1
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Arias-Cavieres A, Garcia AJ. A consequence of immature breathing induces persistent changes in hippocampal synaptic plasticity and behavior: a role of prooxidant state and NMDA receptor imbalance. Front Mol Neurosci 2023; 16:1192833. [PMID: 37456523 PMCID: PMC10338931 DOI: 10.3389/fnmol.2023.1192833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023] Open
Abstract
Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the mechanistic basis of nIH-induced changes to neurophysiology remains poorly resolved. We investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a prooxidant state that leads to an imbalance in NMDAr subunit composition favoring GluN2B over GluN2A expression and impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with an antioxidant, manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent long-lasting changes in either synaptic plasticity or behavior. In addition to demonstrating that the prooxidant state has a central role in nIH-mediated neurophysiological and behavioral deficits, our results also indicate that targeting the prooxidant state during a discrete therapeutic window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes that result from unstable breathing during early postnatal life.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, Chicago, IL, United States
| | - Alfredo J. Garcia
- Institute for Integrative Physiology, The University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Arias-Cavieres A, Garcia AJ. A Consequence of Immature Breathing induces Persistent Changes in Hippocampal Synaptic Plasticity and Behavior: A Role of Pro-Oxidant State and NMDA Receptor Imbalance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533692. [PMID: 36993632 PMCID: PMC10055328 DOI: 10.1101/2023.03.21.533692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the underlying mechanistic consequences nIH-induced neurophysiological changes remains poorly resolved. Here, we investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a pro-oxidant state, leading to an imbalance in NMDAr subunit composition that favors GluN2A over GluN2B expression, and subsequently impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with the antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent the long-lasting changes in either synaptic plasticity or behavior. Our results underscore the central role of the pro-oxidant state in nIH-mediated neurophysiological and behavioral deficits and importance of stable oxygen homeostasis during early life. These findings suggest that targeting the pro-oxidant state during a discrete window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes when breathing is unstable during early postnatal life. Highlights Untreated immature breathing leads neonatal intermittent hypoxia (nIH).nIH promotes a pro-oxidant state associated with increased HIF1a activity and NOX upregulation.nIH-dependent pro-oxidant state leads to NMDAr remodeling of the GluN2 subunit to impair synaptic plasticity.Impaired synaptic plasticity and NMDAr remodeling caused by nIH persists beyond the critical period of development.A discrete window for antioxidant administration exists to effectively mitigate neurophysiological and behavioral consequences of nIH.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago
- Department of Medicine, Section of Emergency Medicine, The University of Chicago
| | - Alfredo J. Garcia
- Institute for Integrative Physiology, The University of Chicago
- Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago
- Department of Medicine, Section of Emergency Medicine, The University of Chicago
| |
Collapse
|
4
|
Wang N, Prabhakar NR, Nanduri J. Protein phosphatase 1 regulates reactive oxygen species-dependent degradation of histone deacetylase 5 by intermittent hypoxia. Am J Physiol Cell Physiol 2022; 323:C423-C431. [PMID: 35704695 PMCID: PMC9359641 DOI: 10.1152/ajpcell.00057.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We recently reported pheochromocytoma 12 (PC12) cells and rats subjected to intermittent hypoxia (IH), a hallmark manifestation of obstructive sleep apnea (OSA), exhibit reduced histone deacetylase activity and HDAC5 protein. Our study further suggested that posttranslational modifications rather than transcriptional mechanism(s) mediate IH-induced HDAC5 degradation. These observations prompted our current study to investigate the mechanism(s) underlying HDAC5 degradation by IH in PC12 cell cultures. IH-induced HDAC5 degradation was blocked by an antioxidant, and reactive oxygen species (ROS) mimetics decreased HDAC5 protein, suggesting that ROS mediates HDAC5 degradation by IH. NADPH oxidases (NOX) 2 and 4 were identified as sources of ROS that mediate the effects of IH. HDAC5 degradation during IH was associated with dephosphorylation of HDAC5 at serine259, and this response was blocked by a NOX inhibitor, suggesting that ROS-dependent dephosphorylation mediates HDAC5 degradation. IH-induced dephosphorylation of HDCA5 was inhibited by calyculin A, an inhibitor of protein phosphatase (PP)-1 and -2, or by the overexpression of nuclear inhibitor of PP1 (NIPP1). HDAC5 dephosphorylation by IH lead to augmented hypoxia-inducible factor (HIF)-1α protein and an increase in its transcriptional activity. These data suggest that PP1-dependent dephosphorylation of S259 destabilizes HDAC5 protein in response to IH, resulting in HIF-1α stabilization and transcriptional activity. Our findings highlight hither to unexplored role of protein phosphatases, especially PP1 in regulating HDAC5 protein, which is an upstream activator of HIF-1 signaling by IH.
Collapse
Affiliation(s)
- Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Gridina A, Su X, Khan SA, Peng YJ, Wang B, Nanduri J, Fox AP, Prabhakar NR. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol 2021; 125:1533-1542. [PMID: 33729866 DOI: 10.1152/jn.00669.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests that gaseous molecules, carbon monoxide (CO), and hydrogen sulfide (H2S) generated by heme oxygenase (HO)-2 and cystathionine γ-lyase (CSE), respectively, function as transmitters in the nervous system. Present study examined the roles of CO and H2S in hypoxia-induced catecholamine (CA) release from adrenal medullary chromaffin cells (AMCs). Studies were performed on AMCs from adult (≥6 wk of age) wild-type (WT), HO-2 null, CSE null, and HO-2/CSE double null mice of either gender. CA secretion was determined by carbon fiber amperometry and [Ca2+]i by microflurometry using Fura-2. HO-2- and CSE immunoreactivities were seen in WT AMC, which were absent in HO-2 and CSE null mice. Hypoxia (medium Po2 30-38 mmHg) evoked CA release and elevated [Ca2+]i. The magnitude of hypoxic response was greater in HO-2 null mice and in HO inhibitor-treated WT AMC compared with controls. H2S levels were elevated in HO-2 null AMC. Either pharmacological inhibition or genetic deletion of CSE prevented the augmented hypoxic responses of HO-2 null AMC and H2S donor rescued AMC responses to hypoxia in HO-2/CSE double null mice. CORM3, a CO donor, prevented the augmented hypoxic responses in WT and HO-2 null AMC. CO donor reduced H2S levels in WT AMC. The effects of CO donor were blocked by either ODQ or 8pCT, inhibitors of soluble guanylyl cyclase (SGC) or protein kinase G, respectively. These results suggest that HO-2-derived CO inhibits hypoxia-evoked CA secretion from adult murine AMC involving soluble guanylyl cyclase (SGC)-protein kinase G (PKG)-dependent regulation of CSE-derived H2S.NEW & NOTEWORTHY Catecholamine secretion from adrenal chromaffin cells is an important physiological mechanism for maintaining homeostasis during hypoxia. Here, we delineate carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling as an important mediator of hypoxia-induced catecholamine secretion from murine adrenal chromaffin cells. Heme oxygenase-2 derived CO is a physiological inhibitor of catcholamince secretion by hypoxia and the effects of CO involve inhibition of cystathionine γ-lyase-derived H2S production through soluble guanylyl cyclase-protein kinase G signaling cascade.
Collapse
Affiliation(s)
- Anna Gridina
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Shakil A Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Aaron P Fox
- Department of Neuroscience, Physiology and Pharmacology, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Kovatis KZ, Di Fiore JM, Martin RJ, Abbasi S, Chaundhary AS, Hoover S, Zhang Z, Kirpalani H. Effect of Blood Transfusions on Intermittent Hypoxic Episodes in a Prospective Study of Very Low Birth Weight Infants. J Pediatr 2020; 222:65-70. [PMID: 32423683 DOI: 10.1016/j.jpeds.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To compare the number of intermittent hypoxia events before and after packed red blood cell (pRBC) and non-pRBC transfusions in very low birth weight infants, and to compare the time spent with saturations of ≤85% before and after transfusions in the same population. STUDY DESIGN This prospective observational study was conducted from April 2014 to August 2017. It included 92 transfusions (81 pRBC, 11 non-pRBC) from 41 very low birth weight infants between 230/7 and 286/7 weeks of gestation. The primary outcome was number of intermittent hypoxia events. Secondary outcomes included the percent time of Peripheral capillary oxygen saturation (SpO2)of ≤85%, ≤80%, and ≤75%. A mixed ANOVA model was used to examine the relationship between event rate and covariates. RESULTS The mean number of intermittent hypoxia events per hour decreased from 5.27 ± 5.02 events per hour before pRBC transfusion to 3.61 ± 3.17 per hour after pRBC transfusions (P < .01) and intermittent hypoxia did not change after non-RBC transfusions (before, 4.45 ± 3.19 vs after, 4.47 ± 2.78; P = NS). The percent time with saturations of ≤80% and ≤75% significantly decreased after pRBC transfusions (P = .01). The time with saturations of ≤85% did not significantly change after non-pRBC transfusion. CONCLUSIONS In very low birth weight infants with a hematocrit of 20%-42%, pRBC transfusions are associated with decreased frequency of intermittent hypoxia. No such diminution of intermittent hypoxia events was observed in infants who had received a non-pRBC transfusion. This finding suggests that the observed beneficial effects of RBC transfusions on apnea and its clinical manifestations of intermittent hypoxia are mediated through an enhanced oxygen carrying capacity.
Collapse
Affiliation(s)
- Kelley Z Kovatis
- Department of Neonatology, Christiana Care Health System, Newark, DE.
| | - Juliann M Di Fiore
- Division of Neonatology, Case Western Reserve University, Cleveland, OH; Division of Neonatology, Rainbow Babies & Children's Hospital, Cleveland, OH
| | - Richard J Martin
- Division of Neonatology, Case Western Reserve University, Cleveland, OH; Division of Neonatology, Rainbow Babies & Children's Hospital, Cleveland, OH
| | - Soraya Abbasi
- Division of Neonatology, Pennsylvania Hospital, Philadelphia, PA; Division of Neonatology, University of Pennsylvania, Philadelphia, PA
| | | | - Stephen Hoover
- Value Institute, Case Western Reserve University, Cleveland, OH
| | - Zugui Zhang
- Value Institute, Case Western Reserve University, Cleveland, OH
| | - Haresh Kirpalani
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
7
|
Neonatal oxygen saturations and blood pressure at school-age in children born extremely preterm: a cohort study. J Perinatol 2020; 40:902-908. [PMID: 32111975 PMCID: PMC7260090 DOI: 10.1038/s41372-020-0619-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To explore the relationship between neonatal oxygen saturation and BP at age 6-7 years in a cohort of infants born extremely preterm. STUDY DESIGN Infants <28 weeks gestation were assigned to a higher or lower oxygen saturation target. Oximeter data were monitored throughout the neonatal period. A subset of survivors was seen at age 6. BP was measured and compared by group assignment, achieved saturations, and time spent in hypoxemia (saturations <80%). RESULTS There was no difference in systolic or diastolic BP between assigned groups. Median achieved weekly oxygen saturation was not associated with BP. Longer duration of hypoxemia during the first week of age was associated with higher systolic BP. CONCLUSIONS Neither target nor actual median oxygen saturations in this study was associated with BP at school age. Increased duration of hypoxemia in the first postnatal week was associated with higher systolic BP at 6-7 years of age.
Collapse
|
8
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Makarenko VV, Peng YJ, Khan SA, Nanduri J, Fox AP, Prabhakar NR. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol 2019; 122:1874-1883. [PMID: 31483699 DOI: 10.1152/jn.00435.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In neonates, catecholamine (CA) secretion from adrenal medullary chromaffin cells (AMC) is an important mechanism for maintaining homeostasis during hypoxia. Nearly 90% of premature infants experience chronic intermittent hypoxia (IH) because of high incidence of apnea of prematurity, which is characterized by periodic stoppage of breathing. The present study examined the effects of repetitive hypoxia, designed to mimic apnea of prematurity, on CA release from AMC of neonatal rats. Neonatal rats were exposed to either control conditions or chronic intermittent hypoxia (IH) from ages postnatal days 0-5 (P0-P5), and CA release from adrenal medullary slices was measured after challenge with repetitive hypoxia (5 episodes of 30-s hypoxia, Po2 ~35 mmHg). In response to repetitive hypoxia, chronic IH-treated AMC exhibited sustained CA release, and this phenotype was not seen in control AMC. The sustained CA release was associated with long-lasting elevation of intracellular Ca2+ concentration ([Ca2+]i), which was due to store-operated Ca2+ entry (SOCE). 2-Aminoethoxydiphenyl borate, an inhibitor of SOCE, prevented the long-lasting [Ca2+]i elevation and CA release. Repetitive hypoxia increased H2O2 abundance, and polyethylene glycol (PEG)-catalase, a scavenger of H2O2 blocked this effect. PEG-catalase also prevented repetitive hypoxia-induced SOCE activation, sustained [Ca2+]i elevation, and CA release. These results demonstrate that repetitive hypoxia induces long-term facilitation of CA release in chronic IH-treated neonatal rat AMC through sustained Ca2+ influx mediated by SOCE.NEW & NOTEWORTHY Apnea of prematurity and the resulting chronic intermittent hypoxia are major clinical problems in neonates born preterm. Catecholamine release from adrenal medullary chromaffin cells maintains homeostasis during hypoxia in neonates. Our results demonstrate that chronic intermittent hypoxia induces a hitherto uncharacterized long-term facilitation of catecholamine secretion from neonatal rat chromaffin cells in response to repetitive hypoxia, simulating hypoxic episodes encountered during apnea of prematurity. The sustained catecholamine secretion might contribute to cardiovascular morbidities in infants with apnea of prematurity.
Collapse
Affiliation(s)
- Vladislav V Makarenko
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Shakil A Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Aaron P Fox
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Garcia AJ, Viemari JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development. Respir Physiol Neurobiol 2019; 270:103259. [PMID: 31369874 DOI: 10.1016/j.resp.2019.103259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Encountered in a number of clinical conditions, repeated hypoxia/reoxygenation during the neonatal period can pose both a threat to immediate survival as well as a diminished quality of living later in life. This review focuses on our current understanding of central respiratory rhythm generation and the role that hypoxia and reoxygenation play in influencing rhythmogenesis. Here, we examine the stereotypical response of the inspiratory rhythm from the preBötzinger complex (preBötC), basic neuronal mechanisms that support rhythm generation during the peri-hypoxic interval, and the physiological consequences of inspiratory network responsivity to hypoxia and reoxygenation, acute and chronic intermittent hypoxia, and oxidative stress. These topics are examined in the context of Sudden Infant Death Syndrome, apneas of prematurity, and neonatal abstinence syndrome.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| | - Jean Charles Viemari
- Institut de Neurosciences de la Timone, P3M team, UMR7289 CNRS & AMU, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| |
Collapse
|
12
|
Abstract
People living at sea level experience intermittent hypoxia (IH) as a consequence of sleep apnea, which is a highly prevalent respiratory disorder. Sleep apnea patients and rodents exposed to IH exhibit autonomic dysfunction manifested as increased sympathetic nerve activity and hypertension. This article highlights physiologic basis of autonomic disturbances by IH, which involves abnormal activation of the carotid body (CB) chemo reflex by reactive oxygen species (ROS).We further evaluate major molecular mechanisms underlying IH-induced ROS generation including transcriptional activation of genes encoding pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and transcriptional repression of anti-oxidant enzyme genes by DNA methylation. Lastly, evidence is presented for CB neural activity as a major regulator of HIF-1 activation and DNA methylation by IH in the chemo reflex pathway.
Collapse
|
13
|
Nanduri J, Peng Y, Wang N, Khan SA, Semenza GL, Prabhakar NR. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol 2018; 596:3087-3100. [PMID: 29148180 PMCID: PMC6068255 DOI: 10.1113/jp274833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The mechanisms underlying long-term (30 days) intermittent hypoxia (LT-IH)-evoked DNA methylation of anti-oxidant enzyme (AOE) gene repression in the carotid body (CB) reflex pathway were examined. LT-IH-treated rats showed increased reactive oxygen species (ROS) levels in the CB reflex pathway. Administration of a ROS scavenger or CB ablation blocked LT-IH-evoked DNA methylation and AOE gene repression in the central and efferent limbs of the CB reflex. LT-IH increased DNA methyltransferase (Dnmt) activity through upregulation of Dnmt1 and 3b proteins by ROS-dependent inactivation of glycogen synthase kinase 3β (GSK3β) by Akt. A pan-Akt inhibitor prevented LT-IH-induced GSK3β inactivation, elevated Dnmt protein expression and activity, AOE gene methylation, sympathetic activation and hypertension. ABSTRACT Long-term exposure to intermittent hypoxia (LT-IH; 30 days), simulating blood O2 profiles during sleep apnoea, has been shown to repress anti-oxidant enzyme (AOE) gene expression by DNA methylation in the carotid body (CB) reflex pathway, resulting in persistent elevation of plasma catecholamine levels and blood pressure. The present study examined the mechanisms by which LT-IH induces DNA methylation. Adult rats exposed to LT-IH showed elevated reactive oxygen species (ROS) in the CB, nucleus tractus solitarius (nTS) and rostroventrolateral medulla (RVLM) and adrenal medulla (AM), which represent the central and efferent limbs of the CB reflex, respectively. ROS scavenger treatment during the first ten days of IH exposure prevented ROS accumulation, blocked DNA methylation, and normalized AOE gene expression, suggesting that ROS generated during the early stages of IH activate DNA methylation. CB ablation prevented the ROS accumulation, normalized AOE gene expression in the nTS, RVLM, and AM and blocked DNA methylation, suggesting that LT-IH-induced DNA methylation in the central and efferent limbs of the CB reflex is indirect and requires CB neural activity. LT-IH increased DNA methyl transferase (Dnmt) activity through upregulation of Dnmt1 and 3b protein expression due to ROS-dependent inactivation of glycogen synthase kinase 3β (GSK3β) by protein kinase B (Akt). Treating rats with the pan-Akt inhibitor GSK690693 blocked the induction of Dnmt activity, Dnmt protein expression, and DNA methylation, leading to normalization of AOE gene expression as well as plasma catecholamine levels and blood pressure.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute for Integrative Physiology and Centre for Systems Biology of O2 Sensing, Biological Science DivisionThe University of ChicagoChicagoILUSA
| | - Ying‐Jie Peng
- Institute for Integrative Physiology and Centre for Systems Biology of O2 Sensing, Biological Science DivisionThe University of ChicagoChicagoILUSA
| | - Ning Wang
- Institute for Integrative Physiology and Centre for Systems Biology of O2 Sensing, Biological Science DivisionThe University of ChicagoChicagoILUSA
| | - Shakil A. Khan
- Institute for Integrative Physiology and Centre for Systems Biology of O2 Sensing, Biological Science DivisionThe University of ChicagoChicagoILUSA
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry; and McKusick‐Nathans Institute of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Centre for Systems Biology of O2 Sensing, Biological Science DivisionThe University of ChicagoChicagoILUSA
| |
Collapse
|
14
|
Phenylethanolamine N-methyltransferase gene expression in PC12 cells exposed to intermittent hypoxia. Neurosci Lett 2018; 666:169-174. [DOI: 10.1016/j.neulet.2017.12.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 11/22/2022]
|
15
|
Vasin MV, Ushakov IB, Bukhtiyarov IV. Stress Reaction and Biochemical Shock as Interrelated and Unavoidable Components in the Formation of High Radioresistance of the Body in Acute Hypoxia. BIOL BULL+ 2018. [DOI: 10.1134/s1062359017060115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Prabhakar NR. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol 2018; 101:975-85. [PMID: 27474260 DOI: 10.1113/ep085624] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
What is the topic of this review? This article presents emerging evidence for heightened carotid body chemoreflex activity as a major driver of sympathetic activation and hypertension in sleep apnoea patients. What advances does it heighlight? This article discusses the recent advances on cellular, molecular and epigenetic mechanisms underlying the exaggerated chemoreflex in experimental models of sleep apnoea. The carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen concentration, and the resulting chemoreflex is a potent regulator of the sympathetic tone, blood pressure and breathing. Sleep apnoea is a disease of the respiratory system that affects several million adult humans. Apnoeas occur during sleep, often as a result of obstruction of the upper airway (obstructive sleep apnoea) or because of defective respiratory rhythm generation by the CNS (central sleep apnoea). Patients with sleep apnoea exhibit several co-morbidities, with the most notable among them being heightened sympathetic nerve activity and hypertension. Emerging evidence suggests that intermittent hypoxia resulting from periodic apnoea stimulates the carotid body, and the ensuing chemoreflex mediates the increased sympathetic tone and hypertension in sleep apnoea patients. Rodent models of intermittent hypoxia that simulate the O2 saturation profiles encountered during sleep apnoea have provided important insights into the cellular and molecular mechanisms underlying the heightened carotid body chemoreflex. This article describes how intermittent hypoxia affects the carotid body function and discusses the cellular, molecular and epigenetic mechanisms underlying the exaggerated chemoreflex.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Nanduri J, Peng YJ, Wang N, Khan SA, Semenza GL, Kumar GK, Prabhakar NR. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol 2016; 595:63-77. [PMID: 27506145 DOI: 10.1113/jp272346] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The effects of short-term (ST; 10 days) and long-term (LT; 30 days) intermittent hypoxia (IH) on blood pressure (BP), breathing and carotid body (CB) chemosensory reflex were examined in adult rats. ST- and LT-IH treated rats exhibited hypertension, irregular breathing with apnoea and augmented the CB chemosensory reflex, with all these responses becoming normalized during recovery from ST- but not from LT-IH. The persistent cardiorespiratory responses to LT-IH were associated with elevated reactive oxygen species (ROS) levels in the CB and adrenal medulla, which were a result of DNA methylation-dependent suppression of genes encoding anti-oxidant enzymes (AOEs). Treating rats with decitabine either during LT-IH or during recovery from LT-IH prevented DNA methylation of AOE genes, normalized the expression of AOE genes and ROS levels, reversed the heightened CB chemosensory reflex and hypertension, and also stabilized breathing. ABSTRACT Rodents exposed to chronic intermittent hypoxia (IH), simulating blood O2 saturation profiles during obstructive sleep apnoea (OSA), have been shown to exhibit a heightened carotid body (CB) chemosensory reflex and hypertension. CB chemosensory reflex activation also results in unstable breathing with apnoeas. However, the effect of chronic IH on breathing is not known. In the present study, we examined the effects of chronic IH on breathing along with blood pressure (BP) and assessed whether the autonomic responses are normalized after recovery from chronic IH. Studies were performed on adult, male, Sprague-Dawley rats exposed to either short-term (ST; 10 days) or long-term (LT, 30 days) IH. Rats exposed to either ST- or LT-IH exhibited hypertension, irregular breathing with apnoeas, an augmented CB chemosensory reflex as indicated by elevated CB neural activity and plasma catecholamine levels, and elevated reactive oxygen species (ROS) levels in the CB and adrenal medulla (AM). All these effects were normalized after recovery from ST-IH but not from LT-IH. Analysis of the molecular mechanisms underlying the persistent effects of LT-IH revealed increased DNA methylation of genes encoding anti-oxidant enzymes (AOEs). Treatment with decitabine, a DNA methylation inhibitor, either during LT-IH or during recovery from LT-IH, prevented DNA methylation, normalized the expression of AOE genes, ROS levels, CB chemosensory reflex and BP, and also stabilized breathing. These results suggest that persistent cardiorespiratory abnormalities caused by LT-IH are mediated by epigenetic re-programming of the redox state in the CB chemosensory reflex pathway.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, IL, USA
| | - Ying-Jie Peng
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, IL, USA
| | - Ning Wang
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, IL, USA
| | - Shakil A Khan
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, IL, USA
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Departments of Pediatrics, Medicine, Oncology, Radiation Oncology and Biological Chemistry, and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ganesh K Kumar
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, IL, USA
| | - Nanduri R Prabhakar
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Cardiorespiratory events in preterm infants: interventions and consequences. J Perinatol 2016; 36:251-8. [PMID: 26583943 DOI: 10.1038/jp.2015.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Stabilization of respiration and oxygenation continues to be one of the main challenges in clinical care of the neonate. Despite aggressive respiratory support including mechanical ventilation, continuous positive airway pressure, oxygen and caffeine therapy to reduce apnea and accompanying intermittent hypoxemia, the incidence of intermittent hypoxemia events continues to increase during the first few months of life. Even with improvements in clinical care, standards for oxygen saturation targeting and modes of respiratory support have yet to be identified in this vulnerable infant cohort. In addition, we are only beginning to explore the association between the incidence and pattern of cardiorespiratory events during early postnatal life and both short- and long-term morbidity including retinopathy of prematurity, growth, sleep-disordered breathing and neurodevelopmental impairment. Part 1 of this review included a summary of lung development and diagnostic methods of cardiorespiratory monitoring. In Part 2 we focus on clinical interventions and the short- and long-term consequences of cardiorespiratory events in preterm infants.
Collapse
|
19
|
Wang N, Kang HS, Ahmmed G, Khan SA, Makarenko VV, Prabhakar NR, Nanduri J. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia. Am J Physiol Cell Physiol 2016; 310:C329-36. [PMID: 26659724 PMCID: PMC4865081 DOI: 10.1152/ajpcell.00231.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/04/2015] [Indexed: 11/22/2022]
Abstract
Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH.
Collapse
Affiliation(s)
- N Wang
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - H S Kang
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - G Ahmmed
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - S A Khan
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - V V Makarenko
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - N R Prabhakar
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - J Nanduri
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Prabhakar NR, Peng YJ, Kumar GK, Nanduri J. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol 2016; 5:561-77. [PMID: 25880505 DOI: 10.1002/cphy.c140039] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Illinois, USA
| | | | | | | |
Collapse
|
21
|
Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, Prabhakar NR. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One 2015; 10:e0119762. [PMID: 25751622 PMCID: PMC4353619 DOI: 10.1371/journal.pone.0119762] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Damodara Reddy Vaddi
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Shakil A. Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Vladislav Makarenko
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering; Department of Pediatrics, Medicine, Oncology, Radiation Oncology and Biological Chemistry; and Mckusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
22
|
Kumar GK, Nanduri J, Peng YJ, Prabhakar NR. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol 2015; 209:115-9. [PMID: 25583660 DOI: 10.1016/j.resp.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/01/2015] [Indexed: 10/24/2022]
Abstract
Sleep disordered breathing (SDB) with recurrent apnea is a major health problem affecting several million adult men and women. Humans with SDB are prone to develop hypertension. Studies on rodents established that exposure to chronic intermittent hypoxia (CIH) alone is sufficient to induce hypertension similar to that seen in patients with SDB. Available evidence from studies on experimental animals suggests that catecholamines secreted from adrenal medulla (AM), an end-organ of the sympathetic nervous system is a major contributor to CIH-induced hypertension. In this article, we present an overview of our current understanding on how CIH reconfigures AM function and highlight recent findings on the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, IL, USA.
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, IL, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, IL, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, IL, USA
| |
Collapse
|
23
|
Nanduri J, Prabhakar NR. Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:1-8. [PMID: 26303461 PMCID: PMC4870818 DOI: 10.1007/978-3-319-18440-1_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in infants born preterm. Recent epidemiological studies showed that adults who were born preterm exhibit increased incidence of sleep-disordered breathing and hypertension. Thus, apnea of prematurity predisposes individuals to autonomic dysfunction in adulthood. Experimental studies showed that adult rats exposed to IH as neonates exhibit augmented carotid body and adrenal chromaffin cells (AMC) response to hypoxia and irregular breathing with apneas and hypertension. The enhanced hypoxic sensitivity of the carotid body and AMC in adult rats exposed to neonatal IH was associated with increased oxidative stress, decreased expression of genes encoding anti-oxidant enzymes, and increased expression of pro-oxidant enzymes. Epigenetic mechanisms including DNA methylation leads to long-term changes in gene expression. The decreased expression of the Sod2 gene, which encodes the anti-oxidant enzyme, superoxide dismutase 2, was associated with DNA hypermethylation of a single CpG dinucleotide close to the transcription start site. Treating neonatal rats with decitabine, an inhibitor of DNA methylation, during IH exposure prevented the oxidative stress, enhanced hypoxic sensitivity, and autonomic dysfunction in adult rats. These findings suggest that epigenetic mechanisms, especially DNA methylation contributes to neonatal programming of hypoxic sensitivity and the ensuing autonomic dysfunction in adulthood.
Collapse
|
24
|
Lucking EF, O'Halloran KD, Jones JFX. Increased cardiac output contributes to the development of chronic intermittent hypoxia-induced hypertension. Exp Physiol 2014; 99:1312-24. [DOI: 10.1113/expphysiol.2014.080556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Eric F. Lucking
- UCD School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Ken D. O'Halloran
- Department of Physiology; School of Medicine; University College Cork; Cork Ireland
| | - James F. X. Jones
- UCD School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| |
Collapse
|
25
|
Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system. J Neurosci 2013; 33:12705-17. [PMID: 23904607 DOI: 10.1523/jneurosci.3132-12.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.
Collapse
|
26
|
Differential regulation of tyrosine hydroxylase by continuous and intermittent hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 758:381-5. [PMID: 23080186 DOI: 10.1007/978-94-007-4584-1_51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Although continuous hypoxia (CH) and intermittent hypoxia (IH) cause reduction in oxygen availability, organisms adapt to the effects of chronic CH whereas IH adversely impacts autonomic functions. Catecholamines are expressed both in the central and peripheral nervous systems and they play important roles in the regulation of cardio-respiratory functions during hypoxia. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for catecholamine synthesis. Several studies have examined the effects of hypoxia on catecholamines by focusing on the regulation of TH. In this article, we present a brief overview of the impact of chronic CH and IH on TH expression, activity and the associated cellular mechanism(s).
Collapse
|
27
|
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92:967-1003. [PMID: 22811423 DOI: 10.1152/physrev.00030.2011] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a fundamental stimulus that impacts cells, tissues, organs, and physiological systems. The discovery of hypoxia-inducible factor-1 (HIF-1) and subsequent identification of other members of the HIF family of transcriptional activators has provided insight into the molecular underpinnings of oxygen homeostasis. This review focuses on the mechanisms of HIF activation and their roles in physiological and pathophysiological responses to hypoxia, with an emphasis on the cardiorespiratory systems. HIFs are heterodimers comprised of an O(2)-regulated HIF-1α or HIF-2α subunit and a constitutively expressed HIF-1β subunit. Induction of HIF activity under conditions of reduced O(2) availability requires stabilization of HIF-1α and HIF-2α due to reduced prolyl hydroxylation, dimerization with HIF-1β, and interaction with coactivators due to decreased asparaginyl hydroxylation. Stimuli other than hypoxia, such as nitric oxide and reactive oxygen species, can also activate HIFs. HIF-1 and HIF-2 are essential for acute O(2) sensing by the carotid body, and their coordinated transcriptional activation is critical for physiological adaptations to chronic hypoxia including erythropoiesis, vascularization, metabolic reprogramming, and ventilatory acclimatization. In contrast, intermittent hypoxia, which occurs in association with sleep-disordered breathing, results in an imbalance between HIF-1α and HIF-2α that causes oxidative stress, leading to cardiorespiratory pathology.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
28
|
Control of low-threshold exocytosis by T-type calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1579-86. [PMID: 22885170 DOI: 10.1016/j.bbamem.2012.07.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
Low-voltage-activated (LVA) T-type Ca²⁺ channels differ from their high-voltage-activated (HVA) homologues by unique biophysical properties. Hence, whereas HVA channels convert action potentials into intracellular Ca²⁺ elevations, T-type channels control Ca²⁺ entry during small depolarizations around the resting membrane potential. They play an important role in electrical activities by generating low-threshold burst discharges that occur during various physiological and pathological forms of neuronal rhythmogenesis. In addition, they mediate a previously unrecognized function in the control of synaptic transmission where they directly trigger the release of neurotransmitters at rest. In this review, we summarize our present knowledge of the role of T-type Ca²⁺ channels in vesicular exocytosis, and emphasize the critical importance of localizing the exocytosis machinery close to the Ca²⁺ source for reliable synaptic transmission. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
29
|
Nanduri J, Prabhakar NR. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respir Physiol Neurobiol 2012; 185:105-9. [PMID: 22846496 DOI: 10.1016/j.resp.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/28/2012] [Accepted: 07/19/2012] [Indexed: 11/24/2022]
Abstract
Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in infants born preterm. Carotid body chemo-reflex and catecholamine secretion from adrenal medullary chromaffin cells (AMC) are important for maintenance of cardio-respiratory homeostasis during hypoxia. This article highlights studies on the effects of IH on O(2) sensing by the carotid body and AMC in neonatal rodents. Neonatal IH augments hypoxia-evoked carotid body sensory excitation and catecholamine secretion from AMC which are mediated by reactive oxygen species (ROS)-dependent recruitment of endothelin-1 and Ca(2+) signaling, respectively. The effects of neonatal IH persist into adulthood. Evidence is emerging that neonatal IH initiates epigenetic mechanisms involving DNA hypermethylation contributing to long-lasting increase in ROS levels. Since adult human subjects born preterm exhibit higher incidence of sleep-disordered breathing and hypertension, DNA hypomethylating agents might offer a novel therapeutic intervention to decrease long-term cardio-respiratory morbidity caused by neonatal IH.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Science Division, University of Chicago, Chicago, USA
| | | |
Collapse
|
30
|
Prabhakar NR, Kumar GK, Peng YJ. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985) 2012; 113:1304-10. [PMID: 22723632 DOI: 10.1152/japplphysiol.00444.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent apnea with chronic intermittent hypoxia (CIH) is a major clinical problem in adult humans and infants born preterm. Patients with recurrent apnea exhibit heightened sympathetic activity as well as elevated plasma catecholamine levels, and these phenotypes are effectively recapitulated in rodent models of CIH. This article summarizes findings from studies addressing sympathetic activation in recurrent apnea patients and rodent models of CIH and the underlying cellular and molecular mechanisms. Available evidence suggests that augmented chemoreflex and attenuated baroreflex contribute to sympathetic activation by CIH. Studies on rodents showed that CIH augments the carotid body response to hypoxia and attenuates the carotid baroreceptor response to increased sinus pressures. Processing of afferent information from chemoreceptors at the central nervous system is also facilitated by CIH. Adult and neonatal rats exposed to CIH exhibit augmented catecholamine secretion from the adrenal medulla. Adrenal demedullation prevents the elevation of circulating catecholamines in CIH-exposed rodents. Reactive oxygen species (ROS)-mediated signaling is emerging as the major cellular mechanism triggering sympatho-adrenal activation by CIH. Molecular mechanisms underlying increased ROS generation by CIH seem to involve transcriptional dysregulation of genes encoding pro-and antioxidant enzymes by hypoxia-inducible factor-1 and -2, respectively.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and The Center for Systems Biology of Oxygen Sensing, Biological Sciences Division, Dept. of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | |
Collapse
|
31
|
Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A 2012; 109:2515-20. [PMID: 22232674 DOI: 10.1073/pnas.1120600109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recurrent apnea with intermittent hypoxia is a major clinical problem in preterm infants. Recent studies, although limited, showed that adults who were born preterm exhibit increased incidence of sleep-disordered breathing and hypertension, suggesting that apnea of prematurity predisposes to autonomic dysfunction in adulthood. Here, we demonstrate that adult rats that were exposed to intermittent hypoxia as neonates exhibit exaggerated responses to hypoxia by the carotid body and adrenal chromaffin cells, which regulate cardio-respiratory function, resulting in irregular breathing with apneas and hypertension. The enhanced hypoxic sensitivity was associated with elevated oxidative stress, decreased expression of genes encoding antioxidant enzymes, and increased expression of pro-oxidant enzymes. Decreased expression of the Sod2 gene, which encodes the antioxidant enzyme superoxide dismutase 2, was associated with DNA hypermethylation of a single CpG dinucleotide close to the transcription start site. Treating neonatal rats with decitabine, an inhibitor of DNA methylation, during intermittent hypoxia exposure prevented oxidative stress, enhanced hypoxic sensitivity, and autonomic dysfunction. These findings implicate a hitherto uncharacterized role for DNA methylation in mediating neonatal programming of hypoxic sensitivity and the ensuing autonomic dysfunction in adulthood.
Collapse
|
32
|
Pozo ME, Cave A, Köroğlu OA, Litvin DG, Martin RJ, Di Fiore J, Kc P. Effect of postnatal intermittent hypoxia on growth and cardiovascular regulation of rat pups. Neonatology 2012; 102:107-13. [PMID: 22677790 PMCID: PMC3495107 DOI: 10.1159/000338096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intermittent hypoxic episodes are common among preterm infants, although longer term consequences on growth pattern and cardiovascular regulation are unclear. Furthermore, the effects of intermittent hypoxia (IH) may depend on the pattern of hypoxia-reoxygenation. OBJECTIVES We tested the hypothesis that a clustered versus dispersed pattern of repetitive IH during early postnatal life would induce differential long-term alteration in growth and cardiovascular regulation. METHODS Sprague-Dawley rat pups were exposed to room air or to one of two patterns of IH (clustered vs. dispersed) from 1 to 7 days of life. Body weight was measured daily for the first 8 days and weekly from weeks 2 to 8. Blood pressure (BP) and heart rate were measured weekly from weeks 4 to 8 using a noninvasive tail-cuff method for awake, nonanesthetized animals. RESULTS Exposure to both patterns of repetitive IH induced early growth restriction followed by later catch-up of growth to controls 3 weeks after completion of IH exposures. IH-exposed rats exhibited a sustained decrease in heart rate regardless of the hypoxic exposure paradigm employed. In contrast, a differential response was seen for arterial pressure; the clustered paradigm was associated with a significantly lower BP versus controls, while the pups exposed to the dispersed paradigm showed no effect on BP. CONCLUSION We speculate that repetitive IH during a critical developmental window and regardless of IH exposure paradigm contributes to prolonged changes in sympathovagal balance of cardiovascular regulation.
Collapse
Affiliation(s)
- M E Pozo
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6010, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol 2011; 226:2925-33. [PMID: 21302291 DOI: 10.1002/jcp.22640] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sleep-disordered breathing with recurrent apnea is associated with intermittent hypoxia (IH). Cardiovascular morbidities caused by IH are triggered by increased generation of reactive oxygen species (ROS) by pro-oxidant enzymes, especially NADPH oxidase-2 (Nox2). Previous studies showed that (i) IH activates hypoxia-inducible factor 1 (HIF-1) in a ROS-dependent manner and (ii) HIF-1 is required for IH-induced ROS generation, indicating the existence of a feed-forward mechanism. In the present study, using multiple pharmacological and genetic approaches, we investigated whether IH-induced expression of Nox2 is mediated by HIF-1 in the central and peripheral nervous system of mice as well as in cultured cells. IH increased Nox2 mRNA, protein, and enzyme activity in PC12 pheochromocytoma cells as well as in wild-type mouse embryonic fibroblasts (MEFs). This effect was abolished or attenuated by blocking HIF-1 activity through RNA interference or pharmacologic inhibition (digoxin or YC-1) or by genetic knockout of HIF-1α in MEFs. Increasing HIF-1α expression by treating PC 12 cells with the iron chelator deferoxamine for 20 h or by transfecting them with HIF-1alpha expression vector increased Nox2 expression and enzyme activity. Exposure of wild-type mice to IH (8 h/day for 10 days) up-regulated Nox2 mRNA expression in brain cortex, brain stem, and carotid body but not in cerebellum. IH did not induce Nox2 expression in cortex, brainstem, carotid body, or cerebellum of Hif1a(+/-) mice, which do not manifest increased ROS or cardiovascular morbidities in response to IH. These results establish a pathogenic mechanism linking HIF-1, ROS generation, and cardiovascular pathology in response to IH.
Collapse
Affiliation(s)
- Guoxiang Yuan
- Institute for Integrative Physiology and The Center for Systems Biology of O2 Sensing, Biological Science Division, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
34
|
Brown ST, Reyes EP, Nurse CA. Chronic hypoxia upregulates adenosine 2a receptor expression in chromaffin cells via hypoxia inducible factor-2α: role in modulating secretion. Biochem Biophys Res Commun 2011; 412:466-72. [PMID: 21840298 DOI: 10.1016/j.bbrc.2011.07.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Catecholamine (CAT) release from chromaffin tissue plays an essential role in the fetus which develops in a low O₂ environment (hypoxia). To address molecular mechanisms regulating CAT secretion in low O₂, we exposed a fetal chromaffin-derived cell line (MAH cells) to chronic hypoxia (CHox; 2% O₂, 24h) and assessed gene expression using microarrays, quantitative RT-PCR, and western blot. CHox caused a dramatic ∼12× upregulation of adenosine A2a receptor (A2aR) mRNA, an effect critically dependent upon hypoxia-inducible factor (HIF)-2α which bound the promoter of the A2aR gene. In amperometric studies, acute hypoxia and high K⁺ (30 mM) evoked quantal CAT secretion that was enhanced after CHox, and further potentiated during simultaneous A2aR activation by adenosine. A2aR activation also enhanced stimulus-induced rise in intracellular Ca²⁺ in control, but not HIF-2α-deficient, MAH cells. Thus, A2aR, adenosine, and HIF-2α are key contributors to the potentiation of CAT secretion in developing chromaffin cells during chronic hypoxia.
Collapse
Affiliation(s)
- Stephen T Brown
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
35
|
Julien CA, Joseph V, Bairam A. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups. Respir Physiol Neurobiol 2011; 177:301-12. [DOI: 10.1016/j.resp.2011.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 01/01/2023]
|
36
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
37
|
Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol 2011; 300:C951-67. [PMID: 21178108 PMCID: PMC3093942 DOI: 10.1152/ajpcell.00512.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 12/19/2022]
Abstract
The ability to sense and respond to oxygen deprivation is required for survival; thus, understanding the mechanisms by which changes in oxygen are linked to cell viability and function is of great importance. Ion channels play a critical role in regulating cell function in a wide variety of biological processes, including neuronal transmission, control of ventilation, cardiac contractility, and control of vasomotor tone. Since the 1988 discovery of oxygen-sensitive potassium channels in chemoreceptors, the effect of hypoxia on an assortment of ion channels has been studied in an array of cell types. In this review, we describe the effects of both acute and sustained hypoxia (continuous and intermittent) on mammalian ion channels in several tissues, the mode of action, and their contribution to diverse cellular processes.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Div. of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
38
|
Raghuraman G, Kalari A, Dhingra R, Prabhakar NR, Kumar GK. Enhanced neuropeptide Y synthesis during intermittent hypoxia in the rat adrenal medulla: role of reactive oxygen species-dependent alterations in precursor peptide processing. Antioxid Redox Signal 2011; 14:1179-90. [PMID: 20836657 PMCID: PMC3048839 DOI: 10.1089/ars.2010.3353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intermittent hypoxia (IH) associated with recurrent apneas often leads to cardiovascular abnormalities. Previously, we showed that IH treatment elevates blood pressure and increases plasma catecholamines (CAs) in rats via reactive oxygen species (ROS)-dependent enhanced synthesis and secretion from the adrenal medulla (AM). Neuropeptide Y (NPY), a sympathetic neurotransmitter that colocalizes with CA in the AM, has been implicated in blood pressure regulation during persistent stress. Here, we investigated whether IH facilitates NPY synthesis in the rat AM and assessed the role of ROS signaling. IH increased NPY-like immunoreactivity in many dopamine-β-hydroxylase-expressing chromaffin cells with a parallel increase in preproNPY mRNA and protein. IH increased the activities of proNPY-processing enzymes, which were due, in part, to elevated protein expression and increased proteolytic processing. IH increased ROS generation, and antioxidants reversed IH-induced increases in ROS, preproNPY, and its processing to bioactive NPY in the AM. IH treatment increased blood pressure and antioxidants and inhibition of NPY amidation prevented this response. These findings suggest that IH-induced elevation in NPY expression in the rat AM is mediated by ROS-dependent augmentation of preproNPY mRNA expression and proNPY-processing enzyme activities and contributes to IH-induced elevation of blood pressure.
Collapse
Affiliation(s)
- Gayatri Raghuraman
- The Center for Systems Biology of O2 Sensing, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
39
|
Khan SA, Nanduri J, Yuan G, Kinsman B, Kumar GK, Joseph J, Kalyanaraman B, Prabhakar NR. NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal 2011; 14:533-42. [PMID: 20618070 PMCID: PMC3038125 DOI: 10.1089/ars.2010.3213] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous studies identified NADPH oxidases (Nox) and mitochondrial electron transport chain at complex I as major cellular sources of reactive oxygen species (ROS) mediating systemic and cellular responses to intermittent hypoxia (IH). In the present study, we investigated potential interactions between Nox and the mitochondrial complex I and assessed the contribution of mitochondrial ROS in IH-evoked elevation in blood pressure. IH treatment led to stimulus-dependent activation of Nox and inhibition of complex I activity in rat pheochromocytoma (PC)12 cells. After re-oxygenation, Nox activity returned to baseline values within 3 h, whereas the complex I activity remained downregulated even after 24 h. IH-induced complex I inhibition was prevented by Nox inhibitors, Nox2 but not Nox 4 siRNA, in cell cultures and was absent in gp91(phox-/Y) (Nox2 knock-out; KO) mice. Using pharmacological inhibitors, we show that ROS generated by Nox activation mobilizes Ca(2+) flux from the cytosol to mitochondria, leading to S-glutathionylation of 75- and 50-kDa proteins of the complex I and inhibition of complex I activity, which results in elevated mitochondrial ROS. Systemic administration of mito-tempol prevented the sustained but not the acute elevations of blood pressure in IH-treated rats, suggesting that mitochondrial-derived ROS contribute to sustained elevation of blood pressure.
Collapse
Affiliation(s)
- Shakil A Khan
- Department of Medicine, Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Martin RJ, Wang K, Köroğlu O, Di Fiore J, Kc P. Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology 2011; 100:303-10. [PMID: 21986336 PMCID: PMC3252018 DOI: 10.1159/000329922] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intermittent hypoxic episodes are typically a consequence of immature respiratory control and remain a troublesome challenge for the neonatologist. Furthermore, their frequency and magnitude are underestimated by clinically employed pulse oximeter settings. In extremely low birth weight infants the incidence of intermittent hypoxia progressively increases over the first 4 weeks of postnatal life, with a subsequent plateau followed by a slow decline beginning at weeks 6-8. Such episodic hypoxia/reoxygenation has the potential to sustain a proinflammatory cascade with resultant multisystem morbidity. This morbidity includes retinopathy of prematurity and impaired growth, as well as possible longer-term cardiorespiratory instability and poor neurodevelopmental outcome. Therapeutic approaches for intermittent hypoxic episodes comprise determination of optimal baseline saturation and careful titration of supplemental inspired oxygen, as well as xanthine therapy to prevent apnea of prematurity. In conclusion, characterization of the pathophysiologic basis for such intermittent hypoxic episodes and their consequences during early life is necessary to provide an evidence-based approach to their management.
Collapse
Affiliation(s)
- Richard J Martin
- Division of Neonatology, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6010, USA.
| | | | | | | | | |
Collapse
|
41
|
Brown ST, Buttigieg J, Nurse CA. Divergent roles of reactive oxygen species in the responses of perinatal adrenal chromaffin cells to hypoxic challenges. Respir Physiol Neurobiol 2010; 174:252-8. [PMID: 20804866 DOI: 10.1016/j.resp.2010.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/28/2022]
Abstract
The fetus and neonate experience variable patterns of low P(O)₂(hypoxia) ranging from acute, sustained, and intermittent. Adaptation to hypoxia involves activation of key transcription factors, known as hypoxia-inducible factors (e.g. HIF-1α, HIF-2α), which regulate a number of genes in different cell types. This review focuses on the signaling pathways that mediate proper physiological responses of perinatal adrenomedullary chromaffin cells (AMC) to varying patterns of hypoxic challenges, and particularly on the controversial role of reactive oxygen species (ROS). At birth, acute hypoxia (seconds to minutes) directly stimulates catecholamine release from AMC via K+ channel inhibition, mediated by a decrease in mitochondrial-derived ROS. By contrast, exposure to chronic sustained hypoxia (CSH) induces HIF-2α in a fetal-derived chromaffin cell line independently of changes in ROS. Exposure to chronic intermittent hypoxia (CIH) activates antioxidant responses via the regulator Nrf-2, in association with an increase in ROS and the induction of HIF-1α. We propose that the physiological responses of perinatal AMC to hypoxia and the ensuing directional changes in ROS are dependent on the pattern and duration of the hypoxic exposure.
Collapse
Affiliation(s)
- Stephen T Brown
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
42
|
Prabhakar NR, Kumar GK, Nanduri J. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol 2010; 174:230-4. [PMID: 20804864 DOI: 10.1016/j.resp.2010.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
Abstract
Carotid bodies and neonatal adrenal medullary chromaffin cells (AMC) respond rapidly to acute hypoxia before compromising cellular functions. Responses to acute hypoxia are dynamically altered by chronic perturbations in arterial blood O2 levels resulting from breathing disorders. Sleep disordered breathing with recurrent apneas cause periodic decreases in arterial blood O2 or intermittent hypoxia (IH). Recent studies suggest that reactive oxygen species (ROS) mediate cellular adaptations to prolonged hypoxia. In this article we discuss the evidence for ROS in mediating exaggerated carotid body and AMC responses to acute hypoxia by IH and the underlying cellular and molecular mechanisms. IH increases ROS levels, and anti-oxidants prevent IH-induced augmented responses of the carotid body and AMC to hypoxia. The enhanced hypoxic sensitivity by IH involves ROS-dependent recruitment of transmitters/modulators in the carotid body and Ca2+ signaling mechanisms in AMC. Mechanisms by which IH elevates ROS include activation of NADPH oxidases, inhibition of mitochondrial complex I activity and down-regulation of anti-oxidant enzymes. Transcriptional regulation of pro- and anti-oxidant enzymes by hypoxia-inducible factors 1 and 2 appears to be a major molecular mechanism regulating ROS generation by IH.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Center for Systems Biology of O2 Sensing, Department of Medicine, University of Chicago, IL 60637, USA.
| | | | | |
Collapse
|
43
|
Prabhakar NR, Kumar GK. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol 2010; 174:156-61. [PMID: 20804865 DOI: 10.1016/j.resp.2010.08.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 02/05/2023]
Abstract
Sleep disordered breathing with recurrent apneas is one of the most frequently encountered breathing disorder in adult humans and preterm infants. Recurrent apnea patients exhibit several co-morbidities including hypertension and persistent sympathetic activation. Intermittent hypoxia (IH) resulting from apneas appears to be the primary stimulus for evoking autonomic changes. The purpose of this article is to briefly review the effects of IH on chemo- and baro-reflexes and circulating vasoactive hormones and their contribution to sympathetic activation and blood pressures. Sleep apnea patients and IH-treated rodents exhibit exaggerated arterial chemo-reflex. Studies on rodent models demonstrated that IH leads to hyperactive carotid body response to hypoxia. On the other hand, baro-reflex function is attenuated in patients with sleep apnea and in IH-treated rodents. Circulating vasoactive hormone levels are elevated in sleep apnea patients and in rodent models of IH. Thus, persistent sympathetic activation and hypertension associated with sleep apneas seems to be due to a combination of altered chemo- and baro-reflexes resulting in sympathetic activation and action of elevated circulating levels of vasoactive hormones on vasculature.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Center for Systems Biology of O2 Sensing, Department of Medicine, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
44
|
NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci 2010; 30:10763-72. [PMID: 20705601 DOI: 10.1523/jneurosci.2307-10.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nearly 90% of premature infants experience the stress of intermittent hypoxia (IH) as a consequence of recurrent apneas (periodic cessation of breathing). In neonates, catecholamine secretion from the adrenal medulla is critical for maintaining homeostasis under hypoxic stress. We recently reported that IH treatment enhanced hypoxia-evoked catecholamine secretion and [Ca2+]i responses in neonatal rat adrenal chromaffin cells and involves reactive oxygen species (ROS). The purpose of the present study was to identify the source(s) of ROS generation and examine the mechanisms underlying the enhanced catecholamine secretion by IH. Neonatal rats of either sex (postal day 0-5) were exposed to either IH or normoxia. IH treatment increased NADPH oxidase (NOX) activity, upregulated NOX2 and NOX4 transcription in adrenal medullae, and a NOX inhibitor prevented the effects of IH on hypoxia-evoked chromaffin cell secretion. IH upregulated Cav3.1 and Cav3.2 T-type Ca2+ channel mRNAs via NOX/ROS signaling and augmented T-type Ca2+ current in IH-treated chromaffin cells. Mibefradil, a blocker of T-type Ca2+ channels attenuated the effects of hypoxia on [Ca2+]i and catecholamine secretion in IH-treated cells. In Ca2+-free medium, IH-treated cells exhibited higher basal [Ca2+]i levels and more pronounced [Ca2+]i responses to hypoxia compared with controls, and blockade of ryanodine receptors (RyRs) prevented these effects. RyR2 and RyR3 mRNAs were upregulated, RyR2 was S-glutathionylated in IH-treated adrenal medullae, and NOX/ROS inhibitors prevented these effects. These results demonstrate that neonatal IH treatment leads to NOX/ROS-dependent recruitment of T-type Ca2+ channels and RyRs, resulting in augmented [Ca2+]i mobilization and catecholamine secretion.
Collapse
|
45
|
Souvannakitti D, Kuri B, Yuan G, Pawar A, Kumar GK, Smith C, Fox AP, Prabhakar NR. Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells. Am J Physiol Cell Physiol 2010; 299:C381-8. [PMID: 20664070 PMCID: PMC2928622 DOI: 10.1152/ajpcell.00530.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
We recently reported that adrenomedullary chromaffin cells (AMC) from neonatal rats treated with intermittent hypoxia (IH) exhibit enhanced catecholamine secretion by hypoxia (Souvannakitti D, Kumar GK, Fox A, Prabhakar NR. J Neurophysiol 101: 2837-2846, 2009). In the present study, we examined whether neonatal IH also facilitate AMC responses to nicotine, a potent stimulus to chromaffin cells. Experiments were performed on rats exposed to either IH (15-s hypoxia-5-min normoxia; 8 h/day) or to room air (normoxia; controls) from ages postnatal day 0 (P0) to P5. Quantitative RT-PCR analysis revealed expression of mRNAs alpha(3-), alpha(5-), alpha(7-), and beta(2-) and beta(4-)nicotinic acetylcholine receptor (nAChR) subunits in adrenal medullae from control P5 rats. Nicotine-elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) in AMC and nAChR antagonists prevented this response, suggesting that nAChRs are functional in neonatal AMC. In IH-treated rats, nAChR mRNAs were downregulated in AMC, which resulted in a markedly attenuated nicotine-evoked elevation in [Ca(2+)](i) and subsequent catecholamine secretion. Systemic administration of antioxidant prevented IH-evoked downregulation of nAChR expression and function. P35 rats treated with neonatal IH exhibited reduced nAChR mRNA expression in adrenal medullae, attenuated AMC responses to nicotine, and impaired neurogenic catecholamine secretion. Thus the response to neonatal IH lasts for at least 30 days. These observations demonstrate that neonatal IH downregulates nAChR expression and function in AMC via reactive oxygen species signaling, and the effects of neonatal IH persist at least into juvenile life, leading to impaired neurogenic catecholamine secretion from AMC.
Collapse
Affiliation(s)
- Dangjai Souvannakitti
- Department of Medicine, The Center for Systems Biology of O(2) Sensing, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Gaseousmessengers, nitric oxide and carbon monoxide, have been implicated in O2 sensing by the carotid body, a sensory organ that monitors arterial blood O2 levels and stimulates breathing in response to hypoxia. We now show that hydrogen sulfide (H2S) is a physiologic gasotransmitter of the carotid body, enhancing its sensory response to hypoxia. Glomus cells, the site of O2 sensing in the carotid body, express cystathionine gamma-lyase (CSE), an H2S-generating enzyme, with hypoxia increasing H2S generation in a stimulus-dependent manner. Mice with genetic deletion of CSE display severely impaired carotid body response and ventilatory stimulation to hypoxia, as well as a loss of hypoxia-evoked H2S generation. Pharmacologic inhibition of CSE elicits a similar phenotype in mice and rats. Hypoxia-evoked H2S generation in the carotid body seems to require interaction of CSE with hemeoxygenase-2, which generates carbon monoxide. CSE is also expressed in neonatal adrenal medullary chromaffin cells of rats and mice whose hypoxia-evoked catecholamine secretion is greatly attenuated by CSE inhibitors and in CSE knockout mice.
Collapse
|
47
|
Prabhakar NR, Kumar GK, Nanduri J. Intermittent Hypoxia-Mediated Plasticity of Acute O2 Sensing Requires Altered Red-Ox Regulation by HIF-1 and HIF-2. Ann N Y Acad Sci 2009; 1177:162-8. [DOI: 10.1111/j.1749-6632.2009.05034.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Abstract
Exposing rodents to brief episodes of hypoxia mimics the hypoxemia and the cardiovascular and metabolic effects observed in patients with obstructive sleep apnoea (OSA), a condition that affects between 5% and 20% of the population. Apart from daytime sleepiness, OSA is associated with a high incidence of systemic and pulmonary hypertension, peripheral vascular disease, stroke and sudden cardiac death. The development of animal models to study sleep apnoea has provided convincing evidence that recurrent exposure to intermittent hypoxia (IH) has significant vascular and haemodynamic impact that explain much of the cardiovascular morbidity and mortality observed in patients with sleep apnoea. However, the molecular and cellular mechanisms of how IH causes these changes is unclear and under investigation. This review focuses on the most recent findings addressing these mechanisms. It includes a discussion of the contribution of the nervous system, circulating and vascular factors, inflammatory mediators and transcription factors to IH-induced cardiovascular disease. It also highlights the importance of reactive oxygen species as a primary mediator of the systemic and pulmonary hypertension that develops in response to exposure to IH.
Collapse
Affiliation(s)
- Laura V González Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | |
Collapse
|