1
|
Laveneziana P, Fossé Q, Bret M, Patout M, Dudoignon B, Llontop C, Morélot-Panzini C, Cayetanot F, Bodineau L, Straus C, Similowski T. Defective exercise-related expiratory muscle recruitment in patients with PHOX2B mutations: A clue to neural determinants of the congenital central hypoventilation syndrome. Pulmonology 2025; 31:2416790. [PMID: 38403573 DOI: 10.1016/j.pulmoe.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES The human congenital central hypoventilation syndrome (CCHS) is caused by mutations in the PHOX2B (paired-like homeobox 2B) gene. Genetically engineered PHOX2B rodents exhibit defective development of the brainstem retrotrapezoid nucleus (RTN), a carbon dioxide sensitive structure that critically controls expiratory muscle recruitment. This has been linked to a blunted exercise ventilatory response. Whether this can be extrapolated to human CCHS is unknown and represents the objective of this study. MATERIALS AND METHODS Thirteen adult CCHS patients and 13 healthy participants performed an incremental symptom-limited cycle cardiopulmonary exercise test. Responses were analyzed using guideline approaches (ventilation V'E, tidal volume VT, breathing frequency, oxygen consumption, carbon dioxide production) complemented by a breathing pattern analysis (i.e. expiratory and inspiratory reserve volume, ERV and IRV). RESULTS A ventilatory response occurred in both study groups, as follows: V'E and VT increased in CCHS patients until 40 W and then decreased, which was not observed in the healthy participants (p<0.001). In the latter, exercise-related ERV and IRV decreases attested to concomitant expiratory and inspiratory recruitment. In the CCHS patients, inspiratory recruitment occurred but there was no evidence of expiratory recruitment (absence of any ERV decrease, p<0.001). CONCLUSIONS Assuming a similar organization of respiratory rhythmogenesis in humans and rodents, the lack of exercise-related expiratory recruitment observed in our CCHS patients is compatible with a PHOX2B-related defect of a neural structure that would be analogous to the rodents' RTN. Provided corroboration, ERV recruitment could serve as a physiological outcome in studies aiming at correcting breathing control in CCHS.
Collapse
Affiliation(s)
- P Laveneziana
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013 Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
| | - Q Fossé
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013 Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - M Bret
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie (Département R3S), F-75013 Paris, France
| | - M Patout
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), F-75013 Paris, France
| | - B Dudoignon
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique Centre du Sommeil-CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019 Paris, France
| | - C Llontop
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie (Département R3S), F-75013 Paris, France
| | - C Morélot-Panzini
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Pneumologie (Département R3S), F-75013 Paris, France
| | - F Cayetanot
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - L Bodineau
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
| | - C Straus
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpitaux Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013 Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
| | - T Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre de Référence Maladies Rares "Syndrome d'Ondine" (Département R3S), F-75013 Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, F-75013 Paris, France
| |
Collapse
|
2
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Bokov P, Dudoignon B, Fikiri Bavurhe R, Couque N, Matrot B, Delclaux C. Dyspnea in young subjects with congenital central hypoventilation syndrome. Pediatr Res 2024:10.1038/s41390-024-03305-1. [PMID: 38851851 DOI: 10.1038/s41390-024-03305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND It has been stated that patients with congenital central hypoventilation syndrome (CCHS) do not perceive dyspnea, which could be related to defective CO2 chemosensitivity. METHODS We retrospectively selected the data of six-minute walk tests (6-MWT, n = 30), cardiopulmonary exercise test (CPET, n = 5) of 30 subjects with CCHS (median age, 9.3 years, 17 females) who had both peripheral (controller loop gain, CG0) and central CO2 chemosensitivity (hyperoxic, hypercapnic response test [HHRT]) measurement. MAIN RESULTS Ten subjects had no symptom during the HHRT, as compared to the 20 subjects exhibiting symptoms, their median ages were 14.7 versus 8.8 years (p = 0.006), their maximal PETCO2 were 71.6 versus 66.7 mmHg (p = 0.007), their median CO2 response slopes were 0.28 versus 0.30 L/min/mmHg (p = 0.533) and their CG0 values were 0.75 versus 0.50 L/min/mmHg (p = 0.567). Median dyspnea Borg score at the end of the 6-MWT was 1/10 (17/30 subjects >0), while at the end of the CPET it was 3/10 (sensation: effort). This Borg score positively correlated with arterial desaturation at walk (R = 0.43; p = 0.016) and did not independently correlate with CO2 chemosensitivities. CONCLUSION About half of young subjects with CCHS do exhibit mild dyspnea at walk, which is not related to hypercapnia or residual CO2 chemosensitivity. IMPACT Young subjects with CCHS exhibit some degree of dyspnea under CO2 exposure and on exercise that is not related to residual CO2 chemosensitivity. It has been stated that patients with CCHS do not perceive sensations of dyspnea, which must be tempered. The mild degree of exertional dyspnea can serve as an indicator for the necessity of breaks.
Collapse
Affiliation(s)
- Plamen Bokov
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique -Centre du Sommeil - CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019, Paris, France
| | - Benjamin Dudoignon
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique -Centre du Sommeil - CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019, Paris, France
| | | | - Nathalie Couque
- AP-HP, Hôpital Robert Debré, Département de génétique, F-75019, Paris, France
| | - Boris Matrot
- Université de Paris, INSERM NeuroDiderot, F-75019, Paris, France
| | - Christophe Delclaux
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique -Centre du Sommeil - CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019, Paris, France.
| |
Collapse
|
4
|
Slattery SM, Zelko FA, Vu EL, Dunne EC, Rand CM, Bradley A, Zhou A, Carroll MS, Khaytin I, Brady KM, Stewart TM, Weese-Mayer DE. Ventilatory and Orthostatic Challenges Reveal Biomarkers for Neurocognition in Children and Young Adults With Congenital Central Hypoventilation Syndrome. Chest 2023; 163:1555-1564. [PMID: 36610668 DOI: 10.1016/j.chest.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Children and young adults with congenital central hypoventilation syndrome (CCHS) are at risk of cognitive deficits. They experience autonomic dysfunction and chemoreceptor insensitivity measured during ventilatory and orthostatic challenges, but relationships between these features are undefined. RESEARCH QUESTION Can a biomarker be identified from physiologic responses to ventilatory and orthostatic challenges that is related to neurocognitive outcomes in CCHS? STUDY DESIGN AND METHODS This retrospective study included 25 children and young adults with CCHS tested over an inpatient stay. Relationships between physiologic measurements during hypercarbic and hypoxic ventilatory challenges, hypoxic ventilatory challenges, and orthostatic challenges and neurocognitive outcomes (by Wechsler intelligence indexes) were examined. Independent variable inclusion was determined by significant associations in Pearson's analyses. Multivariate linear regressions were used to assess relationships between measured physiologic responses to challenges and neurocognitive scores. RESULTS Significant relationships were identified between areas of fluid intelligence and measures of oxygen saturation (SpO2) and heart rate (HR) during challenges. Specifically, perceptual reasoning was related to HR (adjusted regression [β] coefficient, -0.68; 95% CI, 1.24 to -0.12; P = .02) during orthostasis. Working memory was related to change in HR (β, -1.33; 95% CI, -2.61 to -0.05; P = .042) during the hypoxic ventilatory challenge. Processing speed was related to HR (β, -1.19; 95% CI, -1.93 to -0.46; P = .003) during orthostasis, to baseline SpO2 (hypercarbic and hypoxic β, 8.57 [95% CI, 1.63-15.51]; hypoxic β, 8.37 [95% CI, 3.65-13.11]; P = .002 for both) during the ventilatory challenges, and to intrachallenge SpO2 (β, 5.89; 95% CI, 0.71-11.07; P = .028) during the hypoxic ventilatory challenge. INTERPRETATION In children and young adults with CCHS, SpO2 and HR-or change in HR-at rest and as a response to hypoxia and orthostasis are related to cognitive outcomes in domains of known risk, particularly fluid reasoning. These findings can guide additional research on the usefulness of these as biomarkers in understanding the impact of daily physical stressors on neurodevelopment in this high-risk group.
Collapse
Affiliation(s)
- Susan M Slattery
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Frank A Zelko
- Pritzker Department of Psychiatry and Behavioral Health, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Eric L Vu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Emma C Dunne
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Casey M Rand
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Stanley Manne Children's Research Institute, Chicago, IL
| | - Allison Bradley
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Amy Zhou
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | - Ilya Khaytin
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kenneth M Brady
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tracey M Stewart
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL; Stanley Manne Children's Research Institute, Chicago, IL
| |
Collapse
|
5
|
Casciato A, Bianchi L, Reverdy M, Joubert F, Delucenay-Clarke R, Parrot S, Ramanantsoa N, Sizun E, Matrot B, Straus C, Similowski T, Cayetanot F, Bodineau L. Serotonin and the ventilatory effects of etonogestrel, a gonane progestin, in a murine model of congenital central hypoventilation syndrome. Front Endocrinol (Lausanne) 2023; 14:1077798. [PMID: 36896185 PMCID: PMC9989262 DOI: 10.3389/fendo.2023.1077798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Congenital Central Hypoventilation Syndrome, a rare disease caused by PHOX2B mutation, is associated with absent or blunted CO2/H+ chemosensitivity due to the dysfunction of PHOX2B neurons of the retrotrapezoid nucleus. No pharmacological treatment is available. Clinical observations have reported non-systematic CO2/H+ chemosensitivity recovery under desogestrel. METHODS Here, we used a preclinical model of Congenital Central Hypoventilation Syndrome, the retrotrapezoid nucleus conditional Phox2b mutant mouse, to investigate whether etonogestrel, the active metabolite of desogestrel, led to a restoration of chemosensitivity by acting on serotonin neurons known to be sensitive to etonogestrel, or retrotrapezoid nucleus PHOX2B residual cells that persist despite the mutation. The influence of etonogestrel on respiratory variables under hypercapnia was investigated using whole-body plethysmographic recording. The effect of etonogestrel, alone or combined with serotonin drugs, on the respiratory rhythm of medullary-spinal cord preparations from Phox2b mutants and wildtype mice was analyzed under metabolic acidosis. c-FOS, serotonin and PHOX2B were immunodetected. Serotonin metabolic pathways were characterized in the medulla oblongata by ultra-high-performance liquid chromatography. RESULTS We observed etonogestrel restored chemosensitivity in Phox2b mutants in a non-systematic way. Histological differences between Phox2b mutants with restored chemosensitivity and Phox2b mutant without restored chemosensitivity indicated greater activation of serotonin neurons of the raphe obscurus nucleus but no effect on retrotrapezoid nucleus PHOX2B residual cells. Finally, the increase in serotonergic signaling by the fluoxetine application modulated the respiratory effect of etonogestrel differently between Phox2b mutant mice and their WT littermates or WT OF1 mice, a result which parallels with differences in the functional state of serotonergic metabolic pathways between these different mice. DISCUSSION Our work thus highlights that serotonin systems were critically important for the occurrence of an etonogestrel-restoration, an element to consider in potential therapeutic intervention in Congenital Central Hypoventilation Syndrome patients.
Collapse
Affiliation(s)
- Alexis Casciato
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Lola Bianchi
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Manon Reverdy
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Fanny Joubert
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Roman Delucenay-Clarke
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences, NeuroDialyTics, Bron, France
| | | | - Eléonore Sizun
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Boris Matrot
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Christian Straus
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- *Correspondence: Laurence Bodineau,
| |
Collapse
|
6
|
Tovichien P, Rattananont K, Kulthamrongsri N, Chanvanichtrakool M, Yangthara B. Rare cause of neonatal apnea from congenital central hypoventilation syndrome. BMC Pediatr 2022; 22:105. [PMID: 35209861 PMCID: PMC8867765 DOI: 10.1186/s12887-022-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare condition caused by mutations in the Paired-Like Homeobox 2B (PHOX2B) gene. It causes alveolar hypoventilation and autonomic dysregulation. This report aimed to raise awareness of this rare cause of neonatal apnea and hypoventilation as well as described the diagnostic work up to confirm the diagnosis in resource-limited setting where polysomnography for neonate is unavailable. CASE PRESENTATION A late preterm female newborn born from a non-consanguineous primigravida 31-year-old mother had desaturation soon after birth followed by apnea and bradycardia. After becoming clinically stable, she still had extubation failure from apnea without hypercapnic ventilatory response which worsened during non-rapid eye movement (NREM) sleep. After exclusion of other etiologies, we suspected congenital central hypoventilation syndrome and sent genetic testing. The result showed a PHOX2B gene mutation which confirmed the diagnosis of CCHS. We gave the patient's caregivers multidisciplinary home respiratory care training including tracheostomy care, basic life support, and simulation training for respiratory problem solving. Then, the patient was discharged and scheduled for follow-up surveillance for associated conditions. CONCLUSION Diagnosis of CCHS in neonates includes the main clue of the absence of hypercapnic ventilatory response which worsens during non-rapid eye movement (NREM) sleep after exclusion of other causes. Molecular testing for PHOX2B gene mutation was used to confirm the diagnosis.
Collapse
Affiliation(s)
- Prakarn Tovichien
- Division of Pulmonology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | | | | | - Mongkol Chanvanichtrakool
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Buranee Yangthara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
8
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Messineo L, Loffler K, Chiang A, Osman A, Taranto-Montemurro L, Eckert DJ. The Combination of Betahistine and Oxybutynin Increases Respiratory Control Sensitivity (Loop Gain) in People with Obstructive Sleep Apnea: A Randomized, Placebo-Controlled Trial. Nat Sci Sleep 2022; 14:1063-1074. [PMID: 35698591 PMCID: PMC9188336 DOI: 10.2147/nss.s362205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
RATIONALE There are widespread histaminergic projections throughout the brain, including hypoglossal nuclei, that modulate pharyngeal muscle tone and respiratory control. Hence, histaminergic stimulation pharmacologically may increase pharyngeal muscle tone and stabilize respiratory control (loop gain) to reduce obstructive sleep apnea (OSA) severity. Antimuscarinics also increase REM pharyngeal muscle tone in rats. Thus, a combination of histaminergic and anti-muscarinic drugs may be a novel target for OSA pharmacotherapy. However, this has not been investigated. Accordingly, we aimed to test the effects of betahistine (Beta), an H3-autoreceptor antagonist which thereby increases histamine levels, in combination with the antimuscarinic oxybutynin (Oxy), on OSA severity, OSA endotypes, polysomnography parameters and next-day sleepiness and alertness. METHODS Thirteen adults with OSA received either Beta-Oxy (96-5mg) or placebo according to a randomized, crossover, double-blind design, prior to polysomnography. Participants completed the Karolinska Sleep Scale and Leeds Sleep Evaluation Questionnaire and a driving simulation task to quantify next-day sleepiness and alertness. OSA endotypes were estimated through validated algorithms using polysomnography. RESULTS Compared to placebo, Beta-Oxy increased respiratory control sensitivity (loop gain) (0.52[0.24] vs 0.60[0.34], median [IQR], P = 0.021) without systematically changing OSA severity (34.4±17.2 vs 40.3±27.3 events/h, mean±SD, P = 0.124), sleep efficiency, arousal index or markers of hypoxemia. Beta-Oxy was well tolerated and did not worsen next-day sleepiness/alertness. CONCLUSION Rather than stabilize breathing during sleep, Beta-Oxy increases loop gain, which is likely to be deleterious for most people with OSA. However, in certain conditions characterized by blunted respiratory control (eg, obesity hypoventilation syndrome), interventions to increase loop gain may be beneficial.
Collapse
Affiliation(s)
- Ludovico Messineo
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelly Loffler
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Alan Chiang
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Amal Osman
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
10
|
Vu EL, Dunne EC, Bradley A, Zhou A, Carroll MS, Rand CM, Brady KM, Stewart TM, Weese-Mayer DE. Cerebral Autoregulation During Orthostatic Challenge in Congenital Central Hypoventilation Syndrome. Am J Respir Crit Care Med 2021; 205:340-349. [PMID: 34788206 DOI: 10.1164/rccm.202103-0732oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Congenital Central Hypoventilation Syndrome (CCHS) is a rare autonomic disorder with altered regulation of breathing, heart rate (HR), and blood pressure (BP). Aberrant cerebral oxygenation in response to hypercapnia/hypoxia in CCHS raises concern that altered cerebral autoregulation may contribute to CCHS-related, variably impaired neurodevelopment. OBJECTIVES Evaluate cerebral autoregulation in response to orthostatic challenge in CCHS cases vs. controls. METHODS CCHS and age- and sex-matched control subjects were studied with head-up tilt (HUT) testing to induce orthostatic stress. 50 CCHS and 100 control HUT recordings were included. HR, BP, and cerebral oxygen saturation (rSO2) were continuously monitored. Cerebral oximetry index (COx), a real-time measure of cerebral autoregulation based on these measures, was calculated. MAIN RESULTS HUT resulted in greater mean BP decrease from baseline in CCHS vs. controls (11% vs. 6%; p<0.05) and a diminished increase in HR in CCHS vs. controls (11% vs. 18%; p<0.01) in the 5 minutes after tilt-up. Despite a similar COx at baseline, orthostatic provocation within 5 minutes of tilt-up caused a 50% greater increase in COx (p<0.01) and a 29% increase in minutes of impaired autoregulation (p<0.02) in CCHS vs. controls (4.0 vs. 3.1 min). CONCLUSIONS Cerebral autoregulatory mechanisms appear intact in CCHS, but the greater hypotension observed in CCHS consequent to orthostatic provocation is associated with greater values of COx/impaired autoregulation when BP is below lower limits of autoregulation. Effects of repeated orthostatic challenges in everyday living in CCHS necessitate further study to determine their influence on neurodevelopmental disease burden.
Collapse
Affiliation(s)
- Eric L Vu
- Northwestern University Feinberg School of Medicine, 12244, Anesthesiology, Chicago, Illinois, United States.,Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Cardiovascular Anesthesia, Department of Anesthesiology, Chicago, Illinois, United States;
| | - Emma C Dunne
- Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Autonomic Medicine, Department of Pediatrics, Chicago, Illinois, United States
| | - Allison Bradley
- Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Autonomic Medicine, Department of Pediatrics, Chicago, Illinois, United States
| | - Amy Zhou
- Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Autonomic Medicine, Department of Pediatrics, Chicago, Illinois, United States
| | - Michael S Carroll
- Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Data Analytics and Reporting, Chicago, Illinois, United States.,Northwestern University Feinberg School of Medicine, 12244, Pediatrics, Chicago, Illinois, United States
| | - Casey M Rand
- Stanley Manne Children's Research Institute, 2430, Chicago, Illinois, United States.,Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Autonomic Medicine, Department of Pediatrics, Chicago, Illinois, United States
| | - Kenneth M Brady
- Northwestern University Feinberg School of Medicine, 12244, Anesthesiology, Chicago, Illinois, United States.,Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Cardiovascular Anesthesia, Department of Anesthesiology, Chicago, Illinois, United States.,Northwestern University Feinberg School of Medicine, 12244, Department of Pediatrics, Chicago, Illinois, United States
| | - Tracey M Stewart
- Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Autonomic Medicine, Department of Pediatrics, Chicago, Illinois, United States
| | - Debra E Weese-Mayer
- Stanley Manne Children's Research Institute, 2430, Chicago, Illinois, United States.,Ann and Robert H Lurie Children's Hospital of Chicago, 2429, Division of Autonomic Medicine, Department of Pediatrics, Chicago, Illinois, United States.,Northwestern University Feinberg School of Medicine, 12244, Department of Pediatrics, Chicago, Illinois, United States
| |
Collapse
|
11
|
Johnson J, Patwari PP, Wilkerson M, Silvestri JM. An 8-Month-Old Infant With Respiratory Failure After a Fall. Chest 2021; 160:e519-e522. [PMID: 34743856 DOI: 10.1016/j.chest.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
CASE PRESENTATION An 8-month-old previously healthy, full-term girl presented with altered mental status after falling approximately 3 feet from a bed, landing on her head. In the ED, she had a CT scan of her head (Fig 1) and was intubated for airway protection. While in the PICU, initial chest radiography showed bilateral infiltrates that were consistent with ARDS, which subsequently resolved. Her respiratory status continued to improve, which allowed a trial on CPAP with invasive neurally adjusted ventilatory assist (NAVA) support, which she was unable to tolerate because of the need for increased support during sleep. On hospital day 8, she was extubated to noninvasive NAVA and was noted to have poor truncal tone and inability to lift or rotate her head. Repeat head CT scans were unchanged. Despite nasal CPAP and NAVA support, she experienced hypercapnia to 83 mm Hg that required reintubation. Brain MRI was completed on hospital day 10 (Fig 1). Lumbar puncture results were obtained, which were unremarkable. Extubation was attempted again on hospital days 15 and 22 with subsequent hypercapnia that required reintubation. She was able to gradually lengthen her CPAP trials but continued to have periods of hypercapnia and bradypnea.
Collapse
Affiliation(s)
- Jessica Johnson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - Pallavi P Patwari
- Department of Pediatrics, Rush University Medical Center, Chicago, IL; Rush University Medical College, Chicago, IL.
| | - Marylouise Wilkerson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL; Rush University Medical College, Chicago, IL
| | - Jean M Silvestri
- Department of Pediatrics, Rush University Medical Center, Chicago, IL; Rush University Medical College, Chicago, IL
| |
Collapse
|
12
|
A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc Natl Acad Sci U S A 2020; 117:31674-31684. [PMID: 33257558 PMCID: PMC7749320 DOI: 10.1073/pnas.2019786117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.
Collapse
|
13
|
Hurvitz MS, Bhattacharjee R. Some congenital diseases may just show up later. J Clin Sleep Med 2020; 16:1835-1836. [DOI: 10.5664/jcsm.8850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Manju S. Hurvitz
- Department of Pediatrics, Division of Respiratory Medicine, Rady Children’s Hospital San Diego, University of California San Diego, San Diego, California
| | - Rakesh Bhattacharjee
- Department of Pediatrics, Division of Respiratory Medicine, Rady Children’s Hospital San Diego, University of California San Diego, San Diego, California
| |
Collapse
|
14
|
Souza GMPR, Kanbar R, Stornetta DS, Abbott SBG, Stornetta RL, Guyenet PG. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. J Physiol 2019; 596:2521-2545. [PMID: 29667182 DOI: 10.1113/jp275866] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO2 but its role during various states of vigilance needs clarification. Under normoxia, RTN lesions increased the arterial PCO2 set-point, lowered the PO2 set-point and reduced alveolar ventilation relative to CO2 production. Tidal volume was reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions did not produce apnoeas or disordered breathing during sleep. RTN lesions in rats virtually eliminated the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons was an inverse exponential. The CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies. ABSTRACT The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO2 homeostasis and breathing during sleep or wake. RTN Nmb-positive neurons were killed with targeted microinjections of substance P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4% cell loss) had normal blood pressure and arterial pH but were hypoxic (-8 mmHg PaO2 ) and hypercapnic (+10 mmHg ). In resting conditions, minute volume (VE ) was normal but breathing frequency (fR ) was elevated and tidal volume (VT ) reduced. Resting O2 consumption and CO2 production were normal. The hypercapnic ventilatory reflex in 65% FiO2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension was reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep, especially under hyperoxia, but apnoeas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but the HVR persists and sighing and the state dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in VE but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnoea during slow-wave sleep, even under hyperoxia.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci 2019; 42:807-824. [PMID: 31635852 DOI: 10.1016/j.tins.2019.09.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
The ventral surface of the rostral medulla oblongata has been suspected since the 1960s to harbor central respiratory chemoreceptors [i.e., acid-activated neurons that regulate breathing to maintain a constant arterial PCO2 (PaCO2)]. The key neurons, a.k.a. the retrotrapezoid nucleus (RTN), have now been identified. In this review we describe their transcriptome, developmental lineage, and anatomical projections. We also review their contribution to CO2 homeostasis and to the regulation of breathing automaticity during sleep and wake. Finally, we discuss several mechanisms that contribute to the activation of RTN neurons by CO2in vivo: cell-autonomous effects of protons; paracrine effects of pH mediated by surrounding astrocytes and blood vessels; and excitatory inputs from other CO2-responsive CNS neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Harman K, Weichard AJ, Davey MJ, Horne RS, Nixon GM, Edwards BA. Assessing ventilatory control stability in children with and without an elevated central apnoea index. Respirology 2019; 25:214-220. [DOI: 10.1111/resp.13606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Katherine Harman
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Aidan J. Weichard
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
| | - Margot J. Davey
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Rosemary S.C. Horne
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
| | - Gillian M. Nixon
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Bradley A. Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology and School of Psychological Sciences, Faculty of Medicine, Nursing and Health SciencesMonash University Melbourne VIC Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash University Melbourne VIC Australia
| |
Collapse
|
17
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| |
Collapse
|
18
|
Messineo L, Taranto‐Montemurro L, Azarbarzin A, Oliveira Marques MD, Calianese N, White DP, Wellman A, Sands SA. Breath-holding as a means to estimate the loop gain contribution to obstructive sleep apnoea. J Physiol 2018; 596:4043-4056. [PMID: 29882226 PMCID: PMC6117550 DOI: 10.1113/jp276206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/30/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A hypersensitive ventilatory control system or elevated "loop gain" during sleep is a primary phenotypic trait causing obstructive sleep apnoea (OSA). Despite the multitude of methods available to assess the anatomical contributions to OSA during wakefulness in the clinical setting (e.g. neck circumference, pharyngometry, Mallampati score), it is currently not possible to recognize elevated loop gain in patients in this context. Loop gain during sleep can now be recognized using simplified testing during wakefulness, specifically in the form of a reduced maximal breath-hold duration, or a larger ventilatory response to voluntary 20-second breath-holds. We consider that easy breath-holding manoeuvres will enable daytime recognition of a high loop gain in OSA for more personalized intervention. ABSTRACT Increased "loop gain" of the ventilatory control system promotes obstructive sleep apnoea (OSA) in some patients and offers an avenue for more personalized treatment, yet diagnostic tools for directly measuring loop gain in the clinical setting are lacking. Here we test the hypothesis that elevated loop gain during sleep can be recognized using voluntary breath-hold manoeuvres during wakefulness. Twenty individuals (10 OSA, 10 controls) participated in a single overnight study with voluntary breath-holding manoeuvres performed during wakefulness. We assessed (1) maximal breath-hold duration, and (2) the ventilatory response to 20 s breath-holds. For comparison, gold standard loop gain values were obtained during non-rapid eye movement (non-REM) sleep using the ventilatory response to 20 s pulses of hypoxic-hypercapnic gas (6% CO2 -14% O2 , mimicking apnoea). Continuous positive airway pressure (CPAP) was used to maintain airway patency during sleep. Additional measurements included gold standard loop gain measurement during wakefulness and steady-state loop gain measurement during sleep using CPAP dial-ups. Higher loop gain during sleep was associated with (1) a shorter maximal breath-hold duration (r2 = 0.49, P < 0.001), and (2) a larger ventilatory response to 20 s breath-holds during wakefulness (second breath; r2 = 0.50, P < 0.001); together these factors combine to predict high loop gain (receiver operating characteristic area-under-curve: 92%). Gold standard loop gain values were remarkably similar during wake and non-REM sleep. The results show that elevated loop gain during sleep can be identified using simple breath-holding manoeuvres performed during wakefulness. This may have implications for personalizing OSA treatment.
Collapse
Affiliation(s)
- Ludovico Messineo
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Respiratory Medicine and Sleep LaboratoryDepartment of Experimental and Clinical SciencesUniversity of Brescia and Spedali CiviliBresciaItaly
| | - Luigi Taranto‐Montemurro
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Ali Azarbarzin
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Melania D. Oliveira Marques
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Pulmonary DivisionHeart Institute (InCor)Hospital das ClínicasUniversity of São Paulo School of MedicineSão PauloBrazil
| | - Nicole Calianese
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - David P. White
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Andrew Wellman
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Scott A. Sands
- Division of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of Allergy, Immunology and Respiratory Medicine, and Central Clinical SchoolThe Alfred and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
19
|
Maloney MA, Kun SS, Keens TG, Perez IA. Congenital central hypoventilation syndrome: diagnosis and management. Expert Rev Respir Med 2018; 12:283-292. [DOI: 10.1080/17476348.2018.1445970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Melissa A. Maloney
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
| | - Sheila S. Kun
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
| | - Thomas G. Keens
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
- Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Iris A. Perez
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
- Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| |
Collapse
|
20
|
Santin JM. How important is the CO 2 chemoreflex for the control of breathing? Environmental and evolutionary considerations. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:6-19. [PMID: 28966145 DOI: 10.1016/j.cbpa.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Haldane and Priestley (1905) discovered that the ventilatory control system is highly sensitive to CO2. This "CO2 chemoreflex" has been interpreted to dominate control of resting arterial PCO2/pH (PaCO2/pHa) by monitoring PaCO2/pHa and altering ventilation through negative feedback. However, PaCO2/pHa varies little in mammals as ventilation tightly couples to metabolic demands, which may minimize chemoreflex control of PaCO2. The purpose of this synthesis is to (1) interpret data from experimental models with meager CO2 chemoreflexes to infer their role in ventilatory control of steady-state PaCO2, and (2) identify physiological causes of respiratory acidosis occurring normally across vertebrate classes. Interestingly, multiple rodent and amphibian models with minimal/absent CO2 chemoreflexes exhibit normal ventilation, gas exchange, and PaCO2/pHa. The chemoreflex, therefore, plays at most a minor role in ventilatory control at rest; however, the chemoreflex may be critical for recovering PaCO2 following acute respiratory acidosis induced by breath-holding and activity in many ectothermic vertebrates. An apparently small role for CO2 feedback in the genesis of normal breathing contradicts the prevailing view that central CO2/pH chemoreceptors increased in importance throughout vertebrate evolution. Since the CO2 chemoreflex contributes minimally to resting ventilation, these CO2 chemoreceptors may have instead decreased importance throughout tetrapod evolution, particularly with the onset and refinement of neural innovations that improved the matching of ventilation to tissue metabolic demands. This distinct and elusive "metabolic ventilatory drive" likely underlies steady-state PaCO2 in air-breathers. Uncovering the mechanisms and evolution of the metabolic ventilatory drive presents a challenge to clinically-oriented and comparative respiratory physiologists alike.
Collapse
|
21
|
Spielmann M, Hernandez-Miranda LR, Ceccherini I, Weese-Mayer DE, Kragesteen BK, Harabula I, Krawitz P, Birchmeier C, Leonard N, Mundlos S. Mutations inMYO1Hcause a recessive form of central hypoventilation with autonomic dysfunction. J Med Genet 2017; 54:754-761. [DOI: 10.1136/jmedgenet-2017-104765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 11/03/2022]
|
22
|
Khayat A, Medin D, Syed F, Moraes TJ, Bin-Hasan S, Narang I, Al-Saleh S, Amin R. Intelligent volume-assured pressured support (iVAPS) for the treatment of congenital central hypoventilation syndrome. Sleep Breath 2017; 21:513-519. [PMID: 28190166 DOI: 10.1007/s11325-017-1478-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Congenital central hypoventilation syndrome (CCHS) is characterized by ventilatory insensitivity to hypercapnia and hypoxemia during sleep and/or wakefulness. Management of CCHS includes a long-term ventilation. However, ventilation can be challenging given differences in the control of breathing during different sleep stages. Intelligent volume-assured pressure support (iVAPS) is a mode of Bi-level positive airway pressure (BPAP) ventilation in which the pressure support is modulated to ensure a constant alveolar ventilation. The aim of this study was to determine if BPAP with iVAPS mode is more effective at controlling hypercapnia than BPAP with spontaneous/timed (S/T) mode. METHODS A retrospective chart review of CCHS patients who underwent both a titration polysomnogram (PSG) with standard BPAP S/T mode and a consecutive follow-up study with BPAP iVAPS mode at The Hospital for Sick Children, Toronto, Canada, between January 1, 2013 and September 30, 2015 were included. Comparisons were made between S/T mode and iVAPS mode. RESULTS Eight (four males) children with CCHS were included. The median (IQR) age at the time of PSG using Bi-level ventilation with S/T mode for study participants was 10.0 (IQR 8.4, 11.6) years followed by PSGs with iVAPS mode, median age 10.6 (IQR 9.1, 12.5) years. The non-rapid eye movement (NREM) peak transcutaneous CO2 (tcCO2) median (IQR) for iVAPS was 43.0 (40.0-46.0-) mmHg versus 46.5 (45.0-48.0) mmHg for S/T mode, (p value <0.05). CONCLUSION iVAPS was associated with a reduction in the maximum tcCO2 during NREM sleep as compared to traditional S/T mode. Prospective, longitudinal studies are needed to evaluate the benefits of BPAP therapy iVAPS mode for the treatment of pediatric CCHS.
Collapse
Affiliation(s)
- Abdullah Khayat
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Debra Medin
- Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Faiza Syed
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.,University of Toronto, Toronto, ON, Canada
| | - Saadoun Bin-Hasan
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Indra Narang
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.,University of Toronto, Toronto, ON, Canada
| | - Suhail Al-Saleh
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.,University of Toronto, Toronto, ON, Canada
| | - Reshma Amin
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life. Pediatr Res 2017; 81:192-201. [PMID: 27673423 DOI: 10.1038/pr.2016.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
The "bedside-to-bench" Congenital Central Hypoventilation Syndrome (CCHS) research journey has led to increased phenotypic-genotypic knowledge regarding autonomic nervous system (ANS) regulation, and improved clinical outcomes. CCHS is a neurocristopathy characterized by hypoventilation and ANS dysregulation. Initially described in 1970, timely diagnosis and treatment remained problematic until the first large cohort report (1992), delineating clinical presentation and treatment options. A central role of ANS dysregulation (2001) emerged, precipitating evaluation of genes critical to ANS development, and subsequent 2003 identification of Paired-Like Homeobox 2B (PHOX2B) as the disease-defining gene for CCHS. This breakthrough engendered clinical genetic testing, making diagnosis exact and early tracheostomy/artificial ventilation feasible. PHOX2B genotype-CCHS phenotype relationships were elucidated, informing early recognition and timely treatment for phenotypic manifestations including Hirschsprung disease, prolonged sinus pauses, and neural crest tumors. Simultaneously, cellular models of CCHS-causing PHOX2B mutations were developed to delineate molecular mechanisms. In addition to new insights regarding genetics and neurobiology of autonomic control overall, new knowledge gained has enabled physicians to anticipate and delineate the full clinical CCHS phenotype and initiate timely effective management. In summary, from an initial guarantee of early mortality or severe neurologic morbidity in survivors, CCHS children can now be diagnosed early and managed effectively, achieving dramatically improved quality of life as adults.
Collapse
|
24
|
Abstract
From birth, animals should possess functional machinery to appropriately regulate its respiration. This machinery has to detect the available oxygen quantity in order to efficiently modulate breathing movements in accordance with body requirements. The chemosensitivity process responsible for this detection is known to be mainly performed by carotid bodies. However, pulmonary neuroendocrine cells, which are mainly gathered in neuroepithelial bodies, also present the capability to exert chemosensitivity. The goal of this article is to put in perspective the potential complementarity in the activity of these two peripheral chemosensors in the context of neonatal oxygen chemosensitivity.
Collapse
Affiliation(s)
- Céline Caravagna
- Institut de Neurosciences de la Timone-Equipe IMAPATH, CERIMED, UMR 7289 CNRS & Aix-Marseille Université, 27 Boulevard Jean Moulin,13385, Marseille Cedex 05, France.
| | - Tommy Seaborn
- Faculté de Médecine, Université Laval, Pavillon Ferdinand-Vandry, Room 4645-A,1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
25
|
Wilson RJA, Teppema LJ. Integration of Central and Peripheral Respiratory Chemoreflexes. Compr Physiol 2016; 6:1005-41. [PMID: 27065173 DOI: 10.1002/cphy.c140040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A debate has raged since the discovery of central and peripheral respiratory chemoreceptors as to whether the reflexes they mediate combine in an additive (i.e., no interaction), hypoadditive or hyperadditive manner. Here we critically review pertinent literature related to O2 and CO2 sensing from the perspective of system integration and summarize many of the studies on which these seemingly opposing views are based. Despite the intensity and quality of this debate, we have yet to reach consensus, either within or between species. In reviewing this literature, we are struck by the merits of the approaches and preparations that have been brought to bear on this question. This suggests that either the nature of combination is not important to system responses, contrary to what has long been supposed, or that the nature of the combination is more malleable than previously assumed, changing depending on physiological state and/or respiratory requirement.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Saiyed R, Rand CM, Carroll MS, Koliboski CM, Stewart TM, Brogadir CD, Kenny AS, Petersen EKE, Carley DW, Weese-Mayer DE. Congenital central hypoventilation syndrome (CCHS): Circadian temperature variation. Pediatr Pulmonol 2016; 51:300-7. [PMID: 26086998 DOI: 10.1002/ppul.23236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/01/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy, which includes a control of breathing deficit and features of autonomic nervous system (ANS) dysregulation. In recognition of the fundamental role of the ANS in temperature regulation and rhythm and the lack of any prior characterization of circadian temperature rhythms in CCHS, we sought to explore peripheral and core temperatures and circadian patterning. We hypothesized that CCHS patients would exhibit lower peripheral skin temperatures (PST), variability, and circadian rhythmicity (vs. controls), as well as a disrupted relationship between core body temperature (CBT) and PST. METHODS PST was sampled every 3 min over four 24-hr periods in CCHS cases and similarly aged controls. CBT was sampled in a subset of these recordings. RESULTS PST was recorded from 25 CCHS cases (110,664 measures/230 days) and 39 controls (78,772 measures/164 days). Simultaneous CBT measurements were made from 23 CCHS patients. In CCHS, mean PST was lower overall (P = 0.03) and at night (P = 0.02), and PST variability (interquartile range) was higher at night (P = 0.05) (vs. controls). PST circadian rhythm remained intact but the phase relationship of PST to CBT rhythm was extremely variable in CCHS. CONCLUSIONS PST alterations in CCHS likely reflect altered autonomic control of peripheral vascular tone. These alterations represent a previously unreported manifestation of CCHS and may provide an opportunity for therapeutic intervention. The relationship between temperature dysregulation and CCHS may also offer insight into basic mechanisms underlying thermoregulation.
Collapse
Affiliation(s)
- Rehan Saiyed
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Michael S Carroll
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cynthia M Koliboski
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Tracey M Stewart
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Cindy D Brogadir
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Anna S Kenny
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Emily K E Petersen
- Cardiovascular Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - David W Carley
- Center for Narcolepsy, Sleep and Health Research (CNSHR), University of Illinois at Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
27
|
Charnay AJ, Antisdel-Lomaglio JE, Zelko FA, Rand CM, Le M, Gordon SC, Vitez SF, Tse JW, Brogadir CD, Nelson MN, Berry-Kravis EM, Weese-Mayer DE. Congenital Central Hypoventilation Syndrome: Neurocognition Already Reduced in Preschool-Aged Children. Chest 2016; 149:809-15. [PMID: 26378991 DOI: 10.1378/chest.15-0402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Congenital Central Hypoventilation Syndrome (CCHS) is a rare neurocristopathy characterized by severe hypoventilation and autonomic dysregulation, with typical presentation in the neonatal period, and deficient cognitive skills in school-aged patients. We hypothesized that younger (preschool) children with CCHS would also show neurocognitive delay and that CCHS-related physiologic factors would impact neurocognitive test results. METHODS We studied developmental (Bayley) test results collected during routine clinical care in 31 children (mean age 25.0 ± 8.5 months; range, 6-40 months) with PHOX2B mutation-confirmed CCHS by comparing them with the normative reference mean from the Bayley standardization sample; we also examined associations between Bayley scores and CCHS disease-related factors. RESULTS Preschool patients with CCHS fell significantly below the normative mean of 100 on Bayley indices of mental (mean, 83.35 ± 24.75) and motor (mean, 73.33 ± 20.48) development (P < .001 for both). Significantly lower Bayley mental and motor scores were associated with severe breath-holding spells, prolonged sinus pauses, and need for 24 h/d artificial ventilation. Lower Bayley motor scores were also associated with seizures. Bayley scores differed among children with the three most common polyalanine repeat expansion mutation genotypes (mental, P = .001; motor, P = .006), being essentially normal in children with the 20/25 genotype but significantly lower in the other genotype groups (P < .05). CONCLUSIONS These results confirm neurodevelopmental impairment of CCHS preschoolers, with severity related to physiologic compromise and PHOX2B genotype. These findings suggest that adverse effects begin early in the disease process, supporting the need for neurodevelopmental monitoring and intervention from early infancy.
Collapse
Affiliation(s)
- Aaron J Charnay
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Jeanne E Antisdel-Lomaglio
- Department of Child and Adolescent Psychiatry, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Frank A Zelko
- Department of Child and Adolescent Psychiatry, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Michele Le
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Samantha C Gordon
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Sally F Vitez
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Jennifer W Tse
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Cindy D Brogadir
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL
| | - Michael N Nelson
- Departments of Pediatrics and Behavioral Sciences, Rush University Medical Center, Chicago, IL
| | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and The Stanley Manne Children's Research Institute, Chicago, IL; Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
28
|
Carroll MS, Patwari PP, Kenny AS, Brogadir CD, Stewart TM, Weese-Mayer DE. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD): Response to ventilatory challenges. Pediatr Pulmonol 2015; 50:1336-45. [PMID: 25776886 DOI: 10.1002/ppul.23164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 11/10/2022]
Abstract
Hypoventilation is a defining feature of Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), a rare respiratory and autonomic disorder. This chronic hypoventilation has been explained as the result of dysfunctional chemosensory control circuits, possibly affecting peripheral afferent input, central integration, or efferent motor control. However, chemosensory function has never been quantified in a cohort of ROHHAD patients. Therefore, the purpose of this study was to assess the response to awake ventilatory challenge testing in children and adolescents with ROHHAD. The ventilatory, cardiovascular and cerebrovascular responses in 25 distinct comprehensive physiological recordings from seven unique ROHHAD patients to three different gas mixtures were analyzed at breath-to-breath and beat-to-beat resolution as absolute measures, as change from baseline, or with derived metrics. Physiologic measures were recorded during a 3-min baseline period of room air, a 3-min gas exposure (of 100% O2; 95% O2, 5% CO2; or 14% O2, 7% CO2 balanced with N2), and a 3-min recovery period. An additional hypoxic challenge was conducted which consisted of either five or seven tidal breaths of 100% N2. While ROHHAD cases showed a diminished VT and inspiratory drive response to hypoxic hypercapnia and absent behavioral awareness of the physiologic compromise, most ventilatory, cardiovascular, and cerebrovascular measures were similar to those of previously published controls using an identical protocol, suggesting a mild chemosensory deficit. Nonetheless, the high mortality rate, comorbidity and physiological fragility of patients with ROHHAD demand continued clinical vigilance.
Collapse
Affiliation(s)
- Michael S Carroll
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Pallavi P Patwari
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna S Kenny
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Cindy D Brogadir
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Tracey M Stewart
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
29
|
Armstrong AE, Weese-Mayer DE, Mian A, Maris JM, Batra V, Gosiengfiao Y, Reichek J, Madonna MB, Bush JW, Shore RM, Walterhouse DO. Treatment of neuroblastoma in congenital central hypoventilation syndrome with a PHOX2B polyalanine repeat expansion mutation: New twist on a neurocristopathy syndrome. Pediatr Blood Cancer 2015; 62:2007-10. [PMID: 26011159 DOI: 10.1002/pbc.25572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 11/08/2022]
Abstract
Neuroblastoma in patients with congenital central hypoventilation syndrome (CCHS) as part of a neurocristopathy syndrome is a rare finding and has only been associated with paired-like homeobox 2b (PHOX2B) non-polyalanine-repeat-expansion mutations. To the best of our knowledge, we report the first case of a child with CCHS and Hirschsprung disease who had a PHOX2B polyalanine-repeat-expansion mutation (PARM) (genotype 20/33) and developed high-risk neuroblastoma. We further describe his treatment including chemotherapy and therapeutic I(131) -metaiodobenzylguanidine. This case highlights the need to consider neuroblastoma in patients with CCHS and the longest PHOX2B PARMs and to individualize treatment based on co-morbidities.
Collapse
Affiliation(s)
- Amy E Armstrong
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Ann & Robert H. Lurie Children's Hospital of Chicago, Center for Autonomic Medicine in Pediatrics (CAMP), Northwestern University of Feinberg School of Medicine and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Amir Mian
- Department of Pediatric Hematology-Oncology, College of Medicine, Arkansas Children's Hospital, University of Arkansas Medical Sciences, Little Rock, Arkansas
| | - John M Maris
- Division of Hematology, Oncology & Transplantation, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Center Research Institute, Philadelphia, Pennsylvania
| | - Vandana Batra
- Division of Hematology, Oncology & Transplantation, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Center Research Institute, Philadelphia, Pennsylvania
| | - Yasmin Gosiengfiao
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer Reichek
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Beth Madonna
- Department of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan W Bush
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard M Shore
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David O Walterhouse
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
30
|
Nobuta H, Cilio MR, Danhaive O, Tsai HH, Tupal S, Chang SM, Murnen A, Kreitzer F, Bravo V, Czeisler C, Gokozan HN, Gygli P, Bush S, Weese-Mayer DE, Conklin B, Yee SP, Huang EJ, Gray PA, Rowitch D, Otero JJ. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol 2015; 130:171-83. [PMID: 25975378 PMCID: PMC4503865 DOI: 10.1007/s00401-015-1441-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/29/2022]
Abstract
Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS.
Collapse
|
31
|
Herrera-Flores EH, Rodríguez-Tejada A, Reyes-Zúñiga MM, Torres-Fraga MG, Castorena-Maldonado A, Carrillo-Alduenda JL. [Congenital central alveolar hypoventilation syndrome]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2015; 72:262-270. [PMID: 29421146 DOI: 10.1016/j.bmhimx.2015.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Congenital central alveolar hypoventilation syndrome (CCAHS) is a rare sleep-related breathing disorder. Although increasingly frequently diagnosed in sleep clinics and pediatric pulmonology services, its epidemiology is not known. There are about 300 reported cases reported in the literature with an incidence of 1 case per 200,000 live births. CCAHS is characterized by alveolar hypoventilation that occurs or worsens during sleep and is secondary to a reduction/absence of the ventilatory response to hypercapnia and/or hypoxemia. In 90% of the cases it is due to a PARM-type mutation of the PHOX2B gene. Treatment includes mechanical ventilation and diaphragmatic pacemaker. If therapy is not initiated promptly the patient can evolve to chronic respiratory failure, pulmonary hypertension, cor pulmonale and death. CASE REPORTS In this paper we present three cases of CCAHS diagnosed, treated and followed up at the Sleep Disorders Clinic of the National Institute of Respiratory Diseases in Mexico. CONCLUSIONS Early diagnosis is important to initiate ventilatory support so as to prevent any complications and to reduce mortality.
Collapse
Affiliation(s)
- Edwin Hernando Herrera-Flores
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Alfredo Rodríguez-Tejada
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Martha Margarita Reyes-Zúñiga
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Martha Guadalupe Torres-Fraga
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Armando Castorena-Maldonado
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - José Luis Carrillo-Alduenda
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México.
| |
Collapse
|
32
|
Congenital central hypoventilation syndrome and carbon dioxide sensitivity. Eur J Pediatr 2014; 173:1727-30. [PMID: 25319843 DOI: 10.1007/s00431-014-2432-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Congenital central hypoventilation syndrome (CCHS) is characterised by hypoventilation most marked during sleep and is often associated with abnormalities of the autonomic nervous system. We report an infant with severe CCHS and Hirschsprung disease in whom, while awaiting genotyping, the diagnosis was facilitated by the results of a carbon dioxide (CO2) sensitivity study in the neonatal period and was confirmed by paired-like homeobox 2B (PHOX2B) mutational analysis. The infant had no ventilatory response to increased inspired carbon dioxide levels when either awake or asleep suggesting he had a severe form for CCHS; indeed, he subsequently demonstrated to have the 20/31 genotype. This is the first case report of a genotype-confirmed CCHS disease in a neonate with Hirschsprung disease further characterised by a ventilatory challenge. CONCLUSION CO2 sensitivity status may assist in determining the severity of the CCHS.
Collapse
|
33
|
Rand CM, Carroll MS, Weese-Mayer DE. Congenital Central Hypoventilation Syndrome. Clin Chest Med 2014; 35:535-45. [DOI: 10.1016/j.ccm.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Saiyed R, Rand CM, Carroll MS, Weese-Mayer DE. Hypoventilation Syndromes of Infancy, Childhood, and Adulthood. Sleep Med Clin 2014. [DOI: 10.1016/j.jsmc.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|