects were measured for % fat and performed a maximal fat oxidation test. Fat and carbohydrate oxidation rates were determined using gas exchange analysis. Fat oxidation in absolute (in gram per minute) and relative to fat-free body mass (in milligram per kilogram of fat-free mass per minute) was determined using stoichiometric equations and appropriate energy equivalents. There were no significant differences (p > 0.05) in maximal fat oxidation rates between the women in lower-fat (0.39 ± 0.10 g·min-1, 8.52 ± 2.69 mg·kg FFM·min-1) and higher-fat (0.49 ± 0.13 g·min-1, 10.81 ± 2.80 mg·kg-1 FFM·min-1) groups. Maximal fat oxidation occurred at an exercise intensity of 55.7 ± 11.1% and 59.1 ± 5.4% VO2max for the lower-fat and higher-fat groups, respectively, with no significant difference between groups (p > 0.05). The maximal fat oxidation rate (g·min-1 and mg·kg-1 FFM·min-1) was not significantly correlated with any of the descriptive variables (fat mass, fat-free mass, percent body fat, or VO2max). In conclusion, personal trainers and health practitioners can use the exercise intensities that elicited the highest rate of fat oxidation to prescribe exercise programs to women, despite their body composition, that prevent weight gain and/or promote body fat and body weight loss.
Collapse
Affiliation(s)
- Ashley N Blaize
- 1Department of Kinesiology and Health, Miami University, Oxford, Ohio; 2Department of Movement Science, Grand Valley State University, Grand Rapids, Michigan; and 3Department of Statistics, Miami University, Oxford, Ohio
| | | | | | | |
Collapse
|
22
|
Maximal fat oxidation, but not aerobic capacity, is affected by oral contraceptive use in young healthy women. Eur J Appl Physiol 2014; 115:937-45. [PMID: 25519952 DOI: 10.1007/s00421-014-3075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Synthetic ovarian hormones contained in oral contraceptives (OC) may alter the aerobic capacity and lipid metabolism in oral contraceptive users (OC+) compared with non-users (OC-). The aim of this study was thus to investigate the differences between OC- and OC+ (1) in cardiorespiratory parameters at the anaerobic threshold (AT) and at the maximal aerobic capacity and (2) in the exercise intensity (Lipoxmax) at which lipid oxidation rate is maximal (MLOR). METHODS Twenty-one healthy untrained women (22.0 ± 0.6 years old) who took OC (OC+; low-dose monophasic OC, n = 11) or not (OC-; n = 10) performed two experimental exercise sessions. In the first one, cardiorespiratory parameters at the AT and at the maximal aerobic capacity were assessed during a maximal incremental exercise session. In the second one, Lipoxmax and MLOR were measured during a submaximal incremental exercise session. RESULTS No significant difference was observed in cardiorespiratory parameters at the AT and at the maximal aerobic capacity between OC+ and OC- women. OC+ women showed higher MLOR (7.6 ± 1.9 vs 4.6 ± 1.0 mg min(-1) kg FFM(-1); p < 0.01) that was elicited by higher Lipoxmax (45.2 ± 5.2 vs 36.2 ± 4.1 % of VO2max; p < 0.001) compared to OC- women. CONCLUSIONS OC+ and OC- women did not differ in cardiorespiratory parameters at the AT and at the maximal aerobic capacity. However, OC+ women show higher MLOR and Lipoxmax compared with OC- women. The hormonal status appears to be an important MLOR and Lipoxmax determinant in untrained women.
Collapse
|
23
|
Isacco L, Thivel D, Meddahi-Pelle A, Lemoine-Morel S, Duclos M, Boisseau N. Exercise per se masks oral contraceptive-induced postprandial lipid mobilization. Appl Physiol Nutr Metab 2014; 39:1222-9. [DOI: 10.1139/apnm-2014-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of their hormonal content, oral contraceptives may alter lipolytic activity under resting or exercise conditions in women. The aim of the present study was to compare lipid mobilization in a postprandial state at rest and during exercise in oral contraceptive users (OC+) versus nonusers (OC–). The metabolic (glucose, glycerol, free fatty acids) and hormonal (insulin, atrial natriuretic peptide (ANP), growth hormone, insulin-like growth factor-1 (IGF-1), and catecholamines) concentrations were determined in 11 OC+ (monophasic low-dose oral contraceptives) and 10 OC– during a resting and an exercise session (45 min at 65% maximal oxygen consumption). Results were expressed as plasma concentrations and area under the concentration versus time curve values. ANP concentrations were higher in OC+ compared with OC– women at baseline (p = 0.04). Plasma concentrations of glycerol (p = 0.04), free fatty acids (p = 0.04), ANP (p = 0.02), and noradrenaline (p = 0.04) were higher in OC+ compared with OC– when both sessions were pooled. The plasma growth hormone, IGF-1, and adrenaline concentrations were not significantly different between the 2 groups. When the effect of exercise was isolated to overcome food intake and daytime variations (exercise per se using the area under the curve), no difference was observed between groups for all metabolic and hormonal variables. Overall, oral contraceptives increased lipid mobilization in the postprandial state, but this effect was blunted when lipolytic activity was stimulated by exercise per se. Oral contraceptive-induced greater lipolytic mobilization could be partly explained by greater ANP levels in OC users.
Collapse
Affiliation(s)
- Laurie Isacco
- Laboratory Culture Sport Health Society, and Exercise Performance, Health, Innovation Platform, Franche-Comte University, F-25000 Besançon, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Clermont University, Blaise Pascal University BP 10448, F-63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine (CRNH)-Auvergne, Clermont-Ferrand, F-63001 France
| | - Anne Meddahi-Pelle
- Bioengineering for Cardiovascular Imaging and Therapy, Institut National de la Santé Et de la Recherche Médicale (INSERM) U698, 46 rue Huchard, 75018 Paris, France
- Paris University 13, Institut Universitaire de Technologie (IUT) of Saint-Denis, France
| | - Sophie Lemoine-Morel
- Laboratory Movement Sport and Health Sciences, University of Rennes 2, Avenue Charles Tillon, 35044 Rennes Cedex, France
| | - Martine Duclos
- Centre de Recherche en Nutrition Humaine (CRNH)-Auvergne, Clermont-Ferrand, F-63001 France
- Department of Sport Medicine and Functional Explorations, Clermont-Ferrand University Hospital (CHU), G. Montpied Hospital, Clermont-Ferrand, F-63003 France
- Institut National de la Recherche Agronomique (INRA), Clermont-Ferrand, F-63001 France
- Department of Medicine, University Clermont 1, Clermont-Ferrand, F-63001 France
| | - Nathalie Boisseau
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Clermont University, Blaise Pascal University BP 10448, F-63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine (CRNH)-Auvergne, Clermont-Ferrand, F-63001 France
| |
Collapse
|
24
|
Henderson GC. Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism. Front Endocrinol (Lausanne) 2014; 5:162. [PMID: 25339941 PMCID: PMC4188128 DOI: 10.3389/fendo.2014.00162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022] Open
Abstract
Exercise training is generally a healthful activity and an effective intervention for reducing the risk of numerous chronic diseases including cardiovascular disease and diabetes. This is likely both a result of prevention of weight gain over time and direct effects of exercise on metabolism of lipids and the other macronutrient classes. Importantly, a single bout of exercise can alter lipid metabolism and metabolic rate for hours and even into the day following exercise, so individuals who regularly exercise, even if not performed every single day, overall could experience a substantial change in their resting metabolism that would reduce risk for metabolic diseases. However, resting metabolism does not respond similarly in all individuals to exercise participation, and indeed gender or sex is a major determinant of the response of resting lipid metabolism to prior exercise. In order to fully appreciate the metabolic effects and health benefits of exercise, the differences between men and women must be considered. In this article, the differences in the effects of exercise on resting metabolic rate, fuel selection after exercise, as well as the shuttling of triglyceride and fatty acids between tissues are discussed. Furthermore, concepts related to sex differences in the precision of homeostatic control and sex differences in the integration of metabolism between various organs are considered.
Collapse
Affiliation(s)
- Gregory C. Henderson
- Department of Exercise Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
- *Correspondence: Gregory C. Henderson, Department of Exercise Science, Rutgers Center for Lipid Research, Rutgers University, 70 Lipman Drive, Loree Building, New Brunswick, NJ 08901, USA e-mail:
| |
Collapse
|
25
|
Jacobs KA, Burns P, Kressler J, Nash MS. Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia. J Spinal Cord Med 2013; 36:427-35. [PMID: 23941790 PMCID: PMC3739892 DOI: 10.1179/2045772313y.0000000123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CONTEXT/OBJECTIVE To describe and compare substrate oxidation and partitioning during voluntary arm ergometry in individuals with paraplegia and non-disabled individuals over a wide range of exercise intensities. DESIGN Cross-sectional study. SETTING Clinical research facility. PARTICIPANTS Ten apparently healthy, sedentary men with paraplegia and seven healthy, non-disabled subjects. INTERVENTIONS Rest and continuous progressive voluntary arm ergometry between 30 and 80% of peak aerobic capacity (VO2peak). OUTCOME MEASURES Total energy expenditure and whole body rates of fat and carbohydrate oxidation. RESULTS A maximal whole body fat oxidation (WBFO) rate of 0.13 ± 0.07 g/minute was reached at 41 ± 9% VO2peak for subjects with paraplegia, although carbohydrate became the predominant fuel source during exercise exceeding an intensity of 30-40% VO2peak. Both the maximal WBFO rate (0.06 ± 0.04 g/minute) and the intensity at which it occurred (13 ± 3% VO2peak) were significantly lower for the non-disabled subjects than those with paraplegia. CONCLUSION Sedentary individuals with paraplegia are more capable of oxidizing fat during voluntary arm ergometry than non-disabled individuals perhaps due to local adaptations of upper body skeletal muscle used for daily locomotion. However, carbohydrate is the predominant fuel source oxidized across a wide range of intensities during voluntary arm ergometry in those with paraplegia, while WBFO is limited and maximally achieved at low exercise intensities compared to that achieved by able-bodied individuals during leg ergometry. These findings may partially explain the diminished rates of fat loss imposed by acute bouts of physical activity in those with paraplegia.
Collapse
Affiliation(s)
- Kevin A. Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, FL, USA,Correspondence to: Kevin A Jacobs, Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL 33146, USA.
| | - Patricia Burns
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, FL, USA
| | - Jochen Kressler
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, FL, USA
| | - Mark S. Nash
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, FL, USA; Department of Neurological Surgery, Miller School of Medicine, University of Miami, FL, USA; and Department of Rehabilitation Medicine, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
26
|
Isacco L, Duché P, Boisseau N. Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sports Med 2012; 42:327-42. [PMID: 22380007 DOI: 10.2165/11598900-000000000-00000] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During exercise, substrate utilization plays a major role in performance and disease prevention. The contribution of fat and carbohydrates to energy expenditure during exercise is modulated by several factors, including intensity and duration of exercise, age, training and diet, but also gender. Because sex hormone levels change throughout a woman's lifetime (in connection with puberty, the menstrual cycle, use of oral contraceptives and menopause), the female population has to be considered specifically in terms of substrate utilization, and metabolic and hormonal responses to exercise. Before puberty, there is no difference between males and females when it comes to substrate oxidation during exercise. This is not the case during adulthood, since women are known to rely more on fat than men for the same relative intensity of exercise. Among adult women, the menstrual cycle and use of oral contraceptives may influence substrate oxidation. While some authors have noted that the luteal phase of the menstrual cycle is connected with greater lipid oxidation, compared with the follicular stage, other authors have found no difference. Among oral contraceptive users, fat oxidation is sometimes increased during prolonged exercise with a concomitant rise in lipolytic hormones, as well as growth hormone. If this result is not always observed, the type of oral contraceptive (monophasic vs triphasic) and hormone doses may be implicated. Menopause represents a hormonal transition in a woman's life, leading to a decline in ovarian hormone production. A decrease in fat oxidation is consequently observed, and some studies have demonstrated a similar respiratory exchange ratio during prolonged exercise in postmenopausal women and in men. As is the case during puberty, no sex difference should thus appear after menopause in the absence of hormonal replacement therapy (HRT). Results concerning women who take HRT remain conflicting. HRT may act on fat loss by increasing lipid metabolism, but this depends on how the treatment is administered (orally vs transdermally). To better understand the role of ovarian hormones in substrate oxidation, studies have made use of animal protocols to investigate cellular mechanisms. Estradiol and progesterone seem to have opposite effects, with greater lipid oxidation when estradiol is used alone. However, the concentrations used (physiological levels or pharmacological doses) may considerably modify fuel selection. In cases where conflicting data are observed in studies of substrate utilization and prolonged exercise in women, methodological reasons must be called into question. Too many parameters, which oftentimes are not specified, may modulate substrate utilization and metabolic and hormonal responses to prolonged exercise. Although information is generally provided about the type of exercise, its duration and the subjects' training level, detailed information is not always given about the subjects' nutritional state and, more specifically, the hormonal status of female subjects. The primary purpose of this review was to identify the impact of hormonal status on substrate oxidation among female subjects at rest and during exercise. A second aim was to describe gender differences in substrate utilization during exercise.
Collapse
Affiliation(s)
- Laurie Isacco
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Clermont University, Blaise Pascal University, Aubière, France
| | | | | |
Collapse
|
27
|
Oosthuyse T, Bosch AN. Oestrogen's regulation of fat metabolism during exercise and gender specific effects. Curr Opin Pharmacol 2012; 12:363-71. [PMID: 22398320 DOI: 10.1016/j.coph.2012.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 12/01/2022]
Abstract
Early animal, menstrual phase and gender comparative studies inconsistently support an oestrogen-induced increase in fat oxidation during exercise. Recent advances from studies of cellular signalling and gene expression provide evidence for inter-tissue and intramuscular mechanisms that demonstrate oestrogen's promotion of skeletal muscle fat oxidative capacity. Oestrogen or oestrogen-analogues act mainly through oestrogen receptor-alpha in skeletal muscle to stimulate the genomic expression of certain other nuclear hormone receptors and downstream targets to promote long chain fatty acid (LCFA) uptake, mitochondrial shuttling and β oxidation. Oestrogen increases the availability of LCFA substrate by enhancing adipocyte lipolysis and expression of genes promoting intramyocellular lipid storage. Oestrogen acts by non-genomic means to increase the activation of AMPK that may reinforce some direct genomic actions.
Collapse
Affiliation(s)
- Tanja Oosthuyse
- Exercise Laboratory, School of Physiology, Faculty of Health Science, University of Witwatersrand, Medical School, Johannesburg, South Africa.
| | | |
Collapse
|
28
|
Tremblay J, Peronnet F, Massicotte D, Lavoie C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sports Exerc 2010; 42:1314-23. [PMID: 20019632 DOI: 10.1249/mss.0b013e3181cbba0b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE To compare the effects of a high-CHO diet (80% CHO) and glucose ingestion (2 g x kg(-1)) during exercise (120 min, 57% VO2max) on fuel selection in women taking (W+OC) or not (W-OC) oral contraceptives and in men (six in each group). METHODS Substrate oxidation was measured using indirect respiratory calorimetry in combination with a tracer technique to compute the oxidation of exogenous (13C-glucose) and endogenous CHO. RESULTS In the control situation (mixed diet with water ingestion during exercise), the percent contribution to the energy yield (%En) of CHO oxidation was higher in men than in women (62 vs 53 %En). The high-CHO diet and glucose ingestion during exercise separately increased the %En from CHO oxidation in both men (+12%) and women (+24%), and the sex difference observed in the control situation disappeared. However, the increase in the %En from total CHO oxidation observed when glucose was ingested during exercise and when combined with a high-CHO diet was larger in women than in men (+47 vs +17 %En). This was not attributable to a higher %En from exogenous glucose oxidation in women, for which no sex difference was observed (25 and 27 %En in men and women), but was attributable to a smaller decrease in endogenous glucose oxidation. No significant difference in fuel selection was observed between W+OC and W-OC. CONCLUSIONS The increase in total CHO oxidation after the high-CHO diet was not different between sexes. Glucose ingestion during exercise, separately and combined to the high-CHO diet, had a greater effect in women than in men; this was mostly attributable to the smaller reduction in endogenous CHO oxidation.
Collapse
Affiliation(s)
- Jonathan Tremblay
- Department of Kinesiology, University of Montreal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
29
|
Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Effect of gender on the metabolic impact of a commercially available thermogenic drink. J Strength Cond Res 2010; 24:1633-42. [PMID: 20508469 DOI: 10.1519/jsc.0b013e3181db9bbd] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to examine the gender effect of daily consumption of a thermogenic drink (TD) containing caffeine, epigallocatechin gallate, and taurine. In a single-blind, matched-pairs, placebo-controlled study, 60 participants (n=30 men and n=30 women) were matched in a balanced fashion according to age and body mass. Participants completed determination of body composition, resting energy expenditure (REE), and serum levels of glycerol and free fatty acids before and after ingesting either 336 mL of a TD or a noncaloric, noncaffeinated placebo (PLA). Participants were supplemented daily with 336 mL of either the TD or PLA and repeated identical testing procedures on day 28. Area under the curve (AUC) analysis on days 0 and 28 were calculated for all blood variables (e.g., glycerol and free fatty acids) and analyzed with REE, respiratory exchange ratio, dietary records, and body composition with separate repeated-measure analyses of variance. On days 0 and 28, REE AUC (p<0.001) was greater in all men compared with in women. Women ingesting the TD had significantly greater free fatty acid AUC values (p=0.002) when compared with those of men. A significant interaction for glycerol AUC (p=0.02) revealed greater glycerol concentrations in the male PLA group, which decreased in all other groups from days 0 to 28. The male TD group lost significantly more percent body fat (p=0.02) than did the female PLA group. The popularity of thermogenic drinks to promote weight loss and body composition changes has grown exponentially. Gender differences after drink ingestion may impact the resulting adaptations and how successful their inclusion impacts weight loss and body-composition changes in those following a regular diet and exercise program.
Collapse
Affiliation(s)
- Vincent J Dalbo
- School of Medicine and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | | | | | | |
Collapse
|
30
|
|
31
|
O'Sullivan AJ. Does oestrogen allow women to store fat more efficiently? A biological advantage for fertility and gestation. Obes Rev 2009; 10:168-77. [PMID: 19021869 DOI: 10.1111/j.1467-789x.2008.00539.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In normal healthy-weight humans, women have a higher percentage body fat than men, a difference that commences at puberty and continues throughout adult life, suggesting that the mechanism is related to sex steroids. The first half of pregnancy is also a stage of body fat gain in women. From an energy balance point, there is no explanation why women should be fatter than men, as the latter consume more calories proportionately. Moreover, women store fat in early pregnancy when caloric intake does not significantly change. The aim of this review is to focus on evidence supporting one mechanism that may account for these findings. That is, oestrogen reduces postprandial fatty acid oxidation leading to an increase in body fat which may account for the greater fat mass observed in women compared with men and the fat gain in early pregnancy. Therefore, female puberty and early pregnancy could be seen as states of efficient fat storage of energy in preparation for fertility, foetal development and lactation providing an obvious biological advantage. Further research into this mechanism of fat storage may provide further insights into the regulation of body fat.
Collapse
Affiliation(s)
- A J O'Sullivan
- Department of Medicine, St George Hospital, University of New South Wales, Sydney, Australia.
| |
Collapse
|
32
|
Abstract
It is now estimated that the prevalence of oral contraceptive use in athletic women matches that of women in the general population. The oral contraceptive pill (OCP) reduces cycle-length variability and provides a consistent 28-day cycle by controlling concentrations of endogenous sex hormones. The OCP is administered in three different forms that differ widely in chemical constitution and concomitant effects on the human body. As fluctuation in sex steroids are believed to be a possible causal factor in performance and exercise capacity, it is imperative to understand the effect of administering the various types of OCP on women. However, the research into oral contraceptives and exercise performance is not consistent. The type of OCP administered (monophasic, biphasic or triphasic), as well as the type and dose of estrogen and progestogen within, will have varying effects on exercise. To date, research in the area of oral contraceptives and exercise capacity is sparse and much has been plagued by poor research design, methodology and small sample size. It is clear from the research to date that more randomised clinical trials are urgently required to assess the array of OCP formulations currently available to women and their concomitant effect on health and exercise capacity. Therefore, the purpose of this article is to critically appraise the literature to date and to provide a current review of the physiological scientific knowledge base in relation to the OCP and exercise performance. In addition, methodological control, design and conduct will be considered with future areas of research highlighted.
Collapse
|
33
|
Henderson GC, Fattor JA, Horning MA, Faghihnia N, Johnson ML, Mau TL, Luke-Zeitoun M, Brooks GA. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J Physiol 2007; 584:963-81. [PMID: 17855762 PMCID: PMC2277001 DOI: 10.1113/jphysiol.2007.137331] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We sought to determine whether lipolysis, fatty acid (FA) mobilization, and plasma FA oxidation would remain elevated for hours following isoenergetic exercise bouts of different intensities. Ten men and eight women received a primed-continuous infusion of [1,1,2,3,3-(2)H(5)]glycerol and continuous infusion of [1-(13)C]palmitate to measure glycerol and plasma FA kinetics. On Day 1 (D1), participants were studied under one of three different conditions, assigned in random order: (1) before, during and 3 h after 90 min of exercise at 45% V(O2)peak (E45), (2) before, during and 3 h after 60 min of exercise at 65% V(O2)peak (E65), and (3) in a time-matched sedentary control trial (C). For each condition, participants were studied by indirect calorimetry the following morning as well (D2). Rate of appearance (Ra) of glycerol (Ra(GL)) increased above C during exercise in men and women (P < 0.05), was higher in E45 than E65 in men (P < 0.05), and was not different between exercise intensities in women. During 3 h of postexercise recovery, Ra(GL) remained significantly elevated in men (P < 0.05), but not women. FA Ra (Ra(FA)) increased during exercise in men and women and was higher in E45 than E65 (P < 0.05), and remained elevated during 3 h of postexercise recovery in both sexes (P < 0.05), but with a greater relative increase in men than women (P < 0.05). Plasma FA oxidation (Rox) increased during exercise with no difference between intensities, and it remained elevated during 3 h of postexercise recovery in both sexes (P < 0.05). Total lipid oxidation (Lox) was elevated in both sexes (P < 0.05), but more in men during 3 h of postexercise recovery on D1 (P < 0.05) and remained elevated on D2 in men (P < 0.05), but not in women. There were no differences between E45 and E65 for postexercise energy substrate turnover or oxidation in men and women as energy expenditure of exercise (EEE) was matched between bouts. We conclude that the impact of exercise upon lipid metabolism persists into recovery, but that women depend more on lipid during exercise whereas, during recovery, lipid metabolism is accentuated to a greater extent in men.
Collapse
Affiliation(s)
- Gregory C Henderson
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Henderson GC, Fattor JA, Horning MA, Faghihnia N, Luke-Zeitoun M, Brooks GA. Retention of intravenously infused [13C]bicarbonate is transiently increased during recovery from hard exercise. J Appl Physiol (1985) 2007; 103:1604-12. [PMID: 17702837 DOI: 10.1152/japplphysiol.00309.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of exercise on energy substrate metabolism persist into the postexercise recovery period. We sought to derive bicarbonate retention factors (k) to correct for carbon tracer oxidized, but retained from pulmonary excretion before, during, and after exercise. Ten men and nine women received a primed-continuous infusion of [(13)C]bicarbonate (sodium salt) under three different conditions: 1) before, during, and 3 h after 90 min of exercise at 45% peak oxygen consumption (Vo(2peak)); 2) before, during, and 3 h after 60 min of exercise at 65% Vo(2peak); and 3) during a time-matched resting control trial, with breath samples collected for determination of (13)CO(2) excretion rates. Throughout the resting control trial, k was stable and averaged 0.83 in men and women. During exercise, average k in men was 0.93 at 45% Vo(2peak) and 0.94 at 65% Vo(2peak), and in women k was 0.91 at 45% Vo(2peak) and 0.92 at 65% Vo(2peak), with no significant differences between intensities or sexes. After exercise at 45% Vo(2peak), k returned rapidly to control values in men and women, but following exercise at 65% Vo(2peak), k was significantly less than control at 30 and 60 min postexercise in men (0.74 and 0.72, respectively, P < 0.05) and women (0.75 and 0.76, respectively, P < 0.05) with no significant postexercise differences between men and women. We conclude that bicarbonate/CO(2) retention is transiently increased in men and women for the first hour of postexercise recovery following endurance exercise bouts of hard but not moderate intensity.
Collapse
Affiliation(s)
- Gregory C Henderson
- Exercise Physiology Laboratory, Dept. of Integrative Biology, 5101 Valley Life Sciences Bldg., Univ. of California, Berkeley, Berkeley, CA 94720-3140, USA
| | | | | | | | | | | |
Collapse
|
35
|
Friedlander AL, Jacobs KA, Fattor JA, Horning MA, Hagobian TA, Bauer TA, Wolfel EE, Brooks GA. Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training. Am J Physiol Endocrinol Metab 2007; 292:E107-16. [PMID: 16896167 DOI: 10.1152/ajpendo.00148.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.
Collapse
Affiliation(s)
- Anne L Friedlander
- Dept. of Integrative Biology, 3060 Valley Life Science Bldg., Univ. of California Berkeley, Berkeley, CA 94720-3140, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jacobs KA, Krauss RM, Fattor JA, Horning MA, Friedlander AL, Bauer TA, Hagobian TA, Wolfel EE, Brooks GA. Endurance training has little effect on active muscle free fatty acid, lipoprotein cholesterol, or triglyceride net balances. Am J Physiol Endocrinol Metab 2006; 291:E656-65. [PMID: 16684856 DOI: 10.1152/ajpendo.00020.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the hypothesis that net leg total FFA, LDL-C, and TG uptake and HDL-C release during moderate-intensity cycling exercise would be increased following endurance training. Eight sedentary men (26 +/- 1 yr, 77.4 +/- 3.7 kg) were studied in the postprandial state during 90 min of rest and 60 min of exercise twice before (45% and 65% V(O2 peak)) and twice after 9 wk of endurance training (55% and 65% posttraining V(O2 peak)). Measurements across an exercising leg were taken to be a surrogate for active skeletal muscle. To determine limb lipid exchange, femoral arterial and venous blood samples drawn simultaneously at rest and during exercise were analyzed for total and individual FFA (e.g., palmitate, oleate), LDL-C, HDL-C, and TG concentrations, and limb blood flow was determined by thermodilution. The transition from rest to exercise resulted in a shift from net leg total FFA release (-44 +/- 16 micromol/min) to uptake (193 +/- 49 micromol/min) that was unaffected by either exercise intensity or endurance training. The relative net leg release and uptake of individual FFA closely resembled their relative abundances in the plasma with approximately 21 and 41% of net leg total FFA uptake during exercise accounted for by palmitate and oleate, respectively. Endurance training resulted in significant changes in arterial concentrations of HDL-C (49 +/- 5 vs. 52 +/- 5 mg/dl, pre vs. post) and LDL-C (82 +/- 9 vs. 76 +/- 9 mg/dl, pre vs. post), but there was no net TG or LDL-C uptake or HDL-C release across the resting or active leg before or after endurance training. In conclusion, endurance training favorably affects blood lipoprotein profiles, even in young, healthy normolipidemic men, but muscle contractions per se have little effect on net leg LDL-C, or TG uptake or HDL-C release during moderate-intensity cycling exercise. Therefore, the favorable effects of physical activity on the lipid profiles of young, healthy normolipidemic men in the postprandial state are not attributable to changes in HDL-C or LDL-C exchange across active skeletal muscle.
Collapse
MESH Headings
- Adolescent
- Adult
- Apolipoproteins/blood
- Body Composition
- Body Weight
- Body Weights and Measures
- Cholesterol, HDL/blood
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/blood
- Cholesterol, LDL/metabolism
- Fatty Acids/analysis
- Fatty Acids/blood
- Fatty Acids/metabolism
- Fatty Acids, Nonesterified/analysis
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/blood
- Fatty Acids, Unsaturated/metabolism
- Heart Rate/physiology
- Humans
- Leg/blood supply
- Lipid Metabolism/physiology
- Lipoproteins, LDL/chemistry
- Male
- Muscle, Skeletal/metabolism
- Physical Endurance/physiology
- Pulmonary Gas Exchange/physiology
- Regional Blood Flow/physiology
- Triglycerides/blood
- Triglycerides/metabolism
Collapse
|
37
|
Koutsari C, Jensen MD. Thematic review series: Patient-Oriented Research. Free fatty acid metabolism in human obesity. J Lipid Res 2006; 47:1643-50. [PMID: 16685078 DOI: 10.1194/jlr.r600011-jlr200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue lipolysis provides circulating FFAs to meet the body's lipid fuel demands. FFA release is well regulated in normal-weight individuals; however, in upper-body obesity, excess lipolysis is commonly seen. This abnormality is considered a cause for at least some of the metabolic defects (dyslipidemia, insulin resistance) associated with upper-body obesity. "Normal" lipolysis is sex-specific and largely determined by the individual's resting metabolic rate. Women have greater FFA release rates than men without higher FFA concentrations or greater fatty acid oxidation, indicating that they have greater nonoxidative FFA disposal, although the processes and tissues involved in this phenomenon are unknown. Therefore, women have the advantage of having greater FFA availability without exposing their tissues to higher and potentially harmful FFA concentrations. Upper-body fat is more lipolytically active than lower-body fat in both women and men. FFA released by the visceral fat depot contributes only a small percentage of systemic FFA delivery. Upper-body subcutaneous fat is the dominant contributor to circulating FFAs and the source of the excess FFA release in upper-body obesity. We believe that abnormalities in subcutaneous lipolysis could be more important than those in visceral lipolysis as a cause of peripheral insulin resistance. Understanding the regulation of FFA availability will help to discover new approaches to treat FFA-induced abnormalities in obesity.
Collapse
|
38
|
Horton TJ, Miller EK, Bourret K. No effect of menstrual cycle phase on glycerol or palmitate kinetics during 90 min of moderate exercise. J Appl Physiol (1985) 2006; 100:917-25. [PMID: 16467391 DOI: 10.1152/japplphysiol.00491.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The systemic flux of glycerol and palmitate [a representative nonesterified free fatty acid (NEFA)] was assessed in three different phases of the menstrual cycle at rest and during moderate-intensity exercise. It was hypothesized that circulating glycerol and NEFA turnover would be greatest in the midfollicular (MF) phase of the menstrual cycle, when estrogen is elevated but progesterone low, followed by the midluteal phase (ML; high estrogen and progesterone), and lowest in the early follicular (EF) phase of the menstrual cycle (low estrogen and progesterone). Subjects included moderately active, eumenorrheic, healthy women. Testing occurred after 3 days of diet control and after an overnight fast (12-13 h). Resting and exercise (50% maximal oxygen uptake, 90 min) measurements of tracer-determined glycerol and palmitate kinetics were made. There was a significant increase in both glycerol and palmitate turnover from rest to exercise in all phases of the menstrual cycle (P<0.0001). No significant differences, however, were observed between cycle phases in the systemic flux of glycerol or palmitate, at rest or during exercise. Maximal peripheral lipolysis during exercise, as represented by glycerol rate of appearance at 90 min, equaled 8.45+/-0.96, 8.35+/-1.12, and 7.71+/-0.96 micromol.kg-1.min-1 in the EF, MF, and ML phases, respectively. Circulating free fatty acid utilization also peaked at 90 min of exercise, as indicated by the palmitate rate of disappearance (3.31+/-0.35, 3.17+/-0.39, and 3.47+/-0.26 micromol.kg-1.min-1) in the EF, MF, and ML phases, respectively. In conclusion, systemic rates of glycerol and NEFA turnover (as represented by palmitate flux) were not significantly affected by the cyclic fluctuations in estrogen and progesterone that occur throughout the normal menstrual cycle, either at rest or during 90 min of moderate exercise.
Collapse
Affiliation(s)
- Tracy J Horton
- Department of Pediatrics, Campus Box C225, Univ. of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA.
| | | | | |
Collapse
|