1
|
Kavcı Z, Ozan M, Buzdağlı Y, Savaş A, Uçar H. Investigation of the effect of nitrate and L-arginine intake on aerobic, anaerobic performance, balance, agility, and recovery in elite taekwondo athletes. J Int Soc Sports Nutr 2025; 22:2445609. [PMID: 39714103 DOI: 10.1080/15502783.2024.2445609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Taekwondo is a complex martial art that requires speed, balance, agility, and endurance. This study aims to examine the effects of nitrate and L-arginine supplementation on acute aerobic and anaerobic performance, balance, agility, and recovery in elite taekwondo athletes. METHOD This study was conducted as a double-blind, randomized, crossover study with the participation of 15 experienced taekwondo athletes aged 19.06 ± 0.96 years and 8.93 ± 1.27 years of training experience. Participants visited the laboratory a total of nine times, including a practice session and anthropometric measurements. These visits consisted of eight experimental sessions conducted at 72-hour intervals. The experimental sessions were conducted with nitrate, L-arginine, and a combination of both supplements (NIT*L-ARG) and placebo. Nitrate supplementation was provided by homogenizing fresh spinach (837.40 mg/kg), while L-ARG was given as a single dose of 6 g in powder form three hours before exercise. RESULTS NIT*L-ARG supplementation significantly improved the anaerobic performance of athletes in Wingate peak power and peak power (w/kg) compared to placebo and in mean power compared to NIT, L-ARG, and PLA. In addition, NIT*L-ARG supplementation significantly improved blood lactate levels and agility performance immediately after Wingate and Shuttle run tests. CONCLUSION The combined intake of NIT*L-ARG was found to be effective in improving aerobic, anaerobic, and agility performances as well as fatigue levels of athletes. It was determined that taking NIT and L-ARG supplements alone contributed to the improvement of improving athletes' performance in Wingate mean power values and subsequent fatigue level compared to PLA.
Collapse
Affiliation(s)
- Zafer Kavcı
- Atatürk University, Graduate School of Winter Sports and Sport Sciences, Erzurum, Turkey
| | - Murat Ozan
- Atatürk University, Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Erzurum, Turkey
| | - Yusuf Buzdağlı
- Erzurum Technical University, Department of Coaching Education, Faculty of Sport Sciences, Erzurum, Turkey
| | - Adem Savaş
- Giresun University, Department of the Food Engineering, Giresun, Turkey
| | - Halil Uçar
- İnönü University, Department of Physical Education and Sports, Faculty of Education, Malatya, Turkey
| |
Collapse
|
2
|
Jones AM. The fourth dimension: physiological resilience as an independent determinant of endurance exercise performance. J Physiol 2024; 602:4113-4128. [PMID: 37606604 DOI: 10.1113/jp284205] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Endurance exercise performance is known to be closely associated with the three physiological pillars of maximal O2 uptake (V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ ), economy or efficiency during submaximal exercise, and the fractional utilisation ofV ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ (linked to metabolic/lactate threshold phenomena). However, while 'start line' values of these variables are collectively useful in predicting performance in endurance events such as the marathon, it is not widely appreciated that these variables are not static but are prone to significant deterioration as fatiguing endurance exercise proceeds. For example, the 'critical power' (CP), which is a composite of the highest achievable steady-state oxidative metabolic rate and efficiency (O2 cost per watt), may fall by an average of 10% following 2 h of heavy intensity cycle exercise. Even more striking is that the extent of this deterioration displays appreciable inter-individual variability, with changes in CP ranging from <1% to ∼32%. The mechanistic basis for such differences in fatigue resistance or 'physiological resilience' are not resolved. However, resilience may be important in explaining superlative endurance performance and it has implications for the physiological evaluation of athletes and the design of interventions to enhance performance. This article presents new information concerning the dynamic plasticity of the three 'traditional' physiological variables and argues that physiological resilience should be considered as an additional component, or fourth dimension, in models of endurance exercise performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
3
|
Brady AJ, Egan B. Acute Ingestion of a Ketone Monoester without Co-ingestion of Carbohydrate Improves Running Economy in Male Endurance Runners. Med Sci Sports Exerc 2024; 56:134-142. [PMID: 37565450 DOI: 10.1249/mss.0000000000003278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
PURPOSE Acute ingestion of a ketone monoester, with and without co-ingestion of carbohydrate, was investigated for effects on running economy (RE), time to exhaustion (TTE), and other related indices of endurance running performance. METHODS Using a three condition, placebo-controlled, randomized crossover design, 11 male middle- and long-distance runners ran at five submaximal speeds (10-14 km·h -1 ) on a motorized treadmill for 8 min each, immediately followed by a ramp test to volitional exhaustion. Participants consumed either a 10% carbohydrate solution (CHO), a 10% carbohydrate solution with 750 mg·kg -1 body mass of an ( R )-3-hydroxybutyl ( R )-3-hydroxybutyrate ketone monoester (CHO + KE), or 750 mg·kg -1 body mass of the ketone monoester in flavored water (KE) before (two-thirds of the dose) and during (one-third of the dose) exercise. RESULTS β-hydroxybutyrate concentration averaged 1.8 ± 0.3 and 2.1 ± 0.3 mM during exercise in CHO + KE and KE, respectively. RE was lower at each submaximal running speed (effect size = 0.48-0.98) by an average of 4.1% in KE compared with CHO, but not between CHO + KE and CHO. TTE did not differ between CHO (369 ± 116 s), CHO + KE (342 ± 99 s), or KE (333 ± 106 s) ( P = 0.093). CONCLUSIONS Acute ingestion of a ketone monoester without carbohydrate, but not when coingested with carbohydrate, improved RE in middle- and long-distance runners at a range of submaximal running speeds and did not alter TTE in a short-duration ramp test to volitional exhaustion. Further investigation is required to examine if these differences translate into positive performance outcomes over longer durations of exercise.
Collapse
|
4
|
Daab W, Zghal F, Nassis GP, Rebai H, Moalla W, Bouzid MA. Chronic beetroot juice supplementation attenuates neuromuscular fatigue etiology during simulated soccer match play. Appl Physiol Nutr Metab 2024; 49:105-113. [PMID: 37696044 DOI: 10.1139/apnm-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The aim of the present study was to assess the effect of beetroot juice supplementation (BEET) on neuromuscular fatigue etiology during simulated soccer match play. In a randomized, double-blind, crossover design, 13 soccer players completed the Loughborough Intermittent Shuttle Test (LIST). Players received either BEET (2×150 mL; ∼8 mmol/L nitrate) or placebo (PLA) for 7 days (6 days prior to the experimental session and on the day of trial, 2 h before LIST). Neuromuscular assessments were performed at baseline, 45 min (half time: HT), and 90 min (full time: FT) following LIST. Maximal voluntary contraction (MVC) and twitch responses, delivered through electrical femoral nerve stimulation, were used to assess peripheral (quadriceps resting twitch force Qtw,pot) and central fatigue (voluntary activation, VA). Compared with baseline, MVC Qtw,pot and VA values decreased in PLA and BEET conditions at HT and FT (P < 0.05). Compared with PLA, the decrease in MVC and Qtw,pot was significantly attenuated with BEET at HT and FT (P < 0.001). Likewise, BEET attenuated the decrease in VA at HT (P < 0.001, d = 1.3) and FT (P < 0.001, d = 1.5) compared with the PLA condition. Chronic beetroot juice supplementation attenuates neuromuscular fatigue development during simulated soccer matches, and this is due to both central and peripheral factors. Consequently, chronic beetroot may optimize physical performance.
Collapse
Affiliation(s)
- Wael Daab
- Research Laboratory Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Research Laboratory Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - George P Nassis
- Physical Education Department, College of Education (CEDU),United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, SDU Sport and Health Sciences Cluster,University of Southern Denmark, Odense, Denmark
| | - Haithem Rebai
- Research Laboratory Sports Performance Optimization (LR09SEP01), National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Wassim Moalla
- Research Laboratory Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on peak power output: Influence of supplementation strategy and population. Nitric Oxide 2023; 138-139:105-119. [PMID: 37438201 DOI: 10.1016/j.niox.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
6
|
Laginestra FG, Berg OK, Nyberg SK, Venturelli M, Wang E, Helgerud J. Stroke volume response during prolonged exercise depends on left ventricular filling: evidence from a β-blockade study. Am J Physiol Regul Integr Comp Physiol 2023; 325:R154-R163. [PMID: 37306400 DOI: 10.1152/ajpregu.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Prolonged moderate-intensity exercise leads to a progressive upward drift in heart rate (HR) that may compromise stroke volume (SV). Alternatively, the HR drift may be related to abated SV due to impaired ventricular function. The aim of this study was to examine the effects of cardiovascular drift on left ventricular volumes and in turn SV. Thirteen healthy young males completed two 60-min cycling bouts on a semirecumbent cycle ergometer at 57% maximal oxygen consumption (V̇o2max) either under placebo condition (CON) or after ingesting a small dose of β1-blockers (BB). Measurements of HR, end-diastolic volume (EDV), and end-systolic volume were obtained by echocardiography and used to calculate SV. Other variables such as ear temperature, skin temperature, blood pressure, and blood volume were measured to assess potential changes in thermoregulatory needs and loading conditions. HR drift was successfully prevented when using BB from min 10 to min 60 (128 ± 9 to 126 ± 8 beats/min, P = 0.29) but not in CON (134 ± 10 to 148 ± 10 beats/min, P < 0.01). Conversely, during the same time, SV increased by 13% when using BB (103 ± 9 to 116 ± 7 mL, P < 0.01), whereas it was unchanged in CON (99 ± 7 to 101 ± 9 mL, P = 0.37). The SV behavior was mediated by a 4% increase in EDV in the BB condition (164 ± 18 to 170 ± 18 mL, P < 0.01), whereas no change was observed in the CON condition (162 ± 18 to 160 ± 18 mL, P = 0.23). In conclusion, blocking HR drift enhances EDV and SV during prolonged exercise. These findings suggest that SV behavior is tightly related to filling time and loading conditions of the left ventricle.
Collapse
Affiliation(s)
- Fabio Giuseppe Laginestra
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Stian Kwak Nyberg
- Department of Anesthesiology and Intensive Care, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway
| |
Collapse
|
7
|
Tan R, Price KM, Wideen LE, Lincoln IG, Karl ST, Seals JP, Paniagua KK, Hagen DW, Tchaprazian I, Bailey SJ, Pennell A. Dietary nitrate ingested with and without pomegranate supplementation does not improve resistance exercise performance. Front Nutr 2023; 10:1217192. [PMID: 37485396 PMCID: PMC10358845 DOI: 10.3389/fnut.2023.1217192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
This study tested the hypothesis that co-ingesting nitrate (NO3-)-rich beetroot juice (BR) and pomegranate powder (POM) would enhance neuromuscular performance during vertical countermovement jumps, explosive kneeling countermovement push-ups, and back squats compared to BR ingestion alone. Fifteen recreationally-active males were assigned in a double-blind, randomized, crossover design, to supplement in 3 conditions: (1) NO3--depleted beetroot juice (PL; 0.10 mmol NO3-) with two empty gelatin capsules; (2) NO3--rich beetroot juice (BR; 11.8 mmol NO3-) with two empty gelatin capsules, and (3) BR with 1,000 mg of POM powder in two capsules (BR + POM). Participants completed 5 countermovement jumps and 5 kneeling countermovement push-ups interspersed by 1 min of recovery. Subsequently, participants performed 2 sets of 2 × 70% one-repetition maximum back squats, interspersed by 2 min of recovery. Plasma [NO3-] and nitrite ([NO2-]) were elevated following BR and BR + POM compared with PL and POM (p < 0.001) with no differences between BR and BR + POM (p > 0.05) or PL and POM (p > 0.05). Peak power during countermovement jumps increased by 3% following BR compared to BR + POM (88.50 ± 11.46 vs. 85.80 ± 10.14 W/Kg0.67, p = 0.009) but not PL (88.50 ± 11.46 vs. 85.58 ± 10.05 W/Kg0.67, p = 0.07). Neuromuscular performance was not different between conditions during explosive kneeling push-ups and back squats (p > 0.05). These data provide insight into the efficacy of NO3- to modulate explosive resistance exercise performance and indicate that supplementing with BR alone or combined with POM has limited ergogenic potential on resistance exercise. Furthermore, caution is required when combining BR with POM, as this could compromise aspects of resistance exercise performance, at least when compared to BR ingested independently.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Katherine M. Price
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Lauren E. Wideen
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Isabella G. Lincoln
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Sean T. Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Jacob P. Seals
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | | | - Dylan W. Hagen
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Isaac Tchaprazian
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Adam Pennell
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
8
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
9
|
Rowland SN, Da Boit M, Tan R, Robinson GP, O’Donnell E, James LJ, Bailey SJ. Dietary Nitrate Supplementation Enhances Performance and Speeds Muscle Deoxyhaemoglobin Kinetics during an End-Sprint after Prolonged Moderate-Intensity Exercise. Antioxidants (Basel) 2022; 12:antiox12010025. [PMID: 36670889 PMCID: PMC9854517 DOI: 10.3390/antiox12010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Short-term dietary nitrate (NO3−) supplementation has the potential to enhance performance during submaximal endurance, and short-duration, maximal-intensity exercise. However, it has yet to be determined whether NO3− supplementation before and during submaximal endurance exercise can improve performance during a short-duration, maximal-intensity end-sprint. In a randomised, double-blind, crossover study, 9 recreationally active men ingested NO3−-rich (BR: 8 mmol NO3−/day) and NO3−-depleted (PL: 0.75 mmol NO3−/day) beetroot powder for 7 days. On day 7, participants completed 2 h of moderate-intensity cycling, which immediately transitioned into a 60 s maximal-intensity end-sprint, with supplements ingested 2 h before and 1 h into the moderate-intensity exercise bout. Plasma [NO3−] and [NO2−] were higher in BR compared to PL pre- and post-exercise (p < 0.05). Post-exercise plasma [NO3−] was higher than pre-exercise (562 ± 89 µM vs. 300 ± 73 µM; p < 0.05) and plasma [NO2−] was not significantly different pre- (280 ± 58 nM) and post-exercise (228 ± 63 nM) in the BR condition (p > 0.05). Mean power output during the final 30 s of the end-sprint was greater after BR (390 ± 38 W) compared to PL (365 ± 41 W; p < 0.05). There were no differences between BR and PL in any muscle oxygenation variables during moderate-intensity cycling (p > 0.05), but muscle [deoxyhaemoglobin] kinetics was faster during the end-sprint in BR (6.5 ± 1.4 s) compared to PL (7.3 ± 1.4 s; p < 0.05). These findings suggest that NO3− supplementation has the potential to improve end-sprint performance in endurance events when ingested prior to and during exercise.
Collapse
Affiliation(s)
- Samantha N. Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Mariasole Da Boit
- Health and Life Sciences, School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - George P. Robinson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Emma O’Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Lewis J. James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
10
|
Tan R, Black M, Home J, Blackwell J, Clark I, Wylie L, Vanhatalo A, Jones AM. Physiological and performance effects of dietary nitrate and N-acetylcysteine supplementation during prolonged heavy-intensity cycling. J Sports Sci 2022; 40:2585-2594. [PMID: 36759944 DOI: 10.1080/02640414.2023.2176052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
The purpose of this study was to investigate effects of concurrent and independent administration of dietary nitrate (NO3-), administered as NO3--rich beetroot juice (BR; ~12.4 mmol of NO3-), and N-acetylcysteine (NAC; 70 mg·kg-1) on physiological responses during prolonged exercise and subsequent high-intensity exercise tolerance. Sixteen recreationally active males supplemented with NO3--depleted beetroot juice (PL) or BR for 6 days and ingested an acute dose of NAC or maltodextrin (MAL) 1 h prior to performing 1 h of heavy-intensity cycling exercise immediately followed by a severe-intensity time-to-exhaustion (TTE) test in four conditions: 1) PL+MAL, 2) PL+NAC, 3) BR+MAL and 4) BR+NAC. Pre-exercise plasma [NO3-] and nitrite ([NO2-]) were elevated following BR+NAC and BR+MAL (both P < 0.01) compared with PL+NAC and PL+MAL; plasma [cysteine] was increased in PL+NAC and BR+NAC (both P < 0.01) compared to PL+MAL. Muscle excitability declined over time during the prolonged cycling bout in all conditions but was better preserved in PL+NAC compared to BR+NAC (P < 0.01) and PL+MAL (P < 0.05). There was no effect of supplementation on subsequent TTE . These findings indicate that co-ingestion of BR and NAC does not appreciably alter physiological responses during prolonged heavy-intensity cycling or enhance subsequent exercise tolerance.
Collapse
Affiliation(s)
- Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Matthew Black
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Joseph Home
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Jamie Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Ida Clark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Lee Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| |
Collapse
|
11
|
Jurado-Castro JM, Campos-Perez J, Ranchal-Sanchez A, Durán-López N, Domínguez R. Acute Effects of Beetroot Juice Supplements on Lower-Body Strength in Female Athletes: Double-Blind Crossover Randomized Trial. Sports Health 2022; 14:812-821. [PMID: 35603411 DOI: 10.1177/19417381221083590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beetroot juice (BRJ) is used as an ergogenic aid, but no previous study has analyzed the effect this supplement has on the production of explosive force and muscular endurance in physically active women. HYPOTHESIS BRJ improves explosive force and muscular endurance in the lower limbs of physically active women. STUDY DESIGN Randomized double-blind crossover study. LEVEL OF EVIDENCE Level 3. METHODS Fourteen physically active women performed a countermovement jump (CMJ) test, a back squat test for assessing velocity and power at 50% and 75% of one-repetition maximum (1RM), and the number of repetitions on a muscular endurance test consisting of 3 sets at 75% of 1RM in a resistance training protocol comprising 3 exercises (back squat, leg press, and leg extension). The participants performed the test in 2 sessions, 150 minutes after ingesting 70 mL of either BRJ (400 mg of nitrate) or a placebo (PLA). RESULTS A greater maximum height was achieved in the CMJ after consuming BRJ compared with a PLA (P = 0.04; effect size (ES) = 0.34). After a BRJ supplement at 50% 1RM, a higher mean velocity [+6.7%; P = 0.03; (ES) = 0.39 (-0.40 to 1.17)], peak velocity (+6%; P = 0.04; ES = 0.39 [-0.40 to 1.17]), mean power (+7.3%; P = 0.02; ES = 0.30 [-0.48 to 1.08]) and peak power (+6%; P = 0.04; ES = 0.20 [-0.59 to 0.98]) were attained in the back squat test. In the muscular endurance test, BRJ increased performance compared with the PLA (P < 0.00; ηp2 = 0.651). CONCLUSION BRJ supplements exert an ergogenic effect on the ability to produce explosive force and muscular endurance in the lower limbs in physically active women. CLINICAL RELEVANCE If physically active women took a BRJ supplement 120 minutes before resistance training their performance could be enhanced.
Collapse
Affiliation(s)
- Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain.,Escuela Universitaria de Osuna (Centro Adscrito a la Universidad de Sevilla), Osuna, Spain
| | - Julian Campos-Perez
- Department of Food Science and Technology, Rabanales University Campus, University of Cordoba, Córdoba, Spain
| | - Antonio Ranchal-Sanchez
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, University of Cordoba, Spain
| | - Natalia Durán-López
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Sevilla, Spain.,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brazil
| |
Collapse
|
12
|
Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv Nutr 2022; 13:1866-1881. [PMID: 35580578 PMCID: PMC9526841 DOI: 10.1093/advances/nmac054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.
Collapse
Affiliation(s)
| | - Breno Duarte Costa
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline Corado Gomes
- Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Tan R, Wylie LJ, Wilkerson DP, Vanhatalo A, Jones AM. Effects of dietary nitrate on the O 2 cost of submaximal exercise: Accounting for "noise" in pulmonary gas exchange measurements. J Sports Sci 2022; 40:1149-1157. [PMID: 35301929 DOI: 10.1080/02640414.2022.2052471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dietary nitrate (NO3-) supplementation can reduce the oxygen cost of submaximal exercise, but this has not been reported consistently. We hypothesised that the number of step transitions to moderate-intensity exercise, and corresponding effects on the signal-to-noise ratio for pulmonary V˙ O2, may be important in this regard. Twelve recreationally active participants were assigned in a randomised, double-blind, crossover design to supplement for 4 days in three conditions: 1) control (CON; water); 2); PL (NO3--depleted beetroot juice); and 3) BR (NO3--rich beetroot juice). On days 3 and 4, participants completed two 6-min step transitions to moderate-intensity cycle exercise. Breath-by-breath V˙ O2 data were collected and V˙ O2 kinetic responses were determined for a single transition and when the responses to 2, 3 and 4 transitions were ensemble-averaged. Steady-state V˙ O2 was not different between PL and BR when the V˙ O2 response to one-, two- or three-step transition was compared but was significantly lower in BR compared to PL when four-step transitions was considered (PL: 1.33 ± 0.34 vs. BR: 1.31 ± 0.34 L·min-1, P < 0.05). There were no differences in pulmonary V˙ O2 responses between CON and PL (P > 0.05). Multiple step transitions may be required to detect the influence of NO3- supplementation on steady-state V˙ O2.
Collapse
Affiliation(s)
- Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Daryl P Wilkerson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
15
|
Nyberg M, Christensen PM, Blackwell JR, Hostrup M, Jones AM, Bangsbo J. Nitrate-rich beetroot juice ingestion reduces skeletal muscle O 2 uptake and blood flow during exercise in sedentary men. J Physiol 2021; 599:5203-5214. [PMID: 34587650 DOI: 10.1113/jp281995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V ̇ O 2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V ̇ O 2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V ̇ O 2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V ̇ O 2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V ̇ O 2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V ̇ O 2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V ̇ O 2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark.,Team Danmark (Danish Elite Sports Organization), Copenhagen, Denmark
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Burke LM, Hall R, Heikura IA, Ross ML, Tee N, Kent GL, Whitfield J, Forbes SF, Sharma AP, Jones AM, Peeling P, Blackwell JR, Mujika I, Mackay K, Kozior M, Vallance B, McKay AKA. Neither Beetroot Juice Supplementation nor Increased Carbohydrate Oxidation Enhance Economy of Prolonged Exercise in Elite Race Walkers. Nutrients 2021; 13:nu13082767. [PMID: 34444928 PMCID: PMC8398364 DOI: 10.3390/nu13082767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes’ economy as well as the performance effects in elite groups.
Collapse
Affiliation(s)
- Louise M. Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Correspondence: ; Tel.: +61-422-635-869
| | - Rebecca Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Ida A. Heikura
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Megan L. Ross
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Nicolin Tee
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Georgina L. Kent
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
| | - Sara F. Forbes
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- UniSA Online, University of South Australia, Adelaide, SA 5000, Australia
| | - Avish P. Sharma
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Triathlon Australia, Burleigh Heads, Gold Coast, QLD 4220, Australia
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| | - Jamie R. Blackwell
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Basque Country, Spain;
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Karen Mackay
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Marta Kozior
- Department of Physical Education & Sport Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Brent Vallance
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Athletics Australia, South Melbourne, Melbourne, VIC 3205, Australia
| | - Alannah K. A. McKay
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| |
Collapse
|
17
|
Keller RM, Beaver LM, Reardon PN, Prater MC, Truong L, Robinson MM, Tanguay RL, Stevens JF, Hord NG. Nitrate-induced improvements in exercise performance are coincident with exuberant changes in metabolic genes and the metabolome in zebrafish ( Danio rerio) skeletal muscle. J Appl Physiol (1985) 2021; 131:142-157. [PMID: 34043471 PMCID: PMC8325611 DOI: 10.1152/japplphysiol.00185.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Dietary nitrate supplementation improves exercise performance by reducing the oxygen cost of exercise and enhancing skeletal muscle function. However, the mechanisms underlying these effects are not well understood. The purpose of this study was to assess changes in skeletal muscle energy metabolism associated with exercise performance in a zebrafish model. Fish were exposed to sodium nitrate (60.7 mg/L, 303.5 mg/L, 606.9 mg/L), or control water, for 21 days and analyzed at intervals (5, 10, 20, 30, 40 cm/s) during a 2-h strenuous exercise test. We measured oxygen consumption during an exercise test and assessed muscle nitrate concentrations, gene expression, and the muscle metabolome before, during, and after exercise. Nitrate exposure reduced the oxygen cost of exercise and increased muscle nitrate concentrations at rest, which were reduced with increasing exercise duration. In skeletal muscle, nitrate treatment upregulated expression of genes central to nutrient sensing (mtor), redox signaling (nrf2a), and muscle differentiation (sox6). In rested muscle, nitrate treatment increased phosphocreatine (P = 0.002), creatine (P = 0.0005), ATP (P = 0.0008), ADP (P = 0.002), and AMP (P = 0.004) compared with rested-control muscle. Following the highest swimming speed, concentration of phosphocreatine (P = 8.0 × 10-5), creatine (P = 6.0 × 10-7), ATP (P = 2.0 × 10-6), ADP (P = 0.0002), and AMP (P = 0.004) decreased compared with rested nitrate muscle. Our data suggest nitrate exposure in zebrafish lowers the oxygen cost of exercise by changing the metabolic programming of muscle prior to exercise and increasing availability of energy-rich metabolites required for exercise.NEW & NOTEWORTHY We show that skeletal muscle nitrate concentration is higher with supplementation at rest and was lower in groups with increasing exercise duration in a zebrafish model. The higher availability of nitrate at rest is associated with upregulation of key nutrient-sensing genes and greater availability of energy-producing metabolites (i.e., ATP, phosphocreatine, glycolytic intermediates). Overall, nitrate supplementation may lower oxygen cost of exercise through improved fuel availability resulting from metabolic programming of muscle prior to exercise.
Collapse
Affiliation(s)
- Rosa M Keller
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Laura M Beaver
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Patrick N Reardon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Nuclear Magnetic Resonance Facility, Oregon State University, Corvallis, Oregon
| | - Mary C Prater
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, Georgia
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Norman G Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
18
|
Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2021; 52:2250-2261. [PMID: 32936597 PMCID: PMC7494956 DOI: 10.1249/mss.0000000000002363] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental digital content is available in the text. Although over 100 studies and reviews have examined the ergogenic effects of dietary nitrate (NO3−) supplementation in young, healthy men and women, it is unclear if participant and environmental factors modulate the well-described ergogenic effects—particularly relevant factors include biological sex, aerobic fitness, and fraction of inspired oxygen (FiO2) during exercise. To address this limitation, the literature was systematically reviewed for randomized, crossover, placebo-controlled studies reporting exercise performance outcome metrics with NO3− supplementation in young, healthy adults. Of the 2033 articles identified, 80 were eligible for inclusion in the meta-analysis. Random-effects meta-analysis demonstrated that exercise performance improved with NO3− supplementation compared with placebo (d = 0.174; 95% confidence interval (CI), 0.120–0.229; P < 0.001). Subgroup analyses conducted on biological sex, aerobic fitness, and FiO2 demonstrated that the ergogenic effect of NO3− supplementation was as follows: 1) not observed in studies with only women (n = 6; d = 0.116; 95% CI, −0.126 to 0.358; P = 0.347), 2) not observed in well-trained endurance athletes (≥65 mL·kg−1·min−1; n = 26; d = 0.021; 95% CI, −0.103 to 0.144; P = 0.745), and 3) not modulated by FiO2 (hypoxia vs normoxia). Together, the meta-analyses demonstrated a clear ergogenic effect of NO3− supplementation in recreationally active, young, healthy men across different exercise paradigms and NO3− supplementation parameters; however, the effect size of NO3− supplementation was objectively small (d = 0.174). NO3− supplementation has more limited utility as an ergogenic aid in participants with excellent aerobic fitness that have optimized other training parameters. Mechanistic research and studies incorporating a wide variety of subjects (e.g., women) are needed to advance the study of NO3− supplementation; however, additional descriptive studies of young, healthy men may have limited utility.
Collapse
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Riley J Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | | | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
19
|
Abstract
Over the last decade, there has been a growing interest in the utility of nitrate (NO3-) supplementation to improve exercise-related performance. After consumption, dietary NO3- can be reduced to nitric oxide, a free radical gas involved in numerous physiological actions including blood vessel vasodilation, mitochondrial respiration, and skeletal muscle contractile function. Emerging evidence indicates that dietary NO3- supplementation has a small but nevertheless significant beneficial effect on endurance performance through the combined effects of enhanced tissue oxygenation and metabolic efficiency in active skeletal muscle. There is further evidence to suggest that dietary NO3- exerts a direct influence on contractile mechanisms within the skeletal muscle through alterations in calcium availability and sensitivity. Response heterogeneity and sizeable variability in the nitrate content of beetroot juice products influence the effectiveness of dietary NO3- for exercise performance, and so dosing and product quality, as well as training history, sex, and individual-specific characteristics, should be considered.
Collapse
|
20
|
Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, de Kok TMCM, van Breda SGJ. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr 2020; 61:788-804. [PMID: 32292042 DOI: 10.1080/10408398.2020.1746629] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beetroot juice (BRJ) has become increasingly popular amongst athletes aiming to improve sport performances. BRJ contains high concentrations of nitrate, which can be converted into nitric oxide (NO) after consumption. NO has various functions in the human body, including a vasodilatory effect, which reduces blood pressure and increases oxygen- and nutrient delivery to various organs. These effects indicate that BRJ may have relevant applications in prevention and treatment of cardiovascular disease. Furthermore, the consumption of BRJ also has an impact on oxygen delivery to skeletal muscles, muscle efficiency, tolerance and endurance and may thus have a positive impact on sports performances. Aside from the beneficial aspects of BRJ consumption, there may also be potential health risks. Drinking BRJ may easily increase nitrate intake above the acceptable daily intake, which is known to stimulate the endogenous formation of N-nitroso compounds (NOC's), a class of compounds that is known to be carcinogenic and that may also induce several other adverse effects. Compared to studies on the beneficial effects, the amount of data and literature on the negative effects of BRJ is rather limited, and should be increased in order to perform a balanced risk assessment.
Collapse
Affiliation(s)
- H Zamani
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M E J R de Joode
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - I J Hossein
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N F T Henckens
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M A Guggeis
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Berends
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T M C M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S G J van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
21
|
Clark IE, Vanhatalo A, Thompson C, Wylie LJ, Bailey SJ, Kirby BS, Wilkins BW, Jones AM. Changes in the power-duration relationship following prolonged exercise: estimation using conventional and all-out protocols and relationship with muscle glycogen. Am J Physiol Regul Integr Comp Physiol 2019; 317:R59-R67. [DOI: 10.1152/ajpregu.00031.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is not clear how the parameters of the power-duration relationship [critical power (CP) and W′] are influenced by the performance of prolonged endurance exercise. We used severe-intensity prediction trials (conventional protocol) and the 3-min all-out test (3MT) to measure CP and W′ following 2 h of heavy-intensity cycling exercise and took muscle biopsies to investigate possible relationships to changes in muscle glycogen concentration ([glycogen]). Fourteen participants completed a rested 3MT to establish end-test power (Control-EP) and work done above EP (Control-WEP). Subsequently, on separate days, immediately following 2 h of heavy-intensity exercise, participants completed a 3MT to establish Fatigued-EP and Fatigued-WEP and three severe-intensity prediction trials to the limit of tolerance (Tlim) to establish Fatigued-CP and Fatigued-W′. A muscle biopsy was collected immediately before and after one of the 2-h exercise bouts. Fatigued-CP (256 ± 41 W) and Fatigued-EP (256 ± 52 W), and Fatigued-Wʹ (15.3 ± 5.0 kJ) and Fatigued-WEP (14.6 ± 5.3 kJ), were not different ( P > 0.05) but were ~11% and ~20% lower than Control-EP (287 ± 46 W) and Control-WEP (18.7 ± 4.7 kJ), respectively ( P < 0.05). The change in muscle [glycogen] was not significantly correlated with the changes in either EP ( r = 0.19) or WEP ( r = 0.07). The power-duration relationship is adversely impacted by prolonged endurance exercise. The 3MT provides valid estimates of CP and W′ following 2 h of heavy-intensity exercise, but the changes in these parameters are not primarily determined by changes in muscle [glycogen].
Collapse
Affiliation(s)
- Ida E. Clark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Christopher Thompson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Stephen J. Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | | | | | - Andrew M. Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
22
|
Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int J Sport Nutr Exerc Metab 2019; 29:117-129. [PMID: 30747558 DOI: 10.1123/ijsnem.2019-0004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Distance events in Athletics include cross country, 10,000-m track race, half-marathon and marathon road races, and 20- and 50-km race walking events over different terrain and environmental conditions. Race times for elite performers span ∼26 min to >4 hr, with key factors for success being a high aerobic power, the ability to exercise at a large fraction of this power, and high running/walking economy. Nutrition-related contributors include body mass and anthropometry, capacity to use fuels, particularly carbohydrate (CHO) to produce adenosine triphosphate economically over the duration of the event, and maintenance of reasonable hydration status in the face of sweat losses induced by exercise intensity and the environment. Race nutrition strategies include CHO-rich eating in the hours per days prior to the event to store glycogen in amounts sufficient for event fuel needs, and in some cases, in-race consumption of CHO and fluid to offset event losses. Beneficial CHO intakes range from small amounts, including mouth rinsing, in the case of shorter events to high rates of intake (75-90 g/hr) in the longest races. A personalized and practiced race nutrition plan should balance the benefits of fluid and CHO consumed within practical opportunities, against the time, cost, and risk of gut discomfort. In hot environments, prerace hyperhydration or cooling strategies may provide a small but useful offset to the accrued thermal challenge and fluid deficit. Sports foods (drinks, gels, etc.) may assist in meeting training/race nutrition plans, with caffeine, and, perhaps nitrate being used as evidence-based performance supplements.
Collapse
|
23
|
Garnacho-Castaño MV, Palau-Salvà G, Cuenca E, Muñoz-González A, García-Fernández P, Del Carmen Lozano-Estevan M, Veiga-Herreros P, Maté-Muñoz JL, Domínguez R. Effects of a single dose of beetroot juice on cycling time trial performance at ventilatory thresholds intensity in male triathletes. J Int Soc Sports Nutr 2018; 15:49. [PMID: 30286760 PMCID: PMC6172780 DOI: 10.1186/s12970-018-0255-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Background Beetroot juice (BJ) is classified as a high-level supplement for improving sports performance. There is some controversy over the benefits of BJ supplementation for endurance exercise performance, especially when referring to well-trained athletes. This study examines the effects of acute BJ supplementation on cardioventilatory responses, exercise economy/efficiency, slow component of oxygen uptake, time trial performance, blood lactate, energy consumption, and carbohydrate and fat oxidation. Methods Twelve well-trained, male triathletes (aged 21–47 yr) were assigned in a randomized, double-blind, crossover design to receive 70 ml of BJ (6.5 mmol NO3−) or placebo (PL). Three hours after taking the supplement, participants completed an endurance test on a cycle ergometer at a constant work rate (W) corresponding to first ventilatory threshold (VT1) (30 min) and second ventilatory threshold (VT2) time trial (~ 15 min). Results Maximal oxygen uptake was 54.78 ± 3.13 mL·min− 1·kg− 1, and gross efficiency was > 22% at each load intensity and experimental condition. No significant interaction effect (supplement*intensity) was observed on any of the cardioventilatory variables, efficiency/economy, VT2 time trial, energy expenditure, carbohydrate oxidation and fat oxidation (p > 0.05). Conclusion Our findings do not support an improvement in the variables examined in response to acute BJ supplementation. Probably, higher doses are needed for improving time trial performance in male triathletes during a cycle ergometer test conducted at a load intensity equivalent to the first and second ventilatory threshold.
Collapse
Affiliation(s)
- Manuel Vicente Garnacho-Castaño
- Research group in physical activity, performance and health (GRI-AFIRS), School of Health Sciences, TecnoCampus-Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana) 08302 Mataró, Barcelona, Spain.
| | - Guillem Palau-Salvà
- Research group in physical activity, performance and health (GRI-AFIRS), School of Health Sciences, TecnoCampus-Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana) 08302 Mataró, Barcelona, Spain
| | - Eduardo Cuenca
- Research group in physical activity, performance and health (GRI-AFIRS), School of Health Sciences, TecnoCampus-Pompeu Fabra University, Ernest Lluch, 32 (Porta Laietana) 08302 Mataró, Barcelona, Spain
| | - Arturo Muñoz-González
- Laboratory of Biomechanics and Exercise Physiology, Department of Physical Activity and Sports Science, Alfonso X El Sabio University, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| | - Pablo García-Fernández
- Laboratory of Biomechanics and Exercise Physiology, Department of Physical Activity and Sports Science, Alfonso X El Sabio University, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| | - María Del Carmen Lozano-Estevan
- Laboratory of Biomechanics and Exercise Physiology, Department of Physical Activity and Sports Science, Alfonso X El Sabio University, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| | - Pablo Veiga-Herreros
- Laboratory of Biomechanics and Exercise Physiology, Department of Physical Activity and Sports Science, Alfonso X El Sabio University, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| | - José Luis Maté-Muñoz
- Laboratory of Biomechanics and Exercise Physiology, Department of Physical Activity and Sports Science, Alfonso X El Sabio University, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| | - Raúl Domínguez
- Laboratory of Biomechanics and Exercise Physiology, Department of Physical Activity and Sports Science, Alfonso X El Sabio University, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| |
Collapse
|