1
|
Gagliardini M, Mechaussier S, Campos Pina C, Morais M, Postal O, Jean P, Dupont T, Singh‐Estivalet A, Udugampolage S, Scandola C, Verpy E, Libé‐Philippot B, Inbar TC, Schwenkgrub J, Spinola CMB, Etournay R, El‐Amraoui A, Bathellier B, Mallet A, Delmaghani S, Giraudet F, Petit C, Gourévitch B, Avan P, Michalski N. Deciphering Auditory Hyperexcitability in Otogl Mutant Mice Unravels an Auditory Neuropathy Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410776. [PMID: 39965080 PMCID: PMC12097039 DOI: 10.1002/advs.202410776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Auditory neuropathies affect the spiral ganglion neurons of the auditory nerve or their synapses with the sensory hair cells, distorting the sound information transmitted from the ear to the brain. Deciphering the underlying pathophysiological mechanisms remains challenging owing to the diversity of spiral ganglion neuron subtypes and associated central auditory circuits. An auditory neuropathy mechanism is unraveled by investigating the origin of auditory hyperexcitability in a mouse model for hereditary congenital deafness. Otogl encodes the large Otogelin-like protein, which is related to secreted epithelial mucins and is implicated in the mechanical stimulation of cochlear outer hair cells. Heterozygous Otogl+/- mutant mice display auditory hyperexcitability, highlighted by their susceptibility to audiogenic seizures induced by loud sounds. It is shown that Otogl is transiently expressed in a subpopulation of spiral ganglion neurons during cochlear development. Despite their apparently normal hearing, Otogl+/- mice display poor activation of the spiral ganglion neurons processing loud sounds and an elevation of the activation threshold of the middle the ear muscle reflex that attenuates loud sounds. The findings reveal how a neuropathy affecting spiral ganglion neurons specialized in loud sound processing and associated with the middle the ear muscle reflex can manifest itself as auditory hyperexcitability.
Collapse
Affiliation(s)
- Mathilde Gagliardini
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
- Sorbonne UniversitéCollège DoctoralParisF‐75005France
| | - Sabrina Mechaussier
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Carolina Campos Pina
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
- Sorbonne UniversitéCollège DoctoralParisF‐75005France
| | - Monica Morais
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Olivier Postal
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
- Sorbonne UniversitéCollège DoctoralParisF‐75005France
| | - Philippe Jean
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Typhaine Dupont
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Amrit Singh‐Estivalet
- Université Paris CitéInstitut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Auditory Therapies Innovation LaboratoryParisF‐75012France
| | - Shéhanie Udugampolage
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Cyril Scandola
- Institut PasteurUniversité Paris CitéUltrastructural Bioimaging UnitParisF‐75015France
| | - Elisabeth Verpy
- Institut PasteurIUF, Université Paris Cité, Human Genetics and Cognitive FunctionsParisF‐75015France
| | - Baptiste Libé‐Philippot
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Talya C. Inbar
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Joanna Schwenkgrub
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectAuditory System Dynamics and Multisensory ProcessingParisF‐75012France
| | - Carla Maria Barbosa Spinola
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectCochlear Development and Therapeutic PerspectivesParisF‐75012France
| | - Raphaël Etournay
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectCochlear Development and Therapeutic PerspectivesParisF‐75012France
| | - Aziz El‐Amraoui
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory DisordersPathophysiology and TherapyParisF‐75012France
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectAuditory System Dynamics and Multisensory ProcessingParisF‐75012France
| | - Adeline Mallet
- Institut PasteurUniversité Paris CitéUltrastructural Bioimaging UnitParisF‐75015France
| | - Sedigheh Delmaghani
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory DisordersPathophysiology and TherapyParisF‐75012France
| | - Fabrice Giraudet
- Laboratoire de Biophysique Neurosensorielle, INSERM 1107Université Clermont AuvergneClermont‐FerrandF‐63000France
- Service de Génétique MédicaleCHU de Clermont‐FerrandClermont‐FerrandF‐63000France
| | - Christine Petit
- Université Paris CitéInstitut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Auditory Therapies Innovation LaboratoryParisF‐75012France
- Collège de FranceParisF‐75005France
| | - Boris Gourévitch
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| | - Paul Avan
- Laboratoire de Biophysique Neurosensorielle, INSERM 1107Université Clermont AuvergneClermont‐FerrandF‐63000France
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectCentre de Recherche et d'Innovation en Audiologie HumaineParisF‐75015France
| | - Nicolas Michalski
- Université Paris Cité, Institut Pasteur, AP‐HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnectPlasticity of Central Auditory CircuitsParisF‐75012France
| |
Collapse
|
2
|
Shenoy S, Bhatt K, Yazdani Y, Rahimian H, Djalilian HR, Abouzari M. A Systematic Review: State of the Science on Diagnostics of Hidden Hearing Loss. Diagnostics (Basel) 2025; 15:742. [PMID: 40150084 PMCID: PMC11940875 DOI: 10.3390/diagnostics15060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: A sizeable population of patients with normal pure-tone audiograms endorse a consistent difficulty of following conversations in noisy environments. Termed hidden hearing loss (HHL), this condition evades traditional diagnostic methods for hearing loss and thus is significantly under-diagnosed and untreated. This review sought to identify emerging methods of diagnosing HHL via measurement of its histopathologic correlate: cochlear synaptopathy, the loss of synapses in the auditory nerve pathway. Methods: A thorough literature search of multiple databases was conducted to identify studies with objective, electrophysiological measures of synaptopathy. The PRISMA protocol was employed to establish criteria for the selection of relevant literature. Results: A total of 21 studies were selected with diagnostic methods, including the auditory brainstem response (ABR), electrocochleography (EcochG), middle ear muscle reflex (MEMR), and frequency-following response (FFR). Measures that may indicate the presence of synaptopathy include a reduced wave I amplitude of ABR, reduced SP amplitude of EcochG, and abnormal MEMR, among other measurements. Behavioral measures were often performed alongside electrophysiological measures, the most common of which was the speech-in-noise assessment. Conclusions: ABR was the most common diagnostic method for assessing HHL. Though ABR, EcochG, and MEMR may be sensitive to measuring synaptopathy, more literature comparing these methods is necessary. A two-pronged approach combining behavioral and electrophysiological measures may prove useful as a criterion for diagnosing and estimating the extent of pathology in affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Mehdi Abouzari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Milinski L, Nodal FR, Emmerson MKJ, King AJ, Vyazovskiy VV, Bajo VM. Cortical evoked activity is modulated by the sleep state in a ferret model of tinnitus. A cross-case study. PLoS One 2024; 19:e0304306. [PMID: 39630799 PMCID: PMC11616861 DOI: 10.1371/journal.pone.0304306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Subjective tinnitus is a phantom auditory perception in the absence of an actual acoustic stimulus that affects 15% of the global population. In humans, tinnitus is often associated with disturbed sleep and, interestingly, there is an overlap between the brain areas involved in tinnitus and regulation of NREM sleep. We used eight adult ferrets exposed to mild noise trauma as an animal model of tinnitus. We assessed the phantom percept using two operant paradigms sensitive to tinnitus, silent gap detection and silence detection, before and, in a subset of animals, up to six months after the mild acoustic trauma. The integrity of the auditory brainstem was assessed over the same period using auditory brainstem response recordings. Following noise overexposure, ferrets developed lasting, frequency-specific impairments in operant behaviour and evoked brainstem activity. To explore the interaction between sleep and tinnitus, in addition to tracking the behavioural markers of noise-induced tinnitus and hearing impairment after noise overexposure, we evaluated sleep-wake architecture and spontaneous and auditory-evoked EEG activity across vigilance states. Behavioural performance and auditory-evoked activity measurements after noise overexposure suggested distinct degrees of tinnitus and hearing impairment between individuals. Animals that developed signs of tinnitus consistently developed sleep impairments, suggesting a link between the emergence of noise-induced hearing loss and/or tinnitus and sleep disruption. However, neural markers of tinnitus were reduced during sleep, suggesting that sleep may transiently mitigate tinnitus. These results reveal the importance of sleep-wake states in tinnitus and suggest that understanding the neurophysiological link between sleep and tinnitus may provide a new angle for research into the causes of phantom percepts and inform future treatments.
Collapse
Affiliation(s)
- Linus Milinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Fernando R. Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew K. J. Emmerson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V. Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
5
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. JCI Insight 2024; 9:e180315. [PMID: 39178128 PMCID: PMC11466197 DOI: 10.1172/jci.insight.180315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 08/25/2024] Open
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
6
|
Skoe E, Powell S. Hypoactivation of the central auditory system in listeners who are hypertolerant of background noise. J Neurophysiol 2024; 132:1074-1084. [PMID: 39081211 PMCID: PMC11427039 DOI: 10.1152/jn.00297.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Listeners exhibit varying levels of tolerance for background noise during speech communication. It has been proposed that low tolerance of background noise may be the consequence of abnormally amplified gain in the central auditory system (CAS). Here, using a dataset of young adults with normal hearing thresholds, we asked whether central gain mechanisms might also explain cases of hypertolerance of background noise, as well as cases of reduced, but not abnormal, tolerance. We used the auditory brainstem response to derive a measure of CAS gain (wave V/wave I ratio) to compare listeners' background noise tolerance while listening to speech, grouping them into three categories: hyper, high, and medium tolerance. We found that hypertolerant listeners had reduced CAS gain compared to those with high tolerance. This effect was driven by wave V not wave I. In addition, the medium tolerant listeners trended toward having reduced wave I and reduced wave V amplitudes and generally higher levels of exposure to loud sound, suggestive of the early stages of noise-compromised peripheral function without an apparent compensatory increase in central gain. Our results provide physiological evidence that 1) reduced CAS gain may account for hypertolerance of background noise but that 2) increased CAS gain is not a prerequisite for medium tolerance of background noise.NEW & NOTEWORTHY Our findings strengthen the proposed mechanistic connection between background noise tolerance and auditory physiology by suggesting a link between hypertolerance and reduced central auditory gain, measured by the auditory brainstem response.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut, United States
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Sarah Powell
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut, United States
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571732. [PMID: 38168255 PMCID: PMC10760174 DOI: 10.1101/2023.12.14.571732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds, a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the impact of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL, and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Also, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in CMT1A patients might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
8
|
Formby C, Secor CA, Cherri D, Eddins DA. Background and Rationale for a Transitional Intervention for Debilitating Hyperacusis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1984-1993. [PMID: 38718264 PMCID: PMC11192566 DOI: 10.1044/2023_jslhr-23-00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 06/07/2024]
Abstract
PURPOSE This report provides the experimental, clinical, theoretical, and historical background that motivated a patented transitional intervention and its implementation and evaluation in a field trial for mitigation of debilitating loudness-based hyperacusis (LH). BACKGROUND AND RATIONALE Barriers for ameliorating LH, which is differentiated here from other forms of hyperacusis, are delineated, including counterproductive management and treatment strategies that may exacerbate the condition. Evidence for hyper-gain central auditory processes as the bases for LH and the associated LH-induced distress and stress responses are presented. This presentation is followed by an overview of prior efforts to use counseling and therapeutic sound as interventional tools for recalibrating the hyper-gain LH response. We also consider previous efforts to use output-limiting sound-protection devices in the management of LH. This historical background lays the foundation for our transitional intervention protocol and its implementation and evaluation in a field trial. CONCLUSIONS The successful implementation and evaluation of a transitional intervention, which we document in the outcomes of a companion proof-of-concept field trial in this issue, build on our prior efforts and those of others to understand, manage, and treat hyperacusis. These efforts to overcome significant barriers and vexing long-standing challenges in the management and treatment of LH, as reviewed here, are the pillars of the transitional intervention and its primary components, namely, counseling combined with protective sound management and therapeutic sound, which we detail in separate reports in this issue.
Collapse
Affiliation(s)
- Craig Formby
- Auditory and Speech Sciences Laboratory, University of South Florida, Tampa
- Department of Communicative Disorders, University of Alabama, Tuscaloosa
| | - Carrie A. Secor
- Auditory and Speech Sciences Laboratory, University of South Florida, Tampa
| | - Dana Cherri
- Auditory and Speech Sciences Laboratory, University of South Florida, Tampa
| | - David A. Eddins
- Auditory and Speech Sciences Laboratory, University of South Florida, Tampa
| |
Collapse
|
9
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Ji L, Borges BC, Martel DT, Wu C, Liberman MC, Shore SE, Corfas G. From hidden hearing loss to supranormal auditory processing by neurotrophin 3-mediated modulation of inner hair cell synapse density. PLoS Biol 2024; 22:e3002665. [PMID: 38935589 PMCID: PMC11210788 DOI: 10.1371/journal.pbio.3002665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David T. Martel
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calvin Wu
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Charles Liberman
- Mass Eye and Ear Infirmary and Harvard Medical School. Boston, Massachusetts, United States of America
| | - Susan E. Shore
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
11
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of age and noise exposure history on auditory nerve response amplitudes: A systematic review, study, and meta-analysis. Hear Res 2024; 447:109010. [PMID: 38744019 PMCID: PMC11135078 DOI: 10.1016/j.heares.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States.
| | - Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - April P Alvey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Abigail Lawson
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Lois J Matthews
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Judy R Dubno
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Kelly C Harris
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| |
Collapse
|
12
|
Wake N, Shiramatsu TI, Takahashi H. Map plasticity following noise exposure in auditory cortex of rats: implications for disentangling neural correlates of tinnitus and hyperacusis. Front Neurosci 2024; 18:1385942. [PMID: 38881748 PMCID: PMC11176560 DOI: 10.3389/fnins.2024.1385942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Both tinnitus and hyperacusis, likely triggered by hearing loss, can be attributed to maladaptive plasticity in auditory perception. However, owing to their co-occurrence, disentangling their neural mechanisms proves difficult. We hypothesized that the neural correlates of tinnitus are associated with neural activities triggered by low-intensity tones, while hyperacusis is linked to responses to moderate- and high-intensity tones. Methods To test these hypotheses, we conducted behavioral and electrophysiological experiments in rats 2 to 8 days after traumatic tone exposure. Results In the behavioral experiments, prepulse and gap inhibition tended to exhibit different frequency characteristics (although not reaching sufficient statistical levels), suggesting that exposure to traumatic tones led to acute symptoms of hyperacusis and tinnitus at different frequency ranges. When examining the auditory cortex at the thalamocortical recipient layer, we observed that tinnitus symptoms correlated with a disorganized tonotopic map, typically characterized by responses to low-intensity tones. Neural correlates of hyperacusis were found in the cortical recruitment function at the multi-unit activity (MUA) level, but not at the local field potential (LFP) level, in response to moderate- and high-intensity tones. This shift from LFP to MUA was associated with a loss of monotonicity, suggesting a crucial role for inhibitory synapses. Discussion Thus, in acute symptoms of traumatic tone exposure, our experiments successfully disentangled the neural correlates of tinnitus and hyperacusis at the thalamocortical recipient layer of the auditory cortex. They also suggested that tinnitus is linked to central noise, whereas hyperacusis is associated with aberrant gain control. Further interactions between animal experiments and clinical studies will offer insights into neural mechanisms, diagnosis and treatments of tinnitus and hyperacusis, specifically in terms of long-term plasticity of chronic symptoms.
Collapse
Affiliation(s)
- Naoki Wake
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo I Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Lee C, Hartsock JJ, Salt AN, Lichtenhan JT. A Guinea Pig Model Suggests That Objective Assessment of Acoustic Hearing Preservation in Human Ears With Cochlear Implants Is Confounded by Shifts in the Spatial Origin of Acoustically Evoked Potential Measurements Along the Cochlear Length. Ear Hear 2024; 45:666-678. [PMID: 38178312 DOI: 10.1097/aud.0000000000001457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Our recent empirical findings have shown that the auditory nerve compound action potential (CAP) evoked by a low-level tone burst originates from a narrow cochlear region tuned to the tone burst frequency. At moderate to high sound levels, the origins shift to the most sensitive audiometric regions rather than the extended high-frequency regions of the cochlear base. This means that measurements evoked from extended high-frequency sound stimuli can shift toward the apex with increasing level. Here we translate this study to understand the spatial origin of acoustically evoked responses from ears that receive cochlear implants, an emerging area of research and clinical practice that is not completely understood. An essential step is to first understand the influence of the cochlear implant in otherwise naive ears. Our objective was to understand how function of the high-frequency cochlear base, which can be excited by the intense low-frequency sounds that are frequently used for objective intra- and postoperative monitoring, can be influenced by the presence of the cochlear implant. DESIGN We acoustically evoked responses and made measurements with an electrode placed near the guinea pig round window. The cochlear implant was not utilized for either electrical stimulation or recording purposes. With the cochlear implant in situ, CAPs were acoustically evoked from 2 to 16 kHz tone bursts of various levels while utilizing the slow perfusion of a kainic acid solution from the cochlear apex to the cochlear aqueduct in the base, which sequentially reduced neural responses from finely spaced cochlear frequency regions. This cochlear perfusion technique reveals the spatial origin of evoked potential measurements and provides insight on what influence the presence of an implant has on acoustical hearing. RESULTS Threshold measurements at 3 to 11 kHz were elevated by implantation. In an individual ear, thresholds were elevated and lowered as cochlear implant was respectively inserted and removed, indicative of "conductive hearing loss" induced by the implant. The maximum threshold elevation occurred at most sensitive region of the naive guinea pig ear (33.66 dB at 8 kHz), making 11 kHz the most sensitive region to acoustic sounds for guinea pig ears with cochlear implants. Conversely, the acute implantation did not affect the low-frequency, 500 Hz thresholds and suprathreshold function, as shown by the auditory nerve overlapped waveform. As the sound pressure level of the tone bursts increased, mean data show that the spatial origin of CAPs along the cochlear length shifted toward the most sensitive cochlear region of implanted ears, not the extended high-frequency cochlear regions. However, data from individual ears showed that after implantation, measurements from moderate to high sound pressure levels originate in places that are unique to each ear. CONCLUSIONS Alterations to function of the cochlear base from the in situ cochlear implant may influence objective measurements of implanted ears that are frequently made with intense low-frequency sound stimuli. Our results from guinea pigs advance the interpretation of measurements used to understand how and when residual acoustic hearing is lost in human ears receiving a cochlear implant.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, New York, USA
| | - Jared J Hartsock
- Department of Cochlear Surgery, Turner Scientific, Inc., Jacksonville, Illinois, USA
| | - Alec N Salt
- Department of Pharmacokinetics, Turner Scientific, Inc., Jacksonville, Illinois, USA
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, University of South Florida Morsani School of Medicine, Tampa, Florida, USA
| |
Collapse
|
14
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of Age and Noise Exposure History on Auditory Nerve Response Amplitudes: A Systematic Review, Study, and Meta-Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585882. [PMID: 38585917 PMCID: PMC10996537 DOI: 10.1101/2024.03.20.585882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Carolyn M McClaskey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - April P Alvey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Abigail Lawson
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Lois J Matthews
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Judy R Dubno
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Kelly C Harris
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| |
Collapse
|
15
|
Ismail Mohamad N, Santra P, Park Y, Matthews IR, Taketa E, Chan DK. Synaptic ribbon dynamics after noise exposure in the hearing cochlea. Commun Biol 2024; 7:421. [PMID: 38582813 PMCID: PMC10998851 DOI: 10.1038/s42003-024-06067-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.
Collapse
Affiliation(s)
- Noura Ismail Mohamad
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Peu Santra
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yesai Park
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emily Taketa
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Wu PZ, Liberman LD, Liberman MC. Noise-induced synaptic loss and its post-exposure recovery in CBA/CaJ vs. C57BL/6J mice. Hear Res 2024; 445:108996. [PMID: 38547565 PMCID: PMC11024800 DOI: 10.1016/j.heares.2024.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Acute noise-induced loss of synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) has been documented in several strains of mice, but the extent of post-exposure recovery reportedly varies dramatically. If such inter-strain heterogeneity is real, it could be exploited to probe molecular pathways mediating neural remodeling in the adult cochlea. Here, we compared synaptopathy repair in CBA/CaJ vs. C57BL/6J, which are at opposite ends of the reported recovery spectrum. We evaluated C57BL/6J mice 0 h, 24 h, 2 wks or 8 wks after exposure for 2 h to octave-band noise (8-16 kHz) at either 90, 94 or 98 dB SPL, to compare with analogous post-exposure results in CBA/CaJ at 98 or 101 dB. We counted pre- and post-synaptic puncta in immunostained cochleas, using machine learning to classify paired (GluA2 and CtBP2) vs. orphan (CtBP2 only) puncta, and batch-processing to quantify immunostaining intensity. At 98 dB, both strains show ongoing loss of ribbons and synapses between 0 and 24 h, followed by partial recovery, however the extent and degree of these changes were greater in C57BL/6J. Much of the synaptic recovery is due to transient reduction in GluA2 intensity in synaptopathic regions. In contrast, CtBP2 intensity showed only transient increases (at 2 wks). Neurofilament staining revealed transient extension of ANF terminals in C57BL/6J, but not in CBA/CaJ, peaking at 24 h and reverting by 2 wks. Thus, although interstrain differences in synapse recovery are dominated by reversible changes in GluA2 receptor levels, the neurite extension seen in C57BL/6J suggests a qualitative difference in regenerative capacity.
Collapse
Affiliation(s)
- Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
18
|
Henry KS, Guo AA, Abrams KS. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy. Hear Res 2024; 441:108927. [PMID: 38096707 PMCID: PMC10775186 DOI: 10.1016/j.heares.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| | - Anna A Guo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
20
|
Kim EH, Shin SH, Byun SW, Lee HY. Exploring the origins of decreased sound tolerance in tinnitus patients. Front Neurol 2023; 14:1273705. [PMID: 38020634 PMCID: PMC10657806 DOI: 10.3389/fneur.2023.1273705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to confirm the characteristics of auditory function alterations in tinnitus patients with concomitant decreased sound tolerance (ST) and provide insights for developing tailored therapeutic approaches. A retrospective analysis was conducted on patient records from a tertiary university hospital's tinnitus clinic between March 2020 and June 2023. Demographic attributes and audiological profiles were reviewed. Patients were categorized into Group 1 if loudness discomfort level test outcomes were 77 dB or below, measured using an average of frequencies from 250 Hz to 8 kHz. The remaining patients were allocated to Group 2. Among the 434 tinnitus patients, 115 (26.5%) demonstrated decreased ST and were classified as Group 1. This group exhibited higher DPOAE amplitudes (p < 0.001), shortened latency, and decreased threshold of ABR wave V bilaterally (p < 0.05). No significant disparities were observed in gender, age, tinnitus handicap inventory, visual analog scale, and pure-tone audiometry results except subjective hyperacusis. Binary logistic regression analysis utilizing the forward conditional method revealed that the difference between groups was independently linked to DPOAE response at 7,277 Hz on the left side [B = 0.093, p < 0.001, EXP(B) = 1.07, 95% CI = 1.044-1.153]. Increased DPOAE amplitude and shorter and decreased ABR wave V in tinnitus patients with decreased ST might suggest a possible association with lesions in or around the superior olivary complex or higher central auditory pathway, potentially linked to the inhibition of medial olivocochlear efferents.
Collapse
Affiliation(s)
| | | | | | - Ho Yun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Jahn KN, Polley DB. Asymmetric hearing thresholds are associated with hyperacusis in a large clinical population. Hear Res 2023; 437:108854. [PMID: 37487430 PMCID: PMC11075140 DOI: 10.1016/j.heares.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Hyperacusis is a debilitating auditory condition whose characterization is largely qualitative and is typically based on small participant cohorts. Here, we characterize the hearing and demographic profiles of adults who reported hyperacusis upon audiological evaluation at a large medical center. Audiometric data from 626 adults (age 18-80 years) with documented hyperacusis were retrospectively extracted from medical records and compared to an age- and sex-matched reference group of patients from the same clinic who did not report hyperacusis. Patients with hyperacusis had lower (i.e., better) high-frequency hearing thresholds (2000-8000 Hz), but significantly larger interaural threshold asymmetries (250-8000 Hz) relative to the reference group. The probability of reporting hyperacusis was highest for normal, asymmetric, and notched audiometric configurations. Many patients reported unilateral hyperacusis symptoms, a history of noise exposure, and co-morbid tinnitus. The high prevalence of both overt and subclinical hearing asymmetries in the hyperacusis population suggests a central compensatory mechanism that is dominated by input from an intact or minimally damaged ear, and which may lead to perceptual hypersensitivity by overshooting baseline neural activity levels.
Collapse
Affiliation(s)
- Kelly N Jahn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
22
|
Farhadi M, Gorji A, Mirsalehi M, Müller M, Poletaev AB, Mahboudi F, Asadpour A, Ebrahimi M, Beiranvand M, Khaftari MD, Akbarnejad Z, Mahmoudian S. The human neuroprotective placental protein composition suppressing tinnitus and restoring auditory brainstem response in a rodent model of sodium salicylate-induced ototoxicity. Heliyon 2023; 9:e19052. [PMID: 37636471 PMCID: PMC10457515 DOI: 10.1016/j.heliyon.2023.e19052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The effect of neuroprotective placental protein composition (NPPC) on the suppression of tinnitus and the restoration of the auditory brainstem response (ABR) characteristics was explored in tinnitus-induced rats. The animals were placed into two groups: (1) the study group, rats received sodium salicylate (SS) at the dose of 200 mg/kg twice a day for two weeks, and then 0.4 mg of the NPPC per day, between the 14th and 28th days, (2) the placebo group, rats received saline for two weeks, and then the NPPC alone between the 14th and 28th days. The gap pre-pulse inhibition of the acoustic startle (GPIAS), the pre-pulse inhibition (PPI), and the ABR assessments were performed on animals in both groups three times (baseline, day 14, and 28). The GPIAS value declined after 14 consecutive days of the SS injection, while NPPC treatment augmented the GPIAS score in the study group on the 28th day. The PPI outcomes revealed no significant changes, indicating hearing preservation after the SS and NPPC administrations. Moreover, some changes in ABR characteristics were observed following SS injection, including (1) higher ABR thresholds, (2) lowered waves I and II amplitudes at the frequencies of 6, 12, and 24 kHz and wave III at the 12 kHz, (3) elevated amplitude ratios, and (4) prolongation in brainstem transmission time (BTT). All the mentioned variables returned to their normal values after applying the NPPC. The NPPC use could exert positive therapeutic effects on the tinnitus-induced rats and improve their ABR parameters.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery Westfälische Wilhelms-Universitat Münster, Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center Khatam Alanbia Hospital, Tehran, Iran
| | - Marjan Mirsalehi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Borisovich Poletaev
- Clinical and Research Center of Children Psycho-Neurology, Moscow, Russian Federation
- Medical Research Centre “Immunculus”, Moscow, Russian Federation
| | | | - Abdoreza Asadpour
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry∼Londonderry, Northern Ireland, UK
| | - Mohammad Ebrahimi
- The Research Center for New Technologies in Life Sciences Engineering, Tehran University, Tehran, Iran
| | - Mohaddeseh Beiranvand
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Dehghani Khaftari
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Bhatt IS, Washnik NJ, Kingsbury S, Deshpande AK, Kingsbury H, Bhagavan SG, Michel K, Dias R, Torkamani A. Identifying Health-Related Conditions Associated with Tinnitus in Young Adults. Audiol Res 2023; 13:546-562. [PMID: 37489384 PMCID: PMC10366783 DOI: 10.3390/audiolres13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE The present study investigated the epidemic of tinnitus in college-aged young adults. Our first objective was to identify health conditions associated with tinnitus in young adults. The second objective was to evaluate the predictive utility of some known risk factors. STUDY DESIGN A cross-sectional design was used to investigate the prevalence and risk factors for tinnitus. SETTING A questionnaire was distributed, reaching out to a large college-aged population. A total of 2258 young adults aged 18-30 years were recruited from April 2021 to February 2022. INTERVENTIONS A questionnaire was administered to investigate the epidemiology of tinnitus in a population of college-aged young adults. RESULTS About 17.7% of young adults reported bothersome tinnitus perception lasting for ≥5 min in the last 12 months. The prevalence of chronic tinnitus (bothersome tinnitus for ≥1 year) and acute tinnitus (bothersome tinnitus for <1 year) was 10.6% and 7.1%, respectively. About 19% of the study sample reported at least one health condition. Individuals reporting head injury, hypertension, heart disease, scarlet fever, and malaria showed significantly higher odds of reporting chronic tinnitus. Meningitis and self-reported hearing loss showed significant associations with bothersome tinnitus. The prevalence of chronic tinnitus was significantly higher in males reporting high noise exposure, a positive history of reoccurring ear infections, European ethnic background, and a positive health history. Risk modeling showed that noise exposure was the most important risk factor for chronic tinnitus, followed by sex, reoccurring ear infections, and a history of any health condition. A positive history of COVID-19 and self-reported severity showed no association with tinnitus. Individuals reporting reoccurring ear infections showed a significantly higher prevalence of COVID-19. CONCLUSIONS While young adults with health conditions are at a higher risk of reporting tinnitus, the predictive utility of a positive health history remains relatively low, possibly due to weak associations between health conditions and tinnitus. Noise, male sex, reoccurring ear infections, European ethnicity, and a positive health history revealed higher odds of reporting chronic tinnitus than their counterparts. These risk factors collectively explained about 16% variability in chronic tinnitus, which highlights the need for identifying other risk factors for chronic tinnitus in young adults.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Nilesh J Washnik
- Department of Hearing Speech and Language Sciences, Ohio University, Athens, OH 45701, USA
| | - Sarah Kingsbury
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Aniruddha K Deshpande
- Department of Speech-Language-Hearing Sciences, Hofstra University, Hempstead, NY 11549, USA
| | - Hailey Kingsbury
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Klayre Michel
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Bigras C, Villatte B, Duda V, Hébert S. The electrophysiological markers of hyperacusis: a scoping review. Int J Audiol 2023; 62:489-499. [PMID: 35549972 DOI: 10.1080/14992027.2022.2070083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Hyperacusis is known as a reduced tolerance to sounds perceived as normal to the majority of the population. There is currently no agreed definition, diagnostic tool, or objective measure of its occurrence. The purpose of this review is to catalogue the research to date on the use of auditory evoked potentials (AEP) to assess hyperacusis. DESIGN A step-by-step methodology was conducted following guidelines. Four databases were searched. A total of 3343 papers were identified. A final yield of 35 articles were retained for analysis. RESULTS The analysis identified four types of aetiologies to describe the hyperacusic population in AEP studies; developmental disorders (n = 19), neurological disorders (n = 3), induced hearing damage (n = 8) and idiopathic aetiology (n = 5). Electrophysiological measures were of short (n = 16), middle (n = 13) and long (n = 19) latencies, believed to reflect the activity of the ascending and descending pathways of the auditory system from periphery to cortex. CONCLUSIONS The results of this review revealed the potential use of electrophysiological measures for further understanding the mechanisms of hyperacusis. However, according to the disparity of concepts to define hyperacusis, definitions and populations need to be clarified before biomarkers specific to hyperacusis can be identified.
Collapse
Affiliation(s)
- Charlotte Bigras
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Center of Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Bérangère Villatte
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Center of Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Victoria Duda
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Centre de recherche interdisciplinaire en réadaptation (CRIR), Montreal, Canada
| | - Sylvie Hébert
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Center of Research on Brain, Language and Music (CRBLM), Montreal, Canada
| |
Collapse
|
25
|
Manickam V, Gawande DY, Stothert AR, Clayman AC, Batalkina L, Warchol ME, Ohlemiller KK, Kaur T. Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy. J Neurosci 2023; 43:2075-2089. [PMID: 36810227 PMCID: PMC10039750 DOI: 10.1523/jneurosci.1273-22.2023] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in CX3CR1 GFP/+ mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy.SIGNIFICANCE STATEMENT The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.
Collapse
Affiliation(s)
- Vijayprakash Manickam
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Dinesh Y Gawande
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Andrew R Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Anna C Clayman
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Lyudmila Batalkina
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Kevin K Ohlemiller
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
26
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Noise Exposure in Palestinian Workers Without a Diagnosis of Hearing Impairment: Relations to Speech-Perception-in-Noise Difficulties, Tinnitus, and Hyperacusis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1085-1109. [PMID: 36802819 DOI: 10.1044/2022_jslhr-22-00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE Many workers in developing countries are exposed to unsafe occupational noise due to inadequate health and safety practices. We tested the hypotheses that occupational noise exposure and aging affect speech-perception-in-noise (SPiN) thresholds, self-reported hearing ability, tinnitus presence, and hyperacusis severity among Palestinian workers. METHOD Palestinian workers (N = 251, aged 18-70 years) without diagnosed hearing or memory impairments completed online instruments including a noise exposure questionnaire; forward and backward digit span tests; hyperacusis questionnaire; the short-form Speech, Spatial and Qualities of Hearing Scale (SSQ12); the Tinnitus Handicap Inventory; and a digits-in-noise (DIN) test. Hypotheses were tested via multiple linear and logistic regression models, including age and occupational noise exposure as predictors, and with sex, recreational noise exposure, cognitive ability, and academic attainment as covariates. Familywise error rate was controlled across all 16 comparisons using the Bonferroni-Holm method. Exploratory analyses evaluated effects on tinnitus handicap. A comprehensive study protocol was preregistered. RESULTS Nonsignificant trends of poorer SPiN performance, poorer self-reported hearing ability, greater prevalence of tinnitus, greater tinnitus handicap, and greater severity of hyperacusis as a function of higher occupational noise exposure were observed. Greater hyperacusis severity was significantly predicted by higher occupational noise exposure. Aging was significantly associated with higher DIN thresholds and lower SSQ12 scores, but not with tinnitus presence, tinnitus handicap, or hyperacusis severity. CONCLUSIONS Workers in Palestine may suffer from auditory effects of occupational noise and aging despite no formal diagnosis. These findings highlight the importance of occupational noise monitoring and hearing-related health and safety practices in developing countries. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22056701.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Psychology, Lancaster University, United Kingdom
| |
Collapse
|
27
|
Trevino M, Zang A, Lobarinas E. The middle ear muscle reflex: Current and future role in assessing noise-induced cochlear damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:436. [PMID: 36732247 PMCID: PMC9867568 DOI: 10.1121/10.0016853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The middle ear muscle reflex (MEMR) in humans is a bilateral contraction of the middle ear stapedial muscle in response to moderate-to-high intensity acoustic stimuli. Clinically, MEMR thresholds have been used for differential diagnosis of otopathologies for decades. More recently, changes in MEMR amplitude or threshold have been proposed as an assessment for noise-induced synaptopathy, a subclinical form of cochlear damage characterized by suprathreshold hearing problems that occur as a function of inner hair cell (IHC) synaptic loss, including hearing-in-noise deficits, tinnitus, and hyperacusis. In animal models, changes in wideband MEMR immittance have been correlated with noise-induced synaptopathy; however, studies in humans have shown more varied results. The discrepancies observed across studies could reflect the heterogeneity of synaptopathy in humans more than the effects of parametric differences or relative sensitivity of the measurement. Whereas the etiology and degree of synaptopathy can be carefully controlled in animal models, synaptopathy in humans likely stems from multiple etiologies and thus can vary greatly across the population. Here, we explore the evolving research evidence of the MEMR response in relation to subclinical noise-induced cochlear damage and the MEMR as an early correlate of suprathreshold deficits.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andie Zang
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
28
|
Hyperacusis: Loudness Intolerance, Fear, Annoyance and Pain. Hear Res 2022; 426:108648. [DOI: 10.1016/j.heares.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
29
|
A Systematic Review and Meta-Analysis of Extended High-Frequency Hearing Thresholds in Tinnitus With a Normal Audiogram. Ear Hear 2022; 43:1643-1652. [PMID: 35612517 DOI: 10.1097/aud.0000000000001229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Current evidence supports the growing application of extended high-frequency (EHF: 9 to 20 kHz) audiometry in hearing research, which likely results from the high vulnerability of this frequency region to damage induced by known auditory risk factors. The present systematic review and meta-analysis were performed to investigate whether adults with a normal audiogram and tinnitus show increased EHF hearing thresholds relative to control peers. DESIGN A comprehensive search was undertaken on electronic databases consisting of PubMed, ScienceDirect, Wiley, and Google Scholar using combined keywords: "tinnitus," "extended high frequency," "normal audiogram," and "hidden hearing loss." RESULTS From 261 articles found by searching databases, nine studies met the inclusion criteria for the meta-analysis. A significant difference was observed between tinnitus and control groups in the effect size analysis of hearing thresholds at 10, 12.5, 14, 16, and 18 kHz ( p ≤ 0.001), and the I-square heterogeneity analysis was below 50% in all studies ( p ≥ 0.131). Visual inspection by the Funnel plot and Egger's regression test ( p ≥ 0.211) also exhibited no publication bias in the meta-analyses. CONCLUSIONS Our findings are in support of the idea that in most cases, tinnitus is associated with some degree of cochlear mechanical dysfunction, which may not be detected by conventional audiometry alone. This finding underscores the significance of EHF audiometry in clinical practice, which may help both early identification of individuals susceptible to developing tinnitus and reduce the number of new cases through preventive counseling programs.
Collapse
|
30
|
McChesney N, Barth JL, Rumschlag JA, Tan J, Harrington AJ, Noble KV, McClaskey CM, Elvis P, Vaena SG, Romeo MJ, Harris KC, Cowan CW, Lang H. Peripheral Auditory Nerve Impairment in a Mouse Model of Syndromic Autism. J Neurosci 2022; 42:8002-8018. [PMID: 36180228 PMCID: PMC9617620 DOI: 10.1523/jneurosci.0253-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.
Collapse
Affiliation(s)
- Nathan McChesney
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Junying Tan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Adam J Harrington
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Carolyn M McClaskey
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Silvia G Vaena
- Hollings Cancer Institute, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Martin J Romeo
- Hollings Cancer Institute, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kelly C Harris
- Department of Otolaryngology & Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
31
|
Fabrizio-Stover EM, Nichols G, Corcoran J, Jain A, Burghard AL, Lee CM, Oliver DL. Comparison of two behavioral tests for tinnitus assessment in mice. Front Behav Neurosci 2022; 16:995422. [PMID: 36299293 PMCID: PMC9588978 DOI: 10.3389/fnbeh.2022.995422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 01/10/2023] Open
Abstract
Animal research focused on chronic tinnitus associated with noise-induced hearing loss can be expensive and time-consuming as a result of the behavioral training required. Although there exist a number of behavioral tests for tinnitus; there have been few formal direct comparisons of these tests. Here, we evaluated animals in two different tinnitus assessment methods. CBA/CaJ mice were trained in an operant conditioning, active avoidance (AA) test, and a reflexive, gap-induced pre-pulse inhibition of acoustic startle (GPIAS) test, or both. Tinnitus was induced in awake mice by unilateral continuous sound exposure using a 2-kHz- or 12 octave-wide noise centered at 16 kHz and presented at 113- or 116-dB SPL. Tinnitus was assessed 8 weeks after sound overexposure. Most mice had evidence of tinnitus behavior in at least one of the two behaviors. Of the mice evaluated in AA, over half (55%) had tinnitus positive behavior. In GPIAS, fewer animals (13%) were positive than were identified using the AA test. Few mice were positive in both tests (10%), and only one was positive for tinnitus behavior at the same spectral frequency in both tests. When the association between tinnitus behavior and spontaneous activity recorded in the inferior colliculus was compared, animals with tinnitus behavior in AA exhibited increased spontaneous activity, while those positive in GPIAS did not. Thus, it appears that operant conditioning tests, like AA, maybe more reliable and accurate tests for tinnitus than reflexive tests.
Collapse
|
32
|
McGill M, Hight AE, Watanabe YL, Parthasarathy A, Cai D, Clayton K, Hancock KE, Takesian A, Kujawa SG, Polley DB. Neural signatures of auditory hypersensitivity following acoustic trauma. eLife 2022; 11:e80015. [PMID: 36111669 PMCID: PMC9555866 DOI: 10.7554/elife.80015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Neurons in sensory cortex exhibit a remarkable capacity to maintain stable firing rates despite large fluctuations in afferent activity levels. However, sudden peripheral deafferentation in adulthood can trigger an excessive, non-homeostatic cortical compensatory response that may underlie perceptual disorders including sensory hypersensitivity, phantom limb pain, and tinnitus. Here, we show that mice with noise-induced damage of the high-frequency cochlear base were behaviorally hypersensitive to spared mid-frequency tones and to direct optogenetic stimulation of auditory thalamocortical neurons. Chronic two-photon calcium imaging from ACtx pyramidal neurons (PyrNs) revealed an initial stage of spatially diffuse hyperactivity, hyper-correlation, and auditory hyperresponsivity that consolidated around deafferented map regions three or more days after acoustic trauma. Deafferented PyrN ensembles also displayed hypersensitive decoding of spared mid-frequency tones that mirrored behavioral hypersensitivity, suggesting that non-homeostatic regulation of cortical sound intensity coding following sensorineural loss may be an underlying source of auditory hypersensitivity. Excess cortical response gain after acoustic trauma was expressed heterogeneously among individual PyrNs, yet 40% of this variability could be accounted for by each cell's baseline response properties prior to acoustic trauma. PyrNs with initially high spontaneous activity and gradual monotonic intensity growth functions were more likely to exhibit non-homeostatic excess gain after acoustic trauma. This suggests that while cortical gain changes are triggered by reduced bottom-up afferent input, their subsequent stabilization is also shaped by their local circuit milieu, where indicators of reduced inhibition can presage pathological hyperactivity following sensorineural hearing loss.
Collapse
Affiliation(s)
- Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Yurika L Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Dongqin Cai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kameron Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Anne Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
33
|
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, Smolik O, Fabriciova V, Hrabalova P, Benesova S, Valihrach L, Cerny J, Yamoah EN, Syka J, Fritzsch B, Pavlinkova G. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A 2022; 119:e2207433119. [PMID: 36074819 PMCID: PMC9478650 DOI: 10.1073/pnas.2207433119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
Collapse
Affiliation(s)
- Iva Filova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Mitra Tavakoli
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Simona Vochyanova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Martina Dvorakova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Light Microscopy, Institute of Molecular Genetics Czech Academy of Sciences, 14220 Prague, Czechia
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV 89557
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242-1324
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| |
Collapse
|
34
|
Grierson KE, Hickman TT, Liberman MC. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hear Res 2022; 422:108533. [PMID: 35671600 PMCID: PMC11195664 DOI: 10.1016/j.heares.2022.108533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.
Collapse
Affiliation(s)
- Kiera E Grierson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA; Hearing Research Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUS
| | - Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
35
|
Scott LL, Lowe AS, Brecht EJ, Franco-Waite L, Walton JP. Small molecule modulation of the large-conductance calcium-activated potassium channel suppresses salicylate-induced tinnitus in mice. Front Neurosci 2022; 16:763855. [PMID: 36090293 PMCID: PMC9453485 DOI: 10.3389/fnins.2022.763855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Tinnitus is the phantom perception of sound that has no external source. A neurological signature of tinnitus, and the frequently associated hyperacusis, is an imbalance between excitatory and inhibitory activity in the central auditory system (CAS), leading to dysregulated network excitability. The large conductance, calcium-activated potassium (BK) channel is a key player in pre- and post-synaptic excitability through its mediation of K+ currents. Changes in BK channel activity are associated with aberrant network activity in sensory regions of the CNS, raising the possibility that BK channel modulation could regulate activity associated with tinnitus and hyperacusis. To test whether BK channel openers are able to suppress biomarkers of drug-induced tinnitus and hyperacusis, the 1,3,4 oxadiazole BMS-191011 was given to young adult CBA mice that had been administered 250 mg/kg sodium salicylate (SS). Systemic treatment with BMS-191011 reduced behavioral manifestations of SS-induced tinnitus, but not hyperacusis, probed via the gap-in-noise startle response method. Systemic BMS-191011 treatment did not influence SS-induced increases in auditory brainstem response functions, but local application at the inferior colliculus did reverse SS-suppressed spontaneous activity, particularly in the frequency region of the tinnitus percept. Thus, action of BMS-191011 in the inferior colliculus may contribute to the reduction in behaviorally measured tinnitus. Together, these findings support the utility of BK channel openers in reducing central auditory processing changes associated with the formation of the tinnitus percept.
Collapse
Affiliation(s)
| | - Andrea S. Lowe
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Elliott J. Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Luis Franco-Waite
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Joseph P. Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
- *Correspondence: Joseph P. Walton,
| |
Collapse
|
36
|
Tziridis K, Friedrich J, Brüeggemann P, Mazurek B, Schulze H. Estimation of Tinnitus-Related Socioeconomic Costs in Germany. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10455. [PMID: 36012089 PMCID: PMC9407899 DOI: 10.3390/ijerph191610455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 05/14/2023]
Abstract
Despite the high prevalence of tinnitus in Germany of nearly 12% of the general population, there have been no systematic studies on the socioeconomic costs for German society caused by tinnitus so far. Here we analyzed data from 258 chronic tinnitus patients-namely tinnitus severity and health utility index (HUI)-and correlated them with their tinnitus-related public health care costs, private expenses, and economic loss due to their tinnitus percept as assessed by questionnaires. We found correlations of the HUI with health care costs and calculated the mean socioeconomic costs per tinnitus patient in Germany. According to our most conservative estimate, these sum up to EUR 4798.91 per year. Of that EUR 2206.95 account for the public health care, EUR 290.45 are carried by the patient privately and the remaining EUR 2301.51 account for economical loss due to sick leave. With a prevalence of 5.5% with at least bothersome tinnitus, this sums up to 21.9 billion Euro per year and with 25.82 sick leave days; tinnitus patients miss work more than double the time of the average German employee (10.9 days). The findings fit within the cost ranges of studies from other European countries and the USA and show that the socioeconomic burden of this disease-like symptom is a global problem. In comparison with the costs of other major chronic diseases in Germany-such as chronic obstructive pulmonary diseases (ca. 16 billion Euro) or diabetes mellitus (ca. 42 billion Euro)-the relevance of the 'symptom' tinnitus for the German social economy becomes even more obvious.
Collapse
Affiliation(s)
- Konstantin Tziridis
- Experimental Otolaryngology, University of Erlangen-Nuremberg, Waldstrasse 1, 91054 Erlangen, Germany
| | - Jana Friedrich
- Experimental Otolaryngology, University of Erlangen-Nuremberg, Waldstrasse 1, 91054 Erlangen, Germany
| | - Petra Brüeggemann
- Tinnitus Center, Charité University Medicine Berlin, Luisenstrasse 13, 10117 Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité University Medicine Berlin, Luisenstrasse 13, 10117 Berlin, Germany
| | - Holger Schulze
- Experimental Otolaryngology, University of Erlangen-Nuremberg, Waldstrasse 1, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Objective Detection of Tinnitus Based on Electrophysiology. Brain Sci 2022; 12:brainsci12081086. [PMID: 36009149 PMCID: PMC9406100 DOI: 10.3390/brainsci12081086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tinnitus, a common disease in the clinic, is associated with persistent pain and high costs to society. Several aspects of tinnitus, such as the pathophysiology mechanism, effective treatment, objective detection, etc., have not been elucidated. Any change in the auditory pathway can lead to tinnitus. At present, there is no clear and unified mechanism to explain tinnitus, and the hypotheses regarding its mechanism include auditory plasticity theory, cortical reorganization theory, dorsal cochlear nucleus hypothesis, etc. Current theories on the mechanism of tinnitus mainly focus on the abnormal activity of the central nervous system. Unfortunately, there is currently a lack of objective diagnostic methods for tinnitus. Developing a method that can detect tinnitus objectively is crucial, only in this way can we identify whether the patient really suffers from tinnitus in the case of cognitive impairment or medical disputes and the therapeutic effect of tinnitus. Electrophysiological investigations have prompted the development of an objective detection of tinnitus by potentials recorded in the auditory pathway. However, there is no objective indicator with sufficient sensitivity and specificity to diagnose tinnitus at present. Based on recent findings of studies with various methods, possible electrophysiological approaches to detect the presence of tinnitus have been summarized. We analyze the change of neural activity throughout the auditory pathway in tinnitus subjects and in patients with tinnitus of varying severity to find available parameters in these methods, which is helpful to further explore the feasibility of using electrophysiological methods for the objective detection of tinnitus.
Collapse
|
38
|
Jahn KN. Clinical and investigational tools for monitoring noise-induced hyperacusis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:553. [PMID: 35931527 PMCID: PMC9448410 DOI: 10.1121/10.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyperacusis is a recognized perceptual consequence of acoustic overexposure that can lead to debilitating psychosocial effects. Despite the profound impact of hyperacusis on quality of life, clinicians and researchers lack objective biomarkers and standardized protocols for its assessment. Outcomes of conventional audiologic tests are highly variable in the hyperacusis population and do not adequately capture the multifaceted nature of the condition on an individual level. This presents challenges for the differential diagnosis of hyperacusis, its clinical surveillance, and evaluation of new treatment options. Multiple behavioral and objective assays are emerging as contenders for inclusion in hyperacusis assessment protocols but most still await rigorous validation. There remains a pressing need to develop tools to quantify common nonauditory symptoms, including annoyance, fear, and pain. This review describes the current literature on clinical and investigational tools that have been used to diagnose and monitor hyperacusis, as well as those that hold promise for inclusion in future trials.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
39
|
Yamahara K, Yamamoto N, Kuwata F, Nakagawa T. Neuroprotective role of insulin-like growth factor 1 in auditory and other nervous systems. Histol Histopathol 2022; 37:609-619. [PMID: 35170014 DOI: 10.14670/hh-18-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insulin-like growth factor 1 (IGF1) exerts an influence on almost every organ system in the body and plays an important role in growth, development, and metabolism. In the nervous system, IGF1 acts by promoting the development and growth of neurons and glial cells, differentiation of Schwann cells and their migration to axons, neurite outgrowth, and neuronal survival. The lack of IGF1 is associated with several pathological conditions, including severe prenatal growth retardation, postnatal growth failure, microcephaly, mental retardation, and bilateral sensorineural hearing loss. In addition to its physiological effects, based on the findings of in vivo and in vitro experiments and clinical trials, IGF1 is considered to play a potential role in the treatment of various types of neuronal damage. In this review, we discuss the potential use of IGF1 as a therapeutic molecule in the nervous system: (1) auditory system, including hair cells, cochlear ribbon synapses, auditory nerve, and central nervous systems, and (2) other peripheral nervous systems, especially the olfactory system and facial nerve. The role of IGF1 in the progression of age-related sensory deficits, especially hearing loss and olfactory dysfunction, is also discussed. Recent studies on IGF1 demonstrated that exogenous IGF1 can be applied in many fields, thus supporting the continued evaluation of IGF1 as a potential therapeutic molecule. Additional scientific investigations should be conducted to further supplement recent findings.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.
| |
Collapse
|
40
|
Grant KJ, Parthasarathy A, Vasilkov V, Caswell-Midwinter B, Freitas ME, de Gruttola V, Polley DB, Liberman MC, Maison SF. Predicting neural deficits in sensorineural hearing loss from word recognition scores. Sci Rep 2022; 12:8929. [PMID: 35739134 PMCID: PMC9226113 DOI: 10.1038/s41598-022-13023-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
The current gold standard of clinical hearing assessment includes a pure-tone audiogram combined with a word recognition task. This retrospective study tests the hypothesis that deficits in word recognition that cannot be explained by loss in audibility or cognition may reflect underlying cochlear nerve degeneration (CND). We collected the audiological data of nearly 96,000 ears from patients with normal hearing, conductive hearing loss (CHL) and a variety of sensorineural etiologies including (1) age-related hearing loss (ARHL); (2) neuropathy related to vestibular schwannoma or neurofibromatosis of type 2; (3) Ménière’s disease; (4) sudden sensorineural hearing loss (SSNHL), (5) exposure to ototoxic drugs (carboplatin and/or cisplatin, vancomycin or gentamicin) or (6) noise damage including those with a 4-kHz “noise notch” or reporting occupational or recreational noise exposure. Word recognition was scored using CID W-22 monosyllabic word lists. The Articulation Index was used to predict the speech intelligibility curve using a transfer function for CID W-22. The level at which maximal intelligibility was predicted was used as presentation level (70 dB HL minimum). Word scores decreased dramatically with age and thresholds in all groups with SNHL etiologies, but relatively little in the conductive hearing loss group. Discrepancies between measured and predicted word scores were largest in patients with neuropathy, Ménière’s disease and SSNHL, intermediate in the noise-damage and ototoxic drug groups, and smallest in the ARHL group. In the CHL group, the measured and predicted word scores were very similar. Since word-score predictions assume that audiometric losses can be compensated by increasing stimulus level, their accuracy in predicting word score for CHL patients is unsurprising. The lack of a strong age effect on word scores in CHL shows that cognitive decline is not a major factor in this test. Amongst the possible contributions to word score discrepancies, CND is a prime candidate: it should worsen intelligibility without affecting thresholds and has been documented in human temporal bones with SNHL. Comparing the audiological trends observed here with the existing histopathological literature supports the notion that word score discrepancies may be a useful CND metric.
Collapse
Affiliation(s)
- Kelsie J Grant
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.,Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Benjamin Caswell-Midwinter
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Maria E Freitas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA. .,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
42
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
43
|
Foster AC, Szobota S, Piu F, Jacques BE, Moore DR, Sanchez VA, Anderson JJ. A neurotrophic approach to treating hearing loss: Translation from animal models to clinical proof-of-concept. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3937. [PMID: 35778165 DOI: 10.1121/10.0011510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Currently, there are no approved medicines available for the treatment of hearing loss. However, research over the past two decades has contributed to a growing understanding of the pathological mechanisms in the cochlea that result in hearing difficulties. The concept that a loss of the synapses connecting inner hair cells with the auditory nerve (cochlear synaptopathy) contributes to hearing loss has gained considerable attention. Both animal and human post-mortem studies support the idea that these synapses (ribbon synapses) are highly vulnerable to noise, ototoxicity, and the aging process. Their degeneration has been suggested as an important factor in the speech-in-noise difficulties commonly experienced by those suffering with hearing loss. Neurotrophins such as brain derived neurotrophic factor (BDNF) have the potential to restore these synapses and provide improved hearing function. OTO-413 is a sustained exposure formulation of BDNF suitable for intratympanic administration that in preclinical models has shown the ability to restore ribbon synapses and provide functional hearing benefit. A phase 1/2 clinical trial with OTO-413 has provided initial proof-of-concept for improved speech-in-noise hearing performance in subjects with hearing loss. Key considerations for the design of this clinical study, including aspects of the speech-in-noise assessments, are discussed.
Collapse
Affiliation(s)
- Alan C Foster
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Stephanie Szobota
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Fabrice Piu
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Bonnie E Jacques
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA
| | - Victoria A Sanchez
- Department of Otolaryngology - Head & Neck Surgery, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 73, Tampa, Florida 33620, USA
| | - Jeffery J Anderson
- Clinical Sciences, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| |
Collapse
|
44
|
Harrison RT, DeBacker JR, Trevino M, Bielefeld EC, Lobarinas E. Cochlear Preconditioning as a Modulator of Susceptibility to Hearing Loss. Antioxid Redox Signal 2022; 36:1215-1228. [PMID: 34011160 DOI: 10.1089/ars.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Acquired sensorineural hearing loss is a major public health problem worldwide. The leading causes of sensorineural hearing loss are noise, aging, and ototoxic medications, with the key underlying pathology being damage to the cochlea. The review focuses on the phenomenon of preconditioning, in which the susceptibility to cochlear injury is reduced by exposing the ear to a stressful stimulus. Recent Advances: Cochlear conditioning has focused on the use of mono-modal conditioning, specifically conditioning the cochlea with moderate noise exposures before a traumatic exposure that causes permanent hearing loss. Recently, cross-modal conditioning has been explored more thoroughly, to prevent not only noise-induced hearing loss, but also age-related and drug-induced hearing losses. Critical Issues: Noise exposures that cause only temporary threshold shifts (TTSs) can cause long-term synaptopathy, injury to the synapses between the inner hair cells and spiral ganglion cells. This discovery has the potential to significantly alter the field of cochlear preconditioning with noise. Further, cochlear preconditioning can be the gateway to the development of clinically deployable therapeutics. Therefore, understanding the underlying mechanisms of conditioning is crucial for optimizing clinical protection against sensorineural hearing loss. Future Directions: Before the discovery of synaptopathy, noise exposures that caused only TTSs were believed to be either harmless or potentially beneficial. Any considerations of preconditioning with noise must consider the potential for injury to the synapses. Further, the discovery of different methods to precondition the cochlea against injury will yield new avenues for protection against hearing loss in the vulnerable populations. Antioxid. Redox Signal. 36, 1215-1228.
Collapse
Affiliation(s)
- Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
45
|
Jahn KN, Hancock KE, Maison SF, Polley DB. Estimated cochlear neural degeneration is associated with loudness hypersensitivity in individuals with normal audiograms. JASA EXPRESS LETTERS 2022; 2:064403. [PMID: 35719240 PMCID: PMC9199082 DOI: 10.1121/10.0011694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2022] [Indexed: 05/27/2023]
Abstract
In animal models, cochlear neural degeneration (CND) is associated with excess central gain and hyperacusis, but a compelling link between reduced cochlear neural inputs and heightened loudness perception in humans remains elusive. The present study examined whether greater estimated cochlear neural degeneration (eCND) in human participants with normal hearing thresholds is associated with heightened loudness perception and sound aversion. Results demonstrated that loudness perception was heightened in ears with greater eCND and in subjects who self-report loudness aversion via a hyperacusis questionnaire. These findings suggest that CND may be a potential trigger for loudness hypersensitivity.
Collapse
Affiliation(s)
- Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| |
Collapse
|
46
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. The Effect of Lifetime Noise Exposure and Aging on Speech-Perception-in-Noise Ability and Self-Reported Hearing Symptoms: An Online Study. Front Aging Neurosci 2022; 14:890010. [PMID: 35711902 PMCID: PMC9195834 DOI: 10.3389/fnagi.2022.890010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Animal research shows that aging and excessive noise exposure damage cochlear outer hair cells, inner hair cells, and the synapses connecting inner hair cells with the auditory nerve. This may translate into auditory symptoms such as difficulty understanding speech in noise, tinnitus, and hyperacusis. The current study, using a novel online approach, assessed and quantified the effects of lifetime noise exposure and aging on (i) speech-perception-in-noise (SPiN) thresholds, (ii) self-reported hearing ability, and (iii) the presence of tinnitus. Secondary aims involved documenting the effects of lifetime noise exposure and aging on tinnitus handicap and the severity of hyperacusis. Two hundred and ninety-four adults with no past diagnosis of hearing or memory impairments were recruited online. Participants were assigned into two groups: 217 "young" (age range: 18-35 years, females: 151) and 77 "older" (age range: 50-70 years, females: 50). Participants completed a set of online instruments including an otologic health and demographic questionnaire, a dementia screening tool, forward and backward digit span tests, a noise exposure questionnaire, the Khalfa hyperacusis questionnaire, the short-form of the Speech, Spatial, and Qualities of Hearing scale, the Tinnitus Handicap Inventory, a digits-in-noise test, and a Coordinate Response Measure speech-perception test. Analyses controlled for sex and cognitive function as reflected by the digit span. A detailed protocol was pre-registered, to guard against "p-hacking" of this extensive dataset. Lifetime noise exposure did not predict SPiN thresholds, self-reported hearing ability, or the presence of tinnitus in either age group. Exploratory analyses showed that worse hyperacusis scores, and a greater prevalence of tinnitus, were associated significantly with high lifetime noise exposure in the young, but not in the older group. Age was a significant predictor of SPiN thresholds and the presence of tinnitus, but not of self-reported hearing ability, tinnitus handicap, or severity of hyperacusis. Consistent with several lab studies, our online-derived data suggest that older adults with no diagnosis of hearing impairment have a poorer SPiN ability and a higher risk of tinnitus than their younger counterparts. Moreover, lifetime noise exposure may increase the risk of tinnitus and the severity of hyperacusis in young adults with no diagnosis of hearing impairment.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
47
|
Yu L, Yang S, Wang Q, Li M. [Diagnosis and treatment of tinnitus]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:325-334. [PMID: 35483680 PMCID: PMC10128260 DOI: 10.13201/j.issn.2096-7993.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 04/30/2023]
|
48
|
Are Electrocochleographic Changes an Early Sign of Cochlear Synaptopathy? A Prospective Study in Tinnitus Patients with Normal Hearing. Diagnostics (Basel) 2022; 12:diagnostics12040802. [PMID: 35453851 PMCID: PMC9027360 DOI: 10.3390/diagnostics12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanism of tinnitus accompanied by a normal audiogram remains elusive. This study aimed to investigate evidence of primary neural degeneration, also known as cochlear synaptopathy, in tinnitus patients with normal hearing thresholds. We analyzed the differences in electrocochleography (ECochG) measurements between normal-hearing subjects with and without tinnitus. Forty-five subjects were enrolled in this study: 21 were in the tinnitus group, defined by chronic tinnitus of over two months’ duration with normal audiometric thresholds, and 24 were in the control group, defined by a lack of tinnitus complaints. Electrocochleograms were evoked by 1, 4, 6, and 8 kHz alternating-polarity tone bursts at sound pressure levels (SPLs) of 90−110 dB. The tinnitus group had smaller action potential (AP) amplitudes than the control group for 1, 4, 6, and 8 kHz tone bursts and showed significant amplitude reduction at 1 kHz 110 dB SPL (p < 0.01), 1 kHz 90 dB SPL (p < 0.05), and 4 kHz 110 dB SPL (p < 0.05). There were no significant differences in the summating potential/action potential (SP/AP) amplitude ratios across the four tested frequencies. A trend of reduced AP amplitudes was found in the tinnitus group, supporting the hypothesis that tinnitus might be associated with primary neural degeneration.
Collapse
|
49
|
Lara RA, Breitzler L, Lau IH, Gordillo-Martinez F, Chen F, Fonseca PJ, Bass AH, Vasconcelos RO. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish. J Exp Biol 2022; 225:274643. [PMID: 35258623 DOI: 10.1242/jeb.243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including to investigate developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition paradigm (PPI) at 5 dpf. Noise-exposed larvae showed significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while PPI revealed a hypersensitisation effect and similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.,Departamento de Biología, Universidad de Sevilla, Spain
| | - Lukas Breitzler
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | | | - Fangyi Chen
- Department of Biomedical Engineering, South University of Science and Technology of China, Guangdong, China
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, NY, USA
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| |
Collapse
|
50
|
Kurioka T, Mizutari K, Satoh Y, Shiotani A. Correlation of blast-induced tympanic membrane perforation with peripheral cochlear synaptopathy. J Neurotrauma 2022; 39:999-1009. [PMID: 35243914 DOI: 10.1089/neu.2021.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The auditory organs, including the tympanic membrane, cochlea, and central auditory pathway, are the most fragile components of the human body when exposed to blast overpressure. Tympanic membrane perforation (TMP) is the most frequent symptom in blast-exposed patients. However, the impact of TMP on the inner ear and central auditory system is not fully understood. We aimed to analyze the effect of blast-induced TMP on the auditory pathophysiological changes in mice after blast exposure. Mice aged 7 weeks were exposed to blast overpressure to induce TMP and allowed to survive for 2 months. All TMP cases had spontaneously healed by week 3 following the blast exposure. Compared to controls, blast-exposed mice exhibited a significant elevation in hearing thresholds and an apparent disruption of stereocilia in the outer hair cells, regardless of the occurrence or absence of TMP. The reduction in synapses in the inner hair cells, which is known as the most frequent pathology in blast-exposed cochleae, was significantly more severe in mice without TMP. However, a decrease in the number of excitatory central synapses labeled by VGLUT-1 in the cochlear nucleus was observed regardless of the absence or presence of TMP. Our findings suggest that blast-induced TMP mitigates peripheral cochlear synaptic disruption but leaves the central auditory synapses unaffected, indicating that central synaptic disruption is independent of TMP and peripheral cochlear synaptic disruption. Synaptic deterioration in the peripheral and central auditory systems can contribute to the promotion of blast-induced hearing impairment, including abnormal auditory perception.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| |
Collapse
|