1
|
Skočir A, Jevšnik A, Plaskan L, Podbregar M. Functional Magnetic Neuromuscular Stimulation vs. Routine Physiotherapy in the Critically Ill for Prevention of ICU Acquired Muscle Loss: A Randomised Controlled Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1724. [PMID: 39459511 PMCID: PMC11509331 DOI: 10.3390/medicina60101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Muscle loss is a known complication of ICU admission. The aim of the study was to investigate the effect of neuromuscular functional magnetic stimulation (FMS) on quadriceps muscle thickness in critically ill patients. Materials and Methods: Among ICU patients one quadriceps was randomized to FMS (Tesla Stym, Iskra Medical, Ljubljana, Slovenia) stimulation and the other to control care. Quadriceps thickness was measured by ultrasound (US) in transversal and longitudinal planes at enrolment, Days 3-5, and Days 9-12. The trial stopped early following an interim analysis comparing muscle thickness differences between groups using repeated measures ANOVA. Results: Of 18 patients randomized, 2 died before completing the trial. The final analysis reported included 16 patients (female 38%, age 68 ± 10 years, SOFA 10.8 ± 2.7). Three mild skin thermal injuries were noted initially, which were later avoided with proper positioning of FMS probe. Primary outcome comparison showed that quadriceps thickness in transversal and longitudinal planes decreased in the non-stimulated legs and, but it did not change in FMS legs (-4.1 mm (95%CI: -9.4 to -0.6) vs. -0.7 mm (95%CI: -4.1 to -0.7) (p = 0.03) and -4.4 mm (95%CI: -8.9 to -1.1) vs. -1.5 mm (95%CI: -2.6 to -2.2) (p = 0.02), respectively) (ANOVA difference between groups p = 0.036 and 0.01, respectively). Conclusions: In the critically ill, neuromuscular FMS is feasible and safe with precautions applied to avoid possible skin thermal injury. FMS decreases the loss of quadriceps muscle thickness.
Collapse
Affiliation(s)
- Anej Skočir
- Department for Medical ICU, General and Teaching Hospital Celje, 3000 Celje, Slovenia;
| | - Alja Jevšnik
- Department for Medical Rehabilitation, General and Teaching Hospital Celje, 3000 Celje, Slovenia
| | - Lidija Plaskan
- Department for Medical Rehabilitation, General and Teaching Hospital Celje, 3000 Celje, Slovenia
| | - Matej Podbregar
- Department for Medical ICU, General and Teaching Hospital Celje, 3000 Celje, Slovenia;
- Department for Internal Medicine, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Kourek C, Raidou V, Antonopoulos M, Dimopoulou M, Koliopoulou A, Karatzanos E, Pitsolis T, Ieromonachos K, Nanas S, Adamopoulos S, Chamogeorgakis T, Dimopoulos S. Safety and Feasibility of Neuromuscular Electrical Stimulation in Patients with Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:3723. [PMID: 38999287 PMCID: PMC11242632 DOI: 10.3390/jcm13133723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: The aim of this study was to investigate the feasibility and safety of neuromuscular electrical stimulation (NMES) in patients on extracorporeal membrane oxygenation (ECMO) and thoroughly assess any potential adverse events. Methods: We conducted a prospective observational study assessing safety and feasibility, including 16 ICU patients on ECMO support who were admitted to the cardiac surgery ICU from January 2022 to December 2023. The majority of patients were females (63%) on veno-arterial (VA)-ECMO (81%), while the main cause was cardiogenic shock (81%) compared to respiratory failure. Patients underwent a 45 min NMES session while on ECMO support that included a warm-up phase of 5 min, a main phase of 35 min, and a recovery phase of 5 min. NMES was implemented on vastus lateralis, vastus medialis, gastrocnemius, and peroneus longus muscles of both lower extremities. Two stimulators delivered biphasic, symmetric impulses of 75 Hz, with a 400 μsec pulse duration, 5 sec on (1.6 sec ramp up and 0.8 sec ramp down) and 21 sec off. The intensity levels aimed to cause visible contractions and be well tolerated. Primary outcomes of this study were feasibility and safety, evaluated by whether NMES sessions were successfully achieved, and by any adverse events and complications. Secondary outcomes included indices of rhabdomyolysis from biochemical blood tests 24 h after the application of NMES. Results: All patients successfully completed their NMES session, with no adverse events or complications. The majority of patients achieved type 4 and 5 qualities of muscle contraction. Conclusions: NMES is a safe and feasible exercise methodology for patients supported with ECMO.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Michael Antonopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Kallithea, Greece
| | - Maria Dimopoulou
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Antigone Koliopoulou
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Theodoros Pitsolis
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Kallithea, Greece
| | - Konstantinos Ieromonachos
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Stamatis Adamopoulos
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Themistocles Chamogeorgakis
- Heart Failure, Transplant and Mechanical Circulatory Support Units, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Kallithea, Greece
| |
Collapse
|
3
|
Kissane RWP, Hauton D, Tickle PG, Egginton S. Skeletal muscle adaptation to indirect electrical stimulation: divergence between microvascular and metabolic adaptations. Exp Physiol 2023; 108:891-911. [PMID: 37026596 PMCID: PMC10988499 DOI: 10.1113/ep091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can we manipulate muscle recruitment to differentially enhance skeletal muscle fatigue resistance? What is the main finding and its importance? Through manipulation of muscle activation patterns, it is possible to promote distinct microvascular growth. Enhancement of fatigue resistance is closely associated with the distribution of the capillaries within the muscle, not necessarily with quantity. Additionally, at the acute stages of remodelling in response to indirect electrical stimulation, the improvement in fatigue resistance appears to be primarily driven by vascular remodelling, with metabolic adaptation of secondary importance. ABSTRACT Exercise involves a complex interaction of factors influencing muscle performance, where variations in recruitment pattern (e.g., endurance vs. resistance training) may differentially modulate the local tissue environment (i.e., oxygenation, blood flow, fuel utilization). These exercise stimuli are potent drivers of vascular and metabolic change. However, their relative contribution to adaptive remodelling of skeletal muscle and subsequent performance is unclear. Using implantable devices, indirect electrical stimulation (ES) of locomotor muscles of rat at different pacing frequencies (4, 10 and 40 Hz) was used to differentially recruit hindlimb blood flow and modulate fuel utilization. After 7 days, ES promoted significant remodelling of microvascular composition, increasing capillary density in the cortex of the tibialis anterior by 73%, 110% and 55% for the 4 Hz, 10 and 40 Hz groups, respectively. Additionally, there was remodelling of the whole muscle metabolome, including significantly elevated amino acid turnover, with muscle kynurenic acid levels doubled by pacing at 10 Hz (P < 0.05). Interestingly, the fatigue index of skeletal muscle was only significantly elevated in 10 Hz (58% increase) and 40 Hz (73% increase) ES groups, apparently linked to improved capillary distribution. These data demonstrate that manipulation of muscle recruitment pattern may be used to differentially expand the capillary network prior to altering the metabolome, emphasising the importance of local capillary supply in promoting exercise tolerance.
Collapse
Affiliation(s)
- Roger W. P. Kissane
- Department of Musculoskeletal & Ageing Science, Faculty of Health & Life SciencesUniversity of LiverpoolLiverpoolUK
- School of Biomedical Sciences, Faculty of BiosciencesUniversity of LeedsLeedsUK
| | - David Hauton
- Metabolomics Research Group, Department of ChemistryUniversity of OxfordOxfordUK
| | - Peter G. Tickle
- School of Biomedical Sciences, Faculty of BiosciencesUniversity of LeedsLeedsUK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of BiosciencesUniversity of LeedsLeedsUK
| |
Collapse
|
4
|
Effect of electromyostimulation training on intramuscular fat accumulation determined by ultrasonography in older adults. Eur J Appl Physiol 2023; 123:271-282. [PMID: 36260185 PMCID: PMC9580431 DOI: 10.1007/s00421-022-05074-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Electromyostimulation (EMS) induces a short-term change in muscle metabolism, and EMS training induces long-term improvements of muscle atrophy and function. However, the effects of EMS training on intramuscular fat in older adults are still poorly known. The purpose of this study was to examine whether the intramuscular fat index and biochemical parameters change with EMS training of the quadriceps femoris muscles in older adults. METHODS Nineteen non-obese older men and women performed EMS training of the quadriceps femoris for 12 weeks (3 times/week; single session for 30 min). The intramuscular fat content index was estimated by echo intensity of the vastus lateralis and rectus femoris muscles on ultrasonography, and muscle thickness was also measured. Muscle strength was assessed as the maximal voluntary contraction during isometric knee extension. Echo intensity, muscle thickness, and muscle strength were measured before and after EMS training. A rested/fasting blood samples were collected before and after EMS training for measuring plasma glucose, insulin, free fatty acid, triglyceride, and interleukin-6 concentrations. To examine the acute effect of a single-EMS session on biochemical parameters, blood samples were taken before and after the EMS session. RESULTS EMS training did not significantly change echo intensity in muscles, muscle thickness, muscle strength, or biochemical parameters. Regarding the acute effect on blood lipid concentrations, a single-EMS session increased free fatty acid and glucose concentrations. CONCLUSION EMS sessions had an acute effect of increasing free fatty acid and glucose concentrations, but EMS training intervention did not improve intramuscular fat content.
Collapse
|
5
|
Matsuo K, Yoneki K, Tatsuki H, Mibu K, Furuzono K, Kobayashi K, Yasuda S, Tamiya S. Effect of Electrical Muscle Stimulation on the Reduction of Muscle Volume Loss in Acute Heart Failure Patients. Int Heart J 2022; 63:1141-1149. [DOI: 10.1536/ihj.22-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Koji Matsuo
- Department of Rehabilitation, Sagamihara Kyodo Hospital
| | - Kei Yoneki
- Department of Rehabilitation, Sagamihara Kyodo Hospital
| | | | - Kazuhiro Mibu
- Department of Rehabilitation, Sagamihara Kyodo Hospital
| | | | | | - Shiori Yasuda
- Department of Rehabilitation, Sagamihara Kyodo Hospital
| | - Seiji Tamiya
- Department of Cardiovascular Medicine, Sagamihara Kyodo Hospital
| |
Collapse
|
6
|
Wasey W, Manahil N, Wasey N, Saleh S, Mohammed A. Intraoral Neuromuscular Stimulation Device and Rapid Eye Movement-Dependent Obstructive Sleep Apnea. Cureus 2022; 14:e27418. [PMID: 36046328 PMCID: PMC9418763 DOI: 10.7759/cureus.27418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a sleep breathing disorder characterized by recurrent pharyngeal collapse secondary to the decreased tone of the pharyngeal dilator muscles. The genioglossus muscle is a major pharyngeal dilator responsible for maintaining the upper airway. Research has shown that patients with OSA have a stronger but less endurant genioglossus muscle. Research has also demonstrated that neuromuscular electrical stimulation of the skeletal muscles in the genioglossus was associated with improvement in muscular endurance and hence improvement in mild OSA. This has led to the development of a novel intraoral neuromuscular stimulation device for treating snoring and mild OSA. It is known that OSA is worse in rapid eye movement (REM) sleep compared to other stages of sleep due to neurologically mediated impairment of skeletal muscles. What has not been demonstrated so far is if the intraoral neuromuscular stimulation device improves the apnea-hypopnea index (AHI) in REM sleep. Our case report highlights the significant improvement of REM-dependent OSA in a middle-aged female with consistent use of an intraoral neuromuscular stimulation device marketed as eXciteOSA® (Signifier Medical Technologies, Needham, MA).
Collapse
|
7
|
Shibib L, Al-Qaisi M, Ahmed A, Miras AD, Nott D, Pelling M, Greenwald SE, Guess N. Reversal and Remission of T2DM - An Update for Practitioners. Vasc Health Risk Manag 2022; 18:417-443. [PMID: 35726218 PMCID: PMC9206440 DOI: 10.2147/vhrm.s345810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past 50 years, many countries around the world have faced an unchecked pandemic of obesity and type 2 diabetes (T2DM). As best practice treatment of T2DM has done very little to check its growth, the pandemic of diabesity now threatens to make health-care systems economically more difficult for governments and individuals to manage within their budgets. The conventional view has been that T2DM is irreversible and progressive. However, in 2016, the World Health Organization (WHO) global report on diabetes added for the first time a section on diabetes reversal and acknowledged that it could be achieved through a number of therapeutic approaches. Many studies indicate that diabetes reversal, and possibly even long-term remission, is achievable, belying the conventional view. However, T2DM reversal is not yet a standardized area of practice and some questions remain about long-term outcomes. Diabetes reversal through diet is not articulated or discussed as a first-line target (or even goal) of treatment by any internationally recognized guidelines, which are mostly silent on the topic beyond encouraging lifestyle interventions in general. This review paper examines all the sustainable, practical, and scalable approaches to T2DM reversal, highlighting the evidence base, and serves as an interim update for practitioners looking to fill the practical knowledge gap on this topic in conventional diabetes guidelines.
Collapse
Affiliation(s)
- Lina Shibib
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mo Al-Qaisi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ahmed Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David Nott
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Marc Pelling
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen E Greenwald
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Nicola Guess
- School of Life Sciences, Westminster University, London, UK
| |
Collapse
|
8
|
Abitante TJ, Rutkove SB, Duda KR, Newman DJ. Effect of Athletic Training on Fatigue During Neuromuscular Electrical Stimulation. Front Sports Act Living 2022; 4:894395. [PMID: 35774382 PMCID: PMC9237484 DOI: 10.3389/fspor.2022.894395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to explore the effect an individual's exercise training type will have on muscle fatigability during repetitive contractions induced by Neuromuscular Electrical Stimulation (NMES). Thirty-four subjects comprising of competitive athletes and controls were recruited into three cohorts: Endurance (runners/cyclists) n = 13; nine male, four female; 27 ± 8 years old, Explosive (Lifters/Sprinters) n = 11; nine male, two female; 30 ± 7 years old, and controls n = 10, six male, four female, 26 ± 4 years old. Subjects were placed in a custom-made leg extension rig, and received NMES against a fixed resistance (NMES-FR), to the Vastus Medialis muscle resulting in isometric leg extensions, at a duty cycle of 1 s on/3 s rest, for 20 min. The force of the isometric contractions was recorded using a Hogan MicroFet2 dynamometer, and three separate fatigue metrics were calculated to compare the different cohorts, sports within each cohort, and gender within each cohort. For every fatigue metric, the endurance group fatigued significantly less than both the explosive and control cohorts, with no difference observed between the explosive and the controls. Within each cohort, no significant difference was observed in any fatigue metric between sport or gender, but these comparisons lacked power. The results show that only high capacity endurance activity will have any effect on reducing one's fatigability during repetitive NMES. The implications of this conclusion can aid in the development of NMES regimens for use in healthy populations, such as athletic training or astronaut musculoskeletal countermeasures, as well as clinical applications when fatigue is to be minimized.
Collapse
Affiliation(s)
- Thomas J. Abitante
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
- *Correspondence: Thomas J. Abitante
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Kevin R. Duda
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Dava J. Newman
- MIT Media Lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
9
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
10
|
Rahmati M, Gondin J, Malakoutinia F. Effects of Neuromuscular Electrical Stimulation on Quadriceps Muscle Strength and Mass in Healthy Young and Older Adults: A Scoping Review. Phys Ther 2021; 101:6294526. [PMID: 34106246 DOI: 10.1093/ptj/pzab144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Although neuromuscular electrical stimulation (NMES) has been used as a safe and relevant complement to voluntary resistance training, its effectiveness in increasing quadriceps femoris muscle strength and mass in healthy young and older adults has not been determined. The aim of this scoping review was to assess the effects of NMES on quadriceps muscle strength and mass in healthy young and older adults. METHODS CENTRAL, Pedro, MEDLINE, and PubMed were searched from inception to September 2019. Randomized controlled trials (RCTs) that compared NMES with control group or voluntary resistance training for healthy young and older adults were included. Study characteristics, primary and secondary outcome parameters, and details of the NMES intervention were extracted by 2 reviewers. Only studies for which full text was available in English were included. RESULTS Thirty-two RCTs including 796 healthy participants were identified as being eligible for young adults, and 5 RCTs including 123 healthy participants were identified as being eligible for older adults. The available evidence strongly suggests that NMES improves quadriceps muscle strength compared with a control group in young adults, but its efficacy seems lower than that of voluntary resistance training. The available limited evidence regarding the effects of NMES on quadriceps muscle mass compared with control in young adults is inconclusive, with 3 RCTs showing positive effects and 3 RCTs not showing positive effects. The very limited available evidence from 5 RCTs in older adults suggests that NMES might be beneficial for increasing quadriceps muscle strength and mass. CONCLUSION Overall, the evidence indicates that NMES is an efficacious method for increasing quadriceps muscle strength in young adults, whereas its impact on muscle mass requires further investigations. In addition, the effectiveness of NMES needs to be confirmed in older adults on the basis of more high-quality RCTs with larger sample sizes. IMPACT This scoping review of 37 RCTs including 919 people is the first study, to the authors' knowledge, to show that the use of NMES increases quadriceps muscle strength in young adults and might improve quadriceps muscle strength compared with control interventions in older adults. In both young and older adults, the effects of NMES on quadriceps muscle mass are still unclear.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Julien Gondin
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Lyon, France
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| |
Collapse
|
11
|
Effects of Whole-Body Electromyostimulation Associated with Dynamic Exercise on Functional Capacity and Heart Rate Variability After Bariatric Surgery: a Randomized, Double-Blind, and Sham-Controlled Trial. Obes Surg 2021; 30:3862-3871. [PMID: 32447638 DOI: 10.1007/s11695-020-04724-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Bariatric surgery is the most effective treatment for morbid obesity. In association with dietary restrictions, the ability to exercise in the immediate post-surgical phase is limited. In this context, whole-body electromyostimulation (WB-EMS), strategy that stimulates various muscle groups, in conjunction with physical exercise, holds promise for improving functional capacity, and cardiac autonomic control, following surgery. The purpose of this study was to analyze whether a rehabilitation program consisting of WB-EMS with 30 exercise training sessions following bariatric surgery significantly improves functional capacity, body mass and heart rate variability (HRV). METHODS Randomized, double-blind, and sham-controlled trial. Twenty obesity patients were randomized into the WB-EMS (n = 10) and sham (n = 10) groups. On average, 7 days after surgery, individuals underwent a six-minute walk test (6MWT), HRV, and body composition analysis at rest. The next day, patients initiated an exercise training protocol, five times per week, over 6 weeks. Walking distance changes (post-pre = ΔWD) obtained by 6MWT and HRV indices were determined following the intervention. RESULTS Only WB-EMSG significantly increased WD and body mass index (BMI) after the intervention (p = 0.002) and ΔWD was significantly higher in this group when compared with sham (p = 0.04). Moreover, both groups demonstrated an improvement in key measures of HRV after the intervention. CONCLUSION An exercise training intervention initiated shortly after bariatric surgery improved functional capacity and cardiac autonomic tone. Improvements in functional capacity and BMI following exercise training were greater with the addition of WB-EMS but did not promote additional improvements in HRV beyond that realized with exercise training alone.
Collapse
|
12
|
Rabello R, Fröhlich M, Maffiuletti NA, Vaz MA. Influence of Pulse Waveform and Frequency on Evoked Torque, Stimulation Efficiency, and Discomfort in Healthy Subjects. Am J Phys Med Rehabil 2021; 100:161-167. [PMID: 32701636 DOI: 10.1097/phm.0000000000001541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of the study was to determine the influence of neuromuscular electrical stimulation pulse waveform and frequency on evoked torque, stimulation efficiency, and discomfort at two neuromuscular electrical stimulation levels. DESIGN This is a repeated measures study. The quadriceps muscle of 24 healthy men was stimulated at submaximal (neuromuscular electrical stimulationsub) and maximal (neuromuscular electrical stimulationmax) levels using two pulse waveforms (symmetrical, asymmetrical) and three pulse frequencies (60, 80, 100 Hz). Repeated measures analysis of variance and effect sizes were used to verify the effect of pulse waveform and pulse frequency on stimulation efficiency (evoked torque/current intensity) and discomfort and to assess the magnitude of the differences, respectively. RESULTS Stimulation efficiency was higher for symmetrical (neuromuscular electrical stimulationsub = 0.88 ± 0.21 Nm/mA; neuromuscular electrical stimulationmax = 1.27 ± 0.46 Nm/mA) compared with asymmetrical (neuromuscular electrical stimulationsub = 0.77 ± 0.21 Nm/mA; neuromuscular electrical stimulationmax = 1.02 ± 0.34 Nm/mA; P ≤ 0.001; effect size = 0.56-0.66) but did not significantly differ between frequencies (P = 0.17). At both neuromuscular electrical stimulation levels, there were no statistically significant differences in discomfort between pulse waveforms or frequencies. CONCLUSIONS The higher stimulation efficiency of symmetrical pulses suggests that this waveform would be preferred to asymmetrical pulses in clinical practice. Stimulation frequencies between 60 and 100 Hz can be used interchangeably because of similar efficiency and discomfort.
Collapse
Affiliation(s)
- Rodrigo Rabello
- From the Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil (RR, MF, MAV); Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy (RR); and Human Performance Laboratory, Schulthess Clinic, Zurich, Switzerland (NAM)
| | | | | | | |
Collapse
|
13
|
Liu MN, Yeh HL, Kuan AS, Tsai SJ, Liou YJ, Walsh V, Lau CI. High-Frequency External Muscle Stimulation Reduces Depressive Symptoms in Older Male Veterans: A Pilot Study. J Geriatr Psychiatry Neurol 2021; 34:37-45. [PMID: 32242480 DOI: 10.1177/0891988720915524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Late-life depression (LLD) is a severe public health problem. Given that pharmacological treatments for LLD are limited by their side effects, development of efficient and tolerable nonpharmacological treatment for LLD is urgently required. This study investigated whether high-frequency external muscle stimulation could reduce depressive symptoms in LLD. METHODS Twenty-two older male veterans with major depression were recruited and randomized into a treatment (n = 9) or sham control group (n = 13). The groups received high-frequency external muscle stimulation or sham intervention 3 times per week for 12 weeks. Clinical symptoms and muscle strength were evaluated at baseline and every 2 weeks. RESULTS The 2 groups were homogeneous in age, baseline clinical symptoms, and muscle strength. The treatment group showed significant improvement in depression and anxiety scores and muscle strength (all P < .01), whereas the control group showed no significant change after the 12-week follow-up. Compared to the control group, the treatment group showed significant improvements in depression (Geriatric Depression Scale, P = .009; Hamilton Depression Rating Scale, P = .007) and anxiety scores (HAMA, P = .008) and muscle strength (all P < .001). Changes in depression and anxiety levels were significantly correlated with changes in muscle strength after the study. In the treatment group, we observed a trend of correlation between the reduction in depression and muscle strength gains. CONCLUSION High-frequency external muscle stimulation appears to be an effective treatment for older patients with LLD. Large studies with more tests and/or conducted in different populations are warranted to validate these preliminary findings.
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, 46615Taipei Veterans General Hospital, Taipei.,Institute of Brain Science, National Yang-Ming University, Taipei.,Department of Neurology, Memory & Aging Center, University of California, San Francisco, CA, USA
| | - Heng-Liang Yeh
- Health Care Group, Taipei Veterans Home, New-Taipei City
| | - Ai Seon Kuan
- Institute of Public Health, National Yang-Ming University, Taipei.,Division of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei
| | - Shih-Jen Tsai
- Department of Psychiatry, 46615Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Ying-Jay Liou
- Department of Psychiatry, 46615Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Vincent Walsh
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, 4919University College London, London, United Kingdom
| | - Chi-Ieong Lau
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, 4919University College London, London, United Kingdom.,Department of Neurology, 38029Shin Kong Wu Ho-Su Memorial Hospital, Taipei.,Fu-Jen Catholic University, College of Medicine, Taipei.,Institute of Biophotonics and Brain Research Center, National Yang-Ming University, Taipei.,University Hospital, Taipa, Macau
| |
Collapse
|
14
|
Létocart A, Grosset JF. Achilles Tendon Adaptation to Neuromuscular Electrical Stimulation: Morphological and Mechanical Changes. Int J Sports Med 2020; 42:651-661. [PMID: 33285575 DOI: 10.1055/a-1270-7568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It remains unclear whether neuromuscular electrical stimulation can induce sufficient tendon stress to lead to tendon adaptations. Thus, we investigated the effect of such a training program on the triceps surae muscle following the morphological and mechanical properties of the Achilles tendon. Eight men participated in a 12-week high-frequency neuromuscular electrical stimulation training program of the triceps surae muscle under isometric conditions. Ultrasonography was used pre- and post-intervention to quantify cross-sectional area, free length, and total length of the Achilles tendon, as well as the myotendinous junction elongation during a maximal isometric ramp contraction under plantar flexion. Neuromuscular electrical stimulation training does not lead to changes in Achilles tendon free and total length, cross-sectional area, or maximal elongation capacity. However, a significant increase was evidenced in maximal tendon force post-training (+25.2%). Hence, Young's Modulus and maximal stress were significantly greater after training (+12.4% and +23.4%, respectively). High-frequency neuromuscular electrical stimulation training induces repeated stress sufficient to lead to adaptations of mechanical properties of the Achilles tendon. Thus, this training technique may be of particular interest as a new rehabilitation method in tendinopathy management or to counteract the effect of hypo-activity.
Collapse
|
15
|
Molecular and neural adaptations to neuromuscular electrical stimulation; Implications for ageing muscle. Mech Ageing Dev 2020; 193:111402. [PMID: 33189759 PMCID: PMC7816160 DOI: 10.1016/j.mad.2020.111402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and functional declines observed with advancing age can be minimized via various NMES protocols. Animal models have shown that NMES induces motor axon regeneration and promotes axonal outgrowth and fibre reinnervation. The activation of BDNF-trkB contributes to promotion of nerve growth and survival and mediates neuroplasticity. NMES is able to regulate muscle protein homeostasis and elevate oxidative enzyme activity.
One of the most notable effects of ageing is an accelerated decline of skeletal muscle mass and function, resulting in various undesirable outcomes such as falls, frailty, and all-cause mortality. The loss of muscle mass directly leads to functional deficits and can be explained by the combined effects of individual fibre atrophy and fibre loss. The gradual degradation of fibre atrophy is attributed to impaired muscle protein homeostasis, while muscle fibre loss is a result of denervation and motor unit (MU) remodelling. Neuromuscular electrical stimulation (NMES), a substitute for voluntary contractions, has been applied to reduce muscle mass and functional declines. However, the measurement of the effectiveness of NMES in terms of its mechanism of action on the peripheral motor nervous system and neuromuscular junction, and multiple molecular adaptations at the single fibre level is not well described. NMES mediates neuroplasticity and upregulates a number of neurotropic factors, manifested by increased axonal sprouting and newly formed neuromuscular junctions. Repeated involuntary contractions increase the activity levels of oxidative enzymes, increase fibre capillarisation and can influence fibre type conversion. Additionally, following NMES muscle protein synthesis is increased as well as functional capacity. This review will detail the neural, molecular, metabolic and functional adaptations to NMES in human and animal studies.
Collapse
|
16
|
Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People. Life (Basel) 2020; 10:life10090184. [PMID: 32911678 PMCID: PMC7554879 DOI: 10.3390/life10090184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Loss of muscle mass of the lower limbs and of the spine extensors markedly impairs locomotor ability and spine stability in old age. In this study, we investigated whether 8 w of neuromuscular electrical stimulation (NMES) improves size and architecture of the lumbar multifidus (LM) and vastus lateralis (VL) along with locomotor ability in healthy older individuals. Eight volunteers (aged 65 ≥ years) performed NMES 3 times/week. Eight sex- and age-matched individuals served as controls. Functional tests (Timed Up and Go test (TUG) and Five Times Sit-to-Stand Test (FTSST)), VL muscle architecture (muscle thickness (MT), pennation angle (PA), and fiber length (FL)), along with VL cross-sectional area (CSA) and both sides of LM were measured before and after by ultrasound. By the end of the training period, MT and CSA of VL increased by 8.6% and 11.4%, respectively. No significant increases were observed in FL and PA. LM CSA increased by 5.6% (left) and 7.1% (right). Interestingly, all VL architectural parameters significantly decreased in the control group. The combined NMES had a large significant effect on TUG (r = 0.50, p = 0.046). These results extend previous findings on the hypertrophic effects of NMES training, suggesting to be a useful mean for combating age-related sarcopenia.
Collapse
|
17
|
Toth MJ, Voigt TB, Tourville TW, Prior SM, Guigni BA, Schlosberg AV, Smith IB, Forest TJ, Kaufman PA, Wood ME, Rehman H, Dittus K. Effect of neuromuscular electrical stimulation on skeletal muscle size and function in patients with breast cancer receiving chemotherapy. J Appl Physiol (1985) 2020; 128:1654-1665. [PMID: 32378975 DOI: 10.1152/japplphysiol.00203.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Exercise has numerous benefits for patients with cancer, but implementation is challenging because of practical and logistical hurdles. This study examined whether neuromuscular electrical stimulation (NMES) can serve as a surrogate for classic exercise by eliciting an exercise training response in skeletal muscle of women diagnosed with breast cancer undergoing chemotherapy. Patients (n = 22) with histologically confirmed stage I, II, or III breast cancer scheduled to receive neoadjuvant or adjuvant chemotherapy were randomized to 8 wk of bilateral neuromuscular electrical stimulation (NMES; 5 days/wk) to their quadriceps muscles or control. Biopsy of the vastus lateralis was performed at baseline and after 8 wk of intervention to assess muscle fiber size, contractility, and mitochondrial content. Seventeen patients (8 control/9 NMES) completed the trial and were included in analyses. NMES promoted muscle fiber hypertrophy (P < 0.001), particularly in fast-twitch, myosin heavy chain (MHC) IIA fibers (P < 0.05) and tended to induce fiber type shifts in MHC II fibers. The effects of NMES on single-muscle fiber contractility were modest, and it was unable to prevent declines in the function in MHC IIA fibers. NMES did not alter intermyofibrillar mitochondrial content/structure but was associated with reductions in subsarcolemmal mitochondria. Our results demonstrate that NMES induces muscle fiber hypertrophy and fiber type shifts in MHC II fibers but had minimal effects on fiber contractility and promoted reductions in subsarcolemmal mitochondria. Further studies are warranted to evaluate the utility of NMES as an exercise surrogate in cancer patients and other conditions.NEW & NOTEWORTHY This is the first study to evaluate whether neuromuscular electrical stimulation (NMES) can be used as an exercise surrogate to improve skeletal muscle fiber size or function in cancer patients receiving treatment. We show that NMES promoted muscle fiber hypertrophy and fiber type shifts but had minimal effects on single-fiber contractility and reduced subsarcolemmal mitochondria.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, University of Vermont, Burlington, Vermont.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.,Department of Orthopedics and Rehabilitation, University of Vermont, Burlington, Vermont.,Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Thomas B Voigt
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, University of Vermont, Burlington, Vermont.,College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Shannon M Prior
- Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Blas A Guigni
- Department of Medicine, University of Vermont, Burlington, Vermont.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | | | - Isaac B Smith
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Taylor J Forest
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Peter A Kaufman
- Department of Medicine, University of Vermont, Burlington, Vermont.,Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Marie E Wood
- Department of Medicine, University of Vermont, Burlington, Vermont.,Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Hibba Rehman
- Department of Medicine, University of Vermont, Burlington, Vermont.,Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kim Dittus
- Department of Medicine, University of Vermont, Burlington, Vermont.,Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
18
|
Hwang UJ, Kwon OY, Jung SH, Kim HA, Gwak GT. Effect of neuromuscular electrical stimulation training for abdominal muscles on change of muscle size, strength, endurance and lumbopelvic stability. J Sports Med Phys Fitness 2020; 60:206-213. [PMID: 32125124 DOI: 10.23736/s0022-4707.19.09998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) devices for abdominal muscles are being marketed to the general public to improve physical appearance. Abdominal muscles play an important role in lumbopelvic stability for optimizing performance. We investigated the effects of NMES training of abdominal muscles on muscle size, muscle strength, endurance, and lumbopelvic stability. METHODS Twenty-three subjects (12 females, 11 males) performed abdominal muscle NMES training for 8 weeks. Before and after NMES training, we measured muscle size (cross-sectional area [CSA] of the rectus abdominals [RA] and lateral abdominal wall [LAW]) by magnetic resonance imaging, muscle strength (trunk flexor and side bridge strength), endurance (trunk flexor and side bridge endurance time), and lumbopelvic stability (one-leg loading test). RESULTS There were significant increases between pre- and post-NMES training differences in the size (CSA of RA 21.7-25.4%, P<0.001; CSA of LAW 9.00-9.71%, P<0.001), strength (trunk flexor 14.9%, P<0.05; side bridge 33.7-53.6%, P<0.05), and endurance (trunk flexor 29.1%, P<0.05; side bridge 24.6-28.9%, P<0.05) of abdominal muscles and lumbopelvic stability (37.2-37.4%, P<0.05). CONCLUSIONS NMES training could be applied to increase muscle size and muscle performances of abdominal muscles in sports and fitness fields.
Collapse
Affiliation(s)
- Ui-Jae Hwang
- Department of Physical Therapy, Graduate School, Yonsei University, Wonju, South Korea
| | - Oh-Yun Kwon
- Department of Physical Therapy, College of Health Science, Laboratory of Kinetic Ergocise Based on Movement Analysis, Yonsei University, Wonju, South Korea -
| | - Sung-Hoon Jung
- Department of Physical Therapy, Graduate School, Yonsei University, Wonju, South Korea
| | - Hyun-A Kim
- Department of Physical Therapy, Graduate School, Yonsei University, Wonju, South Korea
| | - Gyeong-Tae Gwak
- Department of Physical Therapy, Graduate School, Yonsei University, Wonju, South Korea
| |
Collapse
|
19
|
Umutlu G, Demirci N, Erdoğan AT, Acar NE, Fidanci ŞB. Neuromuscular, hormonal and cardiovascular adaptations to eight-week HIIT and continuous aerobic training combined with neuromuscular electrical stimulation. J Sports Med Phys Fitness 2020; 60:510-519. [PMID: 32043342 DOI: 10.23736/s0022-4707.19.10277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Whether high-or-low intensity exercise coupled with neuromuscular electrostimulation (NMES) affect IGF-1 and IGFBP-1 is unknown. The scope of this study was to test whether 8-week high-intensity interval training (HIIT) and continuous aerobic training (CA) combined with/without NMES performed at 65% and 120% of VO2max on a cycle ergometer induce different metabolic adaptations. METHODS A randomized controlled trial with a parallel groups study design was used. Thirty healthy untrained male participants (age: 21.33±1.24 years, height: 177.80±5.97 cm, weight: 73.74±7.90 kg, lean body mass: 64.29±5.11 kg, percent body fat: 12.43±5.34%) voluntarily participated in this study. Six participants were allocated to Control, six to HIIT, six to HIIT+NMES, six to CA, and six to CA+NMES. RESULTS Pre- to post-test IVO2max, blood lactate concentrations, O2 kinetics, peak torques at 60o/s and 180o/s were found statistically significant (P<0.05, P<0.001). IGF-1 pre 15 min in CA and IGF-1 post 30 min in HIIT group was found significantly higher compared to control group (16.93±8.40 vs. 6.05±4.25, P=0.024; 10.80±3.94 vs. 6.15±2.56, P=0.037), respectively. Additionally, IGFBP-1 were found significantly higher in CA+NMES group than HIIT group (0.95±0.67 vs. 1.23±0.56). Eight week post IGF-1/IGFBP-1 ratios were found higher in pre 15 min, post 30 min and post 24 h compared to baseline pre 15 min, post 30 min and post 24 h measurements in all groups (8.92±4.72 vs. 3.93±3.14; 9.41±3.72 vs. 3.99±1.76; 8.63±3.01 vs. 5.89±3.01, respectively). Also, IGFBP-1 post 30 min was significantly lower in HIIT+NMES while CA group showed significantly lower baseline and 24 h post IGFBP-1 compared to pre-test measurements (Z=-3.20, P=0.001; Z=-3.72, P=0.000; Z=-2.93, P=0.000). CONCLUSIONS HIIT and CA training induce different stimuli on IGF-1 and IGFBP-1 and NMES application combined with high-and-low intensity exercise is highly effective in improving athletic performance.
Collapse
Affiliation(s)
- Gökhan Umutlu
- School of Physical Education and Sports, Final International University, Kyrenia, Cyprus -
| | - Nevzat Demirci
- School of Physical Education and Sports, Mersin University, Mersin, Turkey
| | - Ayhan T Erdoğan
- School of Physical Education and Sports, Final International University, Kyrenia, Cyprus
| | - Nasuh E Acar
- School of Physical Education and Sports, Mersin University, Mersin, Turkey
| | - Şenay B Fidanci
- School of Medicine, Department of Medical Chemistry, Mersin University, Mersin, Turkey
| |
Collapse
|
20
|
Enoka RM, Amiridis IG, Duchateau J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology (Bethesda) 2020; 35:40-56. [DOI: 10.1152/physiol.00015.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The generation of action potentials in intramuscular motor and sensory axons in response to an imposed external current source can evoke muscle contractions and elicit widespread responses throughout the nervous system that impact sensorimotor function. The benefits experienced by individuals exposed to several weeks of treatment with electrical stimulation of muscle suggest that the underlying adaptations involve several physiological systems, but little is known about the specific changes elicited by such interventions.
Collapse
Affiliation(s)
- Roger M. Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | - Ioannis G. Amiridis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Sanchis-Gomar F, Lopez-Lopez S, Romero-Morales C, Maffulli N, Lippi G, Pareja-Galeano H. Neuromuscular Electrical Stimulation: A New Therapeutic Option for Chronic Diseases Based on Contraction-Induced Myokine Secretion. Front Physiol 2019; 10:1463. [PMID: 31849710 PMCID: PMC6894042 DOI: 10.3389/fphys.2019.01463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Myokines are peptides known to modulate brain neuroplasticity, adipocyte metabolism, bone mineralization, endothelium repair and cell growth arrest in colon and breast cancer, among other processes. Repeated skeletal muscle contraction induces the production and secretion of myokines, which have a wide range of functions in different tissues and organs. This new role of skeletal muscle as a secretory organ means skeletal muscle contraction could be a key player in the prevention and/or management of chronic disease. However, some individuals are not capable of optimal physical exercise in terms of adequate duration, intensity or muscles involved, and therefore they may be virtually deprived of at least some of the physiological benefits induced by exercise. Neuromuscular electrical stimulation (NMES) is emerging as an effective physical exercise substitute for myokine induction. NMES is safe and efficient and has been shown to improve muscle strength, functional capacity, and quality of life. This alternative exercise modality elicits hypertrophy and neuromuscular adaptations of skeletal muscles. NMES stimulates circulating myokine secretion, promoting a cascade of endocrine, paracrine, and autocrine effects. We review the current evidence supporting NMES as an effective physical exercise substitute for inducing myokine production and its potential applications in health and disease.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Sergio Lopez-Lopez
- Facultad de Ciencias del Deporte, Universidad Europea de Madrid, Madrid, Spain
| | | | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Baronissi, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, United Kingdom
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | |
Collapse
|
22
|
Mancinelli R, Toniolo L, Di Filippo ES, Doria C, Marrone M, Maroni CR, Verratti V, Bondi D, Maccatrozzo L, Pietrangelo T, Fulle S. Neuromuscular Electrical Stimulation Induces Skeletal Muscle Fiber Remodeling and Specific Gene Expression Profile in Healthy Elderly. Front Physiol 2019; 10:1459. [PMID: 31827446 PMCID: PMC6890722 DOI: 10.3389/fphys.2019.01459] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle aging is a multifactorial process strictly related to progressive weakness. One of the results that were focused on was the fiber phenotype modification and their loss. The physiological muscle recruitment to contraction, basically prosecuted under volitional control, can also be engaged by means of Neuromuscular Electrical Stimulation (NMES). Knowing that the NMES is effective in improving muscle strength in active healthy elderly, the aim was to investigate which physiological modifications were able to produce in the Vastus lateralis muscle and the pathways involved. It was found that NMES increased the cross sectional area and the isometric strength of type II myofibers together with the activated myogenic pathway in order to shift glycolytic toward the oxidative phenotype II myofibers, at a molecular level and with an increase of maximal voluntary contraction (MVC) at a functional level. Using the TaqMan low density array on 48 different genes, we found that NMES specific gene regulation highlighted: (i) increased protein synthesis with respect to protein degradation; (ii) the activation of an apoptotic pathway involved in the differentiation process; (iii) increased regeneration signals; (iv) oxidative enzyme regulation. These pathways were validated via confirmatory RT-PCR for genes involved in the regeneration process as well as Myosin isoforms. We also investigated the oxidative stress status analyzing superoxide anion levels, the protein expression of two different superoxide dismutase and the activity of both catalase and superoxide anion dismutase, being two main antioxidant enzymes. In conclusion, data demonstrates that NMES is effective in producing physiological adaptation on Vastus Lateralis of active healthy elderly as well as providing new insights for further research on elderly who experienced muscle detriment for periodic or permanent immobility.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Interuniversity Institute of Myology, Rome, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Interuniversity Institute of Myology, Rome, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Christian Doria
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Marrone
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Interuniversity Institute of Myology, Rome, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Camilla Reina Maroni
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Vittore Verratti
- Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Padua, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Interuniversity Institute of Myology, Rome, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Interuniversity Institute of Myology, Rome, Italy.,Laboratory of Functional Evaluation, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
23
|
Wakahara T, Shiraogawa A. Effects of neuromuscular electrical stimulation training on muscle size in collegiate track and field athletes. PLoS One 2019; 14:e0224881. [PMID: 31721812 PMCID: PMC6853328 DOI: 10.1371/journal.pone.0224881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to examine the effects of neuromuscular electrical stimulation training for 12 weeks on the abdominal muscle size in trained athletes. Male collegiate track and field athletes participated in the present study and were randomly allocated to either training or control groups. Eleven participants of the training group completed a 60-session training program over a 12-week period (23 min/session, 5 days/week) involving neuromuscular electrical stimulation (mostly 20 Hz) for the abdominal muscles in addition to their usual training for the own events. The participants of the control group (n = 13) continued their usual training. Before and after the intervention period, cross-sectional areas of the rectus abdominis and abdominal oblique muscles (the internal and external obliques and transversus abdominis) and subcutaneous fat thickness were measured with magnetic resonance and ultrasound imaging. There were no significant changes in cross-sectional area of the rectus abdominis or abdominal oblique muscles or in subcutaneous fat thickness in the training or control groups after the intervention period. The change in cross-sectional area of the rectus abdominis in each participant was not significantly correlated with pre-training cross-sectional area and neither was the mean value of fat thickness at pre- and post-training. These results suggest that low-frequency (20 Hz) neuromuscular electrical stimulation training for 12 weeks is ineffective in inducing hypertrophy of the abdominal muscles in trained athletes, even when they have a thin layer of subcutaneous fat.
Collapse
Affiliation(s)
- Taku Wakahara
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
- Human Performance Laboratory, Waseda University, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Ayumu Shiraogawa
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
24
|
Youssef MK. Efficacy of neuromuscular electric stimulation versus aerobic exercise on uraemic restless legs syndrome. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2019. [DOI: 10.12968/ijtr.2017.0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BackgroundThe prevalence of restless legs syndrome in haemodialysis patients is approximately ~30%, and it is significantly higher than in the general population. Restless legs syndrome is a sensory-motor disorder with negative effects on sleep and daytime activities that affect personal, family and occupational life. The overall impact of restless legs syndrome on quality of life is comparable to that of chronic and frustrating conditions such as depression and diabetes. The present study was conducted to compare the effect of neuromuscular electric stimulation with aerobic exercise on cases of uraemic restless legs syndrome.MethodsA total of 60 chronic renal failure patients with uraemic restless legs syndrome aged 20 to 65 years participated in this study. Participants were allocated to receive neuromuscular electric stimulation or aerobic exercises. All participants were evaluated before the first session of treatment and after 3 months, at the end of the treatment. Normal and fast walk gait speed tests and the Five Times Sit-to-Stand Test and 60 second Sit-to-Stand Test were used to assess participants' physical status. The Restless Legs Syndrome Rating Scale was used to determine the level of restless legs syndrome severity.ResultsNeuromuscular electric stimulation resulted in significant improvements in all measures of physical performance and in Restless Legs Syndrome Rating Scale score when compared to baseline. Aerobic exercise produced significant improvements in all tests. At the end of the study, aerobic exercise had greater responses than neuromuscular electric stimulation in all parameters measured except the Five Times Sit-to-Stand Test.ConclusionsNeuromuscular electrical stimulation may be used as an alternative to aerobic exercise to improve physical performance in cases of less severe restless legs syndrome in those unable or unwilling to participate in physical training.
Collapse
Affiliation(s)
- Manal K Youssef
- Assistant Professor, Physical Therapy, Department of Internal Medicine, Cairo University Hospitals, Giza, Egypt
| |
Collapse
|
25
|
Filipovic A, DeMarees M, Grau M, Hollinger A, Seeger B, Schiffer T, Bloch W, Gehlert S. Superimposed Whole-Body Electrostimulation Augments Strength Adaptations and Type II Myofiber Growth in Soccer Players During a Competitive Season. Front Physiol 2019; 10:1187. [PMID: 31607944 PMCID: PMC6768094 DOI: 10.3389/fphys.2019.01187] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Background The improvement of strength and athletic performance during a competitive season in elite soccer players is a demanding task for the coach. Aims As whole-body electrostimulation (WB-EMS) training provides a time efficient stimulation potentially capable in exerting skeletal muscle adaptations we aimed to test this approach over 7 weeks in trained male soccer players during a competitive season. Hypothesis We hypothesized that a superimposed WB-EMS will increase maximal strength and type I and type II myofiber hypertrophy. Methods Twenty-eight male field soccer players were assigned in either a WB-EMS group (EG, n = 10), a training group (TG, n = 10), or a control group (CG, n = 8). The regular soccer training consists of two to four sessions and one match per week. In concurrent, the EG performed 3 × 10 squat jumps superimposed with WB-EMS twice per week, TG performed 3 × 10 squat jumps without EMS twice per week, and the CG only performed the regular soccer training. Muscle biopsies were collected and strength tests were performed under resting conditions before (Baseline) and after the intervention period (Posttest). Muscle biopsies were analyzed via western blotting and immunohistochemistry for skeletal muscle adaptive responses. To determine the effect of the training interventions a 2 × 3 (time ∗ group) mixed ANOVA with repeated measures was conducted. Results Maximal strength in leg press (p = 0.009) and leg curl (p = 0.026) was significantly increased in EG along with a small but significant increase in type II myofiber diameter (p = 0.023). All of these adaptations were not observed in TG and CG. Conclusion WB-EMS can serve as a time efficient training method to augment strength capacities and type II fiber myofiber growth in soccer players when combined with specific resistance training. This combination may therefore be a promising training modification compared to traditional strength training for performance enhancement.
Collapse
Affiliation(s)
- Andre Filipovic
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Markus DeMarees
- Section of Sports Medicine and Sports Nutrition, Faculty of Sports Science, Ruhr-University Bochum, Bochum, Germany
| | - Marijke Grau
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Anna Hollinger
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Benedikt Seeger
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology and Public Health Consultation, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Institute of Sport Science, Biosciences of Sports, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
26
|
Maffiuletti NA, Green DA, Vaz MA, Dirks ML. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Front Physiol 2019; 10:1031. [PMID: 31456697 PMCID: PMC6700209 DOI: 10.3389/fphys.2019.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Human spaceflight is associated with a substantial loss of skeletal muscle mass and muscle strength. Neuromuscular electrical stimulation (NMES) evokes involuntary muscle contractions, which have the potential to preserve or restore skeletal muscle mass and neuromuscular function during and/or post spaceflight. This assumption is largely based on evidence from terrestrial disuse/immobilization studies without the use of large exercise equipment that may not be available in spaceflight beyond the International Space Station. In this mini-review we provide an overview of the rationale and evidence for NMES based on the terrestrial state-of-the-art knowledge, compare this to that used in orbit, and in ground-based analogs in order to provide practical recommendations for implementation of NMES in future space missions. Emphasis will be placed on knee extensor and plantar flexor muscles known to be particularly susceptible to deconditioning in space missions.
Collapse
Affiliation(s)
| | - David A Green
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany.,KBRwyle, Wyle Laboratories GmbH, Cologne, Germany.,King's College London, Centre for Human & Applied Physiological Sciences (CHAPS), London, United Kingdom
| | - Marco Aurelio Vaz
- Exercise Research Laboratory (LAPEX), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marlou L Dirks
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
27
|
Effects of neuromuscular electrical stimulation in critically ill patients: A systematic review and meta-analysis of randomised controlled trials. Aust Crit Care 2019; 33:203-210. [PMID: 31160215 DOI: 10.1016/j.aucc.2019.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/29/2019] [Accepted: 04/07/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES We performed a systematic review and meta-analysis to examine the effect of neuromuscular electrical stimulation (NES) on prevention of critical care myopathy and its effect on various clinical outcomes in the intensive care unit (ICU). REVIEW METHODS USED This study involved systematic review and meta-analysis of randomised controlled trials (RCTs) comparing NES (applied to different muscle groups combined with usual care) and usual care (passive and active exercises along with early mobilisation and rehabilitation). Included studies enrolled adult patients managed in the ICU for medical or surgical diseases who were or were not mechanically ventilated. The primary outcome was global muscle strength measured by the Medical Research Council grading system. Secondary outcomes included ICU mortality, duration of mechanical ventilation (MV), and ICU length of stay. Risk ratio for dichotomous data and mean difference (MD) for continuous data with their corresponding 95% confidence interval (CI) were calculated. DATA SOURCE A search in major electronic databases, including PubMed, Cochrane Library, and Embase, from inception to November 2018 was carried out. RESULTS Six RCTs were included, representing 718 patients. The mean age 60 ± 15.3 years, and 60.6% were male. There was no significant difference between NES and usual care on global muscle strength measured by Medical Research Council grading system (MD: 0.45; 95% CI: -2.89 to 3.80; p = 0.79), ICU mortality (risk ratio: 1.30; 95% CI: 0.95-1.78; p = 0.10), duration of MV (days) (MD: -2.07; 95% CI: -5.06 to 0.92; p = 0.18), or ICU length of stay (days) (MD: -3.06; 95% CI: -9.79 to 3.68; p = 0.37) in comparison with the usual therapy alone in critically ill patients. CONCLUSION NES combined with usual care was not associated with significant differences in global muscle strength, ICU mortality, duration of MV, or ICU length of stay in comparison with usual care alone in critically ill patients. Further RCTs are needed to determine patients with maximum benefit and to examine NES safety and efficacy.
Collapse
|
28
|
Minetto MA, Botter A, Gamerro G, Varvello I, Massazza G, Bellomo RG, Maffiuletti NA, Saggini R. Contralateral effect of short-duration unilateral neuromuscular electrical stimulation and focal vibration in healthy subjects. Eur J Phys Rehabil Med 2019. [DOI: 10.23736/s1973-9087.18.05004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev 2018; 47:80-88. [PMID: 30031068 DOI: 10.1016/j.arr.2018.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Disuse situations can have serious adverse health consequences in the elderly, including mainly functional impairment with subsequent increase in the risk of falls or morbimortality. The present review provides clinicians and care givers with detailed and practical information on the feasibility and effectiveness of physical strategies that are currently available to prevent or attenuate the functional decline that occurs secondarily to disuse situations in the elderly, notably in the hospital setting. In this context, active approaches such as resistance exercises and maximal voluntary contractions, which can be performed both isometrically and dynamically, are feasible during most immobilization situations including in hospitalized old people and represent powerful tools for the prevention of muscle atrophy. Aerobic exercise should also be prescribed whenever possible to reduce the loss of cardiovascular capacity associated with disuse periods. Other feasible strategies for patients who are unwilling or unable to perform volitional exercise comprise neuromuscular electrical stimulation, vibration, and blood flow restriction. However, they should ideally be applied synchronously with voluntary exercise to obtain synergistic benefits.
Collapse
|
30
|
Xu R, Wang Y, Wang K, Zhang S, He C, Ming D. Increased Corticomuscular Coherence and Brain Activation Immediately After Short-Term Neuromuscular Electrical Stimulation. Front Neurol 2018; 9:886. [PMID: 30405518 PMCID: PMC6206169 DOI: 10.3389/fneur.2018.00886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular Electrical Stimulation (NMES) is commonly used in motor rehabilitation for stroke patients. It has been verified that NMES can improve muscle strength and activate the brain, but the studies on how NMES affects the corticomuscular connection are limited. Some studies found an increased corticomuscular coherence (CMC) after a long-term NMES. However, it is still unknown about CMC during NMES, as relatively pure EMG is very difficult to obtain with the contamination of NMES current pulses. In order to approach the condition during NMES, we designed an experiment with short-term NMES and immediately captured data within 100 s. The repetition of wrist flexion was used to realize static muscle contractions for CMC calculation and dynamic contractions for event-related desynchronization (ERD). The result of 13 healthy participants showed that maximal values (p = 0.0020) and areas (p = 0.0098) of CMC and beta ERD were significantly increased immediately after NMES. It was concluded that a short-term NMES can still reinforce corticomuscular functional connection and brain activation related to motor task. This study verified the immediate strengthen of corticomuscular changes after NMES, which was expected to be the basis of long-term neural plasticity induced by NMES.
Collapse
Affiliation(s)
- Rui Xu
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Kun Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shufeng Zhang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chuan He
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Kletzien H, Russell JA, Leverson G, Connor NP. Effect of neuromuscular electrical stimulation frequency on muscles of the tongue. Muscle Nerve 2018; 58:441-448. [PMID: 29797723 DOI: 10.1002/mus.26173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Neuromuscular electrical stimulation (NMES) for the treatment of swallowing disorders is delivered at a variety of stimulation frequencies. We examined the effects of stimulation frequency on tongue muscle plasticity in an aging rat model. METHODS Eighty-six young, middle-aged, and old rats were assigned to either bilateral hypoglossal nerve stimulation at 10 or 100 Hz (5 days/week, 8 weeks), sham, or no-implantation conditions. Muscle contractile properties and myosin heavy chain (MyHC) composition were determined for hyoglossus (HG) and styloglossus (SG) muscles. RESULTS Eight weeks of 100-Hz stimulation resulted in the greatest changes in muscle contractile function with significantly longer contraction and half-decay times, the greatest reduction in fatigue, and a transition toward slowly contracting, fatigue-resistant MyHC isoforms. DISCUSSION NMES at 100-Hz induced considerable changes in contractile and phenotypic profiles of HG and SG muscles, suggesting higher frequency NMES may yield a greater therapeutic effect. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Heidi Kletzien
- Department of Biomedical Engineering University of Wisconsin-Madison, 1300 University Avenue, Room 481, Madison, Wisconsin 53706, USA
| | - John A Russell
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Glen Leverson
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nadine P Connor
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Stöllberger C, Finsterer J. Side effects of whole-body electro-myo-stimulation. Wien Med Wochenschr 2018; 169:173-180. [PMID: 30141113 DOI: 10.1007/s10354-018-0655-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023]
Abstract
Whole-body-electro-myo-stimulation (WB-EMS) has been introduced as an alternative to physical training. The aim of the review is to summarize the data about indications and side effects of WB-EMS.A literature search in PubMed disclosed 11 randomized trials, 3 cohort studies, and 7 case reports. From healthy volunteers, enormous creatine kinase (CK) elevations were reported. There is a lack of data about biological consequences of WB-EMS on other organs. In randomized trials, CK levels were not investigated, but several patients discontinued WB-EMS because of "muscular discomfort." Contraindications for WB-EMS are not clearly defined. Nine cases of rhabdomyolysis after WB-EMS were found, preferentially after the first application.Regulatory authorities should increase the safety of WB-EMS. Patients with a history of rhabdomyolysis should not undergo WB-EMS and those experiencing rhabdomyolysis should be neurologically investigated. Since the value of WB-EMS as an alternative to physical exercise is uncertain, we need to proof or disproof its benefit.
Collapse
Affiliation(s)
- Claudia Stöllberger
- Krankenanstalt Rudolfstiftung, Juchgasse 25, 1030, Wien, Austria. .,, Steingasse 31/18, 1030, Wien, Austria.
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Juchgasse 25, 1030, Wien, Austria
| |
Collapse
|
33
|
James DC, Solan MC, Mileva KN. Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study. J Foot Ankle Res 2018; 11:16. [PMID: 29755590 PMCID: PMC5934883 DOI: 10.1186/s13047-018-0258-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Strengthening the intrinsic foot muscles is a poorly understood and largely overlooked area. In this study, we explore the feasibility of strengthening m. abductor hallucis (AH) with a specific paradigm of neuromuscular electrical stimulation; one which is low-intensity in nature and designed to interleave physiologically-relevant low frequency stimulation with high-frequencies to enhance effective current delivery to spinal motoneurones, and enable a proportion of force produced by the target muscle to be generated from a central origin. We use standard neurophysiological measurements to evaluate the acute (~ 30 min) peripheral and central adaptations in healthy individuals. Methods The AH in the dominant foot of nine healthy participants was stimulated with 24 × 15 s trains of square wave (1 ms), constant current (150% of motor threshold), alternating (20 Hz–100 Hz) neuromuscular electrical stimulation interspersed with 45 s rest. Prior to the intervention, peripheral variables were evoked from the AH compound muscle action potential (Mwave) and corresponding twitch force in response to supramaximal (130%) medial plantar nerve stimulation. Central variables were evoked from the motor evoked potential (MEP) in response to suprathreshold (150%) transcranial magnetic stimulation of the motor cortex corresponding to the AH pathway. Follow-up testing occurred immediately, and 30 min after the intervention. In addition, the force-time-integrals (FTI) from the 1st and 24th WPHF trains were analysed as an index of muscle fatigue. All variables except FTI (T-test) were entered for statistical analysis using a single factor repeated measures ANOVA with alpha set at 0.05. Results FTI was significantly lower at the end of the electrical intervention compared to that evoked by the first train (p < 0.01). Only significant peripheral nervous system adaptations were observed, consistent with the onset of low-frequency fatigue in the muscle. In most of these variables, the effects persisted for 30 min after the intervention. Conclusions An acute session of wide-pulse, high-frequency, low-intensity electrical stimulation delivered directly to abductor hallucis in healthy feet induces muscle fatigue via adaptations at the peripheral level of the neuromuscular system. Our findings would appear to represent the first step in muscle adaptation to training; therefore, there is potential for using WPHF for intrinsic foot muscle strengthening. Electronic supplementary material The online version of this article (10.1186/s13047-018-0258-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darren C James
- 1Sport & Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Road, London, SE1 0AA UK
| | - Matthew C Solan
- 2Department of Trauma and Orthopaedic Surgery, Royal Surrey County Hospital, Guildford, Surrey, GU2 5XX UK
| | - Katya N Mileva
- 1Sport & Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Road, London, SE1 0AA UK
| |
Collapse
|
34
|
Natsume T, Ozaki H, Kakigi R, Kobayashi H, Naito H. Effects of training intensity in electromyostimulation on human skeletal muscle. Eur J Appl Physiol 2018; 118:1339-1347. [PMID: 29679248 DOI: 10.1007/s00421-018-3866-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE High-intensity neuromuscular electrical stimulation (NMES) training can induce muscle hypertrophy at the whole muscle and muscle fiber levels. However, whether low-intensity NMES training has a similar result is unknown. This study aimed to investigate whether low-intensity NMES training could elicit muscle hypertrophy at the whole muscle and muscle fiber levels in the human skeletal muscle. METHODS Eight untrained young males were subjected to 18 min of unilateral NMES training for 8 weeks. One leg received NMES at maximal tolerable intensity (HIGH); the other leg received NMES at an intensity half of that in the HIGH condition (LOW). Quadriceps muscle thickness (MT), muscle fiber cross-sectional area (CSA), and knee extension strength were measured before and after the training period. RESULTS The average training intensity throughout the intervention period in the HIGH and LOW conditions were 62.5 ± 4.6% maximal voluntary contraction (MVC) and 32.6 ± 2.6% MVC, respectively. MT, CSA, and muscle strength increased in both exercise conditions (p < 0.05); however, training effects in the LOW condition were lower than those in the HIGH condition (p < 0.05). The average training intensity showed a positive correlation with percent changes in muscle strength (r = 0.797, p = 0.001), MT (r = 0.876, p = 0.001), type I fiber CSA (r = 0.730, p = 0.01), and type II fiber CSA (r = 0.899, p = 0.001). CONCLUSIONS Low-intensity NMES could increase MT, muscle fiber CSA, and muscle strength in healthy human skeletal muscles. However, the magnitude of increase is lower in low-intensity than in high-intensity NMES training.
Collapse
Affiliation(s)
- Toshiharu Natsume
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Hayao Ozaki
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Ryo Kakigi
- School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Kobayashi
- Department of General Medicine, Mito Medical Center, Tsukuba University Hospital, 3-2-7 Miyamachi, Mito, Ibaraki, 310-0015, Japan
| | - Hisashi Naito
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| |
Collapse
|
35
|
Cattagni T, Lepers R, Maffiuletti NA. Effects of neuromuscular electrical stimulation on contralateral quadriceps function. J Electromyogr Kinesiol 2018; 38:111-118. [PMID: 29202270 DOI: 10.1016/j.jelekin.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/31/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022] Open
|
36
|
Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA. Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking? Arch Phys Med Rehabil 2017; 99:806-812. [PMID: 29233625 DOI: 10.1016/j.apmr.2017.10.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022]
Abstract
The clinical success of neuromuscular electrical stimulation (NMES) for neuromuscular rehabilitation is greatly compromised by the poor consideration of different physiological and methodological issues that are not always obvious to the clinicians. Therefore, the aim of this narrative review is to reexamine some of these fundamental aspects of NMES using a tripartite model perspective. First, we contend that NMES does not actually bypass the central nervous system but results in a multitude of neurally mediated responses that contribute substantially to force generation and may engender neural adaptations. Second, we argue that too much emphasis is generally placed on externally controllable stimulation parameters while the major determinant of NMES effectiveness is the intrinsically determined muscle tension generated by the current (ie, evoked force). Third, we believe that a more systematic approach to NMES therapy is required in the clinic and this implies a better identification of the patient-specific impairment and of the potential "responders" to NMES therapy. On the basis of these considerations, we suggest that the crucial steps to ensure the clinical effectiveness of NMES treatment should consist of (1) identifying the neuromuscular impairment with clinical assessment and (2) implementing algorithm-based NMES therapy while (3) properly dosing the treatment with tension-controlled NMES and eventually amplifying its neural effects.
Collapse
Affiliation(s)
| | - Julien Gondin
- NeuroMyoGene Institute, University Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jennifer Stevens-Lapsley
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO; Geriatric Research Education and Clinical Center, VA Eastern Colorado Healthcare System, Denver, CO
| | - Isabelle Vivodtzev
- INSERM U1042, HP2 Laboratory (Hypoxia: Pathophysiology), University Grenoble Alps, Grenoble, France
| | - Marco A Minetto
- Division of Physical Medicine and Rehabilitation, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Muthalib M, Ferrari M, Quaresima V, Kerr G, Perrey S. Functional near-infrared spectroscopy to probe sensorimotor region activation during electrical stimulation-evoked movement. Clin Physiol Funct Imaging 2017; 38:816-822. [PMID: 29110426 DOI: 10.1111/cpf.12485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/11/2017] [Indexed: 11/29/2022]
Abstract
This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. METHODS In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. RESULTS NMES-evoked movements induced significantly greater activation (increase in O2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O2 Hb (P = 0·144) and HHb (P = 0·958). CONCLUSION fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements.
Collapse
Affiliation(s)
- Makii Muthalib
- EuroMov, Univ. Montpellier, Montpellier, France.,SilverLine Research Services, Brisbane, QLD, Australia.,Movement Neuroscience, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marco Ferrari
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Graham Kerr
- Movement Neuroscience, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
38
|
Omole JO, Egwu MO, Mbada CE, Awotidebe TO, Onigbinde AT. Comparative effects of burst mode alternating current and resisted exercise on physical function, pain intensity and quadriceps strength among patients with primary knee osteoarthritis. REHABILITACJA MEDYCZNA 2017. [DOI: 10.5604/01.3001.0010.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background and objective: The benefi cial effect of Resisted Exercise (RE) in Knee Osteoarthritis (OA) rehabilitation is often hamstrung by the presence of other comorbidities affecting exercise implementation, hence the need for comparative alternative therapies. This study compared the effect of Burst Mode Alternating Current (BMAC) and RE in the management of patients with knee OA. Methods: Forty-seven consenting patients with primary knee OA participated in this study. The participants were recruited from the outpatient physiotherapy department of a Nigerian teaching hospital. The participants were randomly assigned into either RE plus BMAC (RBMAC) or RE Only (REO) groups. The effects of intervention were assessed in terms of physical function, pain intensity and quadriceps strength at the 4th and 8th week of intervention. Descriptive and inferential statistics were used to analyze data at p<0.05 alpha level. Result: RBMAC and REO led to signifi cant mean changes in physical function (RBMAC – p=0.001: REO – p=0.001), pain intensity (RBMAC − p=0.001: REO – p=0.001), and muscle strength (RBMAC − p=0.001: REO – p=0.001) scores. However, there was no signifi cant difference in the mean change in physical function, pain intensity or muscle strength scores between RE plus BMAC and RE only groups (p>0.05). Conclusion: In conclusion, resisted exercise alone had signifi cant effects on physical function, pain intensity and quadriceps strength in patients with knee osteoarthritis. However, burst mode alternating current did not show additional effects.
Collapse
Affiliation(s)
- John O. Omole
- Department of Physiotherapy, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Michael O. Egwu
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Chidozie E. Mbada
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Taofeek O. Awotidebe
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Ayodele T. Onigbinde
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
39
|
Dirks ML, Wall BT, van Loon LJC. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985) 2017; 125:850-861. [PMID: 28970205 DOI: 10.1152/japplphysiol.00985.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous situations, such as the recovery from illness or rehabilitation after injury, necessitate a period of muscle disuse in otherwise healthy individuals. Even a few days of immobilization or bed rest can lead to substantial loss of skeletal muscle tissue and compromise metabolic health. The decline in muscle mass is attributed largely to a decline in postabsorptive and postprandial muscle protein synthesis rates. Reintroduction of some level of muscle contraction by the application of neuromuscular electrical stimulation (NMES) can augment both postabsorptive and postprandial muscle protein synthesis rates and, as such, prevent or attenuate muscle loss during short-term disuse in various clinical populations. Whereas maintenance of habitual dietary protein consumption is a prerequisite for muscle mass maintenance, supplementing dietary protein above habitual intake levels does not prevent muscle loss during disuse in otherwise healthy humans. Combining the anabolic properties of physical activity (or surrogates) with appropriate nutritional support likely further increases the capacity to preserve skeletal muscle mass during a period of disuse. Therefore, effective interventional strategies to prevent or alleviate muscle disuse atrophy should include both exercise (mimetics) and appropriate nutritional support.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| |
Collapse
|
40
|
Di Filippo ES, Mancinelli R, Marrone M, Doria C, Verratti V, Toniolo L, Dantas JL, Fulle S, Pietrangelo T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J Appl Physiol (1985) 2017; 123:501-512. [DOI: 10.1152/japplphysiol.00855.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to determine whether neuromuscular electrical stimulation (NMES) affects skeletal muscle regeneration through a reduction of oxidative status in satellite cells of healthy elderly subjects. Satellite cells from the vastus lateralis skeletal muscle of 12 healthy elderly subjects before and after 8 wk of NMES were allowed to proliferate to provide myogenic populations of adult stem cells [myogenic precursor cells (MPCs)]. These MPCs were then investigated in terms of their proliferation, their basal cytoplasmic free Ca2+concentrations, and their expression of myogenic regulatory factors ( PAX3, PAX7, MYF5, MYOD, and MYOG) and micro-RNAs (miR-1, miR-133a/b, and miR-206). The oxidative status of these MPCs was evaluated through superoxide anion production and superoxide dismutase and glutathione peroxidase activities. On dissected single skeletal myofibers, the nuclei were counted to determine the myonuclear density, the fiber phenotype, cross-sectional area, and tension developed. The MPCs obtained after NMES showed increased proliferation rates along with increased cytoplasmic free Ca2+concentrations and gene expression of MYOD and MYOG on MPCs. Muscle-specific miR-1, miR-133a/b, and miR-206 were upregulated. This NMES significantly reduced superoxide anion production, along with a trend to reduction of superoxide dismutase activity. The NMES-dependent stimulation of muscle regeneration enhanced satellite cell fusion with mature skeletal fibers. NMES improved the regenerative capacity of skeletal muscle in elderly subjects. Accordingly, the skeletal muscle strength and mobility of NMES-stimulated elderly subjects significantly improved. NMES may thus be further considered for clinical or ageing populations.NEW & NOTEWORTHY The neuromuscular electrical stimulation (NMES) effect on skeletal muscle regeneration was assessed in healthy elderly subjects for the first time. NMES improved the regenerative capacity of skeletal muscle through increased myogenic precursor cell proliferation and fusion with mature myofibers. The increased cytoplasmic free Ca2+concentration along with MYOD, MYOG, and micro-RNA upregulation could be related to reduced O2·−production, which, in turn, favors myogenic regeneration. Accordingly, the skeletal muscle strength of NMES-stimulated lower limbs of healthy elderly subjects improved along with their mobility.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
| | - Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Mariangela Marrone
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
| | - Christian Doria
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Vittore Verratti
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Luana Toniolo
- Interuniversity Institute of Myology, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - José Luiz Dantas
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| |
Collapse
|
41
|
Busquets-Cortés C, Capó X, Martorell M, Tur JA, Sureda A, Pons A. Training and acute exercise modulates mitochondrial dynamics in football players' blood mononuclear cells. Eur J Appl Physiol 2017; 117:1977-1987. [PMID: 28748372 DOI: 10.1007/s00421-017-3684-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Regular physical activity induces oxidative stress but also causes adaptations in antioxidant defences including the nuclear factor κB (NF-κB) pathway, which activates target genes related to antioxidant defences such as uncoupling proteins (UCPs), and mitochondrial biogenesis mediated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The aim of the study was to determine the effect of long-term training and acute exercise on oxidant/antioxidant status and the expression of mitochondrial biogenesis genes in peripheral blood mononuclear cells (PBMCs). METHODS Twelve professional football players performed an 8-week exercise programme comprising a daily 2-h football training session. Blood samples were taken before and after the training season. RESULTS The results reported a significant increase in antioxidant protein levels and in mitochondrial proteins in resting conditions after the 8-week training period. PGC1α, UCP-2 and mitofusin 2 protein levels also increased after acute exercise compared to pre-exercise levels. After the training, the expression of PGC1α, cytochrome c oxidase subunit IV and mitochondrial NADH dehydrogenase subunit 5 messenger RNA (mRNA) significantly augmented after the acute physical activity compared to pre-exercise levels; while no changes occurred in these mRNA in basal conditions. NF-κB activation and ROS production reported a significant increase after acute exercise. CONCLUSIONS Training increases the levels of proteins related to mitochondrial biogenesis and improves the antioxidant capabilities of mitochondria in PBMCs among well-trained football players. Acute exercise may act as an inducer of mitochondrial biogenesis through NF-κB activation and PGC1α gene expression.
Collapse
Affiliation(s)
- Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Miquel Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Chile, 4070386, Concepción, Chile
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain.,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain.,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122, Palma de Mallorca, Spain. .,CIBER: CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122, Palma De Mallorca, Spain.
| |
Collapse
|
42
|
Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study. Am J Phys Med Rehabil 2017; 95:809-817. [PMID: 27088471 DOI: 10.1097/phm.0000000000000497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. DESIGN This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. RESULTS Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. CONCLUSIONS Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.
Collapse
|
43
|
Grassi B, Majerczak J, Bardi E, Buso A, Comelli M, Chlopicki S, Guzik M, Mavelli I, Nieckarz Z, Salvadego D, Tyrankiewicz U, Skórka T, Bottinelli R, Zoladz JA, Pellegrino MA. Exercise training in Tgα q*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism. J Appl Physiol (1985) 2017; 123:326-336. [PMID: 28522765 DOI: 10.1152/japplphysiol.00342.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgαq*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgαq*44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgαq*44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance.NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O2 delivery, were mainly responsible for the functional improvement.
Collapse
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy; .,Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Eleonora Bardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessia Buso
- Department of Medicine, University of Udine, Udine, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Guzik
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Zenon Nieckarz
- Institute of Physics, Jagiellonian University, Krakow, Poland; and
| | - Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Urszula Tyrankiewicz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Skórka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | | | - Jerzy A Zoladz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland
| | | |
Collapse
|
44
|
Xu Q, Guo F, Salem HMA, Chen H, Huang X. Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study. Clin Rehabil 2017; 31:1583-1591. [PMID: 28459163 DOI: 10.1177/0269215517705689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. DESIGN Randomized controlled study. SETTING Inpatient rehabilitation center of a teaching hospital. SUBJECTS Sixty-nine patients with foot drop. INTERVENTION Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. MAIN MEASURES 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. RESULTS After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). CONCLUSION Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.
Collapse
Affiliation(s)
- Qun Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hassan M Abo Salem
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Effect of neuromuscular stimulation and individualized rehabilitation on muscle strength in Intensive Care Unit survivors: A randomized trial. J Crit Care 2017; 40:76-82. [PMID: 28364678 DOI: 10.1016/j.jcrc.2017.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/20/2017] [Accepted: 03/19/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE Intensive Care Unit (ICU) survivors experience muscle weakness leading to restrictions in functional ability. Neuromuscular electrical stimulation (NMES) has been an alternative to exercise in critically ill patients. The aim of our study was to investigate its effects along with individualized rehabilitation on muscle strength of ICU survivors. MATERIAL AND METHODS Following ICU discharge, 128 patients (age: 53±16years) were randomly assigned to daily NMES sessions and individualized rehabilitation (NMES group) or to control group. Muscle strength was assessed by the Medical Research Council (MRC) score and hand grip at hospital discharge. Secondary outcomes were functional ability and hospital length of stay. RESULTS MRC, handgrip, functional status and hospital length of stay did not differ at hospital discharge between groups (p>0.05). ΔMRC% one and two weeks after ICU discharge tended to be higher in NMES group, while it was significant higher in NMES group of patients with ICU-acquired weakness at two weeks (p=0.05). CONCLUSIONS NMES and personalized physiotherapy in ICU survivors did not result in greater improvement of muscle strength and functional status at hospital discharge. However, in patients with ICU-aw NMES may be effective. The potential benefits of rehabilitation strategies should be explored in larger number of patients in future studies. CLINICAL TRIAL REGISTRATION www.Clinicaltrials.gov: NCT01717833.
Collapse
|
46
|
Gonzalez-Freire M, Semba RD, Ubaida-Mohien C, Fabbri E, Scalzo P, Højlund K, Dufresne C, Lyashkov A, Ferrucci L. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. J Cachexia Sarcopenia Muscle 2017; 8:5-18. [PMID: 27897395 PMCID: PMC5326819 DOI: 10.1002/jcsm.12121] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of 'sarcopenia', a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included 'human', 'skeletal muscle', 'proteome', 'proteomic(s)', and 'mass spectrometry', 'liquid chromatography-mass spectrometry (LC-MS/MS)'. A catalogue of 5431 non-redundant muscle proteins identified by mass spectrometry-based proteomics from 38 peer-reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry-based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment.
Collapse
Affiliation(s)
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Elisa Fabbri
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paul Scalzo
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Alexey Lyashkov
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
47
|
Spector P, Laufer Y, Elboim Gabyzon M, Kittelson A, Stevens Lapsley J, Maffiuletti NA. Neuromuscular Electrical Stimulation Therapy to Restore Quadriceps Muscle Function in Patients After Orthopaedic Surgery: A Novel Structured Approach. J Bone Joint Surg Am 2016; 98:2017-2024. [PMID: 27926683 DOI: 10.2106/jbjs.16.00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Paul Spector
- 1Human Performance Laboratory, Schulthess Clinic, Zurich, Switzerland 2Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel 3Muscle Performance Lab, School of Medicine, University of Colorado, Aurora, Colorado
| | | | | | | | | | | |
Collapse
|
48
|
Saitoh M, dos Santos MR, Anker M, Anker SD, von Haehling S, Springer J. Neuromuscular electrical stimulation for muscle wasting in heart failure patients. Int J Cardiol 2016; 225:200-205. [DOI: 10.1016/j.ijcard.2016.09.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
|
49
|
Veldman MP, Gondin J, Place N, Maffiuletti NA. Effects of Neuromuscular Electrical Stimulation Training on Endurance Performance. Front Physiol 2016; 7:544. [PMID: 27899898 PMCID: PMC5110544 DOI: 10.3389/fphys.2016.00544] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Menno P Veldman
- Center for Human Movement Sciences, University Medical CenterGroningen, Netherlands; Human Performance Lab, Schulthess ClinicZurich, Switzerland
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310 Villeurbanne, France
| | - Nicolas Place
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | | |
Collapse
|
50
|
Dirks ML, Groen BBL, Franssen R, van Kranenburg J, van Loon LJC. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis. J Appl Physiol (1985) 2016; 122:20-27. [PMID: 27789768 DOI: 10.1152/japplphysiol.00331.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 01/07/2023] Open
Abstract
Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1-13C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1-13C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1-13C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P < 0.05). During overnight sleep, myofibrillar protein-bound l-[1-13C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P < 0.01), representing 18 ± 6% greater incorporation of presleep protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. NEW & NOTEWORTHY Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older men after a day of bed rest, the application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis by 18% compared with presleep protein feeding only.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Bart B L Groen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Rinske Franssen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Janneau van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|