1
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
2
|
Odongo K, Abe A, Kawasaki R, Kawabata K, Ashida H. Two Prenylated Chalcones, 4-Hydroxyderricin, and Xanthoangelol Prevent Postprandial Hyperglycemia by Promoting GLUT4 Translocation via the LKB1/AMPK Signaling Pathway in Skeletal Muscle Cells. Mol Nutr Food Res 2024; 68:e2300538. [PMID: 38267744 DOI: 10.1002/mnfr.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Indexed: 01/26/2024]
Abstract
SCOPE Stimulation of glucose uptake in the skeletal muscle is crucial for the prevention of postprandial hyperglycemia. Insulin and certain polyphenols enhance glucose uptake through the translocation of glucose transporter 4 (GLUT4) in the skeletal muscle. The previous study reports that prenylated chalcones, 4-hydroxyderricin (4-HD), and xanthoangelol (XAG) promote glucose uptake and GLUT4 translocation in L6 myotubes, but their underlying molecular mechanism remains unclear. This study investigates the mechanism in L6 myotubes and confirms antihyperglycemia by 4-HD and XAG. METHODS AND RESULTS In L6 myotubes, 4-HD and XAG promote glucose uptake and GLUT4 translocation through the activation of adenosine monophosphate-activated protein kinase (AMPK) and liver kinase B1 (LKB1) signaling pathway without activating phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and Janus kinases (JAKs)/signal transducers and activators of transcriptions (STATs) pathways. Moreover, Compound C, an AMPK-specific inhibitor, as well as siRNA targeting AMPK and LKB1 completely canceled 4-HD and XAG-increased glucose uptake. Consistently, oral administration of 4-HD and XAG to male ICR mice suppresses acute hyperglycemia in an oral glucose tolerance test. CONCLUSION In conclusion, LKB1/AMPK pathway and subsequent GLUT4 translocation in skeletal muscle cells are involved in Ashitaba chalcone-suppressed acute hyperglycemia.
Collapse
Affiliation(s)
- Kevin Odongo
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Ayane Abe
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Rina Kawasaki
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Kyuichi Kawabata
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
3
|
Mirzoev TM, Paramonova II, Rozhkov SV, Kalashnikova EP, Belova SP, Tyganov SA, Vilchinskaya NA, Shenkman BS. Metformin Pre-Treatment as a Means of Mitigating Disuse-Induced Rat Soleus Muscle Wasting. Curr Issues Mol Biol 2023; 45:3068-3086. [PMID: 37185725 PMCID: PMC10136829 DOI: 10.3390/cimb45040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Currently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS). Wistar rats were divided into four groups: (1) control (C), (2) control + metformin for 10 days (C+Met), (3) HS for 7 days (HS), (4) metformin treatment for 7 days before HS and during the first 3 days of 1-week HS (HS+Met). Anabolic and catabolic markers were assessed using WB and RT-PCR. Treatment with metformin partly prevented an HS-induced decrease in rat soleus weight and size of slow-twitch fibers. Metformin prevented HS-related slow-to-fast fiber transformation. Absolute soleus muscle force in the HS+Met group was increased vs. the HS group. GSK-3β (Ser9) phosphorylation was significantly increased in the HS+Met group vs. the HS group. Metformin pre-treatment partly prevented HS-induced decrease in 18S+28S rRNA content and attenuated upregulation of calpain-1 and ubiquitin. Thus, pre-treatment of rats with metformin can ameliorate disuse-induced reductions in soleus muscle weight, the diameter of slow-type fibers, and absolute muscle strength.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Sergey V Rozhkov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | | | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| | | | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
4
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
5
|
Wang T, Hu W, Niu Y, Liu S, Fu L. Exercise improves lipid metabolism disorders induced by high-fat diet in a SESN2/JNK-independent manner. Appl Physiol Nutr Metab 2021; 46:1322-1330. [PMID: 34038646 DOI: 10.1139/apnm-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SESN2 and JNK are emerging powerful stress-inducible proteins in regulating lipid metabolism. The aim of this study was to determine the underlying mechanism of SESN2/JNK signaling in exercise to improve lipid disorder induced by high-fat diet (HFD). Our data showed that HFD and SESN2 knockout resulted in abnormalities including elevated body weight, increased fat mass, serum total cholesterol, lipid biosynthesis related proteins, and a concomitant increase of pJNK-Thr183/Tyr185. The above changes were reversed by exercise training. SESN2 silencing or JNK inhibition in palmitate-treated C2C12 further confirmed that SESN2 and JNK play a vital role in lipid biosynthesis. Rescue experiment further demonstrated that SESN2 reduced lipid biosynthesis through inhibition of JNK. SESN2/JNK signaling axis regulates lipid biosynthesis in both animal and cell models with abnormalities of lipid metabolism induced by HFD or palmitate treatment. This study provided evidence that exercise ameliorated lipid metabolic disorder induced by HFD feeding or by SESN2 knockout. SESN2 may improve lipid metabolism through inhibition JNK expression in skeletal muscle cells, providing a molecular mechanism that may represent an attractive target for the treatment of lipid disorder. Novelty: Exercise improved lipid disorder induced by HFD feeding and SESN2 knockout. SESN2 and JNK play a vital role in lipid biosynthesis in vivo and in vitro. SESN2 suppressed JNK to improve lipid metabolism in skeletal muscle cells.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Wenqing Hu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metab 2021; 33:1836-1852.e11. [PMID: 34348115 PMCID: PMC8429235 DOI: 10.1016/j.cmet.2021.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
With the increasing prevalence of type 2 diabetes and fatty liver disease, there is still an unmet need to better treat hyperglycemia and hyperlipidemia. Here, we identify isthmin-1 (Ism1) as an adipokine and one that has a dual role in increasing adipose glucose uptake while suppressing hepatic lipid synthesis. Ism1 ablation results in impaired glucose tolerance, reduced adipose glucose uptake, and reduced insulin sensitivity, demonstrating an endogenous function for Ism1 in glucose regulation. Mechanistically, Ism1 activates a PI3K-AKT signaling pathway independently of the insulin and insulin-like growth factor receptors. Notably, while the glucoregulatory function is shared with insulin, Ism1 counteracts lipid accumulation in the liver by switching hepatocytes from a lipogenic to a protein synthesis state. Furthermore, therapeutic dosing of recombinant Ism1 improves diabetes in diet-induced obese mice and ameliorates hepatic steatosis in a diet-induced fatty liver mouse model. These findings uncover an unexpected, bioactive protein hormone that might have simultaneous therapeutic potential for diabetes and fatty liver disease.
Collapse
Affiliation(s)
- Zewen Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laetitia Voilquin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yunshin Jung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mari A Aikio
- Department of Cell Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tanushi Sahai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florence Y Dou
- Department of Cell Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alexander M Roche
- Department of Cell Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ivan Carcamo-Orive
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua W Knowles
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Prevention Research Center, Stanford University, Stanford, CA 94305, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Eric A Appel
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Joao Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Bruce M Spiegelman
- Department of Cell Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Nemirovskaya TL. The Role of Histone Deacetylases I and IIa (HDAC1, HDAC4/5) and the MAPK38 Signaling Pathway in the Regulation of Atrophic Processes under Skeletal Muscle Unloading. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Vahidi Ferdowsi P, Ahuja KDK, Beckett JM, Myers S. TRPV1 Activation by Capsaicin Mediates Glucose Oxidation and ATP Production Independent of Insulin Signalling in Mouse Skeletal Muscle Cells. Cells 2021; 10:cells10061560. [PMID: 34205555 PMCID: PMC8234135 DOI: 10.3390/cells10061560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Insulin resistance (IR), a key characteristic of type 2 diabetes (T2DM), is manifested by decreased insulin-stimulated glucose transport in target tissues. Emerging research has highlighted transient receptor potential cation channel subfamily V member (TRPV1) activation by capsaicin as a potential therapeutic target for these conditions. However, there are limited data on the effects of capsaicin on cell signalling molecules involved in glucose uptake. METHODS C2C12 cells were cultured and differentiated to acquire the myotube phenotype. The activation status of signalling molecules involved in glucose metabolism, including 5' adenosine monophosphate-activated protein kinase (AMPK), calcium/calmodulin-dependent protein kinase 2 (CAMKK2), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase B (AKT), and src homology phosphatase 2 (SHP2), was examined. Finally, activation of CAMKK2 and AMPK, and glucose oxidation and ATP levels were measured in capsaicin-treated cells in the presence or absence of TRPV1 antagonist (SB-452533). RESULTS Capsaicin activated cell signalling molecules including CAMKK2 and AMPK leading to increased glucose oxidation and ATP generation independent of insulin in the differentiated C2C12 cells. Pharmacological inhibition of TRPV1 diminished the activation of CAMKK2 and AMPK as well as glucose oxidation and ATP production. Moreover, we observed an inhibitory effect of capsaicin in the phosphorylation of ERK1/2 in the mouse myotubes. CONCLUSION Our data show that capsaicin-mediated stimulation of TRPV1 in differentiated C2C12 cells leads to activation of CAMKK2 and AMPK, and increased glucose oxidation which is concomitant with an elevation in intracellular ATP level. Further studies of the effect of TRPV1 channel activation by capsaicin on glucose metabolism could provide novel therapeutic utility for the management of IR and T2DM.
Collapse
|
9
|
Black MN, Wilkinson JA, Webb EK, Kamal M, Bahniwal R, McGlory C, Phillips SM, Devries MC. Two weeks of single-leg immobilization alters intramyocellular lipid storage characteristics in healthy, young women. J Appl Physiol (1985) 2021; 130:1247-1258. [PMID: 33630674 DOI: 10.1152/japplphysiol.00878.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle disuse rapidly induces insulin resistance (IR). Despite a relationship between intramyocellular lipid (IMCL) content and IR, during muscle-disuse IR develops before IMCL accumulation, suggesting that IMCL are not related to disuse-induced IR. However, recent studies show that it is not total IMCL content, but IMCL size and location that are related to IR. Changes in these IMCL parameters may occur prior to increases in IMCL content, thus contributing to disuse-induced IR. Omega-3 fatty acids may mitigate the effects of disuse on IR by preventing a decline in insulin signaling proteins. Twenty women (age 22 ± 3 yr) received either 5 g·day-1 omega-3 fatty acid or isoenergetic sunflower oil for 4 wk prior to, throughout 2 wk of single-leg immobilization, and during 2 wk of recovery. Changes in IMCL characteristics and insulin signaling proteins were examined in vastus lateralis samples taken before supplementation and immobilization, and following immobilization and recovery. Omega-3 supplementation had no effect. IMCL area density decreased in the subsarcolemmal region during immobilization and recovery (-19% and -56%, respectively, P = 0.009). IMCL size increased in the central intermyofibrillar region during immobilization (43%, P = 0.007), returning to baseline during recovery. PLIN5 and AKT increased during immobilization (87%, P = 0.002; 30%, P = 0.007, respectively). PLIN 5 remained elevated and AKT increased further (15%) during recovery. IRS1, AS160, and GLUT4 decreased during immobilization (-35%, P = 0.001; -44%, P = 0.03; -56%, P = 0.02, respectively), returning to baseline during recovery. Immobilization alters IMCL storage characteristics while negatively affecting unstimulated insulin signaling protein content in young women.NEW & NOTEWORTHY We report that the subcellular storage location of IMCL is altered by limb immobilization, highlighting the need to evaluate IMCL storage location when assessing the effects of disuse on IMCL content. We also found that AKT content increased during immobilization in our female population, contrary to studies in males finding that AKT decreases during disuse, highlighting that men and women may respond differently to disuse and the necessity to include women in all research.
Collapse
Affiliation(s)
- Merryl N Black
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Erin K Webb
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Michael Kamal
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Ravninder Bahniwal
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Chris McGlory
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Michaela C Devries
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Mäkinen S, Datta N, Nguyen YH, Kyrylenko P, Laakso M, Koistinen HA. Simvastatin profoundly impairs energy metabolism in primary human muscle cells. Endocr Connect 2020; 9:1103-1113. [PMID: 33295884 PMCID: PMC7780958 DOI: 10.1530/ec-20-0444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Simvastatin use is associated with muscular side effects, and increased risk for type 2 diabetes (T2D). In clinical use, simvastatin is administered in inactive lipophilic lactone-form, which is then converted to active acid-form in the body. Here, we have investigated if lactone- and acid-form simvastatin differentially affect glucose metabolism and mitochondrial respiration in primary human skeletal muscle cells. METHODS Muscle cells were exposed separately to lactone- and acid-form simvastatin for 48 h. After pre-exposure, glucose uptake and glycogen synthesis were measured using radioactive tracers; insulin signalling was detected with Western blotting; and glycolysis, mitochondrial oxygen consumption and ATP production were measured with Seahorse XFe96 analyzer. RESULTS Lactone-form simvastatin increased glucose uptake and glycogen synthesis, whereas acid-form simvastatin did not affect glucose uptake and decreased glycogen synthesis. Phosphorylation of insulin signalling targets Akt substrate 160 kDa (AS160) and glycogen synthase kinase 3β (GSK3β) was upregulated with lactone-, but not with acid-form simvastatin. Exposure to both forms of simvastatin led to a decrease in glycolysis and glycolytic capacity, as well as to a decrease in mitochondrial respiration and ATP production. CONCLUSIONS These data suggest that lactone- and acid-forms of simvastatin exhibit differential effects on non-oxidative glucose metabolism as lactone-form increases and acid-form impairs glucose storage into glycogen, suggesting impaired insulin sensitivity in response to acid-form simvastatin. Both forms profoundly impair oxidative glucose metabolism and energy production in human skeletal muscle cells. These effects may contribute to muscular side effects and risk for T2D observed with simvastatin use.
Collapse
Affiliation(s)
- Selina Mäkinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Neeta Datta
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Yen H Nguyen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Petro Kyrylenko
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki A Koistinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
- Correspondence should be addressed to H A Koistinen:
| |
Collapse
|
11
|
Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020; 9:cells9091970. [PMID: 32858949 PMCID: PMC7564605 DOI: 10.3390/cells9091970] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κΒ and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem (satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy. Importantly, IGF-1 levels and IGF-1R downstream signaling are suppressed in many chronic disease conditions and likely result in muscle atrophy via the combined effects of altered protein synthesis, UPS activity, autophagy, and muscle regeneration.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| | - Patrice Delafontaine
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| |
Collapse
|
12
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
13
|
Abstract
Significance: Regular contractile activity plays a critical role in maintaining skeletal muscle morphological integrity and physiological function. If the muscle is forced to stop contraction, such as during limb immobilization (IM), the IGF/Akt/mTOR signaling pathway that normally stimulates protein synthesis and inhibits proteolysis will be suppressed, whereas the FoxO-controlled catabolic pathways such as ubiquitin-proteolysis and autophagy/mitophagy will be activated and dominate, resulting in muscle fiber atrophy. Recent Advances: Mitochondria occupy a central position in the regulation of both protein synthesis and degradation through several redox-sensitive pathways, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial fusion and fission proteins, mitophagy, and sirtuins. Prolonged IM downregulates PGC-1α due to AMPK (5'-AMP-activated protein kinase) and FoxO activation, thus decreasing mitochondrial biogenesis and causing oxidative damage. Decrease of mitochondrial inner membrane potential and increase of mitochondrial fission can trigger cascades of mitophagy leading to loss of mitochondrial homeostasis (mitostasis), inflammation, and apoptosis. The phenotypic outcomes of these disorders are compromised muscle function and fiber atrophy. Critical Issues: Given the molecular mechanism of the pathogenesis, it is imperative that the integrity of intracellular signaling be restored to prevent the deterioration. So far, overexpression of PGC-1α via transgene and in vivo DNA transfection has been found to be effective in ameliorating mitostasis and reduces IM-induced muscle atrophy. Nutritional supplementation of select amino acids and phytochemicals also provides mechanistic and practical insights into the prevention of muscle disuse atrophy. Future Directions: In light of the importance of mitochondria in regulating the various critical signaling pathways, future work should focus on exploring new epigenetic strategies to restore mitostasis and redox balance.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Chounghun Kang
- Departmet Physical Education, Inha University, Incheon, South Korea
| |
Collapse
|
14
|
Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P38α-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. Int J Mol Sci 2020; 21:ijms21082756. [PMID: 32326654 PMCID: PMC7215762 DOI: 10.3390/ijms21082756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023] Open
Abstract
To test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.3 ± 2.5 vs 83.0 ± 3 mg, respectively), whereas muscle weight in the HSVX group was maintained (84.2 ± 5 mg). The expression of muscle RING-finger protein-1 (MuRF1) mRNA was significantly increased in the HS group (165%), but not in the HSVX group (127%), when compared with the C group. The expression of muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx) mRNA was increased in both HS and HSVX groups (294% and 271%, respectively) when compared with C group. The expression of ubiquitin mRNA was significantly higher in the HS (423%) than in the C and HSVX (200%) groups. VX-745 treatment blocked unloading-induced upregulation of calpain-1 mRNA expression (HS: 120%; HSVX: 107%). These results indicate that p38α-MAPK signaling regulates MuRF1 but not MAFbx E3 ligase expression and inhibits skeletal muscle atrophy during early stages of unloading.
Collapse
Affiliation(s)
- Svetlana P. Belova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Boris S. Shenkman
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
- Correspondence:
| |
Collapse
|
15
|
Elevated p70S6K phosphorylation in rat soleus muscle during the early stage of unloading: Causes and consequences. Arch Biochem Biophys 2019; 674:108105. [PMID: 31518555 DOI: 10.1016/j.abb.2019.108105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
Abstract
Currently, there is a lack of investigation into the initial signaling events underlying the development of disuse muscle atrophy. The study was aimed to (i) identify an assumed relationship between AMPK dephosphorylation and p70S6K hyperphosphorylation in the initial period of hindlimb unloading (HS), and (ii) assess the signaling consequences of p70S6K hyperphosphorylation following 24-h HS. For experiment 1, rats were treated with AMPK activator (AICAR) for 6 d before HS as well as during 24-h HS. For experiment 2, rats were treated with mTORC1 inhibitor rapamycin during 24-h HS. The key signaling markers implicated in protein turnover were assessed using WB and RT-PCR. One-day HS resulted in a significant upregulation of MuRF-1 and MAFbx expression, increase in p70S6K (Thr389) and IRS-1 (Ser639) phosphorylation and a significant decrease in phosphorylated AMPK, AKT, FOXO3, total IRS-1 content, and HDAC5 nuclear content. AMPK and p70S6K phosphorylation did not differ from control in AICAR-treated unloaded rats. Rapamycin treatment during unloading abolished p70S6K and E3 ligases upregulation and increased HDAC5 nuclear accumulation. The results of the study suggest that mTORC-1/p70S6K signaling pathway in rat soleus muscle is activated following 24-h mechanical unloading. This activation is facilitated by a decrease in AMPK phosphorylation. Increased p70S6K activity at the initial stage of hindlimb unloading could lead to the upregulation of E3 ligases MAFbx/atrogin-1 and MuRF-1 via nuclear export of HDAC5.
Collapse
|
16
|
von Walden F. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation. J Appl Physiol (1985) 2019; 127:591-598. [PMID: 31219775 DOI: 10.1152/japplphysiol.00963.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle mass responds in a remarkable manner to alterations in loading and use. It has long been clear that skeletal muscle hypertrophy can be prevented by inhibiting RNA synthesis. Since 80% of the cell's total RNA has been estimated to be rRNA, this finding indicates that de novo production of rRNA via transcription of the corresponding genes is important for such hypertrophy to occur. Transcription of rDNA by RNA Pol I is the rate-limiting step in ribosome biogenesis, indicating in turn that this biogenesis strongly influences the hypertrophic response. The present minireview focuses on 1) a brief description of the key steps in ribosome biogenesis and the relationship of this process to skeletal muscle mass and 2) the coordination of ribosome biogenesis and protein synthesis for growth or atrophy, as exemplified by the intracellular AMPK and mTOR pathways.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Kairupan TS, Cheng KC, Asakawa A, Amitani H, Yagi T, Ataka K, Rokot NT, Kapantow NH, Kato I, Inui A. Rubiscolin-6 activates opioid receptors to enhance glucose uptake in skeletal muscle. J Food Drug Anal 2019; 27:266-274. [PMID: 30648580 PMCID: PMC9298623 DOI: 10.1016/j.jfda.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Rubiscolin-6 is an opioid peptide derived from plant ribulose bisphosphate carboxylase/oxygenase (Rubisco). It has been demonstrated that opioid receptors could control glucose homeostasis in skeletal muscle independent of insulin action. Therefore, Rubiscolin-6 may be involved in the control of glucose metabolism. In the present study, we investigated the effect of rubiscolin-6 on glucose uptake in skeletal muscle. Rubiscolin-6-induced glucose uptake was measured using the fluorescent indicator 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose (2-NBDG) in L6 and C2C12 cell lines. The protein expressions of glucose transporter 4 (GLUT4) and AMP-activated protein kinase (AMPK) in L6 cells were observed by Western blotting. The in vivo effects of rubiscolin-6 were characterized in streptozotocin (STZ)-induced diabetic rats. Rubiscolin-6 induced a concentration-dependent increase in glucose uptake levels. The increase of phospho-AMPK (pAMPK) and GLUT4 expressions were also observed in L6 and C2C12 cells. Effects of rubiscolin-6 were blocked by opioid receptor antagonists and/or associated signals inhibitors. Moreover, Rubiscolin-6 produced a dose-dependent reduction of blood glucose and increased GLUT4 expression in STZ-induced diabetic rats. In conclusion, rubiscolin-6 increases glucose uptake, potentially via an activation of AMPK to enhance GLUT4 translocation after binding to opioid receptors in skeletal muscle.
Collapse
Affiliation(s)
- Timothy Sean Kairupan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Natasya Trivena Rokot
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
18
|
Mirzoev TM, Shenkman BS. Regulation of Protein Synthesis in Inactivated Skeletal Muscle: Signal Inputs, Protein Kinase Cascades, and Ribosome Biogenesis. BIOCHEMISTRY (MOSCOW) 2018; 83:1299-1317. [PMID: 30482143 DOI: 10.1134/s0006297918110020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disuse atrophy of skeletal muscles is characterized by a significant decrease in the mass and size of muscle fibers. Disuse atrophy develops as a result of prolonged reduction in the muscle functional activity caused by bed rest, limb immobilization, and real or simulated microgravity. Disuse atrophy is associated with the downregulation of protein biosynthesis and simultaneous activation of protein degradation. This review is focused on the key molecular mechanisms regulating the rate of protein synthesis in mammalian skeletal muscles during functional unloading.
Collapse
Affiliation(s)
- T M Mirzoev
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - B S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
19
|
Vilchinskaya NA, Krivoi II, Shenkman BS. AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling. Int J Mol Sci 2018; 19:ijms19113558. [PMID: 30424476 PMCID: PMC6274864 DOI: 10.3390/ijms19113558] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms that trigger disuse-induced postural muscle atrophy as well as myosin phenotype transformations are poorly studied. This review will summarize the impact of 5′ adenosine monophosphate -activated protein kinase (AMPK) activity on mammalian target of rapamycin complex 1 (mTORC1)-signaling, nuclear-cytoplasmic traffic of class IIa histone deacetylases (HDAC), and myosin heavy chain gene expression in mammalian postural muscles (mainly, soleus muscle) under disuse conditions, i.e., withdrawal of weight-bearing from ankle extensors. Based on the current literature and the authors’ own experimental data, the present review points out that AMPK plays a key role in the regulation of signaling pathways that determine metabolic, structural, and functional alternations in skeletal muscle fibers under disuse.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia.
| |
Collapse
|
20
|
The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration. Int J Mol Sci 2018; 19:ijms19103125. [PMID: 30314396 PMCID: PMC6212977 DOI: 10.3390/ijms19103125] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
AMPK (5’-adenosine monophosphate-activated protein kinase) is heavily involved in skeletal muscle metabolic control through its regulation of many downstream targets. Because of their effects on anabolic and catabolic cellular processes, AMPK plays an important role in the control of skeletal muscle development and growth. In this review, the effects of AMPK signaling, and those of its upstream activator, liver kinase B1 (LKB1), on skeletal muscle growth and atrophy are reviewed. The effect of AMPK activity on satellite cell-mediated muscle growth and regeneration after injury is also reviewed. Together, the current data indicate that AMPK does play an important role in regulating muscle mass and regeneration, with AMPKα1 playing a prominent role in stimulating anabolism and in regulating satellite cell dynamics during regeneration, and AMPKα2 playing a potentially more important role in regulating muscle degradation during atrophy.
Collapse
|
21
|
Zhong KL, Chen F, Hong H, Ke X, Lv YG, Tang SS, Zhu YB. New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer's Disease. Metab Brain Dis 2018; 33:1009-1018. [PMID: 29626315 DOI: 10.1007/s11011-018-0227-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests that diabetes mellitus (DM) is associated with mild cognitive impairment (MCI), vascular dementia and Alzheimer's disease (AD). Biological, clinical and epidemiological data support a close link between DM and AD. Increasingly, studies have found that several antidiabetic agents can promote neurogenesis, and clinically ameliorate cognitive and memory impairments in different clinical settings. Data has shown that these antidiabetic drugs positively affect mitochondrial and synaptic function, neuroinflammation, and brain metabolism. Evidence to date strongly suggests that these antidiabetic drugs could be developed as disease-modifying therapies for MCI and AD in patients with and without diabetes.
Collapse
Affiliation(s)
- Kai Long Zhong
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Fang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuan Ke
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Ge Lv
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Su Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Bing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
22
|
Chibalin AV, Benziane B, Zakyrjanova GF, Kravtsova VV, Krivoi II. Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension. J Cell Physiol 2018; 233:6329-6336. [PMID: 29719042 DOI: 10.1002/jcp.26594] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022]
Abstract
Motor endplates naturally undergo continual morphological changes that are altered in response to changes in neuromuscular activity. This study examines the consequences of acute (6-12 hr) disuse following hindlimb suspension on rat soleus muscle endplate structural stability. We identify early changes in several key signaling events including markers of protein kinase activation, AMPK phosphorylation and autophagy markers which may play a role in endplate remodeling. Acute disuse does not change endplate fragmentation, however, it decreases both the individual fragments and the total endplate area. This decrease was accompanied by an increase in the mean fluorescence intensity from the nicotinic acetylcholine receptors which compensate the endplate area loss. Muscle disuse decreased phosphorylation of AMPK and its substrate ACC, and stimulated mTOR controlled protein synthesis pathway and stimulated autophagy. Our findings provide evidence that changes in endplate stability are accompanied by reduced AMPK phosphorylation and an increase in autophagy markers, and these changes are evident within hours of onset of skeletal muscle disuse.
Collapse
Affiliation(s)
- Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Boubacar Benziane
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Guzalija F Zakyrjanova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia.,Department of Normal Physiology, Kazan State Medical University, Kazan, Russia
| | - Violetta V Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
23
|
Vilchinskaya NA, Mochalova EP, Nemirovskaya TL, Mirzoev TM, Turtikova OV, Shenkman BS. Rapid decline in MyHC I(β) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation. J Physiol 2017; 595:7123-7134. [PMID: 28975644 DOI: 10.1113/jp275184] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Inactivation of a skeletal muscle results in slow to fast myosin heavy chain (MyHC) shift. AMP-activated protein kinase (AMPK) can be implicated in the regulation of genes encoding the slow MyHC isoform. Here we report that AMPK dephosphorylation after 24 h of mechanical unloading can contribute to histone deacetylase (HDAC) nuclear translocation; activation of AMPK prevents HDAC4 nuclear accumulation after 24 h of unloading and AMPK dephosphorylation inhibits slow MyHC expression following 24 h of unloading. Our data indicate that AMPK dephosphorylation during the first 24 h of mechanical unloading has a significant impact on the expression of MyHC isoforms in rat soleus causing a decrease in MyHC I(β) pre-mRNA and mRNA expression as well as MyHC IIa mRNA expression. ABSTRACT One of the key events that occurs during skeletal muscle inactivation is a change in myosin phenotype, i.e. increased expression of fast isoforms and decreased expression of the slow isoform of myosin heavy chain (MyHC). It is known that calcineurin/nuclear factor of activated T-cells and AMP-activated protein kinase (AMPK) can regulate the expression of genes encoding MyHC slow isoform. Earlier, we found a significant decrease in phosphorylated AMPK in rat soleus after 24 h of hindlimb unloading (HU). We hypothesized that a decrease in AMPK phosphorylation and subsequent histone deacetylase (HDAC) nuclear translocation can be one of the triggering events leading to a reduced expression of slow MyHC. To test this hypothesis, Wistar rats were treated with AMPK activator (AICAR) for 6 days before HU as well as during 24 h of HU. We discovered that AICAR treatment prevented a decrease in pre-mRNA and mRNA expression of MyHC I as well as MyHC IIa mRNA expression. Twenty-four hours of hindlimb suspension resulted in HDAC4 accumulation in the nuclei of rat soleus but AICAR pretreatment prevented this accumulation. The results of the study indicate that AMPK dephosphorylation after 24 h of HU had a significant impact on the MyHC I and MyHC IIa mRNA expression in rat soleus. AMPK dephosphorylation also contributed to HDAC4 translocation to the nuclei of soleus muscle fibres, suggesting an important role of HDAC4 as an epigenetic regulator in the process of myosin phenotype transformation.
Collapse
Affiliation(s)
| | | | - Tatiana L Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Olga V Turtikova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| |
Collapse
|
24
|
Mirzoev T, Tyganov S, Petrova I, Gnyubkin V, Laroche N, Vico L, Shenkman B. Divergent Anabolic Signalling responses of Murine Soleus and Tibialis Anterior Muscles to Chronic 2G Hypergravity. Sci Rep 2017; 7:3514. [PMID: 28615698 PMCID: PMC5471226 DOI: 10.1038/s41598-017-03758-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/27/2017] [Indexed: 12/02/2022] Open
Abstract
The purpose of the study was to assess the rate of protein synthesis (PS) and elucidate signalling pathways regulating PS in mouse soleus (Sol) and tibialis anterior (TA) muscles following chronic hypergravity (30-day centrifugation at 2G). The content of the key signalling proteins of the various anabolic signalling pathways was determined by Western-blotting. The rate of PS was assessed using in-vivo SUnSET technique. An exposure to 2G centrifugation did not induce any significant changes in the rate of PS as well as phosphorylation status of the key anabolic markers (AKT, p70s6k, 4E-BP1, GSK-3beta, eEF2) in Sol. On the contrary, a significant 55% increase in PS (p < 0.05) was found in TA. The cause of such a rise in PS could be associated with an increase in AKT (+72%, p < 0.05), GSK-3beta (+60%, p < 0.05) and p70s6k (+40%, p < 0.05) phosphorylation, as well as a decrease in eEF2 phosphorylation (−46%, p < 0.05) as compared to control values. Thus, the results of our study indicate that 30-day 2G centrifugation induces a distinct anabolic response in mouse Sol and TA muscles. The activation of the PS rate in TA could be linked to an up-regulation of both mTORC1-dependent and mTORC1-independent signalling pathways.
Collapse
Affiliation(s)
- Timur Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - Sergey Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Irina Petrova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Vasily Gnyubkin
- INSERM U1059, Integrative Biology of Bone Tissue Laboratory, Lyon University, St.- Etienne, France
| | - Norbert Laroche
- INSERM U1059, Integrative Biology of Bone Tissue Laboratory, Lyon University, St.- Etienne, France
| | - Laurence Vico
- INSERM U1059, Integrative Biology of Bone Tissue Laboratory, Lyon University, St.- Etienne, France
| | - Boris Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| |
Collapse
|
25
|
Vilchinskaya NA, Mochalova EP, Belova SP, Shenkman BS. Dephosphorylation of AMP-activated protein kinase in a postural muscle: A key signaling event on the first day of functional unloading. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350916060269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
26
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island , Providence, RI , USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island , Providence, RI , USA
| |
Collapse
|
27
|
Keapai W, Apichai S, Amornlerdpison D, Lailerd N. Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:581-593. [PMID: 27847435 PMCID: PMC5106392 DOI: 10.4196/kjpp.2016.20.6.581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Abstract
The advantages of monounsaturated fatty acids (MUFAs) on insulin resistance and type 2 diabetes mellitus (T2DM) have been well established. However, the molecular mechanisms of the anti-diabetic action of MUFAs remain unclear. This study examined the anti-hyperglycemic effect and explored the molecular mechanisms involved in the actions of fish oil- rich in MUFAs that had been acquired from hybrid catfish (Pangasius larnaudii×Pangasianodon hypophthalmus) among experimental type 2 diabetic rats. Diabetic rats that were fed with fish oil (500 and 1,000 mg/kg BW) for 12 weeks significantly reduced the fasting plasma glucose levels without increasing the plasma insulin levels. The diminishing levels of plasma lipids and the muscle triglyceride accumulation as well as the plasma leptin levels were identified in T2DM rats, which had been administrated with fish oil. Notably, the plasma adiponectin levels increased among these rats. The fish oil supplementation also improved glucose tolerance, insulin sensitivity and pancreatic histological changes. Moreover, the supplementation of fish oil improved insulin signaling (p-AktSer473 and p-PKC-ζ/λThr410/403), p-AMPKThr172 and membrane GLUT4 protein expressions, whereas the protein expressions of pro-inflammatory cytokines (TNF-α and nuclear NF-κB) as well as p-PKC-θThr538 were down regulated in the skeletal muscle. These data indicate that the effects of fish oil-rich in MUFAs in these T2DM rats were partly due to the attenuation of insulin resistance and an improvement in the adipokine imbalance. The mechanisms of the anti-hyperglycemic effect are involved in the improvement of insulin signaling, AMPK activation, GLUT4 translocation and suppression of pro-inflammatory cytokine protein expressions.
Collapse
Affiliation(s)
- Waranya Keapai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sopida Apichai
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Shimoda Y, Matsuo K, Kitamura Y, Ono K, Ueyama T, Matoba S, Yamada H, Wu T, Chen J, Emoto N, Ikeda K. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle. PLoS One 2015; 10:e0138624. [PMID: 26398569 PMCID: PMC4580461 DOI: 10.1371/journal.pone.0138624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yoshiaki Shimoda
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Kiyonari Matsuo
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Youhei Kitamura
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Kazunori Ono
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Tomomi Ueyama
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Hiroyuki Yamada
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Noriaki Emoto
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada, Kobe6588558, Japan
| | - Koji Ikeda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada, Kobe6588558, Japan
- * E-mail:
| |
Collapse
|
29
|
Rizvi SMD, Shaikh S, Waseem SMA, Shakil S, Abuzenadah AM, Biswas D, Tabrez S, Ashraf GM, Kamal MA. Role of anti-diabetic drugs as therapeutic agents in Alzheimer's disease. EXCLI JOURNAL 2015; 14:684-96. [PMID: 27152105 PMCID: PMC4849108 DOI: 10.17179/excli2015-252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022]
Abstract
Recent data have suggested a strong possible link between Type 2 Diabetes Mellitus and Alzheimer's disease (AD), although exact mechanisms linking the two are still a matter of research and debate. Interestingly, both are diseases with high incidence and prevalence in later years of life. The link appears so strong that some scientists use Alzheimer's and Type 3 Diabetes interchangeably. In depth study of recent data suggests that the anti diabetic drugs not only have possible role in treatment of Alzheimer's but may also arrest the declining cognitive functions associated with it. The present review gives an insight into the possible links, existing therapeutics and clinical trials of anti diabetic drugs in patients suffering from AD primarily or as co-morbidity. It may be concluded that the possible beneficial effects and usefulness of the current anti diabetic drugs in AD cannot be neglected and further research is required to achieve positive results. Currently, several drug trials are in progress to give conclusive evidence based data.
Collapse
Affiliation(s)
| | | | - Shah Mohammad Abbas Waseem
- Department of Physiology, Integral Institute of Medical Sciences & Research, Integral University, Lucknow, India
| | - Shazi Shakil
- Center of Innovation in Personalized Medicine, Faculty of Applied Medical Sciences,King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- Center of Innovation in Personalized Medicine, Faculty of Applied Medical Sciences,King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoic, 7 Peterlee Pl, Hebersham, NSW 2770, Australia
| |
Collapse
|
30
|
Bederman IR, Lai N, Shuster J, Henderson L, Ewart S, Cabrera ME. Chronic hindlimb suspension unloading markedly decreases turnover rates of skeletal and cardiac muscle proteins and adipose tissue triglycerides. J Appl Physiol (1985) 2015; 119:16-26. [PMID: 25930021 DOI: 10.1152/japplphysiol.00004.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/25/2015] [Indexed: 11/22/2022] Open
Abstract
We previously showed that a single bolus of "doubly-labeled" water ((2)H2 (18)O) can be used to simultaneously determine energy expenditure and turnover rates (synthesis and degradation) of tissue-specific lipids and proteins by modeling labeling patterns of protein-bound alanine and triglyceride-bound glycerol (Bederman IR, Dufner DA, Alexander JC, Previs SF. Am J Physiol Endocrinol Metab 290: E1048-E1056, 2006). Using this novel method, we quantified changes in the whole body and tissue-specific energy balance in a rat model of simulated "microgravity" induced by hindlimb suspension unloading (HSU). After chronic HSU (3 wk), rats exhibited marked atrophy of skeletal and cardiac muscles and significant decrease in adipose tissue mass. For example, soleus muscle mass progressively decreased 11, 43, and 52%. We found similar energy expenditure between control (90 ± 3 kcal · kg(-1)· day(-1)) and hindlimb suspended (81 ± 6 kcal/kg day) animals. By comparing food intake (∼ 112 kcal · kg(-1) · day(-1)) and expenditure, we found that animals maintained positive calorie balance proportional to their body weight. From multicompartmental fitting of (2)H-labeling patterns, we found significantly (P < 0.005) decreased rates of synthesis (percent decrease from control: cardiac, 25.5%; soleus, 70.3%; extensor digitorum longus, 44.9%; gastrocnemius, 52.5%; and adipose tissue, 39.5%) and rates of degradation (muscles: cardiac, 9.7%; soleus, 52.0%; extensor digitorum longus, 27.8%; gastrocnemius, 37.4%; and adipose tissue, 50.2%). Overall, HSU affected growth of young rats by decreasing the turnover rates of proteins in skeletal and cardiac muscles and adipose tissue triglycerides. Specifically, we found that synthesis rates of skeletal and cardiac muscle proteins were affected to a much greater degree compared with the decrease in degradation rates, resulting in large negative balance and significant tissue loss. In contrast, we found a small decrease in adipose tissue triglyceride synthesis paired with a large decrease in degradation, resulting in smaller negative energy balance and loss of fat mass. We conclude that HSU in rats differentially affects turnover of muscle proteins vs. adipose tissue triglycerides.
Collapse
Affiliation(s)
| | - Nicola Lai
- Department of Pediatrics and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | - Marco E Cabrera
- Department of Pediatrics and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
31
|
Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle. BIOMED RESEARCH INTERNATIONAL 2015; 2015:291987. [PMID: 25713812 PMCID: PMC4332754 DOI: 10.1155/2015/291987] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/18/2022]
Abstract
Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.
Collapse
|
32
|
Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol Genomics 2015; 47:113-28. [PMID: 25649141 DOI: 10.1152/physiolgenomics.00117.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| | - Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
33
|
Ohno Y, Sugiura T, Ohira Y, Yoshioka T, Goto K. Loading-associated expression of TRIM72 and caveolin-3 in antigravitational soleus muscle in mice. Physiol Rep 2014; 2:2/12/e12259. [PMID: 25539835 PMCID: PMC4332229 DOI: 10.14814/phy2.12259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Effects of mechanical loading on the expression level of tripartite motif-containing 72 (TRIM72) and caveolin-3 (Cav-3) in mouse soleus muscle were investigated. Mice were subjected to (1) continuous hindlimb suspension (HS) for 2 weeks followed by 1-week ambulation recovery or (2) functional overloading (FO) on the soleus by cutting the distal tendons of the plantaris and gastrocnemius muscles. Soleus muscle atrophy was induced by 2-week hindlimb suspension (HS). Reloading-associated regrowth of atrophied soleus muscle was observed by 1-week reloading following HS. HS also depressed the expression level of insulin receptor substrate-1 (IRS-1) mRNA, TRIM72, Cav-3, and phosphorylated Akt (p-Akt)/total Akt (t-Akt), but increased the phosphorylated level of p38 mitogen-activated protein kinase (p-p38MAPK) in soleus muscle. Thereafter, the expression level of MyoD mRNA, TRIM72 (mRNA, and protein), and Cav-3 was significantly increased and recovered to the basal level during 1-week reloading after HS. Although IRS-1 expression was also upregulated by reloading, the expression level was significantly lower than that before HS. Significant increase in p-Akt and phosphorylated p70 S6 kinase (p-p70S6K) was observed by 1-day reloading. On the other hand, 1-week functional overloading (FO) induced soleus muscle hypertrophy. In FO-associated hypertrophied soleus muscle, the expression level of IRS-1 mRNA, MyoD mRNA, TRIM72 mRNA, p-Akt, and p-p70S6K was increased, but the expression of Cav-3 and p-p38MAPK was decreased. FO had no effect on the protein expression level of TRIM72. These observations suggest that the loading-associated upregulation of TRIM72 protein in skeletal muscle may depress the regrowth of atrophied muscle via a partial suppression of IRS-1. In addition, downregulation of Cav-3 in skeletal muscle may depress overloading-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-8511, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yamaguchi, 753-8513, Japan
| | - Yoshinobu Ohira
- Faculty and Graduate School of Health and Sports Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | | | - Katsumasa Goto
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-8511, Japan Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-8511, Japan
| |
Collapse
|
34
|
Pidcoke HF, Baer LA, Wu X, Wolf SE, Aden JK, Wade CE. Insulin effects on glucose tolerance, hypermetabolic response, and circadian-metabolic protein expression in a rat burn and disuse model. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1-R10. [PMID: 24760998 DOI: 10.1152/ajpregu.00312.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Insulin controls hyperglycemia after severe burns, and its use opposes the hypermetabolic response. The underlying molecular mechanisms are poorly understood, and previous research in this area has been limited because of the inadequacy of animal models to mimic the physiological effects seen in humans with burns. Using a recently published rat model that combines both burn and disuse components, we compare the effects of insulin treatment vs. vehicle on glucose tolerance, hypermetabolic response, muscle loss, and circadian-metabolic protein expression after burns. Male Sprague-Dawley rats were assigned to three groups: cage controls (n = 6); vehicle-treated burn and hindlimb unloading (VBH; n = 11), and insulin-treated burn and hindlimb unloading (IBH; n = 9). With the exception of cage controls, rats underwent a 40% total body surface area burn with hindlimb unloading, then IBH rats received 12 days of subcutaneous insulin injections (5 units·kg(-1)·day(-1)), and VBH rats received an equivalent dose of vehicle. Glucose tolerance testing was performed on day 14, after which blood and tissues were collected for analysis. Body mass loss was attenuated by insulin treatment (VBH = 265 ± 17 g vs. IBH = 283 ± 14 g, P = 0.016), and glucose clearance capacity was increased. Soleus and gastrocnemius muscle loss was decreased in the IBH group. Insulin receptor substrate-1, AKT, FOXO-1, caspase-3, and PER1 phosphorylation was altered by injury and disuse, with levels restored by insulin treatment in almost all cases. Insulin treatment after burn and during disuse attenuated the hypermetabolic response, increased glucose clearance, and normalized circadian-metabolic protein expression patterns. Therapies aimed at targeting downstream effectors may provide the beneficial effects of insulin without hypoglycemic risk.
Collapse
Affiliation(s)
| | - Lisa A Baer
- University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Xiaowu Wu
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Steven E Wolf
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - James K Aden
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Charles E Wade
- University of Texas Health Science Center at Houston, Houston, Texas; and
| |
Collapse
|
35
|
Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem Biophys Res Commun 2013; 439:66-70. [PMID: 23958300 DOI: 10.1016/j.bbrc.2013.08.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Capsaicin has been reported to regulate blood glucose levels and to ameliorate insulin resistance in obese mice. This study demonstrates that capsaicin increases glucose uptake directly by activating AMP-activated protein kinase (AMPK) in C2C12 muscle cells, which manifested as an attenuation of glucose uptake when compound C, an AMPK inhibitor, was co-administered with capsaicin. However, the insulin signaling molecules insulin receptor substrate-1 (IRS-1) and Akt were not affected by capsaicin. Additional results showed that p38 mitogen-activated protein kinase (MAPK) is also involved in capsaicin-induced glucose transport downstream of AMPK because capsaicin increased p38 MAPK phosphorylation significantly and its specific inhibitor SB203580 inhibited capsaicin-mediated glucose uptake. Treatment with an AMPK inhibitor reduced p38 MAPK phosphorylation, but the p38 MAPK inhibitor had no effect on AMPK. Capsaicin stimulated ROS generation in C2C12 muscle cells, and when ROS were captured using the nonspecific antioxidant NAC, the increase in both capsaicin-induced AMPK phosphorylation and capsaicin-induced glucose uptake was attenuated, suggesting that ROS function as an upstream activator of AMPK. Taken together, these results suggest that capsaicin, independent of insulin, increases glucose uptake via ROS generation and consequent AMPK and p38 MAPK activations.
Collapse
|
36
|
Baer LA, Wu X, Tou JC, Johnson E, Wolf SE, Wade CE. Contributions of severe burn and disuse to bone structure and strength in rats. Bone 2013; 52:644-50. [PMID: 23142361 PMCID: PMC4578653 DOI: 10.1016/j.bone.2012.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/24/2012] [Accepted: 10/27/2012] [Indexed: 10/27/2022]
Abstract
Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by micro-computed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse.
Collapse
Affiliation(s)
- L A Baer
- US Army Institute of Surgical Research, 3611 Rawley E Chambers, Fort Sam Houston, TX 78234, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Lu J, Zeng Y, Hou W, Zhang S, Li L, Luo X, Xi W, Chen Z, Xiang M. The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. J Nutr Biochem 2012; 23:1449-57. [PMID: 22278080 DOI: 10.1016/j.jnutbio.2011.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 02/05/2023]
Abstract
It has been previously reported that aglycin, a natural bioactive peptide isolated from soybean, is stable in digestive enzymes and has an antidiabetic potential. With a view to explore the pharmacological activity of aglycin in vivo, studies have been conducted to examine its therapeutic effect in diabetic mice, in which it was administered intragastrically as an oral agent. Diabetes was induced in BALB/c mice fed with a high-fat diet and a single intraperitoneal injection of streptozotocin. With onset of diabetes, the mice were administered daily with aglycin (50 mg/kg/d) for 4 weeks. Blood glucose was monitored once a week. Subsequently, skeletal muscle was isolated for assessment in terms of levels of gene and protein IR, IRS1, Akt and glucose transporter 4 (GLUT4). In addition, C2C12 muscle cells as an in vitro diabetic model were used to investigate the effect of aglycin on glucose uptake. Treatment with aglycin was found to be significantly effective in controlling hyperglycemia and improving oral glucose tolerance. Furthermore, aglycin enhanced glucose uptake and glucose transporter recruitment to the C2C12 cell surface in 10 min in vitro. Consistent with these effects, aglycin restored insulin signaling transduction by maintaining IR and IRS1 expression at both the mRNA and protein levels, as well as elevating the expression of p-IR, p-IRS1, p-Akt and membrane GLUT4 protein. The results hence demonstrate that oral administration of aglycin can potentially attenuate or prevent hyperglycemia by increasing insulin receptor signaling pathway in the skeletal muscle of streptozotocin/high-fat-diet-induced diabetic mice.
Collapse
MESH Headings
- Administration, Oral
- Amino Acid Sequence
- Animals
- Blood Glucose/analysis
- Blood Glucose/metabolism
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Glucose/metabolism
- Glucose/pharmacokinetics
- Glucose Tolerance Test
- Hyperglycemia/drug therapy
- Insulin/metabolism
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Plant Proteins/pharmacokinetics
- Plant Proteins/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
- Soybean Proteins/pharmacology
- Glycine max/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mirzoev TM, Biryukov NS, Veselova OM, Larina IM, Shenkman BS, Ogneva IV. Parameters of fiber cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912030153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos‐Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin‐Koch G, Picquet F, Blanc S. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J 2011; 25:3646-60. [PMID: 21715682 DOI: 10.1096/fj.10-177295] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iman Momken
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Laurence Stevens
- Laboratoire Activité Physique, Muscle et SantéUniversité de Lille I Lille France
| | - Audrey Bergouignan
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | | | - Floriane Rudwill
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Isabelle Chery
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Alexandre Zahariev
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Sandrine Zahn
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - T. Peter Stein
- Department of SurgeryUniversity of Medicine and Dentistry of New Jersey Newark New Jersey USA
| | - Jean Louis Sebedio
- UMR 1019, Institut National de Recherche Agronomique (INRA)Université d'Auvergne Clermont Ferrand France
| | - Estelle Pujos‐Guillot
- UMR 1019, Institut National de Recherche Agronomique (INRA)Université d'Auvergne Clermont Ferrand France
| | - Maurice Falempin
- Laboratoire Activité Physique, Muscle et SantéUniversité de Lille I Lille France
| | - Chantal Simon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U870/INRA 1235Faculté de Médecine de Lyon Sud Lyon France
| | - Véronique Coxam
- Unité de Nutrition Humaine, UMR 1019Alimentation Squelette et Métabolisme Saint Genes Champanelle France
| | | | | | - Florence Picquet
- Laboratoire Activité Physique, Muscle et SantéUniversité de Lille I Lille France
| | - Stéphane Blanc
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| |
Collapse
|
40
|
Wagatsuma A, Kotake N, Kawachi T, Shiozuka M, Yamada S, Matsuda R. Mitochondrial adaptations in skeletal muscle to hindlimb unloading. Mol Cell Biochem 2011; 350:1-11. [PMID: 21165677 DOI: 10.1007/s11010-010-0677-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022]
Abstract
To gain insight into the regulation of mitochondrial adaptations to hindlimb unloading (HU), the activity of mitochondrial enzymes and the expression of nuclear-encoded genes which control mitochondrial properties in mouse gastrocnemius muscle were investigated. Biochemical and enzyme histochemical analysis showed that subsarcolemmal mitochondria were lost largely than intermyofibrillar mitochondria after HU. Gene expression analysis revealed disturbed or diminished gene expression patterns. The three main results of this analysis are as follows. First, in contrast to peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1β) and PGC-1-related coactivator, which were down-regulated by HU, PGC-1α was up-regulated concomitant with decreased expression of its DNA binding transcription factors, PPARα, and estrogen-related receptor α (ERRα). Moreover, there was no alteration in expression of nuclear respiratory factor 1, but its downstream target gene, mitochondrial transcription factor A, was down-regulated. Second, both mitofusin 2 and fission 1, which control mitochondrial morphology, were down-regulated. Third, ATP-dependent Lon protease, which participates in mitochondrial-protein degradation, was also down-regulated. These findings suggest that HU may induce uncoordinated expression of PGC-1 family coactivators and DNA binding transcription factors, resulting in reducing ability of mitochondrial biogenesis. Furthermore, down-regulation of mitochondrial morphology-related genes associated with HU may be also involved in alterations in intracellular mitochondrial distribution.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Citrate (si)-Synthase/genetics
- Citrate (si)-Synthase/metabolism
- Female
- Gene Expression Regulation
- Gene Expression Regulation, Enzymologic
- Hindlimb Suspension/physiology
- Mice
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Succinate Dehydrogenase/genetics
- Succinate Dehydrogenase/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Akira Wagatsuma
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Bogachus LD, Turcotte LP. Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am J Physiol Cell Physiol 2010; 299:C1549-61. [PMID: 20844250 DOI: 10.1152/ajpcell.00279.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin is known to improve insulin sensitivity in part via a rise in AMP-activated protein kinase (AMPK) activity and alterations in muscle metabolism. However, a full understanding of how metformin alters AMPK-α(1) vs. AMPK-α(2) activation remains unknown. To study this question, L6 skeletal muscle cells were treated with or without RNAi oligonucleotide sequences to downregulate AMPK-α(1) or AMPK-α(2) protein expression and incubated with or without 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or metformin and/or insulin. In contrast to AICAR, which preferentially activated AMPK-α(2), metformin preferentially activated AMPK-α(1) in a dose- and time-dependent manner. Metformin increased (P < 0.05) glucose uptake and plasma membrane (PM) Glut4 in a dose- and time-dependent manner. Metformin significantly reduced palmitate uptake (P < 0.05) and oxidation (P < 0.05), and this was accompanied by a similar decrease (P < 0.05) in PM CD36 content but with no change in acetyl-CoA carboxylase (ACC) phosphorylation (P > 0.05). AICAR and metformin similarly increased (P < 0.05) nuclear silent mating-type information regulator 2 homolog 1 (SIRT1) activity. Downregulation of AMPK-α(1) completely prevented the metformin-induced reduction in palmitate uptake and oxidation but only partially reduced the metformin-induced increase in glucose uptake. Downregulation of AMPK-α(2) had no effect on metformin-induced glucose uptake, palmitate uptake, and oxidation. The increase in SIRT1 activity induced by metformin was not affected by downregulation of either AMPK-α(1) or AMPK-α(2). Our data indicate that, in muscle cells, the inhibitory effects of metformin on fatty acid metabolism occur via preferential phosphorylation of AMPK-α(1), and the data indicate that cross talk between AMPK and SIRT1 does not favor either AMPK isozyme.
Collapse
Affiliation(s)
- Lindsey D Bogachus
- Department of Biological Sciences, College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089-0652, USA
| | | |
Collapse
|
42
|
You JS, Park MN, Song W, Lee YS. Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Appl Physiol Nutr Metab 2010; 35:310-8. [PMID: 20555375 DOI: 10.1139/h10-022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reduced muscle activity leads to impaired insulin signaling, which leads to loss of contractile proteins and muscle mass via the Akt pathway. Dietary fish oil rich in long chain n-3 polyunsaturated fatty acids has been shown to prevent insulin signaling resistance in skeletal muscle. This study was conducted to elucidate the protective effect of dietary fish oil on disuse-induced perturbations in insulin signaling and soleus muscle atrophy. To accomplish this, rats were fed a corn-oil- (control) or fish-oil-based diet for 2 weeks, and then subjected to hindlimb immobilization while still receiving the same diets. After 10 days of immobilization, the soleus muscle mass and myosin heavy chain level had markedly decreased; however, these losses were significantly suppressed in rats fed dietary fish oil, compared with the control group. Dietary fish oil nearly completely attenuated the disturbances in activation of the Akt and p70 S6 kinase proteins, as well as the gene expression of muscle-specific E3 ubiquitin ligases (muscle atrophy F-box and muscle RING finger 1). However, insulin receptor substrate 1 associated with the p85 subunit of phosphoinositide 3-kinase was not altered during immobilization. Dietary fish oil also inhibited alterations in the gene expression of cyclooxygenase-2 and inducible nitric oxide synthase, with no additional observation of oxidative stress. Collectively, these findings indicate that dietary fish oil prior to and during immobilization may alleviate the immobilization-induced soleus muscle atrophy, at least in part, via the Akt pathway through E3 ubiquitin ligases and p70s6k.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
43
|
Kandadi MR, Rajanna PK, Unnikrishnan MK, Boddu SP, Hua Y, Li J, Du M, Ren J, Sreejayan N. 2-(3,4-Dihydro-2H-pyrrolium-1-yl)-3oxoindan-1-olate (DHPO), a novel, synthetic small molecule that alleviates insulin resistance and lipid abnormalities. Biochem Pharmacol 2010; 79:623-31. [PMID: 19769946 DOI: 10.1016/j.bcp.2009.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/12/2009] [Accepted: 09/15/2009] [Indexed: 01/23/2023]
Abstract
Type-2 diabetes is growing at epidemic proportions world-wide. This report describes the effect of a novel, synthetic, small molecule 2-(3,4-dihydro-2H-pyrrolium-1-yl)-3oxoindan-1-olate (DHPO), on metabolic abnormalities in genetic and dietary mouse models of type-2 diabetes. DHPO (20mg/kg/d i.p. for 21 days) attenuated fasting blood glucose, improved glucose disposal and corrected dyslipidemia in genetic (leptin deficient, ob/ob) and dietary (high-fat-fed) mouse models of insulin resistance. In addition, DHPO augmented 2-deoxy-d-glucose (2DG) uptake in gastrocnemius muscles of wild-type mice and in cultured myotubes. The increase in 2DG-uptake was associated with an increase in the phosphorylation of AMPK (thr-172) and its downstream effector acetyl-CoA carboxylase without any changes in the phosphorylation of Akt of insulin receptor. The AMPK inhibitor, compound C attenuated DHPO-induced glucose-uptake whereas the PI3-kinase inhibitor Wortmannin was less effective. In addition, DHPO failed to augment glucose-uptake in the gastrocnemius muscle from AMPK-alpha2-transgenic (kinase-dead) mice. Taken together, these results suggest that DHPO is a novel small molecule that alleviates impaired glucose tolerance and lipid abnormalities associated with type-2 diabetes.
Collapse
Affiliation(s)
- Machender R Kandadi
- University of Wyoming, School of Pharmacy, Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, Department of Animal Sciences, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chromium supplement inhibits skeletal muscle atrophy in hindlimb-suspended mice. J Nutr Biochem 2009; 20:992-9. [DOI: 10.1016/j.jnutbio.2008.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 11/22/2022]
|
45
|
Kim MS, Kewalramani G, Puthanveetil P, Lee V, Kumar U, An D, Abrahani A, Rodrigues B. Acute diabetes moderates trafficking of cardiac lipoprotein lipase through p38 mitogen-activated protein kinase-dependent actin cytoskeleton organization. Diabetes 2008; 57:64-76. [PMID: 17942824 DOI: 10.2337/db07-0832] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Heart disease is a leading cause of death in diabetes and could occur because of excessive use of fatty acid for energy generation. Our objective was to determine the mechanisms by which AMP-activated protein kinase (AMPK) augments cardiac lipoprotein lipase (LPL), the enzyme that provides the heart with the majority of its fatty acid. RESEARCH DESIGN AND METHODS We used diazoxide in rats to induce hyperglycemia or used 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and thrombin to directly stimulate AMPK and p38 mitogen-activated protein kinase (MAPK), respectively, in cardiomyocytes. RESULTS There was a substantial increase in LPL at the coronary lumen following 4 h of diazoxide. In these diabetic animals, phosphorylation of AMPK, p38 MAPK, and heat shock protein (Hsp)25 produced actin cytoskeleton rearrangement to facilitate LPL translocation to the myocyte surface and, eventually, the vascular lumen. AICAR activated AMPK, p38 MAPK, and Hsp25 in a pattern similar to that seen with diabetes. AICAR also appreciably enhanced LPL, an effect reduced by preincubation with the p38 MAPK inhibitor SB202190 or by cytochalasin D, which inhibits actin polymerization. Thrombin activated p38 MAPK in the absence of AMPK phosphorylation. Comparable with diabetes, activation of p38 MAPK and, subsequently, Hsp25 phosphorylation and F-actin polymerization corresponded with an enhanced LPL activity. SB202190 and silencing of p38 MAPK also prevented these effects induced by thrombin and AICAR, respectively. CONCLUSIONS We propose that AMPK recruitment of LPL to the cardiomyocyte surface (which embraces p38 MAPK activation and actin cytoskeleton polymerization) represents an immediate compensatory response by the heart to guarantee fatty acid supply when glucose utilization is compromised.
Collapse
Affiliation(s)
- Min Suk Kim
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sculati M, Rossi F, Morlacchini M, Cena H, Roggi C. Diets with low glycemic index minimized weight loss in rats reared in a simulation of microgravity by hindlimb suspension. Nutr Res 2007. [DOI: 10.1016/j.nutres.2007.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Dreyer HC, Glynn EL, Lujan HL, Fry CS, DiCarlo SE, Rasmussen BB. Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway. J Appl Physiol (1985) 2007; 104:27-33. [PMID: 17885021 PMCID: PMC2715299 DOI: 10.1152/japplphysiol.00736.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ribosomal S6 kinase 1 (S6K1) is a downstream component of the mammalian target of rapamycin (mTOR) signaling pathway and plays a regulatory role in translation initiation, protein synthesis, and muscle hypertrophy. AMP-activated protein kinase (AMPK) is a cellular energy sensor, a negative regulator of mTOR, and an inhibitor of protein synthesis. The purpose of this study was to determine whether the hypertrophy/cell growth-associated mTOR pathway was downregulated during muscle atrophy associated with chronic paraplegia. Soleus muscle was collected from male Sprague-Dawley rats 10 wk following complete T(4)-T(5) spinal cord transection (paraplegic) and from sham-operated (control) rats. We utilized immunoprecipitation and Western blotting techniques to measure upstream [AMPK, Akt/protein kinase B (PKB)] and downstream components of the mTOR signaling pathway [mTOR, S6K1, SKAR, 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor (eIF) 4G and 2alpha]. Paraplegia was associated with significant soleus muscle atrophy (174 +/- 8 vs. 240 +/- 13 mg; P < 0.05). There was a reduction in phosphorylation of mTOR, S6K1, and eIF4G (P < 0.05) with no change in Akt/PKB or 4E-BP1 (P > 0.05). Total protein abundance of mTOR, S6K1, eIF2alpha, and Akt/PKB was decreased, and increased for SKAR (P < 0.05), whereas 4E-BP1 and eIF4G did not change (P > 0.05). S6K1 activity was significantly reduced in the paraplegic group (P < 0.05); however, AMPKalpha2 activity was not altered (3.5 +/- 0.4 vs. 3.7 +/- 0.5 pmol x mg(-1) x min(-1), control vs. paraplegic rats). We conclude that paraplegia-induced muscle atrophy in rats is associated with a general downregulation of the mTOR signaling pathway. Therefore, in addition to upregulation of atrophy signaling during muscle wasting, downregulation of muscle cell growth/hypertrophy-associated signaling appears to be an important component of long-term muscle loss.
Collapse
Affiliation(s)
- Hans C Dreyer
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, Texas 77555-1144, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol 2007; 293:H457-66. [PMID: 17369473 DOI: 10.1152/ajpheart.00002.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.
Collapse
Affiliation(s)
- Li Zhang
- NMR Laboratory for Physiological Chemistry, Divivion of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Muscle atrophy is a pervasive problem that occurs with disuse, aging, and a myriad of disease conditions. The purposes of this review are to describe recent advances in studying muscle atrophy that have elucidated pathways involved at the molecular level; to compare different types of atrophy--primary (e.g. bed rest, immobilization) and secondary (when the atrophy is related to pathology as well as disuse, e.g. injury, sepsis etc.) and their multiple common features; to review progress in studying the recovery process and clinical status. RECENT FINDINGS Major advances have been made at the molecular level. There are two phenotypes for muscle atrophy--primary, which is mainly related to disuse (e.g. bed), and secondary, when the atrophy is related to pathology as well as disuse. It appears that the two forms have multiple elements in common. Studies on the recovery process reveal a very complex sequence of events that are not the simple reverse of the muscle loss process. In contrast to the progress at the molecular level, progress in treating muscle atrophy or accelerating recovery has been disappointing. SUMMARY Although nutritional supplementation and pharmacological agents continue to have the potential to minimize muscle atrophy, given its minimal risks, exercise sets a very high standard for treatment options when medically appropriate. Identification of pathways and control points offers the potential for new approaches.
Collapse
Affiliation(s)
- T Peter Stein
- University of Medicine and Dentistry of New Jersey - SOM, Stratford, New Jersey 08084, USA.
| | | |
Collapse
|